1
|
Chi H, Ma J, Duan R, Wang A, Qiao Y, Wang W, Li C. Modulating crystal facets of photoanodes for photoelectrocatalytic scalable degradation of fluorinated pharmaceuticals in wastewater. WATER RESEARCH 2024; 262:122101. [PMID: 39032329 DOI: 10.1016/j.watres.2024.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Fluorinated pharmaceuticals pollution has become an ever-increasing environmental concern due to its negative impacts. Photoelectrocatalytic (PEC) degradation system is a desirable approach to tackle the pollution problems. However, photogenerated charge separation and interfacial mass transfer are the main bottlenecks for improving the PEC degradation performance. Herein, we report a TiO2 photoanode with tuned (101)/(110) facets in situ grown on a Ti mesh substrate for PEC degradation of fluorinated pharmaceuticals. The exposure of (101) facets facilitates efficient photogenerated charge separation and the desorption of generated •OH radical. Besides, the three-dimensional (3D) architecture of photoanode promotes macroscopic mass transfer. This system performed complete defluorination of 5-fluorouracil and more than 75 % total organic carbon (TOC) removal efficiency. The apparent reaction rate constant of high (101) facet-exposed TiO2 grown on Ti mesh is up to 6.96 h-1, 6‒fold faster than that of photoanode with low (101) facet-exposed TiO2 grown on Ti foil. It is demonstrated that a large-sized PEC system of 1200 cm2 can degrade 100 L of synthetic fluorinated pharmaceutical wastewater with more than 80 % elimination efficiency. This work showcases the facet and substrate modulated strategy of fabricating high-performed photoanode for PEC wastewater purification.
Collapse
Affiliation(s)
- Haibo Chi
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiangping Ma
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of advanced catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ruizhi Duan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of advanced catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Aoqi Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yafei Qiao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wangyin Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of advanced catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Zhang Y, Sun WY. Rational design of organic ligands for metal-organic frameworks as electrocatalysts for CO 2 reduction. Chem Commun (Camb) 2024; 60:8824-8839. [PMID: 39051620 DOI: 10.1039/d4cc02635g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Electrocatalytic carbon dioxide (CO2) reduction to valuable chemical compounds is a sustainable technology with enormous potential to facilitate carbon neutrality by transforming intermittent energy sources into stable fuels. Among various electrocatalysts, metal-organic frameworks (MOFs) have garnered increasing attention for the electrochemical CO2 reduction reaction (CO2RR) owing to their structural diversity, large surface area, high porosity and tunable chemical properties. Ligands play a vital role in MOFs, which can regulate the electronic structure and chemical environment of metal centers of MOFs, thereby influencing the activity and selectivity of products. This feature article discusses the strategies for the rational design of ligands and their impact on the CO2RR performance of MOFs to establish a structure-performance relationship. Finally, critical challenges and potential opportunities for MOFs with different ligand types in the CO2RR are mentioned with the aim to inspire the targeted design of advanced MOF catalysts in the future to achieve efficient electrocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Ya Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
- College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
An S, Ji H, Park J, Choi Y, Choe JK. Influence of chemical structures on reduction rates and defluorination of fluoroarenes during catalytic reduction using a rhodium-based catalyst. CHEMOSPHERE 2024; 362:142755. [PMID: 38969226 DOI: 10.1016/j.chemosphere.2024.142755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Continuous growth in fluoroarene production has led to environmental pollution and health concerns owing to their persistence, which is attributed to the stable C-F bond in their structures. Herein, we investigated fluoroarene decomposition via hydrodefluorination using a rhodium-based catalyst, focusing on the effects of the chemical structure and functional group on the defluorination yield. Most compounds, except (pentafluoroethyl)benzene, exhibited full or partial reduction with pseudo-first-order rate constants in the range of 0.002-0.396 min-1 and defluorination yields of 0%-100%. Fluoroarenes with hydroxyl, methyl, and carboxylate groups were selected to elucidate how hydrocarbon and oxygen-containing functional groups influence the reaction rate and defluorination. Inhibition of the reaction rate and defluorination yield based on functional groups increased in the order of hydroxyl < methyl < carboxylate, which was identical to the order of the electron-withdrawing effect. Fluoroarenes with polyfluoro groups were also assessed; polyfluoro groups demonstrated a different influence on catalyst activity than non-fluorine functional groups because of fluorine atoms in the substituents undergoing defluorination. The reaction kinetics of (difluoromethyl)fluorobenzenes and their intermediates suggested that hydrogenation and defluorination occurred during degradation. Finally, the effects of the type and position of functional groups on the reaction rate and defluorination yield were investigated via multivariable linear regression analysis. Notably, the electron-withdrawing nature of functional groups appeared to have a greater impact on the defluorination yield of fluoroarenes than the calculated C-F bond dissociation energy.
Collapse
Affiliation(s)
- Seonyoung An
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Hojoong Ji
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jaehyeong Park
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Yongju Choi
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Chen B, Xu J, Zhu L. Controllable chemical redox reactions to couple microbial degradation for organic contaminated sites remediation: A review. J Environ Sci (China) 2024; 139:428-445. [PMID: 38105066 DOI: 10.1016/j.jes.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 12/19/2023]
Abstract
Global environmental concern over organic contaminated sites has been progressively conspicuous during the process of urbanization and industrial restructuring. While traditional physical or chemical remediation technologies may significantly destroy the soil structure and function, coupling moderate chemical degradation with microbial remediation becomes a potential way for the green, economic, and efficient remediation of contaminated sites. Hence, this work systematically elucidates why and how to couple chemical technology with microbial remediation, mainly focused on the controllable redox reactions of organic contaminants. The rational design of materials structure, selective generation of reactive oxygen species, and estimation of degradation pathway are described for chemical oxidation. Meanwhile, current progress on efficient and selective reductions of organic contaminants (i.e., dechlorination, defluorination, -NO2 reduction) is introduced. Combined with the microbial remediation of contaminated sites, several consideration factors of how to couple chemical and microbial remediation are proposed based on both fundamental and practical points of view. This review will advance the understanding and development of chemical-microbial coupled remediation for organic contaminated sites.
Collapse
Affiliation(s)
- Bin Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Agriculture & Forest University, Lin'an 311300, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Chen J, Liu Y, Duan R, Huang Q, Li C. Binuclear Metal Phthalocyanines with Enhanced Activity in the Oxygen Evolution Reaction: A First-Principles Study. J Phys Chem Lett 2024:3336-3344. [PMID: 38498308 DOI: 10.1021/acs.jpclett.4c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The rational design of efficient catalysts for the electrochemical oxygen evolution reaction (OER) critically relies on a comprehensive understanding of the reaction mechanisms. Herein, the alkaline OER on planar mononuclear metal phthalocyanines (MPc, where M = Mn, Co, Fe, and Ni) and binuclear metal phthalocyanines (bi-MPc) is studied using density functional theory (DFT) methods. Both FePc and bi-CoPc exhibit enhanced stability and OER activity, with the energy required for the leaching of central metal being as high as 2.28 and 2.45 eV and the overpotentials of the OER being 0.48 and 0.57 V, respectively. Through electronic structure analysis, it is found that, in the OER process of bi-MPc, the large macrocyclic ligand and metal ions not bonding with the intermediate can serve as hole reservoirs. Intermediate species are further stabilized by the dispersal of a positive charge, reducing the free energy. These findings underscore the significance of macrocyclic ligands in the rate-determining step of the OER catalyst.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yang Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruizhi Duan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- Key Laboratory of Advanced Catalysis of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Qinge Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
6
|
Zhang Y, Mokkawes T, de Visser SP. Insights into Cytochrome P450 Enzyme Catalyzed Defluorination of Aromatic Fluorides. Angew Chem Int Ed Engl 2023; 62:e202310785. [PMID: 37641517 DOI: 10.1002/anie.202310785] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Density functional calculations establish a novel mechanism of aromatic defluorination by P450 Compound I. This is achieved via either an initial epoxide intermediate or through a 1,2-fluorine shift in an electrophilic intermediate, which highlights that the P450s can defluorinate fluoroarenes. However, in the absence of a proton donor a strong Fe-F bond can be obtained as shown from the calculations.
