1
|
Schwarz M, Kurkunov M, Wittlinger F, Rudalska R, Wang G, Schwalm MP, Rasch A, Wagner B, Laufer SA, Knapp S, Dauch D, Gehringer M. Development of Highly Potent and Selective Covalent FGFR4 Inhibitors Based on S NAr Electrophiles. J Med Chem 2024; 67:6549-6569. [PMID: 38604131 DOI: 10.1021/acs.jmedchem.3c02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Fibroblast growth factor receptor 4 (FGFR4) is thought to be a driver in several cancer types, most notably in hepatocellular carcinoma. One way to achieve high potency and isoform selectivity for FGFR4 is covalently targeting a rare cysteine (C552) in the hinge region of its kinase domain that is not present in other FGFR family members (FGFR1-3). Typically, this cysteine is addressed via classical acrylamide electrophiles. We demonstrate that noncanonical covalent "warheads" based on nucleophilic aromatic substitution (SNAr) chemistry can be employed in a rational manner to generate highly potent and (isoform-)selective FGFR4 inhibitors with a low intrinsic reactivity. Key compounds showed low to subnanomolar potency, efficient covalent inactivation kinetics, and excellent selectivity against the other FGFRs, the kinases with an equivalent cysteine, and a representative subset of the kinome. Moreover, these compounds achieved nanomolar potencies in cellular assays and demonstrated good microsomal stability, highlighting the potential of SNAr-based approaches in covalent inhibitor design.
Collapse
Affiliation(s)
- Moritz Schwarz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Maksym Kurkunov
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Florian Wittlinger
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Ramona Rudalska
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Guiqun Wang
- German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von Laue Str. 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Martin Peter Schwalm
- German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von Laue Str. 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Alexander Rasch
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Benedikt Wagner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Stefan Knapp
- German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von Laue Str. 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Daniel Dauch
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Sammons RM, Devkota AK, Kaoud TS, Warthaka M, Cho EJ, Dalby KN. Steady State and Time-Dependent Fluorescent Peptide Assays for Protein Kinases. Curr Protoc 2024; 4:e998. [PMID: 38439594 PMCID: PMC10956166 DOI: 10.1002/cpz1.998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Protein kinases catalyze the phosphorylation of proteins most commonly on Ser, Thr, and Tyr residues and regulate many cellular events in eukaryotic cells, such as cell cycle progression, transcription, metabolism, and apoptosis. Protein kinases each have a conserved ATP-binding site and one or more substrate-binding site(s) that exhibit recognition features for different protein substrates. By bringing ATP and a substrate into proximity, each protein kinase can transfer the γ phosphate of the ATP molecule to a hydroxyl group of the target residue on the substrate. In such a way, signaling pathways downstream from the substrate can be regulated based on the phosphorylated versus dephosphorylated status of the substrate. Although there are a number of ways to assay the activity of protein kinases, most of them are technically cumbersome and/or are indirect or based on quenched reactions. This protocol describes an assay employing a fluorescent peptide substrate to detect phosphorylation by protein kinases in real time. The assay is based on the principle that the phosphorylation of the peptide substrate leads to an increase in the fluorescence emission intensity of an appended fluorophore. We extend the application of this assay to an example of how to assess time-dependent covalent inhibition of kinases as well. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Measuring protein kinase activity using fluorescent peptides Alternate Protocol: Measuring protein kinase activity using a fluorescence plate reader Support Protocol: Labeling peptides with sox fluorophore Basic Protocol 2: Measuring time-dependent ATP-competitive inhibition of protein kinases using fluorescent peptides.
Collapse
Affiliation(s)
- Rae M. Sammons
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ashwini K. Devkota
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tamer S. Kaoud
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Mangalika Warthaka
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX 78712, USA
| | - Eun Jeong Cho
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Kevin N. Dalby
- Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
3
|
Hoyt KW, Urul DA, Ogboo BC, Wittlinger F, Laufer SA, Schaefer EM, May EW, Heppner DE. Pitfalls and Considerations in Determining the Potency and Mutant Selectivity of Covalent Epidermal Growth Factor Receptor Inhibitors. J Med Chem 2024; 67:2-16. [PMID: 38134304 DOI: 10.1021/acs.jmedchem.3c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Enzyme inhibitors that form covalent bonds with their targets are being increasingly pursued in drug development. Assessing their biochemical activity relies on time-dependent assays, which are distinct and more complex compared with methods commonly employed for reversible-binding inhibitors. To provide general guidance to the covalent inhibitor development community, we explored methods and reported kinetic values and experimental factors in determining the biochemical activity of various covalent epidermal growth factor receptor (EGFR) inhibitors. We showcase how liquid handling and assay reagents impact kinetic parameters and potency interpretations, which are critical for structure-kinetic relationships and covalent drug design. Additionally, we include benchmark kinetic values with reference inhibitors, which are imperative, as covalent EGFR inhibitor kinetic values are infrequently consistent in the literature. This overview seeks to inform best practices for developing new covalent inhibitors and highlight appropriate steps to address gaps in knowledge presently limiting assay reliability and reproducibility.
Collapse
Affiliation(s)
- Kristopher W Hoyt
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Daniel A Urul
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - Blessing C Ogboo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Florian Wittlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Erik M Schaefer
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - Earl W May
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - David E Heppner
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
- Department of Structural Biology, The State University of New York, Buffalo, New York 14203, United States
| |
Collapse
|
4
|
Grimster NP, Gingipalli L, Balazs A, Barlaam B, Boiko S, Boyd S, Dry H, Goldberg FW, Ikeda T, Johnson T, Kawatkar S, Kemmitt P, Lamont S, Lorthioir O, Mfuh A, Patel J, Pike A, Read J, Romero R, Sarkar U, Sha L, Simpson I, Song K, Su Q, Wang H, Watson D, Wu A, Zehnder TE, Zheng X, Li S, Dong Z, Yang D, Song Y, Wang P, Liu X, Dowling JE, Edmondson SD. Optimization of a series of novel, potent and selective Macrocyclic SYK inhibitors. Bioorg Med Chem Lett 2023; 91:129352. [PMID: 37270074 DOI: 10.1016/j.bmcl.2023.129352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor cytoplasmic kinase. Due to its pivotal role in B cell receptor and Fc-receptor signalling, inhibition of SYK has been a target of interest in a variety of diseases. Herein, we report the use of structure-based drug design to discover a series of potent macrocyclic inhibitors of SYK, with excellent kinome selectivity and in vitro metabolic stability. We were able to remove hERG inhibition through the optimization of physical properties, and utilized a pro-drug strategy to address permeability challenges.
