1
|
Baratta M, Mastropietro TF, Escamilla P, Algieri V, Xu F, Nicoletta FP, Ferrando-Soria J, Pardo E, De Filpo G, Armentano D. Sulfur-Functionalized Single-Walled Carbon Nanotube Buckypaper/MTV-BioMetal-Organic Framework Nanocomposites for Gold Recovery. Inorg Chem 2024; 63:18992-19001. [PMID: 39325842 DOI: 10.1021/acs.inorgchem.4c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Developing sustainable, efficient, and selective gold recovery technology is essential to implement the valorization of complementary alternative sources for this precious metal, such as spent e-waste, and to preserve the environment. The main challenge in recovering gold from liquors obtained from leached waste electronics is the low concentration of this precious metal compared to impurities. Here, we report the preparation of a novel multivariate biological metal-organic framework (MTV-BioMOF) as a potential material for the selective recovery of gold metal ions from water, even in the presence of other interfering metals. Moreover, MTV-BioMOF can be incorporated within single-walled carbon nanotube buckypapers (SWCNT-BP) to yield an MTV-BioMOF@HS-SWCNT-BP composite, which combines enhanced mechanical properties and high chemical stability. The thiol-functionalized SWCNT-BP surface and the presence of thioether groups evenly decorating the MTV-BioMOF channels shape a task-specific functional environment that boosts the interactions with gold metal ions. The efficiency of gold recovery reaches values up to 99.5% when MTV-BioMOF@SWCNT-BP is used as an adsorbent for treating Au(III) in very diluted solutions (initial concentration of 5 ppm). This high recovery efficiency, with values as high as 98.0%, is maintained even in the presence of competing metal cations, also demonstrating a noticeable selectivity. This composite material represents a promising paradigm for the selective extraction, enrichment, and purification of gold.
Collapse
Affiliation(s)
- Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende 87036, Italy
| | - Teresa F Mastropietro
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende 87036, Italy
| | - Paula Escamilla
- Department of Inorganic Chemistry/Institute of Molecular Science, University of Valencia Paterna, Valencia 46980, Spain
| | - Vincenzo Algieri
- IRCCS NEUROMED-Istituto Neurologico Mediterraneo, Via Atinense 18, Pozzilli (IS) 86077, Italy
| | - Fang Xu
- Department of Biology, Ecology and Earth Science University of Calabria, Rende 87036, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Rende 87036, Italy
| | - Jesus Ferrando-Soria
- Department of Inorganic Chemistry/Institute of Molecular Science, University of Valencia Paterna, Valencia 46980, Spain
| | - Emilio Pardo
- Department of Inorganic Chemistry/Institute of Molecular Science, University of Valencia Paterna, Valencia 46980, Spain
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende 87036, Italy
| | - Donatella Armentano
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende 87036, Italy
| |
Collapse
|
2
|
Chen Y, Wang W, Alston S, Xiao Y, Ajayan P, Bu X, Feng P. Multi-Stage Optimization of Pore Size and Shape in Pore-Space-Partitioned Metal-Organic Frameworks for Highly Selective and Sensitive Benzene Capture. Angew Chem Int Ed Engl 2024:e202415576. [PMID: 39298644 DOI: 10.1002/anie.202415576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Compared to exploratory development of new structure types, pushing the limits of isoreticular synthesis on a high-performance MOF platform may have higher probability of achieving targeted properties. Multi-modular MOF platforms could offer even more opportunities by expanding the scope of isoreticular chemistry. However, navigating isoreticular chemistry towards best properties on a multi-modular platform is challenging due to multiple interconnected pathways. Here on the multi-modular pacs (partitioned acs) platform, we demonstrate accessibility to a new regime of pore geometry using two independently adjustable modules (framework-forming module 1 and pore-partitioning module 2). A series of new pacs materials have been made. Benzene/cyclohexane selectivity is tuned, progressively, from 4.5 to 15.6 to 195.4 and to 482.5 by pushing the boundary of the pacs platform towards the smallest modules known so far. The exceptional stability of these materials in retaining both porosity and single crystallinity enables single-crystal diffraction studies of different crystal forms (as-synthesized, activated, guest-loaded) that help reveal the mechanistic aspects of adsorption in pacs materials.
Collapse
Affiliation(s)
- Yichong Chen
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Wei Wang
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Samuel Alston
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Yuchen Xiao
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Pooja Ajayan
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach 1250 Bellflower Blvd, Long Beach, CA-90840, United States
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| |
Collapse
|
3
|
Yabuuchi Y, Furukawa H, Carsch KM, Klein RA, Tkachenko NV, Huang AJ, Cheng Y, Taddei KM, Novak E, Brown CM, Head-Gordon M, Long JR. Geometric Tuning of Coordinatively Unsaturated Copper(I) Sites in Metal-Organic Frameworks for Ambient-Temperature Hydrogen Storage. J Am Chem Soc 2024; 146:22759-22776. [PMID: 39092909 PMCID: PMC11328132 DOI: 10.1021/jacs.4c08039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Porous solids can accommodate and release molecular hydrogen readily, making them attractive for minimizing the energy requirements for hydrogen storage relative to physical storage systems. However, H2 adsorption enthalpies in such materials are generally weak (-3 to -7 kJ/mol), lowering capacities at ambient temperature. Metal-organic frameworks with well-defined structures and synthetic modularity could allow for tuning adsorbent-H2 interactions for ambient-temperature storage. Recently, Cu2.2Zn2.8Cl1.8(btdd)3 (H2btdd = bis(1H-1,2,3-triazolo-[4,5-b],[4',5'-i])dibenzo[1,4]dioxin; CuI-MFU-4l) was reported to show a large H2 adsorption enthalpy of -32 kJ/mol owing to π-backbonding from CuI to H2, exceeding the optimal binding strength for ambient-temperature storage (-15 to -25 kJ/mol). Toward realizing optimal H2 binding, we sought to modulate the π-backbonding interactions by tuning the pyramidal geometry of the trigonal CuI sites. A series of isostructural frameworks, Cu2.7M2.3X1.3(btdd)3 (M = Mn, Cd; X = Cl, I; CuIM-MFU-4l), was synthesized through postsynthetic modification of the corresponding materials M5X4(btdd)3 (M = Mn, Cd; X = CH3CO2, I). This strategy adjusts the H2 adsorption enthalpy at the CuI sites according to the ionic radius of the central metal ion of the pentanuclear cluster node, leading to -33 kJ/mol for M = ZnII (0.74 Å), -27 kJ/mol for M = MnII (0.83 Å), and -23 kJ/mol for M = CdII (0.95 Å). Thus, CuICd-MFU-4l provides a second, more stable example of optimal H2 binding energy for ambient-temperature storage among reported metal-organic frameworks. Structural, computational, and spectroscopic studies indicate that a larger central metal planarizes trigonal CuI sites, weakening the π-backbonding to H2.
Collapse
Affiliation(s)
- Yuto Yabuuchi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hiroyasu Furukawa
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kurtis M Carsch
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
| | - Ryan A Klein
- Material, Chemical, and Computational Sciences Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Nikolay V Tkachenko
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Adrian J Huang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Keith M Taddei
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eric Novak
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Craig M Brown
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Kempasiddaiah M, Samanta R, Panigrahy S, Trivedi RK, Chakraborty B, Barman S. Electrochemical reconstruction of a 1D Cu(PyDC)(H 2O) MOF into in situ formed Cu-Cu 2O heterostructures on carbon cloth as an efficient electrocatalyst for CO 2 conversion. NANOSCALE 2024; 16:10458-10473. [PMID: 38757357 DOI: 10.1039/d4nr00824c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Electrochemical carbon dioxide (CO2) conversion has enormous potential for reducing high atmospheric CO2 levels and producing valuable products simultaneously; however the development of inexpensive catalysts remains a great challenge. In this work, we successfully synthesised a 1D Cu-based metal-organic framework [Cu(PyDC)(H2O)], which crystallizes in an orthorhombic system with the Pccn space group, by the hydrothermal method. Among the different catalysts utilized, the heterostructures of cathodized Cu-Cu2O@CC demonstrate increased efficiency in producing CH3OH and C2H4, achieving maximum FE values of 37.4% and 40.53%, respectively. Also, the product formation rates of CH3OH and C2H4 reach up to 667 and 1921 μmol h-1 cm-2. On the other side, Cu-Cu2O/NC-700 carbon composites simultaneously produced C1-C3 products with a total FE of 23.27%. Furthermore, a comprehensive study involving detailed DFT simulations is used to calculate the energetic stability and catalytic activity towards the CO2 reduction of Cu(111), Cu2O(111), and Cu@Cu2O(111) surfaces. During the early phase of electrochemical treatment, Cu(II) carboxylate nodes (Cu-O) in the Cu(PyDC)(H2O) MOF were reduced to Cu and Cu2O, with a possible synergistic enhancement from the PyDC ligands. Thus, the improved activity and product enhancement are closely associated with the cathodized reconstruction of Cu-Cu2O@CC heterostructures on carbon cloth. Hence, this study provides efficient derivatives of Cu-based MOFs for notable electrocatalytic activity in CO2 reduction and gives valuable insights towards the advancement of practical CO2 conversion technology.