Collapse
Affiliation(s)
- Yi Zhang
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M17DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Thirakorn Mokkawes
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M17DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M17DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
7
|
Dumon AS, Rzepa HS, Alamillo-Ferrer C, Bures J, Procter R, Sheppard TD, Whiting A. A computational tool to accurately and quickly predict 19F NMR chemical shifts of molecules with fluorine-carbon and fluorine-boron bonds. Phys Chem Chem Phys 2022; 24:20409-20425. [PMID: 35983846 DOI: 10.1039/d2cp02317b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the evaluation of density-functional-theory (DFT) based procedures for predicting 19F NMR chemical shifts at modest computational cost for a range of molecules with fluorine bonds, to be used as a tool for assisting the characterisation of reaction intermediates and products and as an aid to identifying mechanistic pathways. The results for a balanced learning set of molecules were then checked using two further testing sets, resulting in the recommendation of the ωB97XD/aug-cc-pvdz DFT method and basis set as having the best combination of accuracy and computational time, with a RMS error of 3.57 ppm. Cationic molecules calculated without counter-anion showed normal errors, whilst anionic molecules showed somewhat larger errors. The method was applied to the prediction of the conformationally averaged 19F chemical shifts of 2,2,3,3,4,4,5,5-octafluoropentan-1-ol, in which gauche stereoelectronic effects involving fluorine dominate and to determining the position of coordination equilibria of fluorinated boranes as an aid to verifying the relative energies of intermediate species involved in catalytic amidation reactions involving boron catalysts.
Collapse
Affiliation(s)
- Alexandre S Dumon
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 OBZ, UK.
| | - Henry S Rzepa
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 OBZ, UK.
| | | | - Jordi Bures
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
| | - Richard Procter
- Department of Chemistry, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Tom D Sheppard
- Department of Chemistry, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Andrew Whiting
- Centre for Sustainable Chemical Processes, Department of Chemistry, Science Laboratories, Durham University, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
8
|
Chachkov DV, Mikhailov OV. DFT Quantum-chemical prediction of molecular structure of iron(VI) macrocyclic complex with phthalocyanine and two oxo ligands. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The possibility of the existence of the unknown iron complex containing phthalocyanine and two oxygen atoms in the inner coordination sphere was predicted using DFT quantum chemical calculation (OPBE/TZVP and B3PW91/TZVP levels). The structural parameters, the ground state multiplicity, the NBO analysis results, and the standard thermodynamic parameters for complex formation (standard enthalpy [Formula: see text], entropy [Formula: see text] and Gibbs’s energy [Formula: see text] are represented.
Collapse
Affiliation(s)
- Denis V. Chachkov
- Kazan Department of Joint Supercomputer Center of Russian Academy of Sciences-Branch of Federal Scientific Center “Scientific Research Institute for System Analysis of the RAS” Lobachevski Street 2/31, 420111 Kazan, Russia
| | - Oleg V. Mikhailov
- Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
9
|
Cordes Née Kupper C, Klawitter I, Rüter I, Dechert S, Demeshko S, Ye S, Meyer F. Organometallic μ-Nitridodiiron Complexes in Oxidation States Ranging from (III/III) to (IV/IV). Inorg Chem 2022; 61:7153-7164. [PMID: 35475617 DOI: 10.1021/acs.inorgchem.2c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron complexes with nitrido ligands are of interest as molecular analogues of key intermediates during N2-to-NH3 conversion in industrial or enzymatic processes. Dinuclear iron complexes with a bridging nitrido unit are mostly known in relatively high oxidation states (III/IV or IV/IV), originating from the decomposition of azidoiron precursors via high-valent Fe≡N intermediates. The use of a tetra-NHC macrocyclic scaffold ligand (NHC = N-heterocyclic carbene) has now allowed for the isolation of a series of organometallic μ-nitridodiiron complexes ranging from the mid-valent FeIII-N-FeIII (1) via mixed-valent FeIII-N-FeIV (type 4) to the high-valent FeIV-N-FeIV (type 5) species that are interconverted at moderate potentials, accompanied by axial ligand binding at the FeIV sites. Magnetic measurements and electron paramagnetic resonance spectroscopy showed the homovalent complexes to be diamagnetic and the mixed-valent system to feature an S = 1/2 ground state due to very strong antiferromagnetic coupling. The bonding in the Fe-N-Fe moiety has been further probed by crystallographic structure determination, 57Fe Mössbauer and UV-vis spectroscopies, as well as density functional theory computations, which revealed high covalency and nearly identical Fe-N distances across this redox series. The latter has been rationalized in terms of the nonbonding nature of the combination of Fe dz2 atomic orbitals from which electrons are successively removed upon oxidation, and these redox processes are best described as being metal-centered. The tetra-NHC-ligated μ-nitridodiiron series complements a set of related complexes with single-atom μ-oxido and μ-phosphido bridges, but the Fe-N-Fe core exhibits a comparatively high stability over several oxidation states. This promises interesting applications in view of the manifold catalytic uses of μ-nitridodiiron complexes based on macrocyclic N-donor porphinato(2-) or phthalocyaninato(2-) ligands.
Collapse
Affiliation(s)
- Claudia Cordes Née Kupper
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Iris Klawitter
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Isabelle Rüter
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
10
|
Ng R, Ng WM, Cheung WM, Sung HHY, Williams ID, Leung WH. Heterometallic iron(IV) μ-nitrido complexes supported by a tetradentate Schiff base ligand. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Chachkov DV, Mikhailov OV. Nickel macrocyclic complexes with porphyrazine and some [benzo]substituted, oxo and fluoro ligands: DFT analysis. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
By using quantum chemical calculation data obtained by the DFT method with the OPBE/TZVP and B3PW91/TZVP levels, the principal possibility of the existence of three heteroligand complexes of nickel, each of which was shown to contain in the inner coordination sphere either porphyrazine or di[benzo]- and tetra[benzo]porphyrazine, oxygen (O[Formula: see text] and fluorine (F[Formula: see text] ions. The data on the geometric parameters of the molecular structure of these complexes are presented; which shows that NiN4 chelate nodes, all metal-chelate and non-chelate cycles in each of these complexes, are strictly planar. The bond angles between two donor nitrogen atoms and a nickel atom are equal to 90[Formula: see text], while the bond angles between donor atoms N, Ni, and O or F, in most cases, albeit insignificantly, differ from this value. Nevertheless, the bond angles formed by Ni, O and F atoms are exactly 180[Formula: see text]. NBO analysis data for these complexes are presented; it was noted that the ground state of all these complexes was a spin doublet. It has been shown that a good agreement between the data obtained using the above two versions of the DFT method occurs. Also, standard thermodynamic parameters of formation (standard enthalpy [Formula: see text], entropy [Formula: see text] and Gibbs’s energy [Formula: see text] for the macrocyclic compounds under consideration were calculated.