Collapse
Affiliation(s)
| | | | | | | | | | - Scott Boyd
- Oncology R & D, AstraZeneca, Cambridge, UK
| | - Hannah Dry
- Oncology R & D, AstraZeneca, Waltham, USA
| | | | - Tim Ikeda
- Discovery Sciences R & D, AstraZeneca, Waltham, USA
| | | | | | | | | | | | | | - Joe Patel
- Discovery Sciences R & D, AstraZeneca, Waltham, USA
| | - Andy Pike
- Oncology R & D, AstraZeneca, Cambridge, UK
| | - Jon Read
- Discovery Sciences R & D, AstraZeneca, Cambridge, UK
| | | | | | - Li Sha
- Oncology R & D, AstraZeneca, Waltham, USA
| | | | - Kun Song
- Oncology R & D, AstraZeneca, Waltham, USA
| | - Qibin Su
- Oncology R & D, AstraZeneca, Waltham, USA
| | | | | | - Allan Wu
- Discovery Sciences R & D, AstraZeneca, Waltham, USA
| | | | | | - Shaolu Li
- Oncology R & D, AstraZeneca, Waltham, USA
| | - Zhiqiang Dong
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, PR China
| | - Dejian Yang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, PR China
| | - Yanwei Song
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, PR China
| | - Peng Wang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, PR China
| | - Xuemei Liu
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, PR China
| | | | | |
Collapse
|
5
|
Berko ER, Witek GM, Matkar S, Petrova ZO, Wu MA, Smith CM, Daniels A, Kalna J, Kennedy A, Gostuski I, Casey C, Krytska K, Gerelus M, Pavlick D, Ghazarian S, Park JR, Marachelian A, Maris JM, Goldsmith KC, Radhakrishnan R, Lemmon MA, Mossé YP. Circulating tumor DNA reveals mechanisms of lorlatinib resistance in patients with relapsed/refractory ALK-driven neuroblastoma. Nat Commun 2023; 14:2601. [PMID: 37147298 PMCID: PMC10163008 DOI: 10.1038/s41467-023-38195-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
Activating point mutations in Anaplastic Lymphoma Kinase (ALK) have positioned ALK as the only mutated oncogene tractable for targeted therapy in neuroblastoma. Cells with these mutations respond to lorlatinib in pre-clinical studies, providing the rationale for a first-in-child Phase 1 trial (NCT03107988) in patients with ALK-driven neuroblastoma. To track evolutionary dynamics and heterogeneity of tumors, and to detect early emergence of lorlatinib resistance, we collected serial circulating tumor DNA samples from patients enrolled on this trial. Here we report the discovery of off-target resistance mutations in 11 patients (27%), predominantly in the RAS-MAPK pathway. We also identify newly acquired secondary compound ALK mutations in 6 (15%) patients, all acquired at disease progression. Functional cellular and biochemical assays and computational studies elucidate lorlatinib resistance mechanisms. Our results establish the clinical utility of serial circulating tumor DNA sampling to track response and progression and to discover acquired resistance mechanisms that can be leveraged to develop therapeutic strategies to overcome lorlatinib resistance.
Collapse
Affiliation(s)
- Esther R Berko
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pediatric Hematology and Oncology, Schneider Children's Medical Center, Petach Tikva, Israel, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gabriela M Witek
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Smita Matkar
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zaritza O Petrova
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Megan A Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Courtney M Smith
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Alex Daniels
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joshua Kalna
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Annie Kennedy
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ivan Gostuski
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Colleen Casey
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kateryna Krytska
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mark Gerelus
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Susan Ghazarian
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julie R Park
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Araz Marachelian
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly C Goldsmith
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Seattle Children's Hospital, Seattle, WA, USA
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA.
| | - Yaël P Mossé
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Becerril-Castro IB, Calderon I, Ockova J, Liebel M, van Hulst NF, Giannini V, Alvarez-Puebla RA. Direct Modular Printing of Plasmonic Chemosensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57165-57170. [PMID: 36516398 PMCID: PMC9801379 DOI: 10.1021/acsami.2c17202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Here, we present and implement a new approach for producing modular inkjet-printable surface-enhanced Raman scattering (SERS) chemosensors. These sensors, combined with a rapid large field-of-view imaging system allow for fast imaging of the chemical characteristics of a sample. The performance of these materials is illustrated by printing a pH sensor on paper and interrogating aqueous solutions at different pH values. Results show single-shot images exceeding 9 mm2 which are readily read out via SERS imaging.
Collapse
Affiliation(s)
- I. Brian Becerril-Castro
- Department
of Inorganic and Physical Chemistry, Universitat
Rovira i Virgili, Marcel·lí Domingo SN (Edificio N5), 43007 Tarragona, Spain
| | - Irene Calderon
- Department
of Inorganic and Physical Chemistry, Universitat
Rovira i Virgili, Marcel·lí Domingo SN (Edificio N5), 43007 Tarragona, Spain
| | - Jana Ockova
- ICFO, Av. Carl Friedrich Gauss 3, 08860 Barcelona, Spain
| | - Matz Liebel
- ICFO, Av. Carl Friedrich Gauss 3, 08860 Barcelona, Spain
| | - Niek F. van Hulst
- ICFO, Av. Carl Friedrich Gauss 3, 08860 Barcelona, Spain
- ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Vincenzo Giannini
- Instituto
de Estructura de la Materia (IEM), Consejo
Superior de Investigaciones Científicas (CSIC), Serrano 121, 28006 Madrid, Spain
- Technology
Innovation Institute, Masdar City 50819, Abu Dhabi, United Arab Emirates
- Centre of
Excellence ENSEMBLE3 sp. z o.o., Wolczynska 133, 01-919 Warsaw, Poland
| | - Ramon A. Alvarez-Puebla
- Department
of Inorganic and Physical Chemistry, Universitat
Rovira i Virgili, Marcel·lí Domingo SN (Edificio N5), 43007 Tarragona, Spain
- ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
7
|
Elzahabi HSA, Nossier ES, Alasfoury RA, El-Manawaty M, Sayed SM, Elkaeed EB, Metwaly AM, Hagras M, Eissa IH. Design, synthesis, and anti-cancer evaluation of new pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as potential EGFRWT and EGFRT790M inhibitors and apoptosis inducers. J Enzyme Inhib Med Chem 2022; 37:1053-1076. [PMID: 35821615 PMCID: PMC9291687 DOI: 10.1080/14756366.2022.2062752] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A new series of pyrido[2,3-d]pyrimidin-4(3H)-one derivatives having the essential pharmacophoric features of EGFR inhibitors has been designed and synthesised. Cell viability screening was performed for these compounds against A-549, PC-3, HCT-116, and MCF-7 cell lines at a dose of 100 μM. The highest active derivatives (8a, 8 b, 8d, 9a, and 12b) were selected for IC50 screening. Compounds 8a, 8 b, and 9a showed the highest cytotoxic activities and were further investigated for wild EGFRWT and mutant EGFRT790M inhibitory activities. Compound 8a showed the highest inhibitory activities against EGFRWT and EGFRT790M with IC50 values of 0.099 and 0.123 µM, respectively. In addition, it arrested the cell cycle at pre-G1 phase and induced a significant apoptotic effect in PC-3 cells. Furthermore, compound 8a induced a 5.3-fold increase in the level of caspase-3 in PC-3 cells. Finally, docking studies were carried out to examine the binding mode of the synthesised compounds against both EGFRWT and EGFRT790M.
Collapse
Affiliation(s)
- Heba S A Elzahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rania A Alasfoury
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - May El-Manawaty
- Pharmacognosy Department, National Research Centre, Dokki, Cairo, Egypt
| | - Sara M Sayed
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Mohamed Hagras
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
8
|
Biochemical and structural basis for differential inhibitor sensitivity of EGFR with distinct exon 19 mutations. Nat Commun 2022; 13:6791. [PMID: 36357385 PMCID: PMC9649653 DOI: 10.1038/s41467-022-34398-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are used to treat non-small cell lung cancers (NSCLC) driven by epidermal growth factor receptor (EGFR) mutations in the tyrosine kinase domain (TKD). TKI responses vary across tumors driven by the heterogeneous group of exon 19 deletions and mutations, but the molecular basis for these differences is not understood. Using purified TKDs, we compared kinetic properties of several exon 19 variants. Although unaltered for the second generation TKI afatinib, sensitivity varied significantly for both the first and third generation TKIs erlotinib and osimertinib. The most sensitive variants showed reduced ATP-binding affinity, whereas those associated with primary resistance retained wild type ATP-binding characteristics (and low KM, ATP). Through crystallographic and hydrogen-deuterium exchange mass spectrometry (HDX-MS) studies, we identify possible origins for the altered ATP-binding affinity underlying TKI sensitivity and resistance, and propose a basis for classifying uncommon exon 19 variants that may have predictive clinical value.
