1
|
Erckes V, Hilleke M, Isert C, Steuer C. PICKAPEP: An application for parameter calculation and visualization of cyclized and modified peptidomimetics. J Pept Sci 2024:e3646. [PMID: 39085168 DOI: 10.1002/psc.3646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 08/02/2024]
Abstract
The interest in peptides and especially in peptidomimetic structures has risen enormously in the past few years. Novel modification strategies including nonnatural amino acids, sophisticated cyclization strategies, and side chain modifications to improve the pharmacokinetic properties of peptides are continuously arising. However, a calculator tool accompanying the current development in peptide sciences towards modified peptides is missing. Herein, we present the application PICKAPEP, enabling the virtual construction and visualization of peptidomimetics ranging from well-known cyclized and modified peptides such as ciclosporin A up to fully self-designed peptide-based structures with custom amino acids. Calculated parameters include the molecular weight, the water-octanol partition coefficient, the topological polar surface area, the number of rotatable bonds, and the peptide SMILES code. To our knowledge, PICKAPEP is the first tool allowing users to add custom amino acids as building blocks and also the only tool giving the possibility to process large peptide libraries and calculate parameters for multiple peptides at once. We believe that PICKAPEP will support peptide researchers in their work and will find wide application in current as well as future peptide drug development processes. PICKAPEP is available open source for Windows and Mac operating systems (https://urldefense.com/v3/__https://www.research-collection.ethz.ch/handle/20.500.11850/681174__;!!N11eV2iwtfs!qt5f_2lNd6IZUDH1HVSVwg0zYzS8-nFazQ8c61jS5GaD5vkVS5C3igyfh3haJRnaX8ugW7o9VWUiCihPqcptmaWoqwYf9LvZTQ$).
Collapse
Affiliation(s)
- Vanessa Erckes
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Laboratory of Pharmaceutical Analytics, ETH Zurich, Zurich, Switzerland
| | - Mattis Hilleke
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Laboratory of Computer-Assisted Drug Design, ETH Zurich, Zurich, Switzerland
| | - Clemens Isert
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Laboratory of Computer-Assisted Drug Design, ETH Zurich, Zurich, Switzerland
| | - Christian Steuer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Laboratory of Pharmaceutical Analytics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Pepanian A, Binbay FA, Pei D, Imhof D. Design, synthesis, and analysis of macrobicyclic peptides for targeting the Gαi protein. J Pept Sci 2024; 30:e3565. [PMID: 38232955 PMCID: PMC11065574 DOI: 10.1002/psc.3565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Bicyclic peptides are important chemical tools that can function, for example, as bioactive ligands switching on/off signaling pathways mediated by guanine nucleotide-binding proteins as bicycles are more broadly applicable. Despite their relevance in medicinal chemistry, the synthesis of such peptides is challenging, and the final yield is highly dependent on the chemical composition and physicochemical properties of the scaffold. We recently discovered novel, state-specific peptide modulators targeting the Gαi protein, namely, GPM-2/GPM-3, by screening a one-bead-two-compound combinatorial library. A more detailed analysis, including sequence alignments and computer-assisted conformational studies based on the hit compounds, revealed the new peptide 10 as a potential macrobicyclic Gαi ligand sharing high sequence similarity to the known Gαi modulators. The Gαs protein was included in this study for comparison and to unravel the criteria for the specificity of modulator binding to Gαi versus Gαs. This work provides in-depth computer-assisted experimental studies for the analysis of novel macrobicyclic, library-derived Gαi protein ligands. The sequence and structural comparison of 10 with the lead compounds GPM-2 and GPM-3 reveals the importance of the size and amino acid composition of one ring of the bicyclic system and suggests features enhancing the binding affinity of the peptides to the Gαi protein.
Collapse
Affiliation(s)
- Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - F. Ayberk Binbay
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, OH 43210, USA
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
3
|
Bruce A, Adebomi V, Czabala P, Palmer J, McFadden WM, Lorson ZC, Slack RL, Bhardwaj G, Sarafianos SG, Raj M. A Tag-Free Platform for Synthesis and Screening of Cyclic Peptide Libraries. Angew Chem Int Ed Engl 2024; 63:e202320045. [PMID: 38529717 PMCID: PMC11254100 DOI: 10.1002/anie.202320045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
In the realm of high-throughput screening (HTS), macrocyclic peptide libraries traditionally necessitate decoding tags, essential for both library synthesis and identifying hit peptide sequences post-screening. Our innovation introduces a tag-free technology platform for synthesizing cyclic peptide libraries in solution and facilitates screening against biological targets to identify peptide binders through unconventional intramolecular CyClick and DeClick chemistries (CCDC) discovered through our research. This combination allows for the synthesis of diverse cyclic peptide libraries, the incorporation of various amino acids, and facile linearization and decoding of cyclic peptide binder sequences. Our sensitivity-enhancing derivatization method, utilized in tandem with nano LC-MS/MS, enables the sequencing of peptides even at exceedingly low picomolar concentrations. Employing our technology platform, we have successfully unearthed novel cyclic peptide binders against a monoclonal antibody and the first cyclic peptide binder of HIV capsid protein responsible for viral infections as validated by microscale thermal shift assays (TSA), biolayer interferometry (BLI) and functional assays.
Collapse
Affiliation(s)
- Angele Bruce
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, United States
| | - Victor Adebomi
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, United States
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States, 98195
| | - Patrick Czabala
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, United States
| | - Jonathan Palmer
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States, 98195
| | - William M McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA, 30322, United States
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, United States
| | - Zachary C Lorson
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA, 30322, United States
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, United States
| | - Ryan L Slack
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA, 30322, United States
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, United States
| | - Gaurav Bhardwaj
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States, 98195
| | - Stefan G Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA, 30322, United States
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, United States
| | - Monika Raj
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, United States
| |
Collapse
|
4
|
Zheng W, Zhou T, Zhang Y, Ding J, Xie J, Wang S, Wang Z, Wang K, Shen L, Zhu Y, Gao C. Simplified α 2-macroglobulin as a TNF-α inhibitor for inflammation alleviation in osteoarthritis and myocardial infarction therapy. Biomaterials 2023; 301:122247. [PMID: 37487780 DOI: 10.1016/j.biomaterials.2023.122247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/25/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
Tumor necrosis factor α (TNF-α) is a leading proinflammatory cytokine as the master regulator of inflammation in chronic inflammation diseases. Although TNF-α antagonists such as small molecules and peptides are in development, comparable effectiveness in TNF-α neutralization is hardly achieved only with TNF-α capture. In this study, simplified α2-macroglobulin (SM) as a novel TNF-α inhibitor was fabricated to relieve inflammation response by TNF-α capture and internalization with lysosomal degradation. SM was prepared by conjugating a TNF-α-targeting peptide with a receptor binding domain (RBD) derived from α2-macroglobulin through a synthetic biology strategy. SM exhibited effective capture and bioactivity inhibition of TNF-α. Improved endocytosis of TNF-α into lysosomes was observed with SM in macrophages. Even challenged with LPS/IFNγ, the macrophages showed relieved inflammation response with SM treatment. When administrated in chronic inflammation injury in vivo, SM achieved comparable therapeutic efficacy with Infliximab, showing ameliorated cartilage degeneration with relieved inflammation in osteoarthritis (OA) and preserved cardiac function with mitigated myocardium injury in myocardial infarction (MI). These results suggest that SM functioning in TNF-α capture-internalization mechanism might be promising therapeutic alternatives of TNF-α antibodies.
Collapse
Affiliation(s)
- Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiang Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, PR China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China; Dr. Li Dak Sum Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhaoyi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Kai Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China; Dr. Li Dak Sum Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China.
| |
Collapse
|
5
|
Pepanian A, Binbay FA, Roy S, Nubbemeyer B, Koley A, Rhodes CA, Ammer H, Pei D, Ghosh P, Imhof D. Bicyclic Peptide Library Screening for the Identification of Gαi Protein Modulators. J Med Chem 2023; 66:12396-12406. [PMID: 37587416 PMCID: PMC11000586 DOI: 10.1021/acs.jmedchem.3c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Noncanonical G protein activation and inactivation, particularly for the Gαi/s protein subfamilies, have long been a focus of chemical research. Combinatorial libraries were already effectively applied to identify modulators of the guanine-nucleotide exchange, as can be exemplified with peptides such as KB-752 and GPM-1c/d, the so-called guanine-nucleotide exchange modulators. In this study, we identified novel bicyclic peptides from a combinatorial library screening that show prominent properties as molecular switch-on/off modulators of Gαi signaling. Among the series of hits, the exceptional paradigm of GPM-3, a protein and state-specific bicyclic peptide, is the first chemically identified GAP (GTPase-activating protein) modulator with a high binding affinity for Gαi protein. Computational analyses identified and assessed the structure of the bicyclic peptides, novel ligand-protein interaction sites, and their subsequent impact on the nucleotide binding site. This approach can therefore lead the way for the development of efficient chemical biological probes targeting Gαi protein modulation within a cellular context.