Collapse
Affiliation(s)
- Denis V. Chachkov
- Kazan Department of Joint Supercomputer Center of Russian Academy of Sciences – Branch of Federal Scientific Center “Scientific Research Institute for System Analysis of the RAS”, Lobachevski Street 2/31, 420111 Kazan, Russia
| | - Oleg V. Mikhailov
- Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
12
|
Yang S, Liu A, Liu J, Liu Z, Zhang W. Advance of Sulfidated Nanoscale Zero-Valent Iron: Synthesis, Properties and Environmental Application. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22080345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Yamada Y, Teoh CM, Toyoda Y, Tanaka K. Direct catalytic benzene hydroxylation under mild reaction conditions by using a monocationic μ-nitrido-bridged iron phthalocyanine dimer with 16 peripheral methyl groups. NEW J CHEM 2022. [DOI: 10.1039/d1nj05369h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct catalytic benzene hydroxylation under mild reaction conditions was achieved using a monocationic μ-nitrido-bridged iron phthalocyanine dimer with 16 peripheral methyl groups.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Chee-Ming Teoh
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuka Toyoda
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kentaro Tanaka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
14
|
Affiliation(s)
- Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) Universitat de Girona C/Mª Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Anna Company
- Institut de Química Computacional i Catàlisi (IQCC) Universitat de Girona C/Mª Aurèlia Capmany 69 17003 Girona Catalonia Spain
| |
Collapse
|
15
|
Yang S, Yu Y, Gao X, Zhang Z, Wang F. Recent advances in electrocatalysis with phthalocyanines. Chem Soc Rev 2021; 50:12985-13011. [PMID: 34751683 DOI: 10.1039/d0cs01605e] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Applications of phthalocyanines (Pcs) in electrocatalysis-including the oxygen reduction reaction (ORR), the carbon dioxide reduction reaction (CO2RR), the oxygen evolution reaction (OER), and the hydrogen evolution reaction (HER)-have attracted considerable attention recently. Pcs and their derivatives are more attractive than many other macrocycles as electrocatalysts since, although they are structurally related to natural porphyrin complexes, they offer the advantages of low cost, facile synthesis and good chemical stability. Moreover, their high tailorability and structural diversity mean Pcs have great potential for application in electrochemical devices. Here we review the structure and composition of Pcs, methods of synthesis of Pcs and their analogues, as well as applications of Pc-based heterogeneous electrocatalysts. Optimization strategies for Pc-based materials for electrocatalysis of ORR, CO2RR, OER and HER are proposed, based on the mechanisms of the different electrochemical reactions. We also discuss the structure/composition-catalytic activity relationships for different Pc materials and Pc-based electrocatalysts in order to identify future practical applications. Finally, future opportunities and challenges in the use of molecular Pcs and Pc derivatives as electrocatalysts are discussed.
Collapse
Affiliation(s)
- Shaoxuan Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China. .,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yihuan Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China. .,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xinjin Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China. .,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhengping Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China. .,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China. .,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
16
|
Heteroligand macrotetracyclic complexes of 3d elements with phthalocyanine and two fluoride anions: molecular structures and thermodynamic parameters, as determined from DFT calculations. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3237-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
|
18
|
Munshi S, Jana RD, Paine TK. Oxidative degradation of toxic organic pollutants by water soluble nonheme iron(iv)-oxo complexes of polydentate nitrogen donor ligands. Dalton Trans 2021; 50:5590-5597. [PMID: 33908934 DOI: 10.1039/d0dt04421k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability of four mononuclear nonheme iron(iv)-oxo complexes supported by polydentate nitrogen donor ligands to degrade organic pollutants has been investigated. The water soluble iron(ii) complexes upon treatment with ceric ammonium nitrate (CAN) in aqueous solution are converted into the corresponding iron(iv)-oxo complexes. The hydrogen atom transfer (HAT) ability of iron(iv)-oxo species has been exploited for the oxidation of halogenated phenols and other toxic pollutants with weak X-H (X = C, O, S, etc.) bonds. The iron-oxo oxidants can oxidize chloro- and fluorophenols with moderate to high yields under stoichiometric as well as catalytic conditions. Furthermore, these oxidants perform selective oxidative degradation of several persistent organic pollutants (POPs) such as bisphenol A, nonylphenol, 2,4-D (2,4-dichlorophenoxyacetic acid) and gammaxene. This work demonstrates the utility of water soluble iron(iv)-oxo complexes as potential catalysts for the oxidative degradation of a wide range of toxic pollutants, and these oxidants could be considered as an alternative to conventional oxidation methods.
Collapse
Affiliation(s)
- Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | | | | |
Collapse
|
19
|
Chachkov DV, Mikhailov OV. Molecular structures of heteroligand ScIII complexes with porphyrazine, its dibenzo and tetrabenzo derivatives, and fluoride anion, as determined from DFT calculations. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3082-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Cailler LP, Kroitor AP, Martynov AG, Gorbunova YG, Sorokin AB. Selective carbene transfer to amines and olefins catalyzed by ruthenium phthalocyanine complexes with donor substituents. Dalton Trans 2021; 50:2023-2031. [PMID: 33443525 DOI: 10.1039/d0dt04090h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron-rich ruthenium phthalocyanine complexes were evaluated in carbene transfer reactions from ethyl diazoacetate (EDA) to aromatic and aliphatic olefins as well as to a wide range of aromatic, heterocyclic and aliphatic amines for the first time. It was revealed that the ruthenium octabutoxyphthalocyanine carbonyl complex [(BuO)8Pc]Ru(CO) is the most efficient catalyst converting electron-rich and electron-poor aromatic olefins to cyclopropane derivatives with high yields (typically 80-100%) and high TON (up to 1000) under low catalyst loading and nearly equimolar substrate/EDA ratio. This catalyst shows a rare efficiency in the carbene insertion into amine N-H bonds. Using a 0.05 mol% catalyst loading, a high amine concentration (1 M) and 1.1 eq. of EDA, a number of structurally divergent amines were selectively converted to mono-substituted glycine derivatives with up to quantitative yields and turnover numbers reaching 2000. High selectivity, large substrate scope, low catalyst loading and practical reaction conditions place [(BuO)8Pc]Ru(CO) among the most efficient catalysts for the carbene insertion into amines.
Collapse
Affiliation(s)
- Lucie P Cailler
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 2 av. A. Einstein, 69626 Villeurbanne, France.
| | - Andrey P Kroitor
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leniskii pr., 31, bldg. 4, 119071 Moscow, Russia.
| | - Alexander G Martynov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leniskii pr., 31, bldg. 4, 119071 Moscow, Russia.
| | - Yulia G Gorbunova
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leniskii pr., 31, bldg. 4, 119071 Moscow, Russia. and N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leniskii pr., 31, 11991 Moscow, Russia.
| | - Alexander B Sorokin
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 2 av. A. Einstein, 69626 Villeurbanne, France.