Collapse
|
9
|
Biosensors for the detection of protein kinases: Recent progress and challenges. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Screening assays for tyrosine kinase inhibitors:A review. J Pharm Biomed Anal 2022; 223:115166. [DOI: 10.1016/j.jpba.2022.115166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
|
11
|
Marzoll D, Serrano FE, Diernfellner ACR, Brunner M. Neurospora Casein Kinase 1a recruits the circadian clock protein FRQ via the C-terminal lobe of its kinase domain. FEBS Lett 2022; 596:1881-1891. [PMID: 35735764 DOI: 10.1002/1873-3468.14435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022]
Abstract
Timing by the circadian clock of Neurospora is associated with hyperphosphorylation of FRQ, which depends on anchoring Casein Kinase 1a (CK1a) to FRQ. It is not known how CK1a is anchored so that approximately 100 sites in FRQ can be targeted. Here, we identified two regions in CK1a, p1 and p2, that are required for anchoring to FRQ. Mutation of p1 or p2 impairs progressive hyperphosphorylation of FRQ. A p1-mutated strain is viable but its circadian clock is nonfunctional, whereas a p2-mutated strain is nonviable. Our data suggest that p1 and potentially also p2 in CK1a provide an interface for interaction with FRQ. Anchoring via p1-p2 leaves the active site of CK1a accessible for phosphorylation of FRQ at multiple sites.
Collapse
Affiliation(s)
- Daniela Marzoll
- Heidelberg University Biochemistry Centre, 69120, Heidelberg, Germany
| | - Fidel E Serrano
- Heidelberg University Biochemistry Centre, 69120, Heidelberg, Germany
| | | | - Michael Brunner
- Heidelberg University Biochemistry Centre, 69120, Heidelberg, Germany
| |
Collapse
|
12
|
Zhou X, Mehta S, Zhang J. AktAR and Akt-STOPS: Genetically Encodable Molecular Tools to Visualize and Perturb Akt Kinase Activity at Different Subcellular Locations in Living Cells. Curr Protoc 2022; 2:e416. [PMID: 35532280 PMCID: PMC9093046 DOI: 10.1002/cpz1.416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The serine/threonine protein kinase Akt integrates diverse upstream inputs to regulate cell survival, growth, metabolism, migration, and differentiation. Mounting evidence suggests that Akt activity is differentially regulated depending on its subcellular location, which can include the plasma membrane, endomembrane, and nuclear compartment. This spatial control of Akt activity is critical for achieving signaling specificity and proper physiological functions, and deregulation of compartment-specific Akt signaling is implicated in various diseases, including cancer and diabetes. Understanding the spatial coordination of the signaling network centered around this key kinase and the underlying regulatory mechanisms requires precise tracking of Akt activity at distinct subcellular compartments within its native biological contexts. To address this challenge, new molecular tools are being developed, enabling us to directly interrogate the spatiotemporal regulation of Akt in living cells. These include, for instance, the newly developed genetically encodable fluorescent-protein-based Akt kinase activity reporter (AktAR2), which serves as a substrate surrogate of Akt kinase and translates Akt-specific phosphorylation into a quantifiable change in Förster resonance energy transfer (FRET). In addition, we developed the Akt substrate tandem occupancy peptide sponge (Akt-STOPS), which allows biochemical perturbation of subcellular Akt activity. Both molecular tools can be readily targeted to distinct subcellular localizations. Here, we describe a workflow to study Akt kinase activity at different subcellular locations in living cells. We provide a protocol for using genetically targeted AktAR2 and Akt-STOPS, along with fluorescence imaging in living NIH3T3 cells, to visualize and perturb, respectively, the activity of endogenous Akt kinase at different subcellular compartments. We further describe a protocol for using chemically inducible dimerization (CID) to control the plasma membrane-specific inhibition of Akt activity in real time. Lastly, we describe a protocol for maintaining NIH3T3 cells in culture, a cell line known to exhibit robust Akt activity. In all, this approach enables interrogation of spatiotemporal regulation and functions of Akt, as well as the intricate signaling networks in which it is embedded, at specific subcellular locations. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Visualizing and perturbing subcellular Akt kinase activity using AktAR and Akt-STOPS Basic Protocol 2: Using chemically inducible dimerization (CID) to control inhibition of Akt at the plasma membrane Support Protocol: Maintaining NIH3T3 cells in culture.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, California.,Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California.,Department of Bioengineering, University of California, San Diego, La Jolla, California
| |
Collapse
|
13
|
Hu J, Li G. Recent Progress in Fluorescent Chemosensors for Protein Kinases. Chem Asian J 2022; 17:e202200182. [PMID: 35486328 DOI: 10.1002/asia.202200182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Indexed: 11/10/2022]
Abstract
Protein kinases are involved in almost all biological activities. The activities of different kinases reflect the normal or abnormal status of the human body. Therefore, detecting the activities of different kinases is important for disease diagnosis and drug discovery. Fluorescent probes offer opportunities for studying kinase behaviors at different times and spatial locations. In this review, we summarize different kinds of fluorescent chemosensors that have been used to detect the activities of many different kinases.
Collapse
Affiliation(s)
- Jun Hu
- Fujian Agriculture and Forestry University, College of Life Sciences, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, CHINA
| | - Gao Li
- Minjiang University, College of Material and Chemical Engineering, CHINA
| |
Collapse
|
14
|
Morris MC. A Toolbox of Fluorescent Peptide Biosensors to Highlight Protein Kinases in Complex Samples : focus on cyclin‐dependent kinases. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- May Catherine Morris
- IBMM-UMR5247 Peptide & Proteins Faculté de Pharmacie,15 Av. Charles Flahault 34093 Montpellier FRANCE
| |
Collapse
|
15
|
Shining Light on Protein Kinase Biomarkers with Fluorescent Peptide Biosensors. Life (Basel) 2022; 12:life12040516. [PMID: 35455007 PMCID: PMC9026840 DOI: 10.3390/life12040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Protein kinases (PKs) are established gameplayers in biological signalling pathways, and a large body of evidence points to their dysregulation in diseases, in particular cancer, where rewiring of PK networks occurs frequently. Fluorescent biosensors constitute attractive tools for probing biomolecules and monitoring dynamic processes in complex samples. A wide variety of genetically encoded and synthetic biosensors have been tailored to report on PK activities over the last decade, enabling interrogation of their function and insight into their behaviour in physiopathological settings. These optical tools can further be used to highlight enzymatic alterations associated with the disease, thereby providing precious functional information which cannot be obtained through conventional genetic, transcriptomic or proteomic approaches. This review focuses on fluorescent peptide biosensors, recent developments and strategies that make them attractive tools to profile PK activities for biomedical and diagnostic purposes, as well as insights into the challenges and opportunities brought by this unique toolbox of chemical probes.
Collapse
|
16
|
Pellerano M, Morris MC. Fluorescent Peptide Biosensors for Probing CDK Kinase Activity in Cell Extracts. Methods Mol Biol 2021; 2329:39-50. [PMID: 34085214 DOI: 10.1007/978-1-0716-1538-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Fluorescent biosensors can report on the relative abundance, activity, or conformation of biomolecules and analytes through changes in fluorescence emission. A wide variety of genetically-encoded and synthetic biosensors have been developed to monitor protein kinase activity. We have focused on the design, engineering and characterization of fluorescent peptide biosensors of cyclin-dependent kinases (CDKs) that constitute attractive cancer biomarkers and pharmacological targets. In this chapter, we describe the CDKACT fluorescent peptide biosensor technology and its application to assess the relative kinase activity of CDKs in vitro, either using recombinant proteins or cell extracts as a more complex source of kinase. This technology offers a straightforward means of comparing CDK activity in different cell lines and evaluating the specific impact of treatments intended to target kinase activity in a physiologically relevant environment.