Collapse
Affiliation(s)
- Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Furkan Ayberk Binbay
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Britta Nubbemeyer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Amritendu Koley
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, OH 43210, USA
| | - Curran A. Rhodes
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, OH 43210, USA
| | - Hermann Ammer
- Institute of Pharmacology Toxicology and Pharmacy, Veterinary Faculty, Ludwig Maximilian University of Munich, Königinstr. 16, 80539 Munich, Germany
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, OH 43210, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
6
|
Gu M, Yu Y, Xue M, Jiang J, Cai J. The discovery of cyclic γ-AApeptides as the promising ligands targeting EP2. Bioorg Med Chem Lett 2023; 87:129255. [PMID: 36965536 PMCID: PMC10141659 DOI: 10.1016/j.bmcl.2023.129255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
EP2 is a G protein-coupled receptor for prostaglandin E2 (PGE2) derived from cell membrane-released arachidonic acid upon various harmful and injurious stimuli. It is commomly upregulated in tumors and injured brain tissues, as its activation by PGE2 is widely believed to be involved in the pathophysiological mechanisms underlying these conditions via promoting pro-inflammatory reactions. Herein, we report the discovery of two novel macrocyclic peptidomimetics based on the screening of a cyclic γ-AApeptides combinatorial library. These two cyclic γ-AApeptides showed excellent binding affinity with the EP2 protein, and they may lead to the development of novel therapeutic agents and/or molecular probes to modulate the PGE2/EP2 signaling.
Collapse
Affiliation(s)
- Meng Gu
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Menglin Xue
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| |
Collapse
|
7
|
Functional Peptides from One-bead One-compound High-throughput Screening Technique. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Yan YQ, Wang JQ, Zhang L, Yang PP, Ye XW, Liu C, Hou DY, Lai WJ, Wang J, Zeng XZ, Xu W, Wang L. Localized Instillation Enables In Vivo Screening of Targeting Peptides Using One-Bead One-Compound Technology. ACS NANO 2023; 17:1381-1392. [PMID: 36596220 DOI: 10.1021/acsnano.2c09894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The One-Bead One-Compound (OBOC) library screening is an efficient technique for identifying targeting peptides. However, due to the relatively large bead size, it is challenging for the OBOC method to be applied for in vivo screening. Herein, we report an in vivo Localized Instillation Beads library (LIB) screening method to discover targeting peptides with the OBOC technique. Inspired by localized instillation, we constructed a cavity inside of a transplanted tumor of a mouse. Then, the OBOC heptapeptide library was injected and incubated inside the tumor cavity. After an efficient elution process, the retained beads were gathered, from which three MDA-MB-231 tumor-targeting heptapeptides were discovered. It was verified that the best peptide had 1.9-fold higher tumor accumulation than the commonly used targeting peptide RGD in vivo. Finally, two targeting proteins were discovered as potential targets of our targeting peptide to the MDA-MB-231 tumor. The in vivo LIB screening method expands the scope of OBOC peptide screening applications to discover targeting peptides in vivo feasibly and reliably.
Collapse
Affiliation(s)
- Ya-Qiong Yan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Jia-Qi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Harbin, Heilongjiang Province150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Lingze Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
| | - Pei-Pei Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
| | - Xin-Wei Ye
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
| | - Cong Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
| | - Da-Yong Hou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Harbin, Heilongjiang Province150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Wen-Jia Lai
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
| | - Jie Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Xiang-Zhong Zeng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Wanhai Xu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology, No. 37 Yi-Yuan Street, Nangang District, Harbin, Heilongjiang Province150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST)No. 11 Beiyitiao, Zhongguancun, Beijing100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| |
Collapse
|
9
|
Zhang L, Jiang Z, Yang X, Qian Y, Wang M, Wu S, Li L, Jia F, Wang Z, Hu Z, Zhao M, Tang X, Li G, Shang H, Chen X, Wang W. A Totipotent "All-In-One" Peptide Sequentially Blocks Immune Checkpoint and Reverses the Immunosuppressive Tumor Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207330. [PMID: 36259590 DOI: 10.1002/adma.202207330] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Immune checkpoint blockade combined with reversal of the immunosuppressive tumor microenvironment (TME) can dramatically enhance anti-tumor immunity, which can be achieved by using multiple-agent therapy. However, the optimal dose and order of administration of different agents remain elusive. To address this dilemma, multiple agents are often grafted together to construct "all-in-one" totipotent drugs, but this usually comes at the cost of a lack of synergy between the agents. Herein, by comprehensively analyzing the conserved sites of the immune checkpoint and TME drug targets, peptide secondary structures, assembly properties, and other physicochemical properties, a high-content peptide library is designed. By using the "3D-molecular-evolution" screening strategy, an efficient and totipotent "all-in-one" peptide (TAP) is obtained, which possesses the abilities of self-assembling, blocking the PD-1/PD-L1 axis, inhibiting Rbm38-eIF4E complex formation, and activating p53. It is shown that in mice treated with TAP, with either subcutaneous tumors or patient-derived xenografts, PD-L1 is blocked, with increased activation of both T and NK cells whilst reversing the immunosuppressive TME. Moreover, TAP can mitigate tumor activity and suppress tumor growth, showing superior therapeutic effect over antibody-based drugs.
Collapse
Affiliation(s)
- Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhenqi Jiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Xi Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Yixia Qian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shang Wu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lingyun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Fei Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zihua Wang
- Centre for Neuroscience Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, P. R. China
| | - Zhiyuan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Minzhi Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiaoying Tang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Gang Li
- Gastrointestinal Surgery, Shanxi Hospital of Traditional Chinese Medicine, Taiyuan, 030012, P. R. China
| | - Hanbing Shang
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, 200025, P. R. China
| | - Xiaoyuan Chen
- Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
10
|
Feng D, Liu L, Shi Y, Du P, Xu S, Zhu Z, Xu J, Yao H. Current development of bicyclic peptides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Pei D. Designing Cell-Permeable Peptide Therapeutics That Enter the Cell by Endocytosis. ACS SYMPOSIUM SERIES. AMERICAN CHEMICAL SOCIETY 2022; 1417:179-197. [PMID: 37621949 PMCID: PMC10448808 DOI: 10.1021/bk-2022-1417.ch007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Intracellular protein-protein interactions (PPIs) represent a large class of exciting as well as challenging drug targets for traditional drug modalities (i.e., small molecules and biologics). Peptides (especially cyclic peptides) have proven highly effective as PPI inhibitors in vitro but are generally impermeable to the cell membrane. The recent discovery of a family of highly active cyclic cell-penetrating peptides (CPPs) has enabled the delivery of peptides into the cytosol of mammalian cells at therapeutically relevant levels. This chapter describes the various strategies that have been developed to conjugate or integrate different types of peptidyl cargoes (e.g., linear, cyclic, and stapled peptides) with cyclic CPPs to generate cell-permeable, metabolically stable, and biologically active macrocyclic peptides against intracellular targets including PPIs.
Collapse
Affiliation(s)
- Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Elbaum MB, Elkhalifa MA, Molander GA, Chenoweth DM. Solid-Phase Photochemical Peptide Homologation Cyclization. Org Lett 2022; 24:5176-5180. [PMID: 35816696 PMCID: PMC10435287 DOI: 10.1021/acs.orglett.2c02012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Forging new C(sp3)-C(sp3) bonds to central positions within a peptide backbone is critical for the development of new therapeutics and chemical probes. Currently, there are no methods for decarboxylating Asp and Glu side chains solid-phase photochemically or using such radicals to form peptide macrocycles. Herein, electron-donor-acceptor complexes between Hantzsch ester and on-resin peptide N-hydroxyphthalimide radical precursors are used to access these radicals, demonstrated with two-carbon homologations and homologation cyclizations of Atosiban and RGDf.