| |
Collapse
|
21
|
Cao Z, Li H, Lowry GV, Shi X, Pan X, Xu X, Henkelman G, Xu J. Unveiling the Role of Sulfur in Rapid Defluorination of Florfenicol by Sulfidized Nanoscale Zero-Valent Iron in Water under Ambient Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2628-2638. [PMID: 33529528 DOI: 10.1021/acs.est.0c07319] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Groundwater contamination by halogenated organic compounds, especially fluorinated ones, threatens freshwater sources globally. Sulfidized nanoscale zero-valent iron (SNZVI), which is demonstrably effective for dechlorination of groundwater contaminants, has not been well explored for defluorination. Here, we show that SNZVI nanoparticles synthesized via a modified post-sulfidation method provide rapid dechlorination (∼1100 μmol m-2 day-1) and relatively fast defluorination (∼6 μmol m-2 day-1) of a halogenated emerging contaminant (florfenicol) under ambient conditions, the fastest rates that have ever been reported for Fe0-based technologies. Batch reactivity experiments, material characterizations, and theoretical calculations indicate that coating S onto the metallic Fe surface provides a highly chemically reactive surface and changes the primary dechlorination pathway from atomic H for nanoscale zero-valent iron (NZVI) to electron transfer for SNZVI. S and Fe sites are responsible for the direct electron transfer and atomic H-mediated reaction, respectively, and β-elimination is the primary defluorination pathway. Notably, the Cl atoms in florfenicol make the surface more chemically reactive for defluorination, either by increasing florfenicol adsorption or by electronic effects. The defluorination rate by SNZVI is ∼132-222 times higher with chlorine attached compared to the absence of chlorine in the molecule. These mechanistic insights could lead to new SNZVI materials for in situ groundwater remediation of fluorinated contaminants.
Collapse
Affiliation(s)
- Zhen Cao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Li
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaoyang Shi
- Earth Engineering Center, Center for Advanced Materials for Energy and Environment, Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xinhua Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Graeme Henkelman
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
22
|
Chachkov DV, Mikhailov OV. Molecular Structures of Heteroligand Macrotetracyclic Complexes of 3d Ions with Phthalocyanine and Fluoride Anion Studied by Density Functional Theory. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Besalú-Sala P, Magallón C, Costas M, Company A, Luis JM. Mechanistic Insights into the ortho-Defluorination-Hydroxylation of 2-Halophenolates Promoted by a Bis(μ-oxo)dicopper(III) Complex. Inorg Chem 2020; 59:17018-17027. [PMID: 33156988 DOI: 10.1021/acs.inorgchem.0c02246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-F bonds are one of the most inert functionalities. Nevertheless, some [Cu2O2]2+ species are able to defluorinate-hydroxylate ortho-fluorophenolates in a chemoselective manner over other ortho-halophenolates. Albeit it is known that such reactivity is promoted by an electrophilic attack of a [Cu2O2]2+ core over the arene ring, the crucial details of the mechanism that explain the chemo- and regioselectivity of the reaction remain unknown, and it has not being determined either if CuII2(η2:η2-O2) or CuIII2(μ-O)2 species are responsible for the initial attack on the arene. Herein, we present a combined theoretical and experimental mechanistic study to unravel the origin of the chemoselectivity of the ortho-defluorination-hydroxylation of 2-halophenolates by the [Cu2(O)2(DBED)2]2+ complex (DBED = N,N'-di-tert-butylethylenediamine). Our results show that the equilibria between (side-on)peroxo (P) and bis(μ-oxo) (O) isomers plays a key role in the mechanism, with the latter being the reactive species. Furthermore, on the basis of quantum-mechanical calculations, we were able to rationalize the chemoselective preference of the [Cu2(O)2(DBED)2]2+ catalyst for the C-F activation over C-Cl and C-H activations.
Collapse
Affiliation(s)
- Pau Besalú-Sala
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Carla Magallón
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Anna Company
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| |
Collapse
|
24
|
Ansari M, Senthilnathan D, Rajaraman G. Deciphering the origin of million-fold reactivity observed for the open core diiron [HO-Fe III-O-Fe IV[double bond, length as m-dash]O] 2+ species towards C-H bond activation: role of spin-states, spin-coupling, and spin-cooperation. Chem Sci 2020; 11:10669-10687. [PMID: 33209248 PMCID: PMC7654192 DOI: 10.1039/d0sc02624g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 01/26/2023] Open
Abstract
High-valent metal-oxo species have been characterised as key intermediates in both heme and non-heme enzymes that are found to perform efficient aliphatic hydroxylation, epoxidation, halogenation, and dehydrogenation reactions. Several biomimetic model complexes have been synthesised over the years to mimic both the structure and function of metalloenzymes. The diamond-core [Fe2(μ-O)2] is one of the celebrated models in this context as this has been proposed as the catalytically active species in soluble methane monooxygenase enzymes (sMMO), which perform the challenging chemical conversion of methane to methanol at ease. In this context, a report of open core [HO(L)FeIII-O-FeIV(O)(L)]2+ (1) gains attention as this activates C-H bonds a million-fold faster compared to the diamond-core structure and has the dual catalytic ability to perform hydroxylation as well as desaturation with organic substrates. In this study, we have employed density functional methods to probe the origin of the very high reactivity observed for this complex and also to shed light on how this complex performs efficient hydroxylation and desaturation of alkanes. By modelling fifteen possible spin-states for 1 that could potentially participate in the reaction mechanism, our calculations reveal a doublet ground state for 1 arising from antiferromagnetic coupling between the quartet FeIV centre and the sextet FeIII centre, which regulates the reactivity of this species. The unusual stabilisation of the high-spin ground state for FeIV[double bond, length as m-dash]O is due to the strong overlap of with the orbital, reducing the antibonding interactions via spin-cooperation. The electronic structure features computed for 1 are consistent with experiments offering confidence in the methodology chosen. Further, we have probed various mechanistic pathways for the C-H bond activation as well as -OH rebound/desaturation of alkanes. An extremely small barrier height computed for the first hydrogen atom abstraction by the terminal FeIV[double bond, length as m-dash]O unit was found to be responsible for the million-fold activation observed in the experiments. The barrier height computed for -OH rebound by the FeIII-OH unit is also smaller suggesting a facile hydroxylation of organic substrates by 1. A strong spin-cooperation between the two iron centres also reduces the barrier for second hydrogen atom abstraction, thus making the desaturation pathway competitive. Both the spin-state as well as spin-coupling between the two metal centres play a crucial role in dictating the reactivity for species 1. By exploring various mechanistic pathways, our study unveils the fact that the bridged μ-oxo group is a poor electrophile for both C-H activation as well for -OH rebound. As more and more evidence is gathered in recent years for the open core geometry of sMMO enzymes, the idea of enhancing the reactivity via an open-core motif has far-reaching consequences.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India .
| | - Dhurairajan Senthilnathan
- Center for Computational Chemistry , CRD , PRIST University , Vallam , Thanjavur , Tamilnadu 613403 , India
| | - Gopalan Rajaraman
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India .