Collapse
Affiliation(s)
- Manjunatha Kempasiddaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar-752050, Orissa, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400094, India
| | - Rajib Samanta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar-752050, Orissa, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400094, India
| | - Sonali Panigrahy
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar-752050, Orissa, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400094, India
| | - Ravi Kumar Trivedi
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
- Centre for Computational Physics, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Brahmananda Chakraborty
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400094, India
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
| | - Sudip Barman
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar-752050, Orissa, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400094, India
| |
Collapse
|
5
|
Wang X, Singh SP, Zhang T, Andrews R, Lizio MG, Whitehead GFS, Riddell IA. Amino Functionality Enables Aqueous Synthesis of Carboxylic Acid-Based MOFs at Room Temperature by Biomimetic Crystallization. Inorg Chem 2024; 63:9801-9808. [PMID: 38743640 PMCID: PMC11134488 DOI: 10.1021/acs.inorgchem.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Enzyme immobilization within metal-organic frameworks (MOFs) is a promising solution to avoid denaturation and thereby utilize the desirable properties of enzymes outside of their native environments. The biomimetic mineralization strategy employs biomacromolecules as nucleation agents to promote the crystallization of MOFs in water at room temperature, thus overcoming pore size limitations presented by traditional postassembly encapsulation. Most biomimetic crystallization studies reported to date have employed zeolitic imidazole frameworks (ZIFs). Herein, we expand the library of MOFs suitable for biomimetic mineralization to include zinc(II) MOFs incorporating functionalized terephthalic acid linkers and study the catalytic performance of the enzyme@MOFs. Amine functionalization of terephthalic acids is shown to accelerate the formation of crystalline MOFs enabling new enzyme@MOFs to be synthesized. The structure and morphology of the enzyme@MOFs were characterized by PXRD, FTIR, and SEM-EDX, and the catalytic potential was evaluated. Increasing the linker length while retaining the amino moiety gave rise to a family of linkers; however, MOFs generated with the 2,2'-aminoterephthalic acid linker displayed the best catalytic performance. Our data also illustrate that the pH of the reaction mixture affects the crystal structure of the MOF and that this structural transformation impacts the catalytic performance of the enzyme@MOF.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Samarth Pratap Singh
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Tongtong Zhang
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Rebecca Andrews
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Maria Giovanna Lizio
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - George F. S. Whitehead
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Imogen A. Riddell
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
6
|
Cao XM, Cheng YQ, Chen MM, Yao SY, Ying AK, Wang XZ, Guo DS, Li Y. Sulfonated Azocalix[4]arene-Modified Metal-Organic Framework Nanosheets for Doxorubicin Removal from Serum. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:864. [PMID: 38786820 PMCID: PMC11124067 DOI: 10.3390/nano14100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Chemotherapy is one of the most commonly used methods for treating cancer, but its side effects severely limit its application and impair treatment effectiveness. Removing off-target chemotherapy drugs from the serum promptly through adsorption is the most direct approach to minimize their side effects. In this study, we synthesized a series of adsorption materials to remove the chemotherapy drug doxorubicin by modifying MOF nanosheets with sulfonated azocalix[4]arenes. The strong affinity of sulfonated azocalix[4]arenes for doxorubicin results in high adsorption strength (Langmuir adsorption constant = 2.45-5.73 L mg-1) and more complete removal of the drug. The extensive external surface area of the 2D nanosheets facilitates the exposure of a large number of accessible adsorption sites, which capture DOX molecules without internal diffusion, leading to a high adsorption rate (pseudo-second-order rate constant = 0.0058-0.0065 g mg-1 min-1). These adsorbents perform effectively in physiological environments and exhibit low cytotoxicity and good hemocompatibility. These features make them suitable for removing doxorubicin from serum during "drug capture" procedures. The optimal adsorbent can remove 91% of the clinical concentration of doxorubicin within 5 min.
Collapse
Affiliation(s)
- Xiao-Min Cao
- College of Chemistry, Nankai University, Tianjin 300071, China; (X.-M.C.); (Y.-Q.C.); (M.-M.C.); (S.-Y.Y.); (A.-K.Y.); (X.-Z.W.)
| | - Yuan-Qiu Cheng
- College of Chemistry, Nankai University, Tianjin 300071, China; (X.-M.C.); (Y.-Q.C.); (M.-M.C.); (S.-Y.Y.); (A.-K.Y.); (X.-Z.W.)
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Meng-Meng Chen
- College of Chemistry, Nankai University, Tianjin 300071, China; (X.-M.C.); (Y.-Q.C.); (M.-M.C.); (S.-Y.Y.); (A.-K.Y.); (X.-Z.W.)
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Shun-Yu Yao
- College of Chemistry, Nankai University, Tianjin 300071, China; (X.-M.C.); (Y.-Q.C.); (M.-M.C.); (S.-Y.Y.); (A.-K.Y.); (X.-Z.W.)
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - An-Kang Ying
- College of Chemistry, Nankai University, Tianjin 300071, China; (X.-M.C.); (Y.-Q.C.); (M.-M.C.); (S.-Y.Y.); (A.-K.Y.); (X.-Z.W.)
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Xiu-Zhen Wang
- College of Chemistry, Nankai University, Tianjin 300071, China; (X.-M.C.); (Y.-Q.C.); (M.-M.C.); (S.-Y.Y.); (A.-K.Y.); (X.-Z.W.)
| | - Dong-Sheng Guo
- College of Chemistry, Nankai University, Tianjin 300071, China; (X.-M.C.); (Y.-Q.C.); (M.-M.C.); (S.-Y.Y.); (A.-K.Y.); (X.-Z.W.)
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry, and Environmental Sciences, Kashi University, Kashi 844000, China
| | - Yue Li
- College of Chemistry, Nankai University, Tianjin 300071, China; (X.-M.C.); (Y.-Q.C.); (M.-M.C.); (S.-Y.Y.); (A.-K.Y.); (X.-Z.W.)
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Sikma RE, Butler KS, Vogel DJ, Harvey JA, Sava Gallis DF. Quest for Multifunctionality: Current Progress in the Characterization of Heterometallic Metal-Organic Frameworks. J Am Chem Soc 2024; 146:5715-5734. [PMID: 38364319 DOI: 10.1021/jacs.3c05425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Metal-organic frameworks (MOFs) are a class of porous, crystalline materials that have been systematically developed for a broad range of applications. Incorporation of two or more metals into a single crystalline phase to generate heterometallic MOFs has been shown to lead to synergistic effects, in which the whole is oftentimes greater than the sum of its parts. Because geometric proximity is typically required for metals to function cooperatively, deciphering and controlling metal distributions in heterometallic MOFs is crucial to establish structure-function relationships. However, determination of short- and long-range metal distributions is nontrivial and requires the use of specialized characterization techniques. Advancements in the characterization of metal distributions and interactions at these length scales is key to rapid advancement and rational design of functional heterometallic MOFs. This perspective summarizes the state-of-the-art in the characterization of heterometallic MOFs, with a focus on techniques that allow metal distributions to be better understood. Using complementary analyses, in conjunction with computational methods, is critical as this field moves toward increasingly complex, multifunctional systems.
Collapse
Affiliation(s)
- R Eric Sikma
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Kimberly S Butler
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dayton J Vogel
- Computational Materials & Data Science Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jacob A Harvey
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
8
|
Wang M, Zeng T, Yu Y, Wang X, Zhao Y, Xi H, Zhang YB. Flexibility On-Demand: Multivariate 3D Covalent Organic Frameworks. J Am Chem Soc 2024; 146:1035-1041. [PMID: 38152052 DOI: 10.1021/jacs.3c11944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Dynamic 3D covalent organic frameworks (dynaCOFs) have shown concerted structural transformation and responses upon adaptive guest adsorption. The multivariate (MTV) strategy incorporating multiple functionalities within a backbone is attractive for tuning the framework flexibility and dynamic responses. However, a major synthetic challenge arises from the different chemical reactivities of linkers usually resulting in phase separation. Here, we report a general synthetic protocol for making 3D MTV-COFs by balancing the linker reactivity and solvent polarity. Specifically, 15 crystalline and phase pure MTV-COF-300 isostructures are constructed by linking a tetrahedral unit with eight ditopic struts carrying various functional groups. We find that the electron-donating groups make the linker reactivity too low to allow the reaction to proceed fully, while the electron-withdrawing groups afford increased reactivity and hardly yield crystalline materials. To overcome the crystallization dilemma, the combination of polar aprotic with nonpolar solvents was used to improve the solubility of oligomers and slow the reaction kinetics in MTV-COF synthesis. We demonstrate the abilities of these MTV-COFs to tune gas dynamic behaviors and the separation of benzene and cyclohexane. These findings reveal the integration of multivariate functionalities into dynaCOFs with on-demand flexibility to achieve dynamic synergism in particular applications, outperforming their pure, monofunctional counterparts.