Collapse
Affiliation(s)
- Morgan Pellerano
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| | - May C Morris
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Faculté de Pharmacie, Université de Montpellier, Montpellier, France.
| |
Collapse
|
17
|
A novel GSK-3 inhibitor binds to GSK-3β via a reversible, time and Cys-199-dependent mechanism. Bioorg Med Chem 2021; 40:116179. [PMID: 33991821 DOI: 10.1016/j.bmc.2021.116179] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) has been implicated in numerous pathologies making GSK-3 an attractive therapeutic target. Our group has identified a compound termed COB-187 that is a potent and selective inhibitor of GSK-3. In this study, we probed the mechanism by which COB-187 inhibits GSK-3β. Progress curves, generated via real-time monitoring of kinase activity, indicated that COB-187 inhibition of GSK-3β is time-dependent and subsequent jump dilution assays revealed that COB-187 binding to GSK-3β is reversible. Further, a plot of the kinetic constant (kobs) versus COB-187 concentration suggested that, within the range of concentrations studied, COB-187 binds to GSK-3β via an induced-fit mechanism. There is a critical cysteine residue at the entry to the active site of GSK-3β (Cys-199). We generated a mutant version of GSK-3β wherein Cys-199 was substituted with an alanine. This mutation caused a dramatic decrease in the activity of COB-187; specifically, an IC50 in the nM range for wild type versus >100 µM for the mutant. A screen of COB-187 against 34 kinases that contain a conserved cysteine in their active site revealed that COB-187 is highly selective for GSK-3 indicating that COB-187's inhibition of GSK-3β via Cys-199 is specific. Combined, these findings suggest that COB-187 inhibits GSK-3β via a specific, reversible, time and Cys-199-dependent mechanism.
Collapse
|
18
|
Kim J, Oh J, Han MS. Versatile small molecule kinase assay through real-time, ratiometric fluorescence changes based on a pyrene-DPA-Zn2+ complex. RSC Adv 2021; 11:10375-10380. [PMID: 35423495 PMCID: PMC8695712 DOI: 10.1039/d1ra01547h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 01/01/2023] Open
Abstract
A real-time kinase assay method based on a ratiometric fluorescence probe that can be applied to various small-molecule kinases is described herein. The probe can trace the reversible interchange of ATP and ADP, which is a common phenomenon in most small-molecule kinase reactions, by a ratiometric fluorescence change. This property facilitates the monitoring of phosphorylation and dephosphorylation in small-molecule kinases, whereas most of the existing methods focus on one of these reactions. To prove the applicability of this method for small-molecule kinase assays, hexokinase and creatine kinase, which phosphorylate and dephosphorylate substrates, respectively, were analyzed. The ratiometric fluorescence change was correlated with the enzyme activity, and the inhibition efficiencies of the well-known inhibitors, N-benzoyl-d-glucosamine and iodoacetamide, were also monitored. Notably, the change in fluorescence can be observed with a simple light source by the naked eye. A versatile assay system that can be trace both phosphorylation and dephosphorylation by small molecule kinase is demonstrated, and can be applied regardless of substrate diversity.![]()
Collapse
Affiliation(s)
- Jihoon Kim
- Department of Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Jinyoung Oh
- Department of Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Min Su Han
- Department of Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| |
Collapse
|
19
|
Pyrimidine and fused pyrimidine derivatives as promising protein kinase inhibitors for cancer treatment. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02656-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Casey GR, Stains CI. A fluorescent probe for monitoring PTP-PEST enzymatic activity. Analyst 2020; 145:6713-6718. [PMID: 32812952 DOI: 10.1039/d0an00993h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphatase non-receptor type 12 (PTPN12 or PTP-PEST) is a critical regulator of cell migration, acting as a tumor suppressor in cancer. Decreases in PTP-PEST expression correlate with aggressive phenotypes in hepatocellular carcinoma (HCC). Despite the importance of PTP-PEST in cellular signaling, methods to directly monitor its enzymatic activity are lacking. Herein, we report the design, synthesis, and optimization of a probe to directly monitor PTP-PEST enzymatic activity via a fluorescent readout. This activity sensor, termed pPEST1tide, is capable of detecting as little as 0.2 nM recombinant PTP-PEST. In addition, we demonstrate that this probe can selectively report on PTP-PEST activity using a panel of potential off-target enzymes. In the long-term, this activity probe could be utilized to identify small molecule modulators of PTP-PEST activity as well as provide a prognostic readout for HCC.
Collapse
Affiliation(s)
- Garrett R Casey
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, USA.
| | | |
Collapse
|
21
|
Butler SJ, Jolliffe KA. Anion Receptors for the Discrimination of ATP and ADP in Biological Media. Chempluschem 2020; 86:59-70. [DOI: 10.1002/cplu.202000567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Stephen J. Butler
- Department of Chemistry Loughborough University Loughborough LE11 3TU United Kingdom
| | | |
Collapse
|
22
|
Grimster NP, Gingipalli L, Barlaam B, Su Q, Zheng X, Watson D, Wang H, Simpson I, Pike A, Balazs A, Boiko S, Ikeda TP, Impastato AC, Jones NH, Kawatkar S, Kemmitt P, Lamont S, Patel J, Read J, Sarkar U, Sha L, Tomlinson RC, Wang H, Wilson DM, Zehnder TE, Wang L, Wang P, Goldberg FW, Shao W, Fawell S, Dry H, Dowling JE, Edmondson SD. Optimization of a series of potent, selective and orally bioavailable SYK inhibitors. Bioorg Med Chem Lett 2020; 30:127433. [DOI: 10.1016/j.bmcl.2020.127433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022]
|
23
|
McCullough BS, Barrios AM. Fluorogenic probes for imaging cellular phosphatase activity. Curr Opin Chem Biol 2020; 57:34-40. [PMID: 32470893 PMCID: PMC7483602 DOI: 10.1016/j.cbpa.2020.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/26/2020] [Accepted: 04/08/2020] [Indexed: 11/23/2022]
Abstract
The ability to visualize enzyme activity in a cell, tissue, or living organism can greatly enhance our understanding of the biological roles of that enzyme. While many aspects of cellular signaling are controlled by reversible protein phosphorylation, our understanding of the biological roles of the protein phosphatases involved is limited. Here, we provide an overview of progress toward the development of fluorescent probes that can be used to visualize the activity of protein phosphatases. Significant advances include the development of probes with visible and near-infrared (near-IR) excitation and emission profiles, which provides greater tissue and whole-animal imaging capabilities. In addition, the development of peptide-based probes has provided some selectivity for a phosphatase of interest. Key challenges involve the difficulty of achieving sufficient selectivity for an individual member of a phosphatase enzyme family and the necessity of fully validating the best probes before they can be adopted widely.