| |
Collapse
|
25
|
Mikhailov OV, Chachkov DV. DFT Quantum-Chemical Calculations of Molecular Structures for Heteroligand M(III) Complexes of 3d Elements with Porphyrazine and Fluoride Ion. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s003602362006011x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Mikhailov OV, Chachkov DV. Stabilization of unusual metal oxidation state +4 in the iron, cobalt, nickel, and copper complexes with trans-di[benzo]porphyrazine and two fluoride anions: a DFT quantum chemical analysis. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2846-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Bugnola M, Shen K, Haviv E, Neumann R. Reductive Electrochemical Activation of Molecular Oxygen Catalyzed by an Iron-Tungstate Oxide Capsule: Reactivity Studies Consistent with Compound I Type Oxidants. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marco Bugnola
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kaiji Shen
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eynat Haviv
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronny Neumann
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
28
|
Cailler LP, Clémancey M, Barilone J, Maldivi P, Latour JM, Sorokin AB. Comparative Study of the Electronic Structures of μ-Oxo, μ-Nitrido, and μ-Carbido Diiron Octapropylporphyrazine Complexes and Their Catalytic Activity in Cyclopropanation of Olefins. Inorg Chem 2019; 59:1104-1116. [DOI: 10.1021/acs.inorgchem.9b02718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lucie P. Cailler
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon IRCELYON, UMR 5256, CNRS - Université Lyon 1, 2 avenue A. Einstein, 69626 Villeurbanne cedex, France
| | - Martin Clémancey
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG-SyMMES, Grenoble 38000, France
| | - Jessica Barilone
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, Grenoble 38000, France
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG-SyMMES, Grenoble 38000, France
| | - Pascale Maldivi
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, Grenoble 38000, France
| | - Jean-Marc Latour
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG-SyMMES, Grenoble 38000, France
| | - Alexander B. Sorokin
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon IRCELYON, UMR 5256, CNRS - Université Lyon 1, 2 avenue A. Einstein, 69626 Villeurbanne cedex, France
| |
Collapse
|
29
|
Zhu Z, Lu W, Xu T, Li N, Wang G, Chen W. High-Valent Iron-Oxo Complexes as Dominant Species to Eliminate Pharmaceuticals and Chloride-Containing Intermediates by the Activation of Peroxymonosulfate Under Visible Irradiation. Catal Letters 2019. [DOI: 10.1007/s10562-019-03047-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Generally, the sulfate (SO4·−) and hydroxyl (HO·) radicals are the dominant active species in most catalytic oxidation processes with peroxymonosulfate (PMS). However, the existence of various natural organic and inorganic matters in aquatic environments might influence the oxidation efficiency of these radicals, and/or form more toxic and refractory intermediates than the parent, especially in chlorine-ion-containing conditions. Here, we constructed a novel visible-light catalytic system with PMS based on iron hexadecachlorophthalocyanine-poly (4-vinylpyridine)/polyacrylonitrile nanofibers through pyridine ligands to generate high-valent iron-oxo (Fe(IV)=O) species as the main active species. The coordination structure was characterized by UV–Vis diffuse reflection, X-ray photoelectron spectroscopy, etc. The high-valent iron-oxo generation from peroxysulfate O–O bond heterolytic cleavage was proved by high-definition electrospray ionization mass spectrometer. Ultra-performance liquid chromatography coupled with high-definition mass spectrometry showed that the photocatalytic system was efficient for the degradation of carbamazepine and the chlorinated intermediates by iron-oxo active species in chlorine-ion-containing conditions.
Graphic Abstract
Collapse
|
30
|
Perrin CL, Shrinidhi A, Burke KD. Isotopic-Perturbation NMR Study of Hydrogen-Bond Symmetry in Solution: Temperature Dependence and Comparison of OHO and ODO Hydrogen Bonds. J Am Chem Soc 2019; 141:17278-17286. [PMID: 31590490 DOI: 10.1021/jacs.9b08492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Is a hydrogen bond symmetric, with the hydrogen centered between two donor atoms, or is it asymmetric, with the hydrogen closer to one but jumping to the other? The NMR method of isotopic perturbation has been used to distinguish these. Previous evidence from isotope shifts implies that a wide variety of dicarboxylate monanions are asymmetric, present as a rapidly equilibrating mixture of tautomers. However, calculations of hydrogen trajectories across an anharmonic potential-energy surface could reproduce the observed isotope shifts in a phthalate monoanion. Therefore, it was concluded that those isotope shifts are instead consistent with isotope-induced desymmetrization on a symmetric potential-energy surface. To distinguish between these two interpretations, the 18O-induced isotope effects on the 13C NMR chemical shifts of cyclohexene-1,2-dicarboxylate monoanion in chloroform-d and on the 19F NMR chemical shifts of difluoromaleate monoanion in D2O have been investigated. In both cases the isotope effects are larger at lower temperature and also with deuterium in the hydrogen bond. It is concluded that these behaviors are consistent with the perturbation of an equilibrium between asymmetric tautomers and inconsistent with isotope-induced desymmetrization on a symmetric potential-energy surface.
Collapse
Affiliation(s)
- Charles L Perrin
- Department of Chemistry and Biochemistry , University of California-San Diego , La Jolla , California 92093-0358 , United States
| | - Annadka Shrinidhi
- Department of Chemistry and Biochemistry , University of California-San Diego , La Jolla , California 92093-0358 , United States
| | - Kathryn D Burke
- Department of Chemistry and Biochemistry , University of California-San Diego , La Jolla , California 92093-0358 , United States
| |
Collapse
|
31
|
Properties and reactivity of μ-nitrido-bridged dimetal porphyrinoid complexes: how does ruthenium compare to iron? J Biol Inorg Chem 2019; 24:1127-1134. [PMID: 31560098 DOI: 10.1007/s00775-019-01725-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/19/2019] [Indexed: 12/23/2022]
Abstract
Methane hydroxylation by metal-oxo oxidants is one of the Holy Grails in biomimetic and biotechnological chemistry. The only enzymes known to perform this reaction in Nature are iron-containing soluble methane monooxygenase and copper-containing particulate methane monooxygenase. Furthermore, few biomimetic iron-containing oxidants have been designed that can hydroxylate methane efficiently. Recent studies reported that μ-nitrido-bridged diiron(IV)-oxo porphyrin and phthalocyanine complexes hydroxylate methane to methanol efficiently. To find out whether the reaction rates are enhanced by replacing iron by ruthenium, we performed a detailed computational study. Our work shows that the μ-nitrido-bridged diruthenium(IV)-oxo reacts with methane via hydrogen atom abstraction barriers that are considerably lower in energy (by about 5 kcal mol‒1) as compared to the analogous diiron(IV)-oxo complex. An analysis of the electronic structure implicates similar spin and charge distributions for the diiron(IV)-oxo and diruthenium(IV)-oxo complexes, but the strength of the O‒H bond formed during the reaction is much stronger for the latter. As such a larger hydrogen atom abstraction driving force for the Ru complex than for the Fe complex is found, which should result in higher reactivity in the oxidation of methane.
Collapse
|
32
|
Su Y, Rao U, Khor CM, Jensen MG, Teesch LM, Wong BM, Cwiertny DM, Jassby D. Potential-Driven Electron Transfer Lowers the Dissociation Energy of the C-F Bond and Facilitates Reductive Defluorination of Perfluorooctane Sulfonate (PFOS). ACS APPLIED MATERIALS & INTERFACES 2019; 11:33913-33922. [PMID: 31436952 DOI: 10.1021/acsami.9b10449] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The widespread environmental occurrence of per- and polyfluoroalkyl substances (PFAS) has attracted significant regulatory, research, and media attention because of their toxicity, recalcitrance, and ability to bioaccumulate. Perfluorooctane sulfonate (PFOS) is a particularly troublesome member of the PFAS family due to its immunity to biological remediation and radical-based oxidation. In the present study, we present a heterogeneous reductive degradation process that couples direct electron transfer (ET) from surface-modified carbon nanotube electrodes (under low potential conditions) to sorbed PFOS molecules using UV-generated hydrated electrons without any further chemical addition. We demonstrate that the ET process dramatically increases the PFOS defluorination rate while yielding shorter chain (C3-C7) perfluorinated acids and present both experimental and ab initio evidence of the synergistic relationship between electron addition to sorbed molecules and their ability to react with reductive hydrated electrons. Because of the low energy consumption associated with the ET process, the use of standard medium-pressure UV lamps and no further chemical addition, this reductive degradation process is a promising method for the destruction of persistent organic pollutants, including PFAS and other recalcitrant halogenated organic compounds.