Collapse
Affiliation(s)
- Meng Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tengwu Zeng
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xun Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528225, China
| | - Yingbo Zhao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hongxia Xi
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
9
|
Kim K, Kim J. Development of a Transferable Force Field between Metal-Organic Framework and Its Polymorph. ACS OMEGA 2023; 8:44328-44337. [PMID: 38027331 PMCID: PMC10666274 DOI: 10.1021/acsomega.3c06937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Conventionally, force fields for specific metal-organic frameworks (MOFs) are derived from quantum chemical simulations, but this method can be computationally intensive, especially in cases for large MOF structures. In this work, we devise a methodology to reduce the force field derivation costs by replacing the original MOF with a smaller polymorphic structure, with the hypothesis that the force field parameters will be transferrable among chemically identical, polymorphic MOF structures. Specifically, we demonstrate this transferability in MOF-177 structure for H2O and NH3 gas molecules and show that the force field parameters derived from a smaller polymorphic MOF-177 can be used accurately to the original MOF-177 structure. This methodology can accelerate the development of force field parameters for large porous materials, in which computational costs for conventional methods are expensive.
Collapse
Affiliation(s)
- Kyeongrim Kim
- Department of Chemical and
Biomolecular Engineering, Korea Advanced
Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jihan Kim
- Department of Chemical and
Biomolecular Engineering, Korea Advanced
Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Kumar A, Li J, Inge AK, Ott S. Electrochromism in Isoreticular Metal-Organic Framework Thin Films with Record High Coloration Efficiency. ACS NANO 2023; 17:21595-21603. [PMID: 37851935 PMCID: PMC10655172 DOI: 10.1021/acsnano.3c06621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
The power of isoreticular chemistry has been widely exploited to engineer metal-organic frameworks (MOFs) with fascinating molecular sieving and storage properties but is underexplored for designing MOFs with tunable optoelectronic properties. Herein, three dipyrazole-terminated XDIs (X = PM (pyromellitic), N (naphthalene), or P (perylene); DI = diimide) with different lengths and electronic properties are prepared and employed as linkers for the construction of an isoreticular series of Zn-XDI MOFs with distinct electrochromism. The MOFs are grown on fluorine-doped tin oxide (FTO) as high-quality crystalline thin films and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Due to the constituting electronically isolated XDI linkers, each member of the isoreticular thin film series exhibits two reversible one-electron redox events, each at a distinct electrochemical potential. The orientation of the MOFs as thin films as well as their isoreticular nature results in identical cation-coupled electron hopping transport rates in all three materials, as demonstrated by comparable apparent electron diffusion coefficients, Deapp. Upon electrochemical reduction to either the [XDI]•- or [XDI]2- state, each MOF undergoes characteristic changes in its optical properties as a function of linker length and redox state of the linker. Operando spectroelectrochemistry measurements reveal that Zn-PDI@FTO (PDI = perylene diimide) thin films exhibit a record high coloration efficiency of 941 cm2 C-1 at 746 nm, which is attributed to the maximized Faradaic transformations at each electronically isolated PDI unit. The electrochromic response of the thin film is retained to more than 99% over 100 reduction-oxidation cycles, demonstrating the applicability of the presented materials.
Collapse
Affiliation(s)
- Amol Kumar
- Department
of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Jingguo Li
- Department
of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - A. Ken Inge
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Sascha Ott
- Department
of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
11
|
Yu Gao X, Wang Y, Wu E, Wang C, Li B, Zhou Y, Chen B, Li P. Multivariate Hydrogen-Bonded Organic Frameworks with Tunable Permanent Porosities for Capture of a Mustard Gas Simulant. Angew Chem Int Ed Engl 2023; 62:e202312393. [PMID: 37773007 DOI: 10.1002/anie.202312393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 09/30/2023]
Abstract
Precise synthesis of topologically predictable and discrete molecular crystals with permanent porosities remains a long-term challenge. Here, we report the first successful synthesis of a series of 11 isoreticular multivariate hydrogen-bonded organic frameworks (MTV-HOFs) from pyrene-based derivatives bearing -H, -CH3 , -NH2 and -F groups achieved by a shape-fitted, π-π stacking self-assembly strategy. These MTV-HOFs are single-crystalline materials composed of tecton, as verified by single-crystal diffraction, nuclear magnetic resonance (NMR) spectra, Raman spectra, water sorption isotherms and density functional theory (DFT) calculations. These MTV-HOFs exhibit tunable hydrophobicity with water uptake starting from 50 to 80 % relative humidity, by adjusting the combinations and ratios of functional groups. As a proof of application, the resulting MTV-HOFs were shown to be capable of capturing a mustard gas simulant, 2-chloroethyl ethyl sulfide (CEES) from moisture. The location of different functional groups within the pores of the MTV-HOFs leads to a synergistic effect, which resulted in a superior CEES/H2 O selectivity (up to 94 %) compared to that of the HOFs with only pure component and enhanced breakthrough performance (up to 4000 min/g) when compared to benchmark MOF materials. This work is an important advance in the synthesis of MTV-HOFs, and provides a platform for the development of porous molecular materials for numerous applications.
Collapse
Affiliation(s)
- Xiang Yu Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yao Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Enyu Wu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hang-zhou, 310027, China
| | - Chen Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Bin Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hang-zhou, 310027, China
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian, 350000, China
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
12
|
Padial NM, Chinchilla-Garzón C, Almora-Barrios N, Castells-Gil J, González-Platas J, Tatay S, Martí-Gastaldo C. Isoreticular Expansion and Linker-Enabled Control of Interpenetration in Titanium-Organic Frameworks. J Am Chem Soc 2023; 145:21397-21407. [PMID: 37733631 PMCID: PMC10853965 DOI: 10.1021/jacs.3c06590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 09/23/2023]
Abstract
Titanium-organic frameworks offer distinctive opportunities in the realm of metal-organic frameworks (MOFs) due to the integration of intrinsic photoactivity or redox versatility in porous architectures with ultrahigh stability. Unfortunately, the high polarizing power of Ti4+ cations makes them prone to hydrolysis, thus preventing the systematic design of these types of frameworks. We illustrate the use of heterobimetallic cluster Ti2Ca2 as a persistent building unit compatible with the isoreticular design of titanium frameworks. The MUV-12(X) and MUV-12(Y) series can be all synthesized as single crystals by using linkers of varying functionalization and size for the formation of the nets with tailorable porosity and degree of interpenetration. Following the generalization of this approach, we also gain rational control over interpenetration in these nets by designing linkers with varying degrees of steric hindrance to eliminate stacking interactions and access the highest gravimetric surface area reported for titanium(IV) MOFs (3000 m2 g-1).
Collapse
Affiliation(s)
- Natalia M. Padial
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, València 46980, Spain
| | - Clara Chinchilla-Garzón
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, València 46980, Spain
| | - Neyvis Almora-Barrios
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, València 46980, Spain
| | - Javier Castells-Gil
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, València 46980, Spain
- School
of Chemistry,University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Javier González-Platas
- Departamento
de Física, Universitario de Estudios
Avanzados en Física Atómica, Molecular y Fotónica
(IUDEA). MALTA Consolider Team, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez
s/n, La Laguna, Tenerife E-38204, Spain
| | - Sergio Tatay
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, València 46980, Spain
| | - Carlos Martí-Gastaldo
- Functional
Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, València 46980, Spain
| |
Collapse
|
13
|
Nawz TH, Masood MT, Safdar A, Shahid M, Noor T, Hussain M, Razi A, Umer MA. In Situ Synthesis of Crystalline MoS 2@ZIF-67 Nanocomposite for the Efficient Removal of Methyl Orange Dye from Aqueous Media. MICROMACHINES 2023; 14:1534. [PMID: 37630069 PMCID: PMC10456315 DOI: 10.3390/mi14081534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 08/27/2023]
Abstract
The zeolitic imidazolate framework-67 (ZIF-67) adsorbent and its composites are known to effectively remove organic dyes from aqueous environments. Here, we report a unique crystalline MoS2@ZIF-67 nanocomposite adsorbent for the efficient removal of methyl orange (MO) dye from an aqueous medium. In situ synthetic techniques were used to fabricate a well-crystalline MoS2@ZIF-67 nanocomposite, which was then discovered to be a superior adsorbent to its constituents. The successful synthesis of the nanocomposite was confirmed using XRD, EDX, FTIR, and SEM. The MoS2@ZIF-67 nanocomposite exhibited faster adsorption kinetics and higher dye removal efficiency compared with its constituents. The adsorption kinetic data matched well with the pseudo-second-order model, which signifies that the MO adsorption on the nanocomposite is a chemically driven process. The Langmuir model successfully illustrated the MO dye adsorption on the nanocomposite through comparing the real data with adsorption isotherm models. However, it appears that the Freundlich adsorption isotherm model was also in competition with the Langmuir model. According to the acquired thermodynamics parameters, the adsorption of MO on the MoS2@ZIF-67 nanocomposite surface was determined to be spontaneous and exothermic. The findings of this research open an avenue for using the MoS2@ZIF-67 nanocomposite to efficiently remove organic dyes from wastewater efflux.