Collapse
Affiliation(s)
- Brandon S McCullough
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112-0581, USA
| | - Amy M Barrios
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112-0581, USA.
| |
Collapse
|
24
|
Beck JR, Cabral F, Rasineni K, Casey CA, Harris EN, Stains CI. A Panel of Protein Kinase Chemosensors Distinguishes Different Types of Fatty Liver Disease. Biochemistry 2019; 58:3911-3917. [PMID: 31433166 DOI: 10.1021/acs.biochem.9b00547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The worldwide incidence of fatty liver disease continues to rise, which may account for concurrent increases in the frequencies of more aggressive liver ailments. Given the existence of histologically identical fatty liver disease subtypes, there is a critical need for the identification of methods that can classify disease and potentially predict progression. Herein, we show that a panel of protein kinase chemosensors can distinguish fatty liver disease subtypes. These direct activity measurements highlight distinct differences between histologically identical fatty liver diseases arising from diets rich in fat versus alcohol and identify a previously unreported decrease in p38α activity associated with a high-fat diet. In addition, we have profiled kinase activities in both benign (diet-induced) and progressive (STAM) disease models. These experiments provide temporal insights into kinase activity during disease development and progression. Altogether, this work provides the basis for the future development of clinical diagnostics and potential treatment strategies.
Collapse
Affiliation(s)
- Jon R Beck
- Department of Chemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Fatima Cabral
- Department of Biochemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Karuna Rasineni
- Division of Gastroenterology-Hepatology , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States.,Research Service, Veterans' Affairs , Nebraska-Western Iowa Health Care System , Omaha , Nebraska 68105 , United States
| | - Carol A Casey
- Division of Gastroenterology-Hepatology , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States.,Research Service, Veterans' Affairs , Nebraska-Western Iowa Health Care System , Omaha , Nebraska 68105 , United States.,Nebraska Center for Integrated Biomolecular Communication , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Edward N Harris
- Department of Biochemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States.,Nebraska Center for Integrated Biomolecular Communication , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States.,Cancer Genes and Molecular Regulation Program, Fred & Pamela Buffet Cancer Center , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Cliff I Stains
- Department of Chemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States.,Nebraska Center for Integrated Biomolecular Communication , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States.,Cancer Genes and Molecular Regulation Program, Fred & Pamela Buffet Cancer Center , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States.,Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| |
Collapse
|
25
|
Safety profiling of genetically engineered Pim-1 kinase overexpression for oncogenicity risk in human c-kit+ cardiac interstitial cells. Gene Ther 2019; 26:324-337. [PMID: 31239537 DOI: 10.1038/s41434-019-0084-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/19/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Advancement of stem cell-based treatment will involve next-generation approaches to enhance therapeutic efficacy which is often modest, particularly in the context of myocardial regenerative therapy. Our group has previously demonstrated the beneficial effect of genetic modification of cardiac stem cells with Pim-1 kinase overexpression to rejuvenate aged cells as well as potentiate myocardial repair. Despite these encouraging findings, concerns were raised regarding potential for oncogenic risk associated with Pim-1 kinase overexpression. Testing of Pim-1 engineered c-kit+ cardiac interstitial cells (cCIC) derived from heart failure patient samples for indices of oncogenic risk was undertaken using multiple assessments including soft agar colony formation, micronucleation, gamma-Histone 2AX foci, and transcriptome profiling. Collectively, findings demonstrate comparable phenotypic and biological properties of cCIC following Pim-1 overexpression compared with using baseline control cells with no evidence for oncogenic phenotype. Using a highly selective and continuous sensor for quantitative assessment of PIM1 kinase activity revealed a sevenfold increase in Pim-1 engineered vs. control cells. Kinase activity profiling using a panel of sensors for other kinases demonstrates elevation of IKKs), AKT/SGK, CDK1-3, p38, and ERK1/2 in addition to Pim-1 consistent with heightened kinase activity correlating with Pim-1 overexpression that may contribute to Pim-1-mediated effects. Enhancement of cellular survival, proliferation, and other beneficial properties to augment stem cell-mediated repair without oncogenic risk is a feasible, logical, and safe approach to improve efficacy and overcome current limitations inherent to cellular adoptive transfer therapeutic interventions.
Collapse
|
26
|
Jung H, Choi Y, Lee D, Seo JK, Kee JM. Distinct phosphorylation and dephosphorylation dynamics of protein arginine kinases revealed by fluorescent activity probes. Chem Commun (Camb) 2019; 55:7482-7485. [PMID: 31184653 DOI: 10.1039/c9cc03285a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein arginine (Arg) phosphorylation regulates stress responses and virulence in bacteria. With fluorescent activity probes, we show that McsB, a protein Arg kinase, can dephosphorylate phosphoarginine (pArg) residues to produce ATP from ADP, implicating the dynamic control of protein pArg levels by the kinase even without a phosphatase.
Collapse
Affiliation(s)
- Hoyoung Jung
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Yigun Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Donghee Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jung-Min Kee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| |
Collapse
|
27
|
Hewitt SH, Ali R, Mailhot R, Antonen CR, Dodson CA, Butler SJ. A simple, robust, universal assay for real-time enzyme monitoring by signalling changes in nucleoside phosphate anion concentration using a europium(iii)-based anion receptor. Chem Sci 2019; 10:5373-5381. [PMID: 31191895 PMCID: PMC6540902 DOI: 10.1039/c9sc01552c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/28/2022] Open
Abstract
Enzymes that consume and produce nucleoside polyphosphate (NPP) anions represent major targets in drug discovery. For example, protein kinases are one of the largest classes of drug targets in the fight against cancer. The accurate determination of enzyme kinetics and mechanisms is a critical aspect of drug discovery research. To increase confidence in the selection of lead drug compounds it is crucial that pharmaceutical researchers have robust, affordable assays to measure enzyme activity accurately. We present a simple, sensitive microplate assay for real-time monitoring of a range of pharmaceutically important enzyme reactions that generate NPP anions, including kinases and glycosyltransferases. Our assay utilises a single, stable europium(iii) complex that binds reversibly to NPP anions, signalling the dynamic changes in NPP product/substrate ratio during an enzyme reaction using time-resolved luminescence. This supramolecular approach to enzyme monitoring overcomes significant limitations in existing assays, obviating the need for expensive antibodies or equipment, chemically labelled substrates or products and isolation or purification steps. Our label and antibody-free method enables rapid and quantitative analysis of enzyme activities and inhibition, offering a potentially powerful tool for use in drug discovery, suitable for high-throughput screening of inhibitors and accurate measurements of enzyme kinetic parameters.
Collapse
Affiliation(s)
- Sarah H Hewitt
- Department of Chemistry , Loughborough University , Epinal Way , Loughborough , LE11 3TU , UK .
| | - Rozee Ali
- Department of Chemistry , Loughborough University , Epinal Way , Loughborough , LE11 3TU , UK .
| | - Romain Mailhot
- Department of Chemistry , Loughborough University , Epinal Way , Loughborough , LE11 3TU , UK .
| | - Chloe R Antonen
- Department of Chemistry , Loughborough University , Epinal Way , Loughborough , LE11 3TU , UK .
| | - Charlotte A Dodson
- Department of Pharmacy & Pharmacology , University of Bath , Claverton Down , Bath , BA2 7AY , UK
| | - Stephen J Butler
- Department of Chemistry , Loughborough University , Epinal Way , Loughborough , LE11 3TU , UK .
| |
Collapse
|
28
|
Choi Y, Shin SH, Jung H, Kwon O, Seo JK, Kee JM. Specific Fluorescent Probe for Protein Histidine Phosphatase Activity. ACS Sens 2019; 4:1055-1062. [PMID: 30912641 DOI: 10.1021/acssensors.9b00242] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein histidine phosphorylation plays a vital role in cell signaling and metabolic processes, and phosphohistidine (pHis) phosphatases such as protein histidine phosphatase 1 (PHPT1) and LHPP have been linked to cancer and diabetes, making them novel drug targets and biomarkers. Unlike the case for other classes of phosphatases, further studies of PHPT1 and other pHis phosphatases have been hampered by the lack of specific activity assays in complex biological mixtures. Previous methods relying on radiolabeling are hazardous and technically laborious, and small-molecule phosphatase probes are not selective toward pHis phosphatases. To address these issues, we herein report a fluorescent probe based on chelation-enhanced fluorescence (CHEF) to continuously measure the pHis phosphatase activity of PHPT1. Our probe exhibited excellent sensitivity and specificity toward PHPT1, enabling the first specific measurement of PHPT1 activity in cell lysates. Using this probe, we also obtained more physiologically relevant kinetic parameters of PHPT1, overcoming the limitations of previously used methods.