Collapse
Affiliation(s)
- Michael B Elbaum
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mahmoud A Elkhalifa
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A Molander
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
13
|
Li B, Wan Z, Zheng H, Cai S, Tian HW, Tang H, Chu X, He G, Guo DS, Xue XS, Chen G. Construction of Complex Macromulticyclic Peptides via Stitching with Formaldehyde and Guanidine. J Am Chem Soc 2022; 144:10080-10090. [PMID: 35639413 DOI: 10.1021/jacs.2c04620] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is a growing interest in constructing multicyclic peptide structures to expand the chemical space of peptides. Conventional strategies for constructing large peptide structures are limited by the typical reliance on the inflexible coupling between premade templates equipped with fixed reactive handles and peptide substrates via cysteine anchors. Herein, we report the development of a facile three-component condensation reaction of primary alkyl amine, formaldehyde, and guanidine for construction of complex macromulticyclic peptides with novel topologies via lysine anchors. Moreover, the reaction sequences can be orchestrated in different anchor combinations and spatial arrangements to generate various macrocyclic structures crosslinked by distinct fused tetrahydrotriazine linkages. The macrocyclization reactions are selective, efficient, versatile, and workable in both organic and aqueous media. Thus, the condensation reaction provides a smart tool for stitching native peptides in situ using simple methylene threads and guanidine joints in a flexible and programmable manner.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhao Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanliang Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shaokun Cai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Han-Wen Tian
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Chu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dong-Sheng Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Song Xue
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Zhou Y, Zou Y, Yang M, Mei S, Liu X, Han H, Zhang CD, Niu MM. Highly Potent, Selective, Biostable, and Cell-Permeable Cyclic d-Peptide for Dual-Targeting Therapy of Lung Cancer. J Am Chem Soc 2022; 144:7117-7128. [PMID: 35417174 DOI: 10.1021/jacs.1c12075] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The application of peptide drugs in cancer therapy is impeded by their poor biostability and weak cell permeability. Therefore, it is imperative to find biostable and cell-permeable peptide drugs for cancer treatment. Here, we identified a potent, selective, biostable, and cell-permeable cyclic d-peptide, NKTP-3, that targets NRP1 and KRASG12D using structure-based virtual screening. NKTP-3 exhibited strong biostability and cellular uptake ability. Importantly, it significantly inhibited the growth of A427 cells with the KRASG12D mutation. Moreover, NKTP-3 showed strong antitumor activity against A427 cell-derived xenograft and KRASG12D-driven primary lung cancer models without obvious toxicity. This study demonstrates that the dual NRP1/KRASG12D-targeting cyclic d-peptide NKTP-3 may be used as a potential chemotherapeutic agent for KRASG12D-driven lung cancer treatment.
Collapse
Affiliation(s)
- Yunjiang Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yunting Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mei Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shuang Mei
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaohao Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huiyun Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chang-Dong Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Miao-Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
15
|
Molecular glues modulate protein functions by inducing protein aggregation: A promising therapeutic strategy of small molecules for disease treatment. Acta Pharm Sin B 2022; 12:3548-3566. [PMID: 36176907 PMCID: PMC9513498 DOI: 10.1016/j.apsb.2022.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
Molecular glues can specifically induce aggregation between two or more proteins to modulate biological functions. In recent years, molecular glues have been widely used as protein degraders. In addition, however, molecular glues play a variety of vital roles, such as complex stabilization, interactome modulation and transporter inhibition, enabling challenging therapeutic targets to be druggable and offering an exciting novel approach for drug discovery. Since most molecular glues are identified serendipitously, exploration of their systematic discovery and rational design are important. In this review, representative examples of molecular glues with various physiological functions are divided into those mediating homo-dimerization, homo-polymerization and hetero-dimerization according to their aggregation modes, and we attempt to elucidate their mechanisms of action. In particular, we aim to highlight some biochemical techniques typically exploited within these representative studies and classify them in terms of three stages of molecular glue development: starting point, optimization and identification.
Collapse
|
16
|
Buyanova M, Cai S, Cooper J, Rhodes C, Salim H, Sahni A, Upadhyaya P, Yang R, Sarkar A, Li N, Wang QE, Pei D. Discovery of a Bicyclic Peptidyl Pan-Ras Inhibitor. J Med Chem 2021; 64:13038-13053. [PMID: 34415745 DOI: 10.1021/acs.jmedchem.1c01130] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Ras subfamily of small GTPases is mutated in ∼30% of human cancers and represents compelling yet challenging anticancer drug targets owing to their flat protein surface. We previously reported a bicyclic peptidyl inhibitor, cyclorasin B3, which binds selectively to Ras-GTP with modest affinity and blocks its interaction with downstream effector proteins in vitro but lacks cell permeability or biological activity. In this study, optimization of B3 yielded a potent pan-Ras inhibitor, cyclorasin B4-27, which binds selectively to the GTP-bound forms of wild-type and mutant Ras isoforms (KD = 21 nM for KRasG12V-GppNHp) and is highly cell-permeable and metabolically stable (serum t1/2 > 24 h). B4-27 inhibits Ras signaling in vitro and in vivo by blocking Ras from interacting with downstream effector proteins and induces apoptosis of Ras-mutant cancer cells. When administered systemically (i.v.), B4-27 suppressed tumor growth in two different mouse xenograft models at 1-5 mg/kg of daily doses.
Collapse
Affiliation(s)
- Marina Buyanova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shurui Cai
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jahan Cooper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Curran Rhodes
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Heba Salim
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Punit Upadhyaya
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Rui Yang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amar Sarkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Na Li
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Qi-En Wang
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
17
|
Zhang G, Li C, Quartararo AJ, Loas A, Pentelute BL. Automated affinity selection for rapid discovery of peptide binders. Chem Sci 2021; 12:10817-10824. [PMID: 34447564 PMCID: PMC8372318 DOI: 10.1039/d1sc02587b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
In-solution affinity selection (AS) of large synthetic peptide libraries affords identification of binders to protein targets through access to an expanded chemical space. Standard affinity selection methods, however, can be time-consuming, low-throughput, or provide hits that display low selectivity to the target. Here we report an automated bio-layer interferometry (BLI)-assisted affinity selection platform. When coupled with tandem mass spectrometry (MS), this method enables both rapid de novo discovery and affinity maturation of known peptide binders with high selectivity. The BLI-assisted AS-MS technology also features real-time monitoring of the peptide binding during the library selection process, a feature unattainable by current selection approaches. We show the utility of the BLI AS-MS platform toward rapid identification of novel nanomolar (dissociation constant, KD < 50 nM) non-canonical binders to the leukemia-associated oncogenic protein menin. To our knowledge, this is the first application of BLI to the affinity selection of synthetic peptide libraries. We believe our approach can significantly accelerate the use of synthetic peptidomimetic libraries in drug discovery. This work reports an automated affinity selection-mass spectrometry (AS-MS) approach amenable to both de novo peptide binder discovery and affinity maturation of known binders in a high-throughput and selective manner.![]()
Collapse
Affiliation(s)
- Genwei Zhang
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Chengxi Li
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Anthony J Quartararo
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA .,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology 500 Main Street Cambridge MA 02142 USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA.,Broad Institute of MIT and Harvard 415 Main Street Cambridge MA 02142 USA
| |
Collapse
|
18
|
Bechtler C, Lamers C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med Chem 2021; 12:1325-1351. [PMID: 34447937 PMCID: PMC8372203 DOI: 10.1039/d1md00083g] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Peptides are a growing therapeutic class due to their unique spatial characteristics that can target traditionally "undruggable" protein-protein interactions and surfaces. Despite their advantages, peptides must overcome several key shortcomings to be considered as drug leads, including their high conformational flexibility and susceptibility to proteolytic cleavage. As a general approach for overcoming these challenges, macrocyclization of a linear peptide can usually improve these characteristics. Their synthetic accessibility makes peptide macrocycles very attractive, though traditional synthetic methods for macrocyclization can be challenging for peptides, especially for head-to-tail cyclization. This review provides an updated summary of the available macrocyclization chemistries, such as traditional lactam formation, azide-alkyne cycloadditions, ring-closing metathesis as well as unconventional cyclization reactions, and it is structured according to the obtained functional groups. Keeping peptide chemistry and screening in mind, the focus is given to reactions applicable in solution, on solid supports, and compatible with contemporary screening methods.