Collapse
Affiliation(s)
- Tahreem Haq Nawz
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12 Sector, Islamabad 44000, Pakistan; (T.H.N.); (M.T.M.); (T.N.); (A.R.); (M.A.U.)
| | - Muhammad Talha Masood
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12 Sector, Islamabad 44000, Pakistan; (T.H.N.); (M.T.M.); (T.N.); (A.R.); (M.A.U.)
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Science and Technology (NUST), H-12 Sector, Islamabad 44000, Pakistan
| | - Amna Safdar
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12 Sector, Islamabad 44000, Pakistan; (T.H.N.); (M.T.M.); (T.N.); (A.R.); (M.A.U.)
| | - Muhammad Shahid
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12 Sector, Islamabad 44000, Pakistan; (T.H.N.); (M.T.M.); (T.N.); (A.R.); (M.A.U.)
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12 Sector, Islamabad 44000, Pakistan; (T.H.N.); (M.T.M.); (T.N.); (A.R.); (M.A.U.)
| | - Muzammil Hussain
- Department of Applied Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea;
| | - Ayesha Razi
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12 Sector, Islamabad 44000, Pakistan; (T.H.N.); (M.T.M.); (T.N.); (A.R.); (M.A.U.)
| | - Malik Adeel Umer
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12 Sector, Islamabad 44000, Pakistan; (T.H.N.); (M.T.M.); (T.N.); (A.R.); (M.A.U.)
| |
Collapse
|
14
|
Mousavi SM, Hashemi SA, Fallahi Nezhad F, Binazadeh M, Dehdashtijahromi M, Omidifar N, Ghahramani Y, Lai CW, Chiang WH, Gholami A. Innovative Metal-Organic Frameworks for Targeted Oral Cancer Therapy: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4685. [PMID: 37444999 DOI: 10.3390/ma16134685] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/29/2023] [Indexed: 07/15/2023]
Abstract
Metal-organic frameworks (MOFs) have proven to be very effective carriers for drug delivery in various biological applications. In recent years, the development of hybrid nanostructures has made significant progress, including developing an innovative MOF-loaded nanocomposite with a highly porous structure and low toxicity that can be used to fabricate core-shell nanocomposites by combining complementary materials. This review study discusses using MOF materials in cancer treatment, imaging, and antibacterial effects, focusing on oral cancer cells. For patients with oral cancer, we offer a regular program for accurately designing and producing various anticancer and antibacterial agents to achieve maximum effectiveness and the lowest side effects. Also, we want to ensure that the anticancer agent works optimally and has as few side effects as possible before it is tested in vitro and in vivo. It is also essential that new anticancer drugs for cancer treatment are tested for efficacy and safety before they go into further research.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Fatemeh Fallahi Nezhad
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz 71557-13876, Iran
| | - Milad Dehdashtijahromi
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz 71557-13876, Iran
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Yasamin Ghahramani
- Associate Professor of Endodontics Department of Endodontics, School of Dentistry Oral and Dental Disease Research Center Shiraz University of Medical Sciences, Shiraz 71956-15787, Iran
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya (UM), Kuala Lumpur 50603, Malaysia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| |
Collapse
|
15
|
Zhang T, Lin S, Yan T, Li B, Liang Y, Liu D, He Y. Integrating Self-Partitioned Pore Space and Amine Functionality into an Aromatic-Rich Coordination Framework with Ph Stability for Effective Purification of C 2 Hydrocarbons. Inorg Chem 2023; 62:5593-5601. [PMID: 36989440 DOI: 10.1021/acs.inorgchem.3c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
A great demand for high-purity C2 hydrocarbons calls for the development of chemically stable porous materials for the effective isolation of C2 hydrocarbons from CH4 and CO2. However, such separations are challenged by their similar physiochemical parameters and have not been systematically studied to date. In this work, we reported a cadmium-based rod-packing coordination framework compound ZJNU-140 of a new 5,6,7-c topology built up from a custom-designed tricarboxylate ligand. The metal-organic framework (MOF) features an aromatic-abundant pore surface, uncoordinated amine functionality, and self-partitioned pore space of suitable size. These structural characteristics act synergistically to provide the MOF with both selective recognition ability and the confinement effect toward C2 hydrocarbons. As a result, the MOF displays promising potential for adsorptive separation of C2-CH4 and C2-CO2 mixtures. The IAST-predicted C2/CH4 and C2/CO2 adsorption selectivities, respectively, fall in the ranges of 7.3-10.2 and 2.1-2.9 at 298 K and 109 kPa. The real separation performance was also confirmed by dynamic breakthrough experiments. In addition, the MOF can maintain skeleton intactness in aqueous solutions with a wide pH range of 3-11, as confirmed by powder X-ray diffraction (PXRD) and isotherm measurements, showing no loss of framework integrity and porosity. The excellent hydrostability, considerable uptake capacity, impressive adsorption selectivity, and mild regeneration make ZJNU-140 a promising adsorbent material applied for the separation and purification of C2 hydrocarbons.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Shengjie Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Tongan Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ye Liang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Dahuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
16
|
Ko S, Ryu U, Park H, Fracaroli AM, Moon W, Choi KM. Effect of Spatial Heterogeneity on the Unusual Uptake Behavior of Multivariate-Metal-Organic Frameworks. J Am Chem Soc 2023; 145:3101-3107. [PMID: 36710507 DOI: 10.1021/jacs.2c12207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The uniqueness of multivariate metal-organic frameworks (MTV-MOFs) has been widely explored to discover their unknown opportunities. While mesoscopic apportionments have been studied, macroscopic heterogeneity and its spatial effects remain unexplored in MTV-MOFs. In this study, we investigated the effect of macroscopic heterogeneity on MTV-MOFs on their uptake behaviors by comparing three types of MTV-MOFs having the functional groups in inner, outer, or entire parts of crystals. Their adsorption behavior for carbon dioxide (CO2) and water (H2O) brought out that functional groups located in the outer part of the crystals dominantly influence the sorption behavior of MTV-MOFs. These results are also visualized by observing iodine adsorption in the three types of MTV-MOFs using scanning transmission electron microscopy-electron energy loss spectroscopy. We believe that this finding provides new ways to decipher and design MTV-MOFs for their unusual properties.
Collapse
Affiliation(s)
- Soyeon Ko
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - UnJin Ryu
- Industry Collaboration Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hyunjin Park
- National Institute for Nanomaterials Technology, Pohang University of Science & Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Alejandro M Fracaroli
- Instituto de Investigaciones en Físico-química de Córdoba, INFIQC-CONICET, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - WooYeon Moon
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea.,Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
17
|
Barrett JA, Rosenmann ND, Gnanasekaran K, Carroll XB, Gianneschi NC, Jenkins DM. Statistical copolymer metal organic nanotubes. Chem Sci 2023; 14:1003-1009. [PMID: 36755710 PMCID: PMC9890963 DOI: 10.1039/d2sc06084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023] Open
Abstract
Metal-organic nanotubes (MONTs) are 1-dimensional crystalline porous materials that are formed from ligands and metals in a manner identical to more typical 3-dimensional metal-organic frameworks (MOFs). MONTs form anisotropically in one dimension making them excellent candidates for linker engineering for control of chemical composition and spacing. A novel series of MONTs was synthesized utilizing a mixture of 1,2,4-ditriazole ligands containing both a fully protonated aryl moiety and its tetrafluorinated analog in ratios of, 0 : 1, 1 : 4, 1 : 1, 4 : 1, and 1 : 0, respectively. All MONTs were characterized by both bulk and nanoscale measurements, including SCXRD, PXRD, ssNMR and TEM, to determine the resulting co-polymer architecture (alternating, block, or statistical) and the ligand ratios in the solid materials. All characterization methods point towards statistical copolymerization of the materials in a manner analogous to 3D MOFs, all of which notably could be achieved without destructive analytical methods.