Collapse
|
29
|
Casey GR, Beck JR, Stains CI. Design and synthesis of fluorescent activity probes for protein phosphatases. Methods Enzymol 2019; 622:29-53. [PMID: 31155057 DOI: 10.1016/bs.mie.2019.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein phosphatases act in concert with protein kinases to regulate and maintain the phosphoproteome. However, the catalog of chemical tools to directly monitor the enzymatic activity of phosphatases has lagged behind their kinase counterparts. In this chapter, we provide protocols for repurposing the phosphorylation-sensitive sulfonamido-oxine fluorophore known as Sox to afford direct activity probes for phosphatases. With validated activity probes in-hand, inhibitor screens can be conducted with recombinant enzyme and the role of phosphatases in cell signaling can be investigated in unfractionated cell lysates.
Collapse
Affiliation(s)
- Garrett R Casey
- Department of Chemistry and Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jon R Beck
- Department of Chemistry and Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Cliff I Stains
- Department of Chemistry and Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, United States; Cancer Genes and Molecular Recognition Program, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
30
|
Kiyonaka S, Sakamoto S, Wakayama S, Morikawa Y, Tsujikawa M, Hamachi I. Ligand-Directed Chemistry of AMPA Receptors Confers Live-Cell Fluorescent Biosensors. ACS Chem Biol 2018; 13:1880-1889. [PMID: 29437380 DOI: 10.1021/acschembio.7b01042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AMPA-type glutamate receptors (AMPARs) mediate fast excitatory synaptic transmission in the central nervous system. Dysregulation of AMPAR function is associated with many kinds of neurological, neurodegenerative, and psychiatric disorders. As a result, molecules capable of controlling AMPAR functions are potential therapeutic agents. Fluorescent semisynthetic biosensors have attracted considerable interest for the discovery of ligands selectively acting on target proteins. Given the large protein complex formation of AMPARs in live cells, biosensors using full-length AMPARs retaining original functionality are ideal for drug screening. Here, we demonstrate that fluorophore-labeled AMPARs prepared by ligand-directed acyl imidazole chemistry can act as turn-on fluorescent biosensors for AMPAR ligands in living cells. These biosensors selectively detect orthosteric ligands of AMPARs among the glutamate receptor family. Notably, the dissociation constants of agonists and antagonists for AMPARs were determined in live cells, which revealed that the ligand-binding properties of AMPARs to agonists are largely different in living cells, compared with noncellular conditions. We also show that these sensors can be applied to detecting allosteric modulators or subunit-selective ligands of AMPARs. Thus, our protein-based biosensors can be useful for discovering pharmaceutical agents to treat AMPAR-related neurological disorders.
Collapse
Affiliation(s)
- Shigeki Kiyonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Seiji Sakamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Sho Wakayama
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuma Morikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Muneo Tsujikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- CREST(Core Research for Evolutional Science and Technology, JST), Chiyodaku, Tokyo, 102-0075, Japan
| |
Collapse
|
31
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|
32
|
González-Vera JA, Bouzada D, Bouclier C, Eugenio Vázquez M, Morris MC. Lanthanide-based peptide biosensor to monitor CDK4/cyclin D kinase activity. Chem Commun (Camb) 2018; 53:6109-6112. [PMID: 28530267 DOI: 10.1039/c6cc09948c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We describe a lanthanide biosensor that responds to CDK4 kinase activity in melanoma cell extracts through a significant and dose dependent increase in luminescence, thanks to sensitization of a DOTA[Tb3+] complex incorporated into a CDK4 substrate peptide by a unique tryptophan residue in an adjacent phosphoaminoacid binding moiety.
Collapse
Affiliation(s)
- Juan A González-Vera
- Institut des Biomolécules Max Mousseron, CNRS, IBMM-UMR 5247, Université de Montpellier, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | | | | | | | | |
Collapse
|
33
|
Reytor González ML, Cornell-Kennon S, Schaefer E, Kuzmič P. An algebraic model to determine substrate kinetic parameters by global nonlinear fit of progress curves. Anal Biochem 2017; 518:16-24. [PMID: 27823930 DOI: 10.1016/j.ab.2016.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 11/19/2022]
Abstract
We propose that the time course of an enzyme reaction following the Michaelis-Menten reaction mechanism can be conveniently described by a newly derived algebraic equation, which includes the Lambert Omega function. Following Northrop's ideas [Anal. Biochem.321, 457-461, 1983], the integrated rate equation contains the Michaelis constant (KM) and the specificity number (kS≡kcat/KM) as adjustable parameters, but not the turnover number kcat. A modification of the usual global-fit approach involves a combinatorial treatment of nominal substrate concentrations being treated as fixed or alternately optimized model parameters. The newly proposed method is compared with the standard approach based on the "initial linear region" of the reaction progress curves, followed by nonlinear fit of initial rates to the hyperbolic Michaelis-Menten equation. A representative set of three chelation-enhanced fluorescence EGFR kinase substrates is used for experimental illustration. In one case, both data analysis methods (linear and nonlinear) produced identical results. However, in another test case, the standard method incorrectly reported a finite (50-70 μM) KM value, whereas the more rigorous global nonlinear fit shows that the KM is immeasurably high.
Collapse
|
34
|
Beck JR, Harris EN, Stains CI. Quantification of Cell Signaling Networks Using Kinase Activity Chemosensors. Methods Mol Biol 2017; 1636:61-70. [PMID: 28730472 DOI: 10.1007/978-1-4939-7154-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ability to directly determine endogenous kinase activity in tissue homogenates provides valuable insights into signaling aberrations that underlie disease phenotypes. When activity data is collected across a panel of kinases, a unique "signaling fingerprint" is generated that allows for discrimination between diseased and normal tissue. Here we describe the use of peptide-based kinase activity sensors to fingerprint the signaling changes associated with disease states. This approach leverages the phosphorylation-sensitive sulfonamido-oxine (Sox) fluorophore to provide a direct readout of kinase enzymatic activity in unfractionated tissue homogenates from animal models or clinical samples. To demonstrate the application of this technology, we focus on a rat model of nonalcoholic fatty liver disease (NAFLD). Sox-based activity probes allow for the rapid and straightforward analysis of changes in kinase enzymatic activity associated with disease states, providing leads for further investigation using traditional biochemical approaches.