Collapse
Affiliation(s)
- Clément Bechtler
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| | - Christina Lamers
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| |
Collapse
|
19
|
Wong JYK, Mukherjee R, Miao J, Bilyk O, Triana V, Miskolzie M, Henninot A, Dwyer JJ, Kharchenko S, Iampolska A, Volochnyuk DM, Lin YS, Postovit LM, Derda R. Genetically-encoded discovery of proteolytically stable bicyclic inhibitors for morphogen NODAL. Chem Sci 2021; 12:9694-9703. [PMID: 34349940 PMCID: PMC8294009 DOI: 10.1039/d1sc01916c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
In this manuscript, we developed a two-fold symmetric linchpin (TSL) that converts readily available phage-displayed peptides libraries made of 20 common amino acids to genetically-encoded libraries of bicyclic peptides displayed on phage. TSL combines an aldehyde-reactive group and two thiol-reactive groups; it bridges two side chains of cysteine [C] with an N-terminal aldehyde group derived from the N-terminal serine [S], yielding a novel bicyclic topology that lacks a free N-terminus. Phage display libraries of SX1CX2X3X4X5X6X7C sequences, where X is any amino acid but Cys, were converted to a library of bicyclic TSL-[S]X1[C]X2X3X4X5X6X7[C] peptides in 45 ± 15% yield. Using this library and protein morphogen NODAL as a target, we discovered bicyclic macrocycles that specifically antagonize NODAL-induced signaling in cancer cells. At a 10 μM concentration, two discovered bicyclic peptides completely suppressed NODAL-induced phosphorylation of SMAD2 in P19 embryonic carcinoma cells. The TSL-[S]Y[C]KRAHKN[C] bicycle inhibited NODAL-induced proliferation of NODAL-TYK-nu ovarian carcinoma cells with apparent IC50 of 1 μM. The same bicycle at 10 μM concentration did not affect the growth of the control TYK-nu cells. TSL-bicycles remained stable over the course of the 72 hour-long assays in a serum-rich cell-culture medium. We further observed general stability in mouse serum and in a mixture of proteases (Pronase™) for 21 diverse bicyclic macrocycles of different ring sizes, amino acid sequences, and cross-linker geometries. TSL-constrained peptides to expand the previously reported repertoire of phage-displayed bicyclic architectures formed by cross-linking Cys side chains. We anticipate that it will aid the discovery of proteolytically stable bicyclic inhibitors for a variety of protein targets.
Collapse
Affiliation(s)
- Jeffrey Y-K Wong
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Raja Mukherjee
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Jiayuan Miao
- Department of Chemistry, Tufts University Medford MA 02155 USA
| | - Olena Bilyk
- Department of Experimental Oncology, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Vivian Triana
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Mark Miskolzie
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | | | - John J Dwyer
- Ferring Research Institute San Diego California 92121 USA
| | | | - Anna Iampolska
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
| | | | - Yu-Shan Lin
- Department of Chemistry, Tufts University Medford MA 02155 USA
| | - Lynne-Marie Postovit
- Department of Experimental Oncology, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| |
Collapse
|
20
|
Shabani S, Wu Y, Ryan HG, Hutton CA. Progress and perspectives on directing group-assisted palladium-catalysed C-H functionalisation of amino acids and peptides. Chem Soc Rev 2021; 50:9278-9343. [PMID: 34254063 DOI: 10.1039/d0cs01441a] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptide modifications can unlock a variety of compounds with structural diversity and abundant biological activity. In nature, peptide modifications, such as functionalisation at the side-chain position of amino acids, are performed using post-translational modification enzymes or incorporation of unnatural amino acids. However, accessing these modifications remains a challenge for organic chemists. During the past decades, selective C-H activation/functionalisation has attracted considerable attention in synthetic organic chemistry as a pathway to peptide modification. Various directing group strategies have been discovered that assist selective C-H activation. In particular, bidentate directing groups that enable tuneable and reversible coordination are now recognised as one of the most efficient methods for the site-selective C-H activation and functionalisation of numerous families of organic compounds. Synthetic peptide chemists have harnessed bidentate directing group strategies for selective functionalisation of the β- and γ-positions of amino acids. This method has been expanded and recognised as an effective device for the late stage macrocyclisation and total synthesis of complex peptide natural products. In this review, we discuss various β-, γ-, and δ-C(sp3)-H bond functionalisation reactions of amino acids for the formation of C-X bonds with the aid of directing groups and their application in late-stage macrocyclisation and the total synthesis of complex peptide natural products.
Collapse
Affiliation(s)
- Sadegh Shabani
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| | | | | | | |
Collapse
|
21
|
Yang P, Wang X, Li B, Yang Y, Yue J, Suo Y, Tong H, He G, Lu X, Chen G. Streamlined construction of peptide macrocycles via palladium-catalyzed intramolecular S-arylation in solution and on DNA. Chem Sci 2021; 12:5804-5810. [PMID: 34168804 PMCID: PMC8179660 DOI: 10.1039/d1sc00789k] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
A highly efficient and versatile method for construction of peptide macrocycles via palladium-catalyzed intramolecular S-arylation of alkyl and aryl thiols with aryl iodides under mild conditions is developed. The method exhibits a broad substrate scope for thiols, aryl iodides and amino acid units. Peptide macrocycles of a wide range of size and composition can be readily assembled in high yield from various easily accessible building blocks. This method has been successfully employed to prepare an 8-million-membered tetrameric cyclic peptide DNA-encoded library (DEL). Preliminary screening of the DEL library against protein p300 identified compounds with single digit micromolar inhibition activity.
Collapse
Affiliation(s)
- Peng Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 China
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yixuan Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 China
| | - Jinfeng Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 China
| | - Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 China
| | - Huarong Tong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
22
|
González-Muñiz R, Bonache MÁ, Pérez de Vega MJ. Modulating Protein-Protein Interactions by Cyclic and Macrocyclic Peptides. Prominent Strategies and Examples. Molecules 2021; 26:445. [PMID: 33467010 PMCID: PMC7830901 DOI: 10.3390/molecules26020445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Cyclic and macrocyclic peptides constitute advanced molecules for modulating protein-protein interactions (PPIs). Although still peptide derivatives, they are metabolically more stable than linear counterparts, and should have a lower degree of flexibility, with more defined secondary structure conformations that can be adapted to imitate protein interfaces. In this review, we analyze recent progress on the main methods to access cyclic/macrocyclic peptide derivatives, with emphasis in a few selected examples designed to interfere within PPIs. These types of peptides can be from natural origin, or prepared by biochemical or synthetic methodologies, and their design could be aided by computational approaches. Some advances to facilitate the permeability of these quite big molecules by conjugation with cell penetrating peptides, and the incorporation of β-amino acid and peptoid structures to improve metabolic stability, are also commented. It is predicted that this field of research could have an important future mission, running in parallel to the discovery of new, relevant PPIs involved in pathological processes.
Collapse
Affiliation(s)
- Rosario González-Muñiz
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (M.Á.B.); (M.J.P.d.V.)
| | | | | |
Collapse
|
23
|
Maresh ME, Salazar-Chaparro AF, Trader DJ. Methods for the discovery of small molecules to monitor and perturb the activity of the human proteasome. Future Med Chem 2021; 13:99-116. [PMID: 33275045 PMCID: PMC7857359 DOI: 10.4155/fmc-2020-0288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Regulating protein production and degradation is critical to maintaining cellular homeostasis. The proteasome is a key player in keeping proteins at the proper levels. However, proteasome activity can be altered in certain disease states, such as blood cancers and neurodegenerative diseases. Cancers often exhibit enhanced proteasomal activity, as protein synthesis is increased in these cells compared with normal cells. Conversely, neurodegenerative diseases are characterized by protein accumulation, leading to reduced proteasome activity. As a result, the proteasome has emerged as a target for therapeutic intervention. The potential of the proteasome as a therapeutic target has come from studies involving chemical stimulators and inhibitors, and the development of a suite of assays and probes that can be used to monitor proteasome activity with purified enzyme and in live cells.
Collapse
Affiliation(s)
- Marianne E Maresh
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Andres F Salazar-Chaparro
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Darci J Trader
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| |
Collapse
|
24
|
In vitro display evolution of the PURE system-expressed TNFα-binding unnatural cyclic peptide containing an N-methyl-d-amino acid. Biochem Biophys Res Commun 2020; 534:519-525. [PMID: 33276950 DOI: 10.1016/j.bbrc.2020.11.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022]
Abstract
Tumor necrosis factor-alpha (TNFα) is a multifunctional cytokine associated with inflammation, immune responses, and autoimmune diseases including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. In the present study, we performed in vitro selection, systematic evolution of ligands by exponential enrichment (SELEX) against human TNFα from mRNA-displayed peptide library prepared with Escherichia coli-reconstituted cell-free transcription/translation system (PURE system) and cyclized by N-chloroacetyl-N-methyl-d-phenylalanine incorporated by genetic code expansion (sense suppression). We identified a novel TNFα-binding thioether-cyclized peptide that contains an N-methyl-d-phenylalanine. Since cyclic structure and presence of an N-methyl-d-amino acid can increase proteolytic stability, the TNFα binding peptide has potential to be used for therapeutic, research and diagnostic applications.