Collapse
Affiliation(s)
- Jacob A. Barrett
- Department of Chemistry, University of TennesseeKnoxvilleTennessee 37996USA
| | - Nathan D. Rosenmann
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern UniversityEvanstonIllinois60208USA
| | - Karthikeyan Gnanasekaran
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University Evanston Illinois 60208 USA
| | - Xian B. Carroll
- Department of Chemistry, University of TennesseeKnoxvilleTennessee 37996USA
| | - Nathan C. Gianneschi
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern UniversityEvanstonIllinois60208USA
| | - David M. Jenkins
- Department of Chemistry, University of TennesseeKnoxvilleTennessee 37996USA
| |
Collapse
|
18
|
Effect of Modulation and Functionalization of UiO-66 Type MOFs on Their Surface Thermodynamic Properties and Lewis Acid–Base Behavior. Catalysts 2023. [DOI: 10.3390/catal13010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In this study, we investigated the surface thermodynamic properties of four MOF structures of the UiO-66 series, by employing seven molecular models, a thermal model, and three other methods using the inverse gas chromatography (IGC) technique at infinite dilution. We first determined the effect of the modulation of UiO-66 by an acid (e.g., formic acid and acetic acid) and on the other hand, we studied the effect of the functionalization of the organic linker by an amine group (NH2) on their dispersive component of the surface energy and on their Lewis acid–base properties. We found that all the studied MOFs presented an amphoteric character with a strong acidity whose acidity/basicity ratio is greater than 1 using all the models and methods in IGC. Moreover, the introduction of a modulator such as acetic acid or formic acid in the synthesis of these MOFs increased the number of structural defects and therefore increased the acidity of these MOFs. Similarly, the functionalization of the MOF by the NH2 group leads to an increase in the basicity constant of the functionalized MOF while remaining smaller than their acidity constant. In addition, the use of acids as modulators and amine groups as functional groups resulted in an increase in the dispersive component of the surface energy of the MOFs. Finally, comparing the results obtained by the different models and methods and based on the increasing order of the acidity of each MOF, it was clear that the thermal model resulted in more exact and precise values than the others. Our findings pave the way for the design and development of new acid catalysts based on UiO-66 structures.
Collapse
|
19
|
Valverde-González A, Borrallo-Aniceto MC, Pintado-Sierra M, Sánchez F, Arnanz A, Boronat M, Iglesias M. BINOL-Containing Chiral Porous Polymers as Platforms for Enantiorecognition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53936-53946. [PMID: 36417669 PMCID: PMC10471007 DOI: 10.1021/acsami.2c18074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
The enantioselective discrimination of racemic compounds can be achieved through the design and preparation of a new family of chiral conjugated BINOL-porous polymers (CBPPs) from enantiopure (R)- or (S)-BINOL derivatives and 1,3,5-tris(4-phenylboronic acid)benzene or 1,3,5-tris(4-ethynylphenyl)benzene, 1,3,5-triethynyl-2,4,6-trifluorobenzene, and tetra(4-ethynylphenyl)methane as comonomers following Suzuki-Miyaura and Sonogashira-Hagihara carbon-carbon coupling approaches. The obtained CBPPs show high thermal stability, a good specific surface area, and a robust framework and can be applied successfully in the fluorescence recognition of enantiomers of terpenes (limonene and α-pinene) and 1-phenylethylamine. Fluorescence titration of CBPPs-OH in acetonitrile shows that all Sonogashira hosts exhibit a preference for the (R)-enantiomer over the (S)-enantiomer of 1-phenylethylamine, the selectivity being much higher than that of the corresponding BINOL-based soluble system used as a reference. However, the Suzuki host reveals a preference toward (S)-phenylethylamine. Regarding the sensing of terpenes, only Sonogashira hosts show enantiodifferentiation with an almost total preference for the (S)-enantiomer of limonene and α-pinene. Based on the computational simulations and the experimental data, with 1-phenylethylamine as the analyte, chiral recognition is due to the distinctive binding affinities resulting from N···H-O hydrogen bonds and the π-π interaction between the host and the guest. However, for limonene, the geometry of the adsorption complex is mostly governed by the interaction between the hydroxyl group of the BINOL unit and the C═C bond of the iso-propenyl fragment. The synthetic strategy used to prepare CBPPs opens many possibilities to place chiral centers such as BINOL in porous polymers for different chiral applications such as enantiomer recognition.
Collapse
Affiliation(s)
- Antonio Valverde-González
- Instituto
de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la cruz, 3, Madrid 28049, Spain
| | - M. Carmen Borrallo-Aniceto
- Instituto
de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la cruz, 3, Madrid 28049, Spain
| | | | - Félix Sánchez
- Instituto
de Química Orgánica General, CSIC, C/ Juan de la Cierva, 3, Madrid 28006, Spain
| | - Avelina Arnanz
- Departamento
de Química inorgánica, Universidad
Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Mercedes Boronat
- Instituto
de Tecnología Química, Universitat
Politècnica de València- Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Marta Iglesias
- Instituto
de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la cruz, 3, Madrid 28049, Spain
| |
Collapse
|
20
|
Two novel coordination polymers based on “V”-shaped carboxylic acid: synthesis, crystal structure and properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Li Y, Li X, Wang B. Precisely introducing active sites into NU-1000 through linker incorporation for degrading sulfamethoxazole under visible-light photo-Fenton process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Demir H, Keskin S. Computational investigation of multifunctional MOFs for adsorption and membrane-based separation of CF 4/CH 4, CH 4/H 2, CH 4/N 2, and N 2/H 2 mixtures. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2022; 7:1707-1721. [PMID: 36561661 PMCID: PMC9704512 DOI: 10.1039/d2me00130f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/25/2022] [Indexed: 06/17/2023]
Abstract
The ease of functionalization of metal-organic frameworks (MOFs) can unlock unprecedented opportunities for gas adsorption and separation applications as the functional groups can impart favorable/unfavorable regions/interactions for the desired/undesired adsorbates. In this study, the effects of the presence of multiple functional groups in MOFs on their CF4/CH4, CH4/H2, CH4/N2, and N2/H2 separation performances were computationally investigated combining grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. The most promising adsorbents showing the best combinations of selectivity, working capacity, and regenerability were identified for each gas separation. 15, 13, and 16 out of the top 20 MOFs identified for the CH4/H2, CH4/N2, and N2/H2 adsorption-based separation, respectively, were found to have -OCH3 groups as one of the functional groups. The biggest improvements in CF4/CH4, CH4/H2, CH4/N2, and N2/H2 selectivities were found to be induced by the presence of -OCH3-OCH3 groups in MOFs. For CH4/H2 separation, MOFs with two and three functionalized linkers were the best adsorbent candidates while for N2/H2 separation, all the top 20 materials involve two functional groups. Membrane performances of the MOFs were also studied for CH4/H2 and CH4/N2 separation and the results showed that MOFs having -F-NH2 and -F-OCH3 functional groups present the highest separation performances considering both the membrane selectivity and permeability.
Collapse
Affiliation(s)
- Hakan Demir
- Department of Chemical and Biological Engineering, Koc University 34450 Istanbul Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koc University 34450 Istanbul Turkey
| |
Collapse
|
23
|
Liu J, Tan Y, Shen E, Liu B, Tian Y, Liang L, Yan X, Wu H. Highly water-stable bimetallic organic framework MgCu-MOF74 for inhibiting bacterial infection and promoting bone regeneration. Biomed Mater 2022; 17. [PMID: 36368050 DOI: 10.1088/1748-605x/aca24c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
As a typical metal-organic framework (MOF), Mg-MOF74 can release biocompatible Mg2+when the framework is degraded, and it has the potential to be used as filler in the field of bone tissue engineering. However, Mg-MOF74 has poor stability in aqueous environment and limited antibacterial ability, which limit its further development and applications. In this work, MgCu-MOF74 particles with different Cu content were synthesized through a facile one-step hydrothermal method. The physicochemical properties and water stability of the synthesized powders were characterized. The osteogenic potential of the MgCu-MOF74 particles on human osteogenic sarcoma cells (SaOS-2) was evaluated. The hybrid MgCu-MOF74 exhibited favorable water stability. These results indicated that MgCu-MOF74 enhanced cellular viability, alkaline phosphatase levels, collagen (COL) synthesis and osteogenesis-related gene expression. Moreover, the samples doped with Cu2+were more sensitive to the acidic microenvironment produced by bacteria, and exhibited stronger antibacterial ability than Mg-MOF74. In conclusion, MgCu-MOF-74 with good water stability, osteogenic ability and antibacterial ability, which could be attributed to the doping of Cu2+. Hence, MgCu-MOF74 shows great potential as a novel medical bio-functional fillers for the treatment of bone defects.
Collapse
Affiliation(s)
- Jiamin Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Yanni Tan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Erdong Shen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China.,Department of Oncology, Yueyang Central Hospital, Yueyang 414000, People's Republic of China
| | - Bo Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Yingtao Tian
- Department of Engineering, Lancaster University, Bailrigg, Lancaster LA1 4YW, United Kingdom
| | - Luxin Liang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Xinxin Yan
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan 430060, People's Republic of China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
24
|
Hu J, Li L, Li H, Zhai Y, Tang F, Zhang Z, Chen B. Bimetal NiCo-MOF-74 for highly selective NO capture from flue gas under ambient conditions. RSC Adv 2022; 12:33716-33724. [PMID: 36505694 PMCID: PMC9685370 DOI: 10.1039/d2ra05974f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
The mixed bimetal metal-organic framework Ni0.37Co0.63-MOF-74 has been constructed by the solvothermal method for NO adsorption. The results showed that bimetal Ni0.37Co0.63-MOF-74 takes up NO with a capacity of up to 174.3 cc g-1 under ambient conditions, which is 16.3% higher than that of the best single metal Co-MOF-74. The IAST adsorption selectivity for a NO/CO2 binary mixture can reach a maximum of 710 at low adsorption partial pressure, while the regeneration performance can be retained even after five cyclic adsorption-desorption experiments. Its separation performance was further confirmed by breakthrough experiments, indicating this new bimetal Ni0.37Co0.63-MOF-74 as one of the best materials for NO adsorption and separation in flue gas.