Collapse
Affiliation(s)
- Yiming Su
- Department of Civil and Environmental Engineering , University of California , Los Angeles , California 90095 , United States
| | - Unnati Rao
- Department of Civil and Environmental Engineering , University of California , Los Angeles , California 90095 , United States
| | - Chia Miang Khor
- Department of Civil and Environmental Engineering , University of California , Los Angeles , California 90095 , United States
| | | | | | - Bryan M Wong
- Department of Chemical and Environmental Engineering , University of California , Riverside , California 92521 , United States
| | | | - David Jassby
- Department of Civil and Environmental Engineering , University of California , Los Angeles , California 90095 , United States
| |
Collapse
|
33
|
Colomban C, Tobing AH, Mukherjee G, Sastri CV, Sorokin AB, de Visser SP. Mechanism of Oxidative Activation of Fluorinated Aromatic Compounds by N-Bridged Diiron-Phthalocyanine: What Determines the Reactivity? Chemistry 2019; 25:14320-14331. [PMID: 31339185 DOI: 10.1002/chem.201902934] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Indexed: 11/06/2022]
Abstract
The biodegradation of compounds with C-F bonds is challenging due to the fact that these bonds are stronger than the C-H bond in methane. In this work, results on the unprecedented reactivity of a biomimetic model complex that contains an N-bridged diiron-phthalocyanine are presented; this model complex is shown to react with perfluorinated arenes under addition of H2 O2 effectively. To get mechanistic insight into this unusual reactivity, detailed density functional theory calculations on the mechanism of C6 F6 activation by an iron(IV)-oxo active species of the N-bridged diiron phthalocyanine system were performed. Our studies show that the reaction proceeds through a rate-determining electrophilic C-O addition reaction followed by a 1,2-fluoride shift to give the ketone product, which can further rearrange to the phenol. A thermochemical analysis shows that the weakest C-F bond is the aliphatic C-F bond in the ketone intermediate. The oxidative defluorination of perfluoroaromatics is demonstrated to proceed through a completely different mechanism compared to that of aromatic C-H hydroxylation by iron(IV)-oxo intermediates such as cytochrome P450 Compound I.
Collapse
Affiliation(s)
- Cédric Colomban
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon, IRCELYON, UMR 5256, CNRS Université Lyon 1, 2 Av. Albert Einstein, 69626, Villeurbanne Cedex, France
| | - Anthonio H Tobing
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical Science, The University of, Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Gourab Mukherjee
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical Science, The University of, Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Alexander B Sorokin
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon, IRCELYON, UMR 5256, CNRS Université Lyon 1, 2 Av. Albert Einstein, 69626, Villeurbanne Cedex, France
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical Science, The University of, Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
34
|
|
35
|
Sorokin AB. Recent progress on exploring µ-oxo bridged binuclear porphyrinoid complexes in catalysis and material science. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Cailler LP, Martynov AG, Gorbunova YG, Tsivadze AY, Sorokin AB. Carbene insertion to N–H bonds of 2-aminothiazole and 2-amino-1,3,4-thiadiazole derivatives catalyzed by iron phthalocyanine. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Iron(III) phthalocyaninate decorated with crown ether substituents, [(15C5)4PcFe]Cl, efficiently catalyzed the insertion of carbene derived from ethyl diazoacetate to six amines functionalized with thiazole, thiazoline and thiadiazole heterocycles. The reactions were carried out under practical conditions using EDA:amine stoechiometric ratio with 0.05 mol% catalyst loading. Turnover numbers up to 3360 have been achieved. The aminoacid derivatives bearing heterocyclic moieties were obtained under catalytic conditions for the first time with 36–69% yields in the case of single N–H insertion products and up to 77% in the case of double N–H insertion products.
Collapse
Affiliation(s)
- Lucie P. Cailler
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS, Université Lyon 1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Alexander G. Martynov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr., 31, Bldg. 4, 119071, Moscow, Russia
| | - Yulia G. Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr., 31, Bldg. 4, 119071, Moscow, Russia
| | - Aslan Yu. Tsivadze
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr., 31, Bldg. 4, 119071, Moscow, Russia
| | - Alexander B. Sorokin
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS, Université Lyon 1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
| |
Collapse
|
37
|
Kroitor AP, Martynov AG, Gorbunova YG, Tsivadze AY, Sorokin AB. Exploring the Optimal Synthetic Pathways towards µ-Carbido Diruthenium(IV) Bisphthalocyaninates. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrey P. Kroitor
- Chemical Department; M.V. Lomonosov Moscow State University; Leninskie gory, 1, bldg. 3 119991, GSP-1 Moscow Russia
| | - Alexander G. Martynov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry; Russian Academy of Sciences; Leninskii pr., 31, bldg. 4 119071 Moscow Russia
| | - Yulia G. Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry; Russian Academy of Sciences; Leninskii pr., 31, bldg. 4 119071 Moscow Russia
- N.S. Kurnakov Institute of General and Inorganic Chemistry; Russian Academy of Sciences; Leninskii pr., 31 11991 Moscow Russia
| | - Aslan Yu. Tsivadze
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry; Russian Academy of Sciences; Leninskii pr., 31, bldg. 4 119071 Moscow Russia
- N.S. Kurnakov Institute of General and Inorganic Chemistry; Russian Academy of Sciences; Leninskii pr., 31 11991 Moscow Russia
| | - Alexander B. Sorokin
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon IRCELYON, UMR 5256; CNRS - Université Lyon 1; 2 avenue A. Einstein 69626 Villeurbanne cedex France
| |
Collapse
|
38
|
Makinde ZO, Mashazi P, Khene S. Electrocatalytic behavior of single walled carbon nanotubes with alkylthio-substituted cobalt binuclear phthalocyanines towards oxidation of 4-chlorophenols. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This work describes the adsorption of synthesized cobalt mono (CoPc) and binuclear phthalocyanines (CoBiPc) with single walled carbon nanotubes (SWCNT) to form SWCNT-CoPc or SWCNT-CoBiPc as non-covalent conjugates onto glassy carbon electrodes (GCE). The cobalt complexes and their SWCNT-conjugate-modified electrodes were studied for their electrocatalytic oxidation towards 4-chlorophenol. All modified electrodes showed improved catalytic current and stability towards the detection of 4-chlorophenol. The best activity was observed for the SWCNT-CoBiPc2 system in terms of current response and the SWCNT-CoBiPc1 system in terms of resistance to electrode fouling.