Collapse
Affiliation(s)
- Jon R Beck
- Department of Chemistry, University of Nebraska - Lincoln, 409D Hamilton Hall, 639 N. 12th Street, Lincoln, NE, 68588, USA
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, NE, 68588, USA
| | - Cliff I Stains
- Department of Chemistry, University of Nebraska - Lincoln, 409D Hamilton Hall, 639 N. 12th Street, Lincoln, NE, 68588, USA.
| |
Collapse
|
35
|
Beck JR, Truong T, Stains CI. Temporal Analysis of PP2A Phosphatase Activity During Insulin Stimulation Using a Direct Activity Probe. ACS Chem Biol 2016; 11:3284-3288. [PMID: 27805358 DOI: 10.1021/acschembio.6b00697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein serine/threonine phosphatases (PSPs) are ubiquitously expressed in mammalian cells. In particular, PP2A accounts for up to 1% of the total protein within cells. Despite clear evidence for the role of PP2A in cellular signaling, there is a lack of information concerning the magnitude and temporal dynamics of PP2A catalytic activity during insulin stimulation. Herein, we describe the development of a direct, fluorescent activity probe capable of reporting on global changes in PP2A enzymatic activity in unfractionated cell lysates. Utilizing this new probe, we profiled the magnitude as well as temporal dynamics of PP2A activity during insulin stimulation of liver hepatocytes. These results provide direct evidence for the rapid response of PP2A catalytic activity to extracellular stimulation, as well as insight into the complex regulation of phosphorylation levels by opposing kinase and phosphatase activities within the cell. This study provides a new tool for investigating the chemical biology of PSPs.
Collapse
Affiliation(s)
- Jon R. Beck
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Tiffany Truong
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Cliff I. Stains
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
36
|
Discovery of allosteric modulators for GABAA receptors by ligand-directed chemistry. Nat Chem Biol 2016; 12:822-30. [DOI: 10.1038/nchembio.2150] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
|
37
|
Selective Sensing of Tyrosine Phosphorylation in Peptides Using Terbium(III) Complexes. Int J Anal Chem 2016; 2016:3216523. [PMID: 27375742 PMCID: PMC4916314 DOI: 10.1155/2016/3216523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/28/2016] [Indexed: 11/18/2022] Open
Abstract
Phosphorylation of tyrosine residues in proteins, as well as their dephosphorylation, is closely related to various diseases. However, this phosphorylation is usually accompanied by more abundant phosphorylation of serine and threonine residues in the proteins and covers only 0.05% of the total phosphorylation. Accordingly, highly selective detection of phosphorylated tyrosine in proteins is an urgent subject. In this review, recent developments in this field are described. Monomeric and binuclear Tb(III) complexes, which emit notable luminescence only in the presence of phosphotyrosine (pTyr), have been developed. There, the benzene ring of pTyr functions as an antenna and transfers its photoexcitation energy to the Tb(III) ion as the emission center. Even in the coexistence of phosphoserine (pSer) and phosphothreonine (pThr), pTyr can be efficintly detected with high selectivity. Simply by adding these Tb(III) complexes to the solutions, phosphorylation of tyrosine in peptides by protein tyrosine kinases and dephosphorylation by protein tyrosine phosphatases can be successfully visualized in a real-time fashion. Furthermore, the activities of various inhibitors on these enzymes are quantitatively evaluated, indicating a strong potential of the method for efficient screening of eminent inhibitors from a number of candidates.
Collapse
|
38
|
Beck JR, Lawrence A, Tung AS, Harris EN, Stains CI. Interrogating Endogenous Protein Phosphatase Activity with Rationally Designed Chemosensors. ACS Chem Biol 2016; 11:284-90. [PMID: 26580981 DOI: 10.1021/acschembio.5b00506] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We introduce a versatile approach for repurposing protein kinase chemosensors, containing the phosphorylation-sensitive sulfonamido-oxine fluorophore termed Sox, for the specific determination of endogenous protein phosphatase activity from whole cell lysates and tissue homogenates. As a demonstration of this approach, we design and evaluate a direct chemosensor for protein tyrosine phosphatase-1B (PTP1B), an established signaling node in human disease. The optimal sensor design is capable of detecting as little as 6 pM (12 pg) full-length recombinant PTP1B and is remarkably selective for PTP1B among a panel of highly homologous tyrosine phosphatases. Coupling this robust activity probe with the specificity of antibodies allowed for the temporal analysis of endogenous PTP1B activity dynamics in lysates generated from HepG2 cells after stimulation with insulin. Lastly, we leveraged this assay format to profile PTP1B activity perturbations in a rat model of nonalcoholic fatty liver disease (NAFLD), providing direct evidence for elevated PTP1B catalytic activity in this disease state. Given the modular nature of this assay, we anticipate that this approach will have broad utility in monitoring phosphatase activity dynamics in human disease states.
Collapse
Affiliation(s)
- Jon R. Beck
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Antoneal Lawrence
- Department
of Chemistry, Lincoln University, Lincoln University, Pennsylvania 19352, United States
| | - Amar S. Tung
- Department
of Chemistry, Lincoln University, Lincoln University, Pennsylvania 19352, United States
| | - Edward N. Harris
- Department
of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Cliff I. Stains
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
39
|
González-Vera JA, Morris MC. Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases. Proteomes 2015; 3:369-410. [PMID: 28248276 PMCID: PMC5217393 DOI: 10.3390/proteomes3040369] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/30/2015] [Accepted: 10/23/2015] [Indexed: 12/20/2022] Open
Abstract
Probing the dynamic activities of protein kinases in real-time in living cells constitutes a major challenge that requires specific and sensitive tools tailored to meet the particular demands associated with cellular imaging. The development of genetically-encoded and synthetic fluorescent biosensors has provided means of monitoring protein kinase activities in a non-invasive fashion in their native cellular environment with high spatial and temporal resolution. Here, we review existing technologies to probe different dynamic features of protein kinases and discuss limitations where new developments are required to implement more performant tools, in particular with respect to infrared and near-infrared fluorescent probes and strategies which enable improved signal-to-noise ratio and controlled activation of probes.
Collapse
Affiliation(s)
- Juan A González-Vera
- Cell Cycle Biosensors & Inhibitors, Department of Amino Acids, Peptides and Proteins, Institute of Biomolecules Max Mousseron (IBMM) CNRS-UMR 5247, 15 Avenue Charles Flahault, Montpellier 34093, France.
| | - May C Morris
- Cell Cycle Biosensors & Inhibitors, Department of Amino Acids, Peptides and Proteins, Institute of Biomolecules Max Mousseron (IBMM) CNRS-UMR 5247, 15 Avenue Charles Flahault, Montpellier 34093, France.
| |
Collapse
|
40
|
Beck JR, Zhou X, Casey GR, Stains CI. Design and evaluation of a real-time activity probe for focal adhesion kinase. Anal Chim Acta 2015; 897:62-8. [PMID: 26515006 DOI: 10.1016/j.aca.2015.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 12/22/2022]
Abstract
Focal adhesion kinase (FAK) has been identified as a potential therapeutic target for the treatment of metastatic cancers. Herein we describe the design, synthesis and optimization of a direct activity sensor for FAK and its application to screening FAK inhibitors. We find that the position of the sensing moiety, a phosphorylation-sensitive sulfonamido-oxine fluorophore, can dramatically influence the performance of peptide sensors for FAK. Real-time fluorescence activity assays using an optimized sensor construct, termed FAKtide-S2, are highly reproducible (Z' = 0.91) and are capable of detecting as little as 1 nM recombinant FAK. Utilizing this robust assay format, we define conditions for the screening of FAK inhibitors and demonstrate the utility of this platform using a set of well-characterized small molecule kinase inhibitors. Additionally, we provide the selectivity profile of FAKtide-S2 among a panel of closely related enzymes, identifying conditions for selectively monitoring FAK activity in the presence of off-target enzymes. In the long term, the chemosensor platform described in this work can be used to identify novel FAK inhibitor scaffolds and potentially assess the efficacy of FAK inhibitors in disease models.