Collapse
Affiliation(s)
- Jie Hu
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 China
| | - Lei Li
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 China
| | - Hao Li
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 China
| | - Ying Zhai
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 China
| | - Fushun Tang
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 China
| | - Zhe Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 China
| | - Banglin Chen
- Department of Chemistry, The University of Texas at San Antonio Texas 78249 USA
| |
Collapse
|
25
|
A novel crystalline template for the structural determination of flexible chain compounds of nanoscale length. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Liu J, Huang J, Zhang MM, KongYang ZL, Liang QR, Chen SS. Two Cu(II) microporous frameworks based on a bifunctional linker and selective gas adsorption properties for CO2. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Synthesis and Biomedical Applications of Highly Porous Metal-Organic Frameworks. Molecules 2022; 27:molecules27196585. [PMID: 36235122 PMCID: PMC9572148 DOI: 10.3390/molecules27196585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
In this review, aspects of the synthesis, framework topologies, and biomedical applications of highly porous metal-organic frameworks are discussed. The term "highly porous metal-organic frameworks" (HPMOFs) is used to denote MOFs with a surface area larger than 4000 m2 g-1. Such compounds are suitable for the encapsulation of a variety of large guest molecules, ranging from organic dyes to drugs and proteins, and hence they can address major contemporary challenges in the environmental and biomedical field. Numerous synthetic approaches towards HPMOFs have been developed and discussed herein. Attempts are made to categorise the most successful synthetic strategies; however, these are often not independent from each other, and a combination of different parameters is required to be thoroughly considered for the synthesis of stable HPMOFs. The majority of the HPMOFs in this review are of special interest not only because of their high porosity and fascinating structures, but also due to their capability to encapsulate and deliver drugs, proteins, enzymes, genes, or cells; hence, they are excellent candidates in biomedical applications that involve drug delivery, enzyme immobilisation, gene targeting, etc. The encapsulation strategies are described, and the MOFs are categorised according to the type of biomolecule they are able to encapsulate. The research field of HPMOFs has witnessed tremendous development recently. Their intriguing features and potential applications attract researchers' interest and promise an auspicious future for this class of highly porous materials.
Collapse
|
28
|
Solid-state NMR studies of host-guest chemistry in metal-organic frameworks. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Ebadi Amooghin A, Sanaeepur H, Luque R, Garcia H, Chen B. Fluorinated metal-organic frameworks for gas separation. Chem Soc Rev 2022; 51:7427-7508. [PMID: 35920324 DOI: 10.1039/d2cs00442a] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorinated metal-organic frameworks (F-MOFs) as fast-growing porous materials have revolutionized the field of gas separation due to their tunable pore apertures, appealing chemical features, and excellent stability. A deep understanding of their structure-performance relationships is critical for the synthesis and development of new F-MOFs. This critical review has focused on several strategies for the precise design and synthesis of new F-MOFs with structures tuned for specific gas separation purposes. First, the basic principles and concepts of F-MOFs as well as their structure, synthesis and modification and their structure to property relationships are studied. Then, applications of F-MOFs in adsorption and membrane gas separation are discussed. A detailed account of the design and capabilities of F-MOFs for the adsorption of various gases and the governing principles is provided. In addition, the exceptional characteristics of highly stable F-MOFs with engineered pore size and tuned structures are put into perspective to fabricate selective membranes for gas separation. Systematic analysis of the position of F-MOFs in gas separation revealed that F-MOFs are benchmark materials in most of the challenging gas separations. The outlook and future directions of the science and engineering of F-MOFs and their challenges are highlighted to tackle the issues of overcoming the trade-off between capacity/permeability and selectivity for a serious move towards industrialization.
Collapse
Affiliation(s)
- Abtin Ebadi Amooghin
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain. .,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russian Federation
| | - Hermenegildo Garcia
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA.
| |
Collapse
|
30
|
Christian MS, Nenoff TM, Rimsza JM. Discovery of Complex Binding and Reaction Mechanisms from Ternary Gases in Rare Earth Metal–Organic Frameworks. Chemistry 2022; 28:e202201926. [DOI: 10.1002/chem.202201926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 11/05/2022]
Affiliation(s)
| | - Tina M. Nenoff
- Material, Chemical, and Physical Sciences Sandia National Laboratories Albuquerque NM 87123 USA
| | - Jessica M. Rimsza
- Geochemistry Department Sandia National Laboratories Albuquerque NM 87123 USA
| |
Collapse
|
31
|
Syntheses, Structures, Corresponding Fluorescence and Magnetism of Zn(II) and Mn(II) Coordination Complexes Based on 1-(3,5-Dicarboxylatobenzyl)-1,2,4-1-H-Triazole-3-Carboxylic Acid. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Gao W, Cao P, Li B, Zhao L, Sun W, Zhou W. Unraveling the Role of Chemistry and Topology of MOFs in Psoralen Adsorption. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Weiqun Gao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Piao Cao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bihong Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ling Zhao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weizhen Sun
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Research Institute of Stomatology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| |
Collapse
|
33
|
Lu C, Wan X, Ma X, Guan X, Zhu A. Deep-Learning-Based End-to-End Predictions of CO 2 Capture in Metal–Organic Frameworks. J Chem Inf Model 2022; 62:3281-3290. [DOI: 10.1021/acs.jcim.2c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cunxing Lu
- School of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Xili Wan
- School of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Xuhao Ma
- School of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Xinjie Guan
- School of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Aichun Zhu
- School of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
34
|
Effect of Non-Covalent Interactions on the 2,4- and 3,5-Dinitrobenzoate Eu-Cd Complex Structures. CRYSTALS 2022. [DOI: 10.3390/cryst12040508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heterometallic {Eu2Cd2} complexes [Eu2(NO3)2Cd2(Phen)2(2,4-Nbz)8]n·2nMeCN (I) and [Eu2(MeCN)2Cd2(Phen)2(3,5-Nbz)10] (II) with the 2,4-dinitrobenzoate (2,4-Nbz) and 3,5-dinitrobenzoate (3,5-Nbz) anions and 1,10-phenanthroline were synthesized. The compounds obtained were characterized by X-ray single-crystal analysis, powder X-ray diffraction analysis, IR spectroscopy, and elemental analysis. Moreover, the thermal stability of the complexes was also studied. Analysis of the crystal packing showed that where 1,10-phenanthroline is combined with various isomers of dinitrobenzoate anions, different arrangements of non-covalent interactions are observed in the complex structures. In the case of the compound with the 2,4-dinitrobenzoate anion, these interactions lead to a significant distortion of the metal core geometry and formation of a polymeric structure, while the complex with the 3,5-dinitrobenzoate anion has a structure that is typical of similar systems. The absence of europium metal-centered luminescence at 270 nm wavelength was shown. For all the reported compounds, a thermal stability study was carried out that showed that the compounds decomposed with a significant thermal effect.