Collapse
Affiliation(s)
- Zainab O. Makinde
- Department of Chemistry, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - Philani Mashazi
- Department of Chemistry, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - Samson Khene
- Department of Chemistry, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| |
Collapse
|
39
|
Simonova OR, Zaitseva SV, Tyurin DV, Kudrik EV, Koifman OI. Reaction between μ-Nitridodimeric Iron(IV) Tetra-4-tert-butylphthalocyaninate and Organic Peroxides. RUSS J INORG CHEM+ 2018. [DOI: 10.1134/s003602361809019x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Cheung WM, Ng WM, Wong WH, Lee HK, Sung HHY, Williams ID, Leung WH. A Nitrido-bridged Heterometallic Ruthenium(IV)/Iron(IV) Phthalocyanine Complex Supported by A Tripodal Oxygen Ligand, [Co(η 5-C 5H 5){P(O)(OEt) 2} 3] -: Synthesis, Structure, and Its Oxidation to Give Phthalocyanine Cation Radical and Hydroxyphthalocyanine Complexes. Inorg Chem 2018; 57:9215-9222. [PMID: 29992815 DOI: 10.1021/acs.inorgchem.8b01229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dinuclear iron nitrido phthalocyanine complexes are of interest owing to their applications in catalytic oxidation of hydrocarbons. While nitrido-bridged diiron phthalocyanine complexes are well documented, the oxidation chemistry of heterodinuclear iron(IV) phthalocyanine nitrides has not been well explored. In this paper we report on the synthesis of a heterometallic FeIV/RuIV phthalocyanine nitride and its oxidation to yield phthalocyanine cation radical and hydroxyphthalocyanine complexes. Treatment of [FeII(Pc)] (Pc2- = phthalocyanine dianion) with [RuVI(LOEt)(N)Cl2] (LOEt- = [Co(η5-C5H5){P(O)(OEt)2}3]-) (1) afforded the heterometallic μ-nitrido complex [Cl2(LOEt)RuIV(μ-N)FeIV(Pc)(H2O)] (2) that contains an RuIV=N = FeIV linkage with the Ru-N and Fe-N distances of 1.689(6) and 1.677(6) Å, respectively, and Ru-N-Fe angle of 176.0(4)°. Substitution of 2 with 4- tert-butylpyridine (Bupy) gave [Cl2(LOEt)RuIV(μ-N)FeIV(Pc)(Bupy)]. The cyclic voltammogram of 2 displayed a reversible Pc-centered oxidation couple at +0.18 V versus Fc+/0 (Fc = ferrocene). The oxidation of 2 with [N(4-BrC6H4)3]SbCl6 led to isolation of the cationic complex [Cl2(LOEt)RuIV(μ-N)FeIV(Pc·+)(H2O)][SbCl6]0.85[SbCl5(OH)]0.15 (2[SbCl6]0.85[SbCl5(OH)]0.15), whereas that with PhICl2 yielded the chloride complex [Cl2(LOEt)RuIV(μ-N)FeIV(Pc·+)Cl] (3). Complexes 2[SbCl6]0.85[SbCl5(OH)]0.15 and 3 have been characterized by X-ray crystallography. The UV/visible spectra of 2+ (λmax = 515 and 747 nm) and 3 (λmax = 506 and 748 nm) displayed absorption bands that are characteristic of Pc cation radical. The EPR spectrum of 3 showed a signal with the g value of 2.0012 (width = 5 G) that is consistent with an organic radical. The spectroscopic data support the formulation of 2+ and 3 as RuIV-FeIV Pc cation radical complexes. The reaction of 2 with PhI(CF3CO2)2 in dried CH2Cl2 afforded a mixture of [Cl2(LOEt)RuIV(μ-N)FeIV(Pc·+)(CF3CO2)] (4) and a hydroxyphthalocyanine complex, [Cl2(LOEt)RuIV(μ-N)FeIV(Pc-OH)(H2O)](CF3CO2) (5), whereas that in wet CH2Cl2 (containing ca. 0.5% water) led to isolation of 5 as the sole product. Complex 4 was independently prepared by salt metathesis of 3 with AgCF3CO2.
Collapse
Affiliation(s)
- Wai-Man Cheung
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong , China
| | - Wai-Ming Ng
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong , China
| | - Wai-Ho Wong
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong , China
| | - Hung Kay Lee
- Department of Chemistry , The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong , China
| | - Herman H-Y Sung
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong , China
| | - Ian D Williams
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong , China
| | - Wa-Hung Leung
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong , China
| |
Collapse
|
41
|
Tyurin DV, Zaitseva SV, Kudrik EV. Catalytic Activity of μ-Carbido-Dimeric Iron(IV) Octapropylporphyrazinate in the 3,5,7,2',4'-Pentahydroxyflavone Oxidation Reaction with tert-Butyl Hydroperoxide. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418050321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Xu Y, Ge T, Ma H, Ding X, Zhang X, Liu Q. Rh-Pd-alloy catalyzed electrochemical hydrodefluorination of 4-fluorophenol in aqueous solutions. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
de Ruiter G, Carsch KM, Takase MK, Agapie T. Selectivity of C-H versus C-F Bond Oxygenation by Homo- and Heterometallic Fe 4 , Fe 3 Mn, and Mn 4 Clusters. Chemistry 2017; 23:10744-10748. [PMID: 28658508 PMCID: PMC5659184 DOI: 10.1002/chem.201702302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 02/03/2023]
Abstract
A series of tetranuclear [LM3 (HFArPz)3 OM'][OTf]2 (M, M'=Fe or Mn) clusters that displays 3-(2-fluorophenyl)pyrazolate (HFArPz) as bridging ligand is reported. With these complexes, manganese was demonstrated to facilitate C(sp2 )-F bond oxygenation via a putative terminal metal-oxo species. Moreover, the presence of both ortho C(sp2 )-H and C(sp2 )-F bonds in proximity of the apical metal center provided an opportunity to investigate the selectivity of intramolecular C(sp2 )-X bond oxygenation (X=H or F) in these isostructural compounds. With iron as the apical metal center, (M'=Fe) C(sp2 )-F bond oxygenation occur almost exclusively, whereas with manganese (M'=Mn), the opposite reactivity is preferred.
Collapse
Affiliation(s)
- Graham de Ruiter
- Department of Chemistry and Chemical Engineering, California Institute of Technology; MC 127-72, Pasadena, California, 91125, USA
| | - Kurtis M Carsch
- Department of Chemistry and Chemical Engineering, California Institute of Technology; MC 127-72, Pasadena, California, 91125, USA
| | - Michael K Takase
- Department of Chemistry and Chemical Engineering, California Institute of Technology; MC 127-72, Pasadena, California, 91125, USA
| | - Theodor Agapie
- Department of Chemistry and Chemical Engineering, California Institute of Technology; MC 127-72, Pasadena, California, 91125, USA
| |
Collapse
|
44
|
Carsch KM, de Ruiter G, Agapie T. Intramolecular C-H and C-F Bond Oxygenation by Site-Differentiated Tetranuclear Manganese Models of the OEC. Inorg Chem 2017; 56:9044-9054. [PMID: 28731687 PMCID: PMC5669799 DOI: 10.1021/acs.inorgchem.7b01022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dangler manganese center in the oxygen-evolving complex (OEC) of photosystem II plays an important role in the oxidation of water to dioxygen. Inspired by the structure of the OEC, we synthesized a series of site-differentiated tetra-manganese clusters [LMn3(PhPz)3OMn][OTf]x (2: x = 2; 3: x = 1) that features an apical manganese ion-distinct from the others-that is appended to a trinuclear manganese core through an μ4-oxygen atom bridge. This cluster design was targeted to facilitate studies of high-valent Mn-oxo formation, which is a proposed step in the mechanism for water oxidation by the OEC. Terminal Mn-oxo species-supported by a multinuclear motif-were targeted by treating 2 and 3 with iodosobenzene. Akin to our previously reported iron complexes, intramolecular arene hydroxylation was observed to yield the C-H bond oxygenated complexes [LMn3(PhPz)2(OArPz)OMn][OTf]x (5: x = 2; 6: x = 1). The fluorinated series [LMn3(F2ArPz)3OMn][OTf]x (8: x = 2; 9: x = 1) was also synthesized to mitigate the observed intramolecular hydroxylation. Treatment of 8 and 9 with iodosobenzene results in intramolecular arene C-F bond oxygenation as judged by electrospray ionization mass spectrometry. The observed aromatic C-H and C-F hydroxylation is suggestive of a putative high-valent terminal metal-oxo species, and it is one of the very few examples capable of oxygenating C-F bonds.