Collapse
|
25
|
Wen J, Liao H, Stachowski K, Hempfling JP, Qian Z, Yuan C, Foster MP, Pei D. Rational design of cell-permeable cyclic peptides containing a d-Pro-l-Pro motif. Bioorg Med Chem 2020; 28:115711. [PMID: 33069067 DOI: 10.1016/j.bmc.2020.115711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/01/2022]
Abstract
Cyclic peptides are capable of binding to challenging targets (e.g., proteins involved in protein-protein interactions) with high affinity and specificity, but generally cannot gain access to intracellular targets because of poor membrane permeability. In this work, we discovered a conformationally constrained cyclic cell-penetrating peptide (CPP) containing a d-Pro-l-Pro motif, cyclo(AFΦrpPRRFQ) (where Φ is l-naphthylalanine, r is d-arginine, and p is d-proline). The structural constraints provided by cyclization and the d-Pro-l-Pro motif permitted the rational design of cell-permeable cyclic peptides of large ring sizes (up to 16 amino acids). This strategy was applied to design a potent, cell-permeable, and biologically active cyclic peptidyl inhibitor, cyclo(YpVNFΦrpPRR) (where Yp is l-phosphotyrosine), against the Grb2 SH2 domain. Multidimensional NMR spectroscopic and circular dichroism analyses revealed that the cyclic CPP as well as the Grb2 SH2 inhibitor assume a predominantly random coil structure but have significant β-hairpin character surrounding the d-Pro-l-Pro motif. These results demonstrate cyclo(AFΦrpPRRFQ) as an effective CPP for endocyclic (insertion of cargo into the CPP ring) or exocyclic delivery of biological cargos (attachment of cargo to the Gln side chain).
Collapse
Affiliation(s)
- Jin Wen
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Hui Liao
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Kye Stachowski
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Jordan P Hempfling
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Ziqing Qian
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Mark P Foster
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA.
| | - Dehua Pei
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
26
|
Checco JW, Eddinger GA, Rettko NJ, Chartier AR, Gellman SH. Tumor Necrosis Factor-α Trimer Disassembly and Inactivation via Peptide-Small Molecule Synergy. ACS Chem Biol 2020; 15:2116-2124. [PMID: 32662976 DOI: 10.1021/acschembio.0c00313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aberrant signaling by tumor necrosis factor-α (TNFα) is associated with inflammatory diseases that can be treated with engineered proteins that inhibit binding of this cytokine to cell-surface receptors. Despite these clinical successes, there is considerable interest in the development of smaller antagonists of TNFα-receptor interactions. We describe a new 29-residue α/β-peptide, a molecule that contains three β-amino acid residues and three α-aminoisobutryic acid (Aib) residues, that displays potent inhibition of TNFα binding to TNFα receptor 1 (TNFR1) and rescues cells from TNFα-induced death. The complement of nonproteinogenic residues renders this α/β-peptide highly resistant to proteolysis, relative to all-α analogues. The mechanism of inhibitory action of the new 29-mer involves disruption of the trimeric TNFα quaternary structure, which prevents productive binding to TNFα receptors. Unexpectedly, we discovered that peptide-induced trimer disruption can be promoted by structurally diverse small molecules, including a detergent commonly used during selection procedures. The discovery of this synergistic effect provides a new context for understanding previous reports on peptidic antagonists of TNFα-receptor interactions and suggests new avenues for future efforts to block signaling via proteins with an active form that is oligomeric, including other members of the TNFα family.
Collapse
Affiliation(s)
- James W. Checco
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, United States
| | - Geoffrey A. Eddinger
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, United States
| | - Nicholas J. Rettko
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, United States
| | - Alexander R. Chartier
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, United States
| |
Collapse
|
27
|
Li M, Shao X, Wu C, Lu D, Liu K, Wang W, Liu J, Li H, Su W, Fang L. Chlorotoxin-derived bicyclic peptides for targeted imaging of glioblastomas. Chem Commun (Camb) 2020; 56:9537-9540. [PMID: 32691026 DOI: 10.1039/d0cc01089h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient and efficient strategy was developed for accessing chlorotoxin-derived bicyclic peptide-biomolecule conjugates by cyclizing fully-unprotected linear peptides with a designed tetrafunctional chemical linker. Among these peptides, bicycle-P3 bearing the N-terminal sequence of chlorotoxin shows high tumor selectivity and penetration ability, which is promising for treatment of gliomas.
Collapse
Affiliation(s)
- Meiqing Li
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ximing Shao
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Chunlei Wu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Danyi Lu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Ke Liu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Wei Wang
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jiakai Liu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Hongchang Li
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Wu Su
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
McEnaney P, Balzarini M, Park H, Kodadek T. Structural characterization of a peptoid-inspired conformationally constrained oligomer (PICCO) bound to streptavidin. Chem Commun (Camb) 2020; 56:10560-10563. [PMID: 32785302 DOI: 10.1039/d0cc02588g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A high affinity Streptavidin ligand was mined from a DNA-encoded library of non-peptidic oligimers and characterized structurally.
Collapse
Affiliation(s)
- Patrick McEnaney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 3345, USA.
| | | | | | | |
Collapse
|
29
|
Hackler AL, FitzGerald FG, Dang VQ, Satz AL, Paegel BM. Off-DNA DNA-Encoded Library Affinity Screening. ACS COMBINATORIAL SCIENCE 2020; 22:25-34. [PMID: 31829554 DOI: 10.1021/acscombsci.9b00153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA-encoded library (DEL) technology is emerging as a key element of the small molecule discovery toolbox. Conventional DEL screens (i.e., on-DNA screening) interrogate large combinatorial libraries via affinity selection of DNA-tagged library members that are ligands of a purified and immobilized protein target. In these selections, the DNA tags can materially and undesirably influence target binding and, therefore, the experiment outcome. Here, we use a solid-phase DEL and droplet-based microfluidic screening to separate the DEL member from its DNA tag (i.e., off-DNA screening), for subsequent in-droplet laser-induced fluorescence polarization (FP) detection of target binding, obviating DNA tag interference. Using the receptor tyrosine kinase (RTK) discoidin domain receptor 1 (DDR1) as a proof-of-concept target in a droplet-scale competition-binding assay, we screened a 67 100-member solid-phase DEL of drug-like small molecules for competitive ligands of DDR1 and identified several known RTK inhibitor pharmacophores, including azaindole- and quinazolinone-containing monomers. Off-DNA DEL affinity screening with FP detection is potentially amenable to a wide array of target classes, including nucleic acid binding proteins, proteins that are difficult to overexpress and purify, or targets with no known activity assay.
Collapse
Affiliation(s)
| | | | | | - Alexander L. Satz
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel Hoffman-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | | |
Collapse
|
30
|
Pei D, Kubi GA. Developments with bead-based screening for novel drug discovery. Expert Opin Drug Discov 2019; 14:1097-1102. [PMID: 31335229 PMCID: PMC7301614 DOI: 10.1080/17460441.2019.1647164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/19/2019] [Indexed: 01/24/2023]
Abstract
Introduction: Combinatorial chemistry provides a cost-effective method for rapid discovery of drug hits/leads. The one-bead-one-compound (OBOC) library method is in principle ideally suited for this application, because it permits a large number of structurally diverse compounds to be rapidly synthesized and simultaneously screened for binding to a target of interest. However, application of OBOC libraries in drug discovery has encountered significant technical challenges. Areas covered: This Special Report covers the challenges associated with first-generation OBOC libraries (difficulty in structural identification of non-peptidic hits, screening biases and high false positive rates, and poor scalability). It also covers the many strategies developed over the past two decades to overcome these challenges. Expert opinion: With most of the technical challenges now overcome and the advent of powerful intracellular delivery technologies, OBOC libraries of metabolically stable and conformationally rigidified molecules (macrocyclic peptides and peptidomimetics, rigidified acyclic oligomers, and D-peptides) can be routinely synthesized and screened to discover initial hits against previously undruggable targets such as intracellular protein-protein interactions. On the other hand, further developments are still needed to expand the utility of the OBOC method to non-peptidic chemical scaffolds.