Collapse
|
35
|
Lv J, Wang M, Chen X, Qin H, Li Y, Yang K, Zhang H, Zhang Q, Fu P, Fu Q, Zhao Z. The Investigation of Hydrogen Adsorption in MOF NU‐1501 with Different Metal Doping using Molecular Simulations. ChemistrySelect 2022. [DOI: 10.1002/slct.202103725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junnan Lv
- School of Chemistry & Chemical Engineering Shandong University of Technology Zibo 255049 China
| | - Ming Wang
- School of Chemistry & Chemical Engineering Shandong University of Technology Zibo 255049 China
| | - Xia Chen
- School of Chemistry & Chemical Engineering Shandong University of Technology Zibo 255049 China
| | - Hongyun Qin
- School of Chemistry & Chemical Engineering Shandong University of Technology Zibo 255049 China
| | - Yongjie Li
- School of Chemistry & Chemical Engineering Shandong University of Technology Zibo 255049 China
| | - Kun Yang
- School of Chemistry & Chemical Engineering Shandong University of Technology Zibo 255049 China
| | - Hui Zhang
- School of Chemistry & Chemical Engineering Shandong University of Technology Zibo 255049 China
| | - Qicheng Zhang
- School of Chemistry & Chemical Engineering Shandong University of Technology Zibo 255049 China
| | - Peng Fu
- School of Agricultural Engineering & Food Science Shandong University of Technology Zibo 255049 China
| | - Qiang Fu
- School of Chemistry & Chemical Engineering Shandong University of Technology Zibo 255049 China
| | - Zengdian Zhao
- School of Chemistry & Chemical Engineering Shandong University of Technology Zibo 255049 China
| |
Collapse
|
36
|
Abdi J, Sisi AJ, Hadipoor M, Khataee A. State of the art on the ultrasonic-assisted removal of environmental pollutants using metal-organic frameworks. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127558. [PMID: 34740161 DOI: 10.1016/j.jhazmat.2021.127558] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/04/2021] [Accepted: 10/17/2021] [Indexed: 05/27/2023]
Abstract
The environmental and health issues of drinking water and effluents released into nature are among the major area of contention in the past few decades. With the growth of ultrasound-based approaches in water and wastewater treatment, promising materials have also been considered to employ their advantages. Metal-organic frameworks (MOFs) are among the porous materials that have received great attention from researchers in recent years. Features such as high porosity, large specific surface area, electronic properties like semi-conductivity, and the capacity to coordinate with the organic matter have resulted in a substantial increase in scientific researches. This work deals with a comprehensive review of the application of MOFs for ultrasonic-assisted pollutant removal from wastewater. In this regard, after considering features and synthesis methods of MOFs, the mechanisms of several ultrasound-based approaches including sonocatalysis, sonophotocatalysis, and sono-adsorption are well assessed for removal of different organic compounds by MOFs. These methods are compared with some other water treatment processes with the application of MOFs in the absence of ultrasound. Also, the main concern about MOFs including environmental hazards and water stability is fully discussed and some techniques are proposed to reduce hazardous effects of MOFs and improve stability in humid/aqueous environments. Economic aspects for the preparation of MOFs are evaluated and cost estimates for ultrasonic-assisted AOP approaches were provided. Finally, the future outlooks and the new frontiers of ultrasonic-assisted methods with the help of MOFs in global environmental pollutant removal are presented.
Collapse
Affiliation(s)
- Jafar Abdi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, 3619995161 Shahrood, Iran
| | - Abdollah Jamal Sisi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Masoud Hadipoor
- Department of Petroleum Engineering, Ahwaz Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Ahwaz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080 Chelyabinsk, Russian Federation.
| |
Collapse
|
37
|
Wychowaniec JK, Saini H, Scheibe B, Dubal DP, Schneemann A, Jayaramulu K. Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chem Soc Rev 2022; 51:9068-9126. [DOI: 10.1039/d2cs00585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes recent progress in the development and applications of metal–organic gels (MOGs) and their hybrids and derivatives dividing them into subclasses and discussing their synthesis, design and structure–property relationship.
Collapse
Affiliation(s)
- Jacek K. Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| | - Błażej Scheibe
- Adam Mickiewicz University in Poznań, NanoBioMedical Centre, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| | - Deepak P. Dubal
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl für Anorganische Chemie I, Technische Universität Dresden, Bergstr. 66, 01067 Dresden, Germany
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| |
Collapse
|
38
|
Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214273] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Wang T, Jiang ZJ, Wang Y, Wei RJ, Zeng H, Lu W, Li D. An ato-topology metal–organic framework with large C 2H 2 adsorption and C 2H 2/CO 2 separation capacity. Dalton Trans 2022; 51:16800-16804. [DOI: 10.1039/d2dt02968e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The industrial separation of C2H2/CO2 is an energy-intensive process due to their similar molecular shapes. Here we demonstrate an ato-topology MOF with not only large C2H2 adsorption capacity but also high C2H2/CO2 selectivity.
Collapse
Affiliation(s)
- Ting Wang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Zhi-Jie Jiang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Ying Wang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Rong-Jia Wei
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Heng Zeng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
40
|
Fiankor C, Nyakuchena J, Khoo RSH, Zhang X, Hu Y, Yang S, Huang J, Zhang J. Symmetry-Guided Synthesis of N,N'-Bicarbazole and Porphyrin-Based Mixed-Ligand Metal-Organic Frameworks: Light Harvesting and Energy Transfer. J Am Chem Soc 2021; 143:20411-20418. [PMID: 34797665 DOI: 10.1021/jacs.1c10291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past decades, many attempts have been made to mimic the energy transfer (EnT) in photosynthesis, a key process occurring in nature that is of fundamental significance in solar fuels and sustainable energy. Metal-organic frameworks (MOFs), an emerging class of porous crystalline materials self-assembled from organic linkers and metal or metal cluster nodes, offer an ideal platform for the exploration of directional EnT phenomena. However, placing energy donor and acceptor moieties within the same framework with an atomistic precision appears to be a major synthesis challenge. In this work, we report the design and synthesis of a highly porous and photoactive N,N'-bicarbazole- and porphyrin-based mixed-ligand MOF, namely, NPF-500-H2TCPP (NPF = Nebraska porous framework; H2TCPP = meso-tetrakis(4-carboxyphenyl)porphyrin), where the secondary ligand H2TCPP is incorporated precisely through the open metal sites of the equatorial plane of the octahedron cage resulting from the underlying (4,8) connected network of NPF-500. The efficient EnT process from N,N'-bicarbazole to porphyrin in NPF-500-H2TCPP was captured by time-resolved spectroscopy and exemplified by photocatalytic oxidation of thioanisole. These results demonstrate not only the capability of NPF-500 as the scaffold to precisely arrange the donor-acceptor assembly for the EnT process but also the potential to directly utilize the EnT process for photocatalytic applications.
Collapse
Affiliation(s)
- Christian Fiankor
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - James Nyakuchena
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Rebecca Shu Hui Khoo
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xu Zhang
- Jiangsu Engineering Laboratory for Environmental Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu 223300, China
| | - Yuchen Hu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Sizhuo Yang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jian Zhang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
41
|
Han L, Zhang X, Li D, Li M, Qin P, Tian S, Wang Y, Lu M, Cai Z. Fabrication of stable multivariate metal-organic frameworks with excellent adsorption performance toward bisphenols from environmental samples. Talanta 2021; 235:122818. [PMID: 34517674 DOI: 10.1016/j.talanta.2021.122818] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022]
Abstract
As a type of environmental endocrine disrupting chemicals, bisphenols (BPs) have a certain embryonic toxicity and teratogenicity, which can significantly increase the risks of breast cancer, prostate cancer, leukemia and other cancers. In this work, stable multivariate metal-organic frameworks (UiO-66-NH2/TCPPx) were synthesized via in situ one-pot method and used as miniaturized dispersive solid-phase extraction (dμSPE) sorbents for extraction of trace BPs from environmental samples. The phase purity, crystal morphology and physical properties of UiO-66-NH2/TCPPx samples were varied by adjusting the mass ratio of TCPP. The extraction performance of UiO-66-NH2/TCPPx samples were investigated and UiO-66-NH2/TCPP1.0 exhibited the highest adsorption efficiency. Besides, UiO-66-NH2/TCPP1.0 possessed excellent recycling stability for the adsorption and desorption of BPs more than 20 cycles. The experimental parameters including amount of adsorbent, adsorption time, sample solution pH, temperature, desorption time and desorption solvents which affecting the efficiency of dμSPE were studied, respectively. Good linearity (R2 > 0.9992) in range of 0.1-200 ng mL-1 was obtained. The detection limits (S/N = 3) and quantification limits (S/N = 10) were achieved at 0.03-0.08 ng mL-1 and 0.1-0.5 ng mL-1, respectively. The relative standard deviations (RSDs) of intra-day and inter-day ranged from 2.5 to 5.5% and 1.1-6.8%. Enrichment factors were calculated in the range of 303-338. The obtained recoveries of bisphenol F (BPF), bisphenol A (BPA), bisphenol B (BPB) and bisphenol AF (BPAF) were 81.26-91.03% (RSDs = 0.96-6.47%), 82.2-97.27% (RSDs = 0.45-6.15%), 87.56-97.26% (RSDs = 1.1-6.22%) and 82.2-100.8% (RSDs = 0.46-4.07%). The UiO-66-NH2/TCPP1.0 can be employed as potential dμSPE sorbents for the enrichment of trace BPs in the environmental samples.
Collapse
Affiliation(s)
- Lizhen Han
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Xiaowan Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Dan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Mengyuan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Peige Qin
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Shufang Tian
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China.
| | - Youmei Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Minghua Lu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
42
|
Hurlock MJ, Hao L, Kriegsman KW, Guo X, O'Keeffe M, Zhang Q. Evolution of 14-Connected Zr 6 Secondary Building Units through Postsynthetic Linker Incorporation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51945-51953. [PMID: 34124879 DOI: 10.1021/acsami.1c07701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two new zirconium MOFs, WSU-6 and WSU-7, were synthesized through postsynthetic modifications. In both cases, linker insertion was conducted on a MOF consisting of eight-connected (8-c) Zr6 cluster and four-connected (4-c) ETTC linker, WSU-5, which possesses the uncommon 4, 8-c scu-c topology. The insertion of 1, 4-benzenedicarboxylate into the MOF formed the new 4, 12-c mjh topology, WSU-6. Interestingly, when 2, 6-naphthalenedicarboxylate was inserted, WSU-7 can be formed, which possesses a new 4, 14-c jkz topology. WSU-7 contains very rare 14-c Zr6 secondary building units (SBUs) and is the first MOF to have a Zr6 SBUs with connectivity greater than 12. The three Zr-MOFs were structurally characterized, and the photoluminescence properties of the materials were also studied.