Collapse
Affiliation(s)
- Kurtis M. Carsch
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Graham de Ruiter
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
45
|
Colomban C, Kudrik EV, Sorokin AB. Heteroleptic μ-nitrido diiron complex supported by phthalocyanine and octapropylporphyrazine ligands: Formation of oxo species and their reactivity with fluorinated compounds. J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s1088424617500274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The synthesis and reactivity of [Formula: see text]-bridged diiron macrocyclic complexes have been a topic of increasing interest in recent years since the observation of particular catalytic properties of these complexes. Herein, we report a preparation of a novel heteroleptic μ-nitrido diiron complex with unsubstituted phthalocyanine and octapropylporphyrazine macrocycles. This complex reacts with [Formula: see text]-chloroperbenzoic acid to form high-valent diiron oxo species showing strong oxidizing properties. The formation and structure of the transient oxo species was investigated by cryospray collision induced dissociation MS/MS technique. Analysis of fragmentation pattern showed that the attachment of oxo moiety occurred at either iron phthalocyanine or at iron porphyrazine site with slight preference for the phthalocyanine iron site. The catalytic properties of the heteroleptic μ-nitrido diiron complex were evaluated in the oxidative transformation of hexafluorobenzene and perfluoro(allylbenzene).
Collapse
Affiliation(s)
- Cédric Colomban
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS-Universitè Lyon 1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Evgeny V. Kudrik
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS-Universitè Lyon 1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
- Ivanovo State University of Chemistry and Technology 7, av F. Engels; 153000 Ivanovo, Russia
| | - Alexander B. Sorokin
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR 5256, CNRS-Universitè Lyon 1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
| |
Collapse
|
46
|
Simonova OR, Zaitseva SV, Tyulyaeva EY, Zdanovich SA, Kudrik EV. Reaction of μ-carbido-dimeric iron(IV) octapropyltetraazaporphyrinate with dicumene peroxide and tert-butyl peroxide in benzene. RUSS J INORG CHEM+ 2017. [DOI: 10.1134/s0036023617040179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Cheung WM, Chiu WH, de Vere-Tucker M, Sung HHY, Williams ID, Leung WH. Heterobimetallic Nitrido Complexes of Group 8 Metalloporphyrins. Inorg Chem 2017; 56:5680-5687. [PMID: 28429931 DOI: 10.1021/acs.inorgchem.7b00281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heterobimetallic nitrido porphyrin complexes with the [(L)(por)M-N-M'(LOEt)Cl2] formula {por2- = 5,10,15,20-tetraphenylporphyrin (TPP2-) or 5,10,15,20-tetra(p-tolyl)porphyrin (TTP2-) dianion; LOEt- = [Co(η5-C5H5){P(O)(OEt)2}3]-; M = Fe, Ru, or Os; M' = Ru or Os; L = H2O or pyridine} have been synthesized, and their electrochemistry has been studied. Treatment of trans-[Fe(TPP)(py)2] (py = pyridine) with Ru(VI) nitride [Ru(LOEt)(N)Cl2] (1) afforded Fe/Ru μ-nitrido complex [(py)(TPP)Fe(μ-N)Ru(LOEt)Cl2] (2). Similarly, Fe/Os analogue [(py)(TPP)Fe(μ-N)Os(LOEt)Cl2] (3) was obtained from trans-[Fe(TPP)(py)2] and [Os(LOEt)(N)Cl2]. However, no reaction was found between trans-[Fe(TPP)(py)2] and [Re(LOEt)(N)Cl(PPh3)]. Treatment of trans-[M(TPP)(CO)(EtOH)] with 1 afforded μ-nitrido complexes [(H2O)(TPP)M(μ-N)Ru(LOEt)Cl2] [M = Ru (4a) or Os (5)]. TTP analogue [(H2O)(TTP)Ru(μ-N)Ru(LOEt)Cl2] (4b) was prepared similarly from trans-[Ru(TTP)(CO)(EtOH)] and 1. Reaction of [(H2O)(por)M(μ-N)M(LOEt)Cl2] with pyridine gave adducts [(py)(por)M(μ-N)Ru(LOEt)Cl2] [por = TTP, and M = Ru (6); por = TPP, and M = Os (7)]. The diamagnetism and short (por)M-N(nitride) distances in 2 [Fe-N, 1.683(3) Å] and 4b [Ru-N, 1.743(3) Å] are indicative of the MIV═N═M'IV bonding description. The cyclic voltammograms of the Fe/Ru (2) and Ru/Ru (4b) complexes in CH2Cl2 displayed oxidation couples at approximately +0.29 and +0.35 V versus Fc+/0 (Fc = ferrocene) that are tentatively ascribed to the oxidation of the {LOEtRu} and {Ru(TTP)} moieties, respectively, whereas the Fe/Os (3) and Os/Ru (5) complexes exhibited Os-centered oxidation at approximately -0.06 and +0.05 V versus Fc+/0, respectively. The crystal structures of 2 and 4b have been determined.
Collapse
Affiliation(s)
- Wai-Man Cheung
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| | - Wai-Hang Chiu
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| | - Matthew de Vere-Tucker
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| | - Herman H-Y Sung
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| | - Ian D Williams
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| | - Wa-Hung Leung
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| |
Collapse
|
48
|
Liu W, Pan H, Wang Z, Wang K, Qi D, Jiang J. Sandwich rare earth complexes simultaneously involving aromatic phthalocyanine and antiaromatic hemiporphyrazine ligands showing a predominantly aromatic nature. Chem Commun (Camb) 2017; 53:3765-3768. [PMID: 28304062 DOI: 10.1039/c7cc01279a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two mixed (phthalocyaninato)(hemiporphyrazinato) and two homoleptic bis(hemiporphyrazinato) rare earth double-decker complexes have been synthesized and structurally characterized. The EPR and NMR results clarified the protonated nature of these sandwich double-deckers. Spectroscopic and theoretical calculation results clearly reveal the predominantly aromatic nature of the mixed ring sandwich double-deckers.
Collapse
Affiliation(s)
- Wenbo Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China.
| | - Houhe Pan
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China.
| | - Ziqian Wang
- The High School Affiliated To China University of Geosciences, Beijing 100083, China
| | - Kang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China.
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
49
|
Wang L, Wei J, Wu R, Cheng G, Li X, Hu J, Hu Y, Sheng R. The stability and reactivity of tri-, di-, and monofluoromethyl/methoxy/methylthio groups on arenes under acidic and basic conditions. Org Chem Front 2017. [DOI: 10.1039/c6qo00674d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stability and reactivity of tri-, di- and monofluoromethyl groups under acidic and basic conditions are described.
Collapse
Affiliation(s)
- Lingfei Wang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Jun Wei
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Ranran Wu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Gang Cheng
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Xinjin Li
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| | - Yongzhou Hu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Rong Sheng
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- P. R. China
| |
Collapse
|
50
|
Kudrik EV, Sorokin AB. Oxidation of aliphatic and aromatic C H bonds by t-BuOOH catalyzed by μ-nitrido diiron phthalocyanine. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.molcata.2016.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|