Collapse
Affiliation(s)
- Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - George Appiah Kubi
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
31
|
Salim H, Song J, Sahni A, Pei D. Development of a Cell-Permeable Cyclic Peptidyl Inhibitor against the Keap1-Nrf2 Interaction. J Org Chem 2019; 85:1416-1424. [PMID: 31609620 DOI: 10.1021/acs.joc.9b02367] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Macrocyclic peptides have proven to be highly effective inhibitors of protein-protein interactions but generally lack cell permeability to access intracellular targets. We show herein that macrocyclic peptides may be rendered highly cell-permeable and biologically active by conjugating them with a cyclic cell-penetrating peptide (CPP). A previously reported cyclic peptidyl inhibitor against the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid-2 (Nrf2) interaction (KD = 18 nM) was covalently attached to a cyclic CPP through a flexible linker. The resulting bicyclic peptide retained the Keap1-binding activity, resisted proteolytic degradation, readily entered mammalian cells, and activated the transcriptional activity of Nrf2 at nanomolar to low micromolar concentrations in cell culture. The inhibitor provides a useful tool for investigating the biological function of Keap1-Nrf2 and a potential lead for further development into a novel class of anti-inflammatory and anticancer agents. Our data suggest that other membrane-impermeable cyclic peptides may be similarly rendered cell-permeable by conjugation with a cyclic CPP.
Collapse
Affiliation(s)
- Heba Salim
- Department of Chemistry and Biochemistry , The Ohio State University , 484 West 12th Avenue , Columbus , Ohio 43210 , United States
| | - Jian Song
- Department of Chemistry and Biochemistry , The Ohio State University , 484 West 12th Avenue , Columbus , Ohio 43210 , United States.,School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , Guangdong Province 510006 , P.R. China
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry , The Ohio State University , 484 West 12th Avenue , Columbus , Ohio 43210 , United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry , The Ohio State University , 484 West 12th Avenue , Columbus , Ohio 43210 , United States
| |
Collapse
|
32
|
Abstract
Approximately 75% of all disease-relevant human proteins, including those involved in intracellular protein-protein interactions (PPIs), are undruggable with the current drug modalities (i.e., small molecules and biologics). Macrocyclic peptides provide a potential solution to these undruggable targets because their larger sizes (relative to conventional small molecules) endow them the capability of binding to flat PPI interfaces with antibody-like affinity and specificity. Powerful combinatorial library technologies have been developed to routinely identify cyclic peptides as potent, specific inhibitors against proteins including PPI targets. However, with the exception of a very small set of sequences, the vast majority of cyclic peptides are impermeable to the cell membrane, preventing their application against intracellular targets. This Review examines common structural features that render most cyclic peptides membrane impermeable, as well as the unique features that allow the minority of sequences to enter the cell interior by passive diffusion, endocytosis/endosomal escape, or other mechanisms. We also present the current state of knowledge about the molecular mechanisms of cell penetration, the various strategies for designing cell-permeable, biologically active cyclic peptides against intracellular targets, and the assay methods available to quantify their cell-permeability.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
33
|
Ahangarzadeh S, Kanafi MM, Hosseinzadeh S, Mokhtarzadeh A, Barati M, Ranjbari J, Tayebi L. Bicyclic peptides: types, synthesis and applications. Drug Discov Today 2019; 24:1311-1319. [PMID: 31102732 DOI: 10.1016/j.drudis.2019.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/19/2019] [Accepted: 05/08/2019] [Indexed: 01/14/2023]
Abstract
Bicyclic peptides form one of the most promising platforms for drug development owing to their biocompatibility, similarity and chemical diversity to proteins, and they are considered as a possible practical tool in various therapeutic and diagnostic applications. Bicyclic peptides are known to have the capability of being employed as an effective alternative to complex molecules, such as antibodies, or small molecules. This review provides a summary of the recent progress on the types, synthesis and applications of bicyclic peptides. More specifically, natural and synthetic bicyclic peptides are introduced with their different production methods and relevant applications, including drug targeting, imaging and diagnosis. Their uses as antimicrobial agents, as well as the therapeutic functions of different bicyclic peptides, are also discussed.
Collapse
Affiliation(s)
- Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad M Kanafi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA.
| |
Collapse
|
34
|
Amara CS, Vantaku V, Lotan Y, Putluri N. Recent advances in the metabolomic study of bladder cancer. Expert Rev Proteomics 2019; 16:315-324. [PMID: 30773067 DOI: 10.1080/14789450.2019.1583105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Metabolomics is a chemical process, involving the characterization of metabolites and cellular metabolism. Recent studies indicate that numerous metabolic pathways are altered in bladder cancer (BLCA), providing potential targets for improved detection and possible therapeutic intervention. We review recent advances in metabolomics related to BLCA and identify various metabolites that may serve as potential biomarkers for BLCA. Areas covered: In this review, we describe the latest advances in defining the BLCA metabolome and discuss the possible clinical utility of metabolic alterations in BLCA tissues, serum, and urine. In addition, we focus on the metabolic alterations associated with tobacco smoke and racial disparity in BLCA. Expert commentary: Metabolomics is a powerful tool which can shed new light on BLCA development and behavior. Key metabolites may serve as possible markers of BLCA. However, prospective validation will be needed to incorporate these markers into clinical care.
Collapse
Affiliation(s)
- Chandra Sekhar Amara
- a Department of Molecular and Cell Biology , Baylor College of Medicine , Houston , TX , USA
| | - Venkatrao Vantaku
- a Department of Molecular and Cell Biology , Baylor College of Medicine , Houston , TX , USA
| | - Yair Lotan
- b Department of Urology , University of Texas Southwestern , Dallas , TX , USA
| | - Nagireddy Putluri
- a Department of Molecular and Cell Biology , Baylor College of Medicine , Houston , TX , USA.,c Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery , Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
35
|
Jobin S, Beaumont C, Biron E. Development of a solid-phase traceless-Ugi multicomponent reaction for backbone anchoring and cyclic peptide synthesis. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Steve Jobin
- Faculté de Pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 Avenue de la Médecine; Québec G1V 0A6 Canada
- Laboratoire de Chimie Médicinale, Centre de Recherche du Centre Hospitalier Universitaire de Québec, 2705 Boulevard Laurier; Québec G1V 4G2 Canada
| | - Catherine Beaumont
- Faculté de Pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 Avenue de la Médecine; Québec G1V 0A6 Canada
- Laboratoire de Chimie Médicinale, Centre de Recherche du Centre Hospitalier Universitaire de Québec, 2705 Boulevard Laurier; Québec G1V 4G2 Canada
| | - Eric Biron
- Faculté de Pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 Avenue de la Médecine; Québec G1V 0A6 Canada
- Laboratoire de Chimie Médicinale, Centre de Recherche du Centre Hospitalier Universitaire de Québec, 2705 Boulevard Laurier; Québec G1V 4G2 Canada
| |
Collapse
|
36
|
|
37
|
Li Z, Shao S, Ren X, Sun J, Guo Z, Wang S, Song MM, Chang CEA, Xue M. Construction of a Sequenceable Protein Mimetic Peptide Library with a True 3D Diversifiable Chemical Space. J Am Chem Soc 2018; 140:14552-14556. [PMID: 30362722 DOI: 10.1021/jacs.8b08338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present here a library of protein mimetic bicyclic peptides. These nanosized structures exhibit rigid backbones and spatially diversifiable side chains. They present modular amino acids on all three linkages, providing access to a true 3D diversifiable chemical space. These peptides are synthesized through a Cu-catalyzed click reaction and a Ru-catalyzed ring-closing metathesis reaction. Their bicyclic topology can be reduced to a linear one, using Edman degradation and Pd-catalyzed deallylation reactions. The linearization approaches allow de novo sequencing through mass spectrometry methods. We demonstrate the function of a particular peptide that was identified through a high throughput screening against the E363-R378 epitope on the intrinsically disordered c-Myc oncoprotein. Intracellular delivery of this peptide could interfere with the c-Myc-mediated transcription and inhibit proliferation in a human glioblastoma cell line.