Collapse
Affiliation(s)
| | | | | | | | - Michael O'Keeffe
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | | |
Collapse
|
43
|
Template assisted synthesis of porous termite nest-like manganese cobalt phosphide as binder-free electrode for supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Synthesis, structure, magnetism, luminescence and DFT analysis of three metal-organic complexes based on 2,5-di(1H-1,2,4-triazol-1-yl)terephthalic acid. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Li YM, Yuan J, Ren H, Ji CY, Tao Y, Wu Y, Chou LY, Zhang YB, Cheng L. Fine-Tuning the Micro-Environment to Optimize the Catalytic Activity of Enzymes Immobilized in Multivariate Metal-Organic Frameworks. J Am Chem Soc 2021; 143:15378-15390. [PMID: 34478271 DOI: 10.1021/jacs.1c07107] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The artificial engineering of an enzyme's structural conformation to enhance its activity is highly desired and challenging. Anisotropic reticular chemistry, best illustrated in the case of multivariate metal-organic frameworks (MTV-MOFs), provides a platform to modify a MOF's pore and inner-surface with functionality variations on frameworks to optimize the interior environment and to enhance the specifically targeted property. In this study, we altered the functionality and ratio of linkers in zeolitic imidazolate frameworks (ZIFs), a subclass of MOFs, with the MTV approach to demonstrate a strategy that allows us to optimize the activity of the encapsulated enzyme by continuously tuning the framework-enzyme interaction through the hydrophilicity change in the pores' microenvironment. To systematically study this interaction, we developed the component-adjustment-ternary plot (CAT) method to approach the optimal activity of the encapsulated enzyme BCL and revealed a nonlinear correlation, first incremental and then decremental, between the BCL activity and the hydrophilic linker' ratios in MTV-ZIF-8. These findings indicated there is a spatial arrangement of functional groups along the three-dimensional space across the ZIF-8 crystal with a unique sequence that could change the enzyme structure between closed-lid and open-lid conformations. These conformation changes were confirmed by FTIR spectra and fluorescence studies. The optimized BCL@ZIF-8 is not only thermally and chemically more stable than free BCL in solution, but also doubles the catalytic reactivity in the kinetic resolution reaction with 99% ee of the products.
Collapse
Affiliation(s)
- Yi-Ming Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jian Yuan
- Avogadral Solutions, 3130 Grants Lake Boulevard #18641, Sugar Land, Texas 77496, United States
| | - Hao Ren
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Chun-Yan Ji
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yu Tao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yahui Wu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
46
|
Lefton JB, Pekar KB, Haris U, Zick ME, Milner PJ, Lippert AR, Pejov L, Runčevski T. Defects Formation and Amorphization of Zn-MOF-74 Crystals by Post-Synthetic Interactions with Bidentate Adsorbates. JOURNAL OF MATERIALS CHEMISTRY. A 2021; 35:19698-19704. [PMID: 34721878 PMCID: PMC8552995 DOI: 10.1039/d0ta10613e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The controlled introduction of defects into MOFs is a powerful strategy to induce new physiochemical properties and improve their performance for target applications. Herein, we present a new strategy for defect formation and amorphization of the canonical MOF-74 frameworks based on fine-tuning of adsorbate-framework interactions in the metal congener, hence introducing structural defects. Specifically, we demonstrate that controlled interactions between the MOF and bidentate ligands adsorbed in the pores initiates defect formation and eventual amorphization of the crystal. These structural features unlock properties that are otherwise absent in the ordered framework, such as broad-band fluorescence. The ability to introduce defects by adsorbate-framework interactions, coupled with the inherent tunability and modularity of these structures, provides a new route for the synthesis of diverse heterogeneous and hybrid materials.
Collapse
Affiliation(s)
- Jonathan B Lefton
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, United States
| | - Kyle B Pekar
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, United States
| | - Uroob Haris
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, United States
| | - Mary E Zick
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY 14853 (USA)
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY 14853 (USA)
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, United States
| | - Ljupčo Pejov
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, 4036 (Norway)
| | - Tomče Runčevski
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, United States
| |
Collapse
|
47
|
Lin RB, Zhang Z, Chen B. Achieving High Performance Metal-Organic Framework Materials through Pore Engineering. Acc Chem Res 2021; 54:3362-3376. [PMID: 34399577 DOI: 10.1021/acs.accounts.1c00328] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Achieving high performance functional materials has been a long-term goal for scientists and engineers that can significantly promote science and technology development and thus benefit our society and human beings. As well-known porous materials, metal-organic frameworks (MOFs) are crystalline open frameworks made up of molecular building blocks linked by strong coordination bonds, affording pore space for storing and trapping guest molecules. In terms of porosity, MOFs outperform traditional porous materials including zeolites and activated carbon, showing exceptional porosity with internal surface area up to thousands of square meters per gram of sample and with periodic pore sizes ranging from sub-nanometer to nanometers. Numerous MOFs have been synthesized with potential applications ranging from storing gaseous fuels to separating intractable industrial gas mixtures, sensing physical and chemical stimulus, and transmitting protons for conduction. Compared to traditional porous materials, MOFs are distinguished for their exceptional capability for pore adjustment and interior modification through pore engineering, which have made them a preeminent platform for exploring functional materials with high performance.Rational combinations of rigid building units of different geometry and multibranched organic linkers have provided MOFs with diverse pore structures, ranging from spherical to cylindrical, slit, and tubular ones isolating or interconnecting in different directions, which can be optimized for high-capacity gas storage. Based on the isoreticular principle and building blocks approach in MOF chemistry, the pore adjustment of porous materials can be performed with exquisite precision, making them suitable to address industrially important gas separation. The large pore cavities in MOFs are readily available for encapsulation of different functional guest species, resulting in novel MOF composite materials with various functions.In this Account, we summarize our recent research progress on pore engineering to achieve high-performance MOF materials. We have been able to tune and optimize pore structures, immobilize specific functional sites, and incorporate guest species into target MOF materials for hydrogen storage, methane storage, light-hydrocarbon purification, and proton conduction, especially for various industrially important gas separations including acetylene removal and ethylene and propylene purification. By engineering the porosity and pore chemistry that endows MOFs with multiple functionalities, our research endeavors have brought about the customization of high-performance MOF materials for corresponding application scenarios.
Collapse
Affiliation(s)
- Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhangjing Zhang
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, United States
| |
Collapse
|
48
|
Liu H, Chen BQ, Pan YJ, Fu CP, Kankala RK, Wang SB, Chen AZ. Role of supercritical carbon dioxide (scCO 2) in fabrication of inorganic-based materials: a green and unique route. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:695-717. [PMID: 34512177 PMCID: PMC8425740 DOI: 10.1080/14686996.2021.1955603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In recent times, the supercritical carbon dioxide (scCO2) process has attracted increasing attention in fabricating diverse materials due to the attractive features of environmentally benign nature and economically promising character. Owing to these unique characteristics and high-penetrability, as well as diffusivity conditions of scCO2, this high-pressure technology, with mild operation conditions, cost-effective, and non-toxic, among others, is often applied to fabricate various organic and inorganic-based materials, resulting in the unique crystal architectures (amorphous, crystalline, and heterojunction), tunable architectures (nanoparticles, nanosheets, and aerogels) for diverse applications. In this review, we give an emphasis on the fabrication of various inorganic-based materials, highlighting the recent research on the driving factors for improving the quality of fabrication in scCO2, procedures for production and dispersion in scCO2, as well as common indicators utilized to assess quality and processing ability of materials. Next, we highlight the effects of specific properties of scCO2 towards synthesizing the highly functional inorganic-based nanomaterials. Finally, we summarize this compilation with interesting perspectives, aiming to arouse a more comprehensive utilization of scCO2 to broaden the horizon in exploring the green/eco-friendly processing of such versatile inorganic-based materials. Together, we firmly believe that this compilation endeavors to disclose the latent capability and universal prevalence of scCO2 in the synthesis and processing of inorganic-based materials.
Collapse
Affiliation(s)
- Hao Liu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- College of Chemical Engineering, Huaqiao University, Xiamen, P. R. China
| | - Biao-Qi Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, P. R. China
| | - Yu-Jing Pan
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
| | - Chao-Ping Fu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- College of Chemical Engineering, Huaqiao University, Xiamen, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- College of Chemical Engineering, Huaqiao University, Xiamen, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, P. R. China
| |
Collapse
|
49
|
Fan W, Zhang X, Kang Z, Liu X, Sun D. Isoreticular chemistry within metal–organic frameworks for gas storage and separation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213968] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Wu Y, Kang W, Wang X, Tan X, Wang L, Xie B, Li B. Series of new coordination polymers based flexible tricarboxylate as photocatalysts for Rh B dye degradation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|