Collapse
Affiliation(s)
- Zhonghan Li
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Shiqun Shao
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Xiaodong Ren
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Jianan Sun
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Zhili Guo
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Siwen Wang
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Michelle M Song
- Martin Luther King High School , Riverside , California 92508 , United States
| | - Chia-En A Chang
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Min Xue
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| |
Collapse
|
38
|
De Leon Rodriguez LM, Williams ET, Brimble MA. Chemical Synthesis of Bioactive Naturally Derived Cyclic Peptides Containing Ene‐Like Rigidifying Motifs. Chemistry 2018; 24:17869-17880. [DOI: 10.1002/chem.201802533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Indexed: 12/12/2022]
Affiliation(s)
| | - Elyse T. Williams
- School of Chemical SciencesThe University of Auckland 23 Symonds St. Auckland 1142 New Zealand
| | - Margaret A. Brimble
- School of Biological SciencesThe University of Auckland 3 Symonds St. Auckland 1142 New Zealand
- School of Chemical SciencesThe University of Auckland 23 Symonds St. Auckland 1142 New Zealand
| |
Collapse
|
39
|
Rhodes CA, Dougherty PG, Cooper JK, Qian Z, Lindert S, Wang QE, Pei D. Cell-Permeable Bicyclic Peptidyl Inhibitors against NEMO-IκB Kinase Interaction Directly from a Combinatorial Library. J Am Chem Soc 2018; 140:12102-12110. [PMID: 30176143 PMCID: PMC6231237 DOI: 10.1021/jacs.8b06738] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Macrocyclic peptides are capable of binding to flat protein surfaces such as the interfaces of protein-protein interactions with antibody-like affinity and specificity, but generally lack cell permeability in order to access intracellular targets. In this work, we designed and synthesized a large combinatorial library of cell-permeable bicyclic peptides, in which the first ring consisted of randomized peptide sequences for potential binding to a target of interest, while the second ring featured a family of different cell-penetrating motifs, for both cell penetration and target binding. The library was screened against the IκB kinase α/β (IKKα/β)-binding domain of NF-κB essential modulator (NEMO), resulting in the discovery of several cell-permeable bicyclic peptides, which inhibited the NEMO-IKKβ interaction with low μM IC50 values. Further optimization of one of the hits led to a relatively potent and cell-permeable NEMO inhibitor (IC50 = 1.0 μM), which selectively inhibited canonical NF-κB signaling in mammalian cells and the proliferation of cisplatin-resistant ovarian cancer cells. The inhibitor provides a useful tool for investigating the biological functions of NEMO/NF-κB and a potential lead for further development of a novel class of anti-inflammatory and anticancer drugs.
Collapse
Affiliation(s)
- Curran A. Rhodes
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jahan K. Cooper
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Ziqing Qian
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Qi-En Wang
- Department of Radiology, James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
40
|
Kanada R, Tanabe M, Muromoto R, Sato Y, Kuwahara T, Fukuda H, Arisawa M, Matsuda T, Watanabe M, Shuto S. Synthesis of Chiral cis-Cyclopropane Bearing Indole and Chromone as Potential TNFα Inhibitors. J Org Chem 2018; 83:7672-7682. [PMID: 30004223 DOI: 10.1021/acs.joc.8b00466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Conformationally restricted analogues of SPD-304, the first small-molecule TNFα inhibitor, in which two heteroaryl groups, indole and chromone, are connected by chiral methyl- or ethyl- cis-cyclopropane, were designed. Synthesis of these molecules was achieved via Suzuki-Miyaura or Stille coupling reactions with chiral bromomethylenecyclopropane or iodovinyl- cis-cyclopropane as the substrate, both of which were prepared from chiral methylenecyclopropane as a common intermediate, constructing the heteroaryl-methyl or -ethyl- cis-cyclopropane structures as key steps. This study presents an efficient synthesis of a series of chiral cis-cyclopropane conjugates with two heteroaryl groups.
Collapse
Affiliation(s)
- Ryutaro Kanada
- Faculty of Pharmaceutical Sciences , Hokkaido University , Kita-12, Nishi-6, Kita-ku , Sapporo 060-0812 , Japan
| | - Makoto Tanabe
- Faculty of Pharmaceutical Sciences , Hokkaido University , Kita-12, Nishi-6, Kita-ku , Sapporo 060-0812 , Japan
| | - Ryuta Muromoto
- Faculty of Pharmaceutical Sciences , Hokkaido University , Kita-12, Nishi-6, Kita-ku , Sapporo 060-0812 , Japan
| | - Yukina Sato
- Faculty of Pharmaceutical Sciences , Hokkaido University , Kita-12, Nishi-6, Kita-ku , Sapporo 060-0812 , Japan
| | - Tomoki Kuwahara
- Faculty of Pharmaceutical Sciences , Hokkaido University , Kita-12, Nishi-6, Kita-ku , Sapporo 060-0812 , Japan
| | - Hayato Fukuda
- Faculty of Pharmaceutical Sciences , Hokkaido University , Kita-12, Nishi-6, Kita-ku , Sapporo 060-0812 , Japan
| | - Mitsuhiro Arisawa
- Faculty of Pharmaceutical Sciences , Hokkaido University , Kita-12, Nishi-6, Kita-ku , Sapporo 060-0812 , Japan
| | - Tadashi Matsuda
- Faculty of Pharmaceutical Sciences , Hokkaido University , Kita-12, Nishi-6, Kita-ku , Sapporo 060-0812 , Japan
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences , Hokkaido University , Kita-12, Nishi-6, Kita-ku , Sapporo 060-0812 , Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences , Hokkaido University , Kita-12, Nishi-6, Kita-ku , Sapporo 060-0812 , Japan
| |
Collapse
|
41
|
Wuo MG, Arora PS. Engineered protein scaffolds as leads for synthetic inhibitors of protein-protein interactions. Curr Opin Chem Biol 2018; 44:16-22. [PMID: 29803113 DOI: 10.1016/j.cbpa.2018.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/09/2018] [Indexed: 11/18/2022]
Abstract
Rationally designed protein-protein interaction inhibitors mimic interfacial binding epitopes, specifically residues that contribute significantly to binding. However, direct mimicry often does not lead to high affinity ligands because the natural complexes themselves are functionally transient and of low affinity. The mimics typically need to be optimized for potency. Engineered proteins displaying conformationally-defined epitopes may serve as attractive alternatives to natural protein partners as they can be strictly screened for tight binding. The advantage of focused screens with conformationally-defined protein scaffolds is that conservation of the geometry of the natural binding epitopes may preserve binding site specificity while allowing direct mimicry by various synthetic secondary structure scaffolds. Here we review different classes of engineered proteins for their binding epitope geometry and as leads for synthetic secondary and tertiary structure mimics.
Collapse
Affiliation(s)
- Michael G Wuo
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
42
|
Abstract
Chemical methods have enabled the total synthesis of protein molecules of ever-increasing size and complexity. However, methods to engineer synthetic proteins comprising noncanonical amino acids have not kept pace, even though this capability would be a distinct advantage of the total synthesis approach to protein science. In this work, we report a platform for protein engineering based on the screening of synthetic one-bead one-compound protein libraries. Screening throughput approaching that of cell surface display was achieved by a combination of magnetic bead enrichment, flow cytometry analysis of on-bead screens, and high-throughput MS/MS-based sequencing of identified active compounds. Direct screening of a synthetic protein library by these methods resulted in the de novo discovery of mirror-image miniprotein-based binders to a ∼150-kDa protein target, a task that would be difficult or impossible by other means.
Collapse
|
43
|
Shu K, Kodadek T. Solid-Phase Synthesis of β-Hydroxy Ketones Via DNA-Compatible Organocatalytic Aldol Reactions. ACS COMBINATORIAL SCIENCE 2018; 20:277-281. [PMID: 29578681 DOI: 10.1021/acscombsci.8b00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One-bead one-compound (OBOC) libraries constructed by solid-phase split-and-pool synthesis are a valuable source of protein ligands. Most OBOC libraries are composed of oligoamides, particularly peptides, peptoids, and peptoid-inspired molecules. Further diversification of the chemical space covered by OBOC libraries is desirable. Toward this end, we report here that the proline-catalyzed asymmetric aldol reaction, developed by List and Barbas for solution-phase synthesis, also works well for coupling immobilized aldehydes and soluble ketones. These reaction conditions do not compromise the amplification of DNA by the polymerase chain reaction. Thus, this chemistry should be useful for the construction of novel DNA-encoded OBOC libraries by solid-phase synthesis.
Collapse
Affiliation(s)
- Keitou Shu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Sakyo-ku, Kyoto 606-8306, Japan
| | - Thomas Kodadek
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
44
|
Deng X, Zhang X, Tang B, Liu H, Shen Q, Liu Y, Lai L. Design, Synthesis, and Evaluation of Dihydrobenzo[ cd]indole-6-sulfonamide as TNF-α Inhibitors. Front Chem 2018; 6:98. [PMID: 29670876 PMCID: PMC5893771 DOI: 10.3389/fchem.2018.00098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/20/2018] [Indexed: 11/26/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) plays a pivotal role in inflammatory response. Dysregulation of TNF can lead to a variety of disastrous pathological effects, including auto-inflammatory diseases. Antibodies that directly targeting TNF-α have been proven effective in suppressing symptoms of these disorders. Compared to protein drugs, small molecule drugs are normally orally available and less expensive. Till now, peptide and small molecule TNF-α inhibitors are still in the early stage of development, and much more efforts should be made. In a previously study, we reported a TNF-α inhibitor, EJMC-1 with modest activity. Here, we optimized this compound by shape screen and rational design. In the first round, we screened commercial compound library for EJMC-1 analogs based on shape similarity. Out of the 68 compounds tested, 20 compounds showed better binding affinity than EJMC-1 in the SPR competitive binding assay. These 20 compounds were tested in cell assay and the most potent compound was 2-oxo-N-phenyl-1,2-dihydrobenzo[cd]indole-6-sulfonamide (S10) with an IC50 of 14 μM, which was 2.2-fold stronger than EJMC-1. Based on the docking analysis of S10 and EJMC-1 binding with TNF-α, in the second round, we designed S10 analogs, purchased seven of them, and synthesized seven new compounds. The best compound, 4e showed an IC50-value of 3 μM in cell assay, which was 14-fold stronger than EJMC-1. 4e was among the most potent TNF-α organic compound inhibitors reported so far. Our study demonstrated that 2-oxo-N-phenyl-1,2-dihydrobenzo[cd]indole-6-sulfonamide analogs could be developed as potent TNF-α inhibitors. 4e can be further optimized for its activity and properties. Our study provides insights into designing small molecule inhibitors directly targeting TNF-α and for protein–protein interaction inhibitor design.
Collapse
Affiliation(s)
- Xiaobing Deng
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaoling Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bo Tang
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hongbo Liu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qi Shen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ying Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Luhua Lai
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
45
|
Affiliation(s)
- Varsha J. Thombare
- School of ChemistryThe University of MelbourneVictoria3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoria3010 Australia
| | - Craig A. Hutton
- School of ChemistryThe University of MelbourneVictoria3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoria3010 Australia
| |
Collapse
|
46
|
Shi Y, Challa S, Sang P, She F, Li C, Gray GM, Nimmagadda A, Teng P, Odom T, Wang Y, van der Vaart A, Li Q, Cai J. One-Bead-Two-Compound Thioether Bridged Macrocyclic γ-AApeptide Screening Library against EphA2. J Med Chem 2017; 60:9290-9298. [PMID: 29111705 DOI: 10.1021/acs.jmedchem.7b01280] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of molecular ligands that recognize peptides or proteins is significant but poses a fundamental challenge in chemical biology and biomedical sciences. Development of cyclic peptidomimetic library is scarce, and thus discovery of cyclic peptidomimetic ligands for protein targets is rare. Herein we report the unprecedented one-bead-two-compound (OBTC) combinatorial library based on a novel class of the macrocyclic peptidomimetics γ-AApeptides. In the library, we utilized the coding peptide tags synthesized with Dde-protected α-amino acids, which were orthogonal to solid phase synthesis of γ-AApeptides. Employing the thioether linkage, the desired macrocyclic γ-AApeptides were found to be effective for ligand identification. Screening the library against the receptor tyrosine kinase EphA2 led to the discovery of one lead compound that tightly bound to EphA2 (Kd = 81 nM) and potently antagonized EphA2-mediated signaling. This new approach of macrocyclic peptidomimetic library may lead to a novel platform for biomacromolecular surface recognition and function modulation.
Collapse
Affiliation(s)
- Yan Shi
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Sridevi Challa
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute , 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Peng Sang
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Fengyu She
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Chunpu Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Geoffrey M Gray
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Alekhya Nimmagadda
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Peng Teng
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Timothy Odom
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
47
|
Portal C, Hintersteiner M, Barbeau O, Dodd P, Huggett M, Pérez‐Pi I, Evans D, Auer M. Facile Synthesis of a Next Generation Safety-Catch Acid-Labile Linker, SCAL-2, Suitable for Solid-Phase Synthesis, On-Support Display and for Post-Synthesis Tagging. ChemistrySelect 2017; 2:6658-6662. [PMID: 29104911 PMCID: PMC5661701 DOI: 10.1002/slct.201701519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 11/27/2022]
Abstract
The SCAL linker, a safety catch linker, is amongst the most versatile linkers for solid phase synthesis. It was originally described in 1991 by Pátek and Lebl. Yet, its application has been hindered by the low yields of published synthetic routes. Over time, the exceptional versatility of this linker has been demonstrated in several applications of advanced solid phase synthesis of peptides and peptidomimetics. Recently, an updated synthesis of the original linker has also been presented at the 22nd American Peptide Symposium, comprising 10 steps. Herein, the design and synthesis of a next generation SCAL linker, SCAL-2, is reported. SCAL-2 features a simplified molecular architecture, which allows for a more efficient synthesis in 8 steps with superior yields. Both linkers, SCAL and SCAL-2 are compared in terms of their cleavage properties adding valuable information on how to best utilize the versatility of these linkers for solid phase synthesis.
Collapse
Affiliation(s)
- Christophe Portal
- Edinburgh BioQuarter9 Little France Road, EdinburghScotland EH16 4UXU.K.
| | - Martin Hintersteiner
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - Olivier Barbeau
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - Peter Dodd
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - Margaret Huggett
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - Irene Pérez‐Pi
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - David Evans
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| | - Manfred Auer
- School of Biological Sciences and Edinburgh Medical School: Biomedical SciencesUniversity of Edinburgh, The King's Buildings, EdinburghScotland EH9 3BFU.K.
| |
Collapse
|
48
|
Rhodes CA, Pei D. Bicyclic Peptides as Next-Generation Therapeutics. Chemistry 2017; 23:12690-12703. [PMID: 28590540 DOI: 10.1002/chem.201702117] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Bicyclic peptides have greater conformational rigidity and metabolic stability than linear and monocyclic peptides and are capable of binding to challenging drug targets with antibody-like affinity and specificity. Powerful combinatorial library technologies have recently been developed to rapidly synthesize and screen large bicyclic peptide libraries for ligands against enzymes, receptors, and protein-protein interaction targets. Bicyclic peptides have been developed as potential therapeutics against a wide range of diseases, drug targeting agents, imaging/diagnostic probes, and research tools. In this Minireview, we provide a summary of the recent progresses on the synthesis and applications of bicyclic peptides.
Collapse
Affiliation(s)
- Curran A Rhodes
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio, 43210, USA
| |
Collapse
|
49
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. New Modalities for Challenging Targets in Drug Discovery. Angew Chem Int Ed Engl 2017; 56:10294-10323. [PMID: 28186380 DOI: 10.1002/anie.201611914] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/31/2017] [Indexed: 12/11/2022]
Abstract
Our ever-increasing understanding of biological systems is providing a range of exciting novel biological targets, whose modulation may enable novel therapeutic options for many diseases. These targets include protein-protein and protein-nucleic acid interactions, which are, however, often refractory to classical small-molecule approaches. Other types of molecules, or modalities, are therefore required to address these targets, which has led several academic research groups and pharmaceutical companies to increasingly use the concept of so-called "new modalities". This Review defines for the first time the scope of this term, which includes novel peptidic scaffolds, oligonucleotides, hybrids, molecular conjugates, as well as new uses of classical small molecules. We provide the most representative examples of these modalities to target large binding surface areas such as those found in protein-protein interactions and for biological processes at the center of cell regulation.
Collapse
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Stéphanie M Guéret
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany.,Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, The Netherlands
| | - Alleyn T Plowright
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| |
Collapse
|
50
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. Neue Modalitäten für schwierige Zielstrukturen in der Wirkstoffentwicklung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611914] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Stéphanie M. Guéret
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
- Fakultät für Chemie and Chemische Biologie; Technische Universität Dortmund; Deutschland
| | - Tom N. Grossmann
- Chemical Genomics Centre der Max-Planck-Gesellschaft; Dortmund Deutschland
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; Niederlande
| | - Alleyn T. Plowright
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| |
Collapse
|