Collapse
Affiliation(s)
- Jon R Beck
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, United States
| | - Xinqi Zhou
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, United States
| | - Garrett R Casey
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, United States
| | - Cliff I Stains
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
41
|
A real-time, fluorescence-based assay for Rho-associated protein kinase activity. Anal Chim Acta 2015; 891:284-90. [PMID: 26388388 DOI: 10.1016/j.aca.2015.07.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022]
Abstract
Inhibitors of Rho-associated protein kinase (ROCK) enzymatic activity have been shown to reduce the invasive phenotype observed in metastatic hepatocellular carcinoma (HCC). We describe the design, synthesis, and evaluation of a direct probe for ROCK activity utilizing a phosphorylation-sensitive sulfonamido-oxine fluorophore, termed Sox. The Sox fluorophore undergoes an increase in fluorescence upon phosphorylation of a proximal amino acid via chelation-enhanced fluorescence (CHEF, ex. = 360 nm and em. = 485 nm), allowing for the direct visualization of the rate of phosphate addition to a peptide substrate over time. Our optimal probe design, ROCK-S1, is capable of sensitively reporting ROCK activity with a limit of detection of 10 pM and a high degree of reproducibility (Z'-factor = 0.6 at 100 pM ROCK2). As a proof-of-principle for high-throughput screening (HTS) we demonstrate the ability to rapidly assess the efficacy of a 78 member, small molecule library against ROCK2 using a robotics platform. We identify two previously unreported ROCK2 inhibitor scaffolds, PHA665752 and IKK16, with IC50 values of 3.6 μM and 247 nM respectively. Lastly, we define conditions for selectively monitoring ROCK activity in the presence of potential off-target enzymes (PKCα, PKA, and PAK) with similar substrate specificities.
Collapse
|
42
|
Aihara K, Inokuma T, Komiya C, Shigenaga A, Otaka A. Synthesis of lactam-bridged cyclic peptides using sequential olefin metathesis and diimide reduction reactions. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.04.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Warthaka M, Adelmann CH, Kaoud TS, Edupuganti R, Yan C, Johnson WH, Ferguson S, Tavares CD, Pence LJ, Anslyn EV, Ren P, Tsai KY, Dalby KN. Quantification of a Pharmacodynamic ERK End Point in Melanoma Cell Lysates: Toward Personalized Precision Medicine. ACS Med Chem Lett 2015; 6:47-52. [PMID: 25589929 DOI: 10.1021/ml500198b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/17/2014] [Indexed: 01/26/2023] Open
Abstract
Protein kinases are mutated or otherwise rendered constitutively active in numerous cancers where they are attractive therapeutic targets with well over a dozen kinase inhibitors now being used in therapy. While fluorescent sensors have capacity to measure changes in kinase activity, surprisingly they have not been utilized for biomarker studies. A first-generation peptide sensor for ERK based on the Sox fluorophore is described. This sensor called ERK-sensor-D1 possesses high activity toward ERK and more than 10-fold discrimination over other MAPKs. The sensor can rapidly quantify ERK activity in cell lysates and monitor ERK pathway engagement by BRAF and MEK inhibitors in cultured melanoma cell lines. The dynamic range of the sensor assay allows ERK activities that have potential for profound clinical consequences to be rapidly distinguished.
Collapse
Affiliation(s)
| | - Charles H. Adelmann
- Department
of Immunology and Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Tamer S. Kaoud
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | | | | | | | | | | | - Lindy J. Pence
- Department
of Immunology and Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | | | | | - Kenneth Y. Tsai
- Department
of Immunology and Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | | |
Collapse
|
44
|
Design, synthesis, and evaluation of a selective chemosensor for leucine-rich repeat kinase 2. Bioorg Med Chem Lett 2014; 24:5648-5651. [DOI: 10.1016/j.bmcl.2014.10.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 11/21/2022]
|
45
|
Beck JR, Peterson LB, Imperiali B, Stains CI. Quantification of protein kinase enzymatic activity in unfractionated cell lysates using CSox-based sensors. ACTA ACUST UNITED AC 2014; 6:135-156. [PMID: 25205563 DOI: 10.1002/9780470559277.ch140106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Defining perturbations in protein kinase activity within biological samples can provide insight into disease mechanisms as well as potential targets for drug development. In this article, we present a method that utilizes a phosphorylation-sensitive amino acid, termed CSox, to afford kinase-selective biosensors capable of reporting on enzymatic activity directly in biological samples. These sensors produce an increase in fluorescence in response to phosphorylation of an amino acid residue adjacent to CSox. Probes can be designed for either serine/threonine or tyrosine kinases, and analysis can be performed using standard fluorescence equipment. The procedures provided herein represent our optimized protocols for the design, validation, and application of CSox-based protein kinase activity sensors.
Collapse
Affiliation(s)
- Jon R Beck
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Laura B Peterson
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Cliff I Stains
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
46
|
Peterson LB, Yaffe MB, Imperiali B. Selective mitogen activated protein kinase activity sensors through the application of directionally programmable D domain motifs. Biochemistry 2014; 53:5771-8. [PMID: 25153342 PMCID: PMC4165445 DOI: 10.1021/bi500862c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurate and quantitative methods for measuring the dynamic fluctuations of protein kinase activities are critically needed as diagnostic tools and for the evaluation of kinase-targeted inhibitors, which represent a major therapeutic development area in the treatment of cancer and other diseases. In particular, rapid and economical methods that utilize simple instrumentation and provide quantitative data in a high throughput format will have the most impact on basic research in systems biology and medicine. There are over 500 protein kinases in the human kinome. Among these, the mitogen activated protein (MAP) kinases are recognized to be central players in key cellular signaling events and are associated with essential processes including growth, proliferation, differentiation, migration, and apoptosis. The major challenge with MAP kinase sensor development is achieving high selectivity since these kinases rely acutely on secondary interactions distal to the phosphorylation site to impart substrate specificity. Herein we describe the development and application of selective sensors for three MAP kinase subfamilies, ERK1/2, p38α/β, and JNK1/2/3. The new sensors are based on a modular design, which includes a sensing element that exploits a sulfonamido-oxine (Sox) fluorophore for reporting phosphorylation, a recognition and specificity element based on reported docking domain motifs and a variable linker, which can be engineered to optimize the intermodule distance and relative orientation. Following rigorous validation, the capabilities of the new sensors are exemplified through the quantitative analysis of the target MAP kinases in breast cancer progression in a cell culture model, which reveals a strong correlation between p38α/β activity and increased tumorgenicity.
Collapse
Affiliation(s)
- Laura B Peterson
- Departments of Chemistry and Biology, and ‡Departments of Biology and Biological Engineering, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
47
|
Nobori T, Shiosaki S, Mori T, Toita R, Kim CW, Nakamura Y, Kishimura A, Niidome T, Katayama Y. Fluorescent Polyion Complex Nanoparticle That Incorporates an Internal Standard for Quantitative Analysis of Protein Kinase Activity. Bioconjug Chem 2014; 25:869-72. [DOI: 10.1021/bc500142j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Takuro Niidome
- Graduate
School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan
| | | |
Collapse
|
48
|
Ramji R, Wang M, Bhagat AAS, Tan Shao Weng D, Thakor NV, Teck Lim C, Chen CH. Single cell kinase signaling assay using pinched flow coupled droplet microfluidics. BIOMICROFLUIDICS 2014; 8:034104. [PMID: 24926389 PMCID: PMC4032411 DOI: 10.1063/1.4878635] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/07/2014] [Indexed: 05/10/2023]
Abstract
Droplet-based microfluidics has shown potential in high throughput single cell assays by encapsulating individual cells in water-in-oil emulsions. Ordering cells in a micro-channel is necessary to encapsulate individual cells into droplets further enhancing the assay efficiency. This is typically limited due to the difficulty of preparing high-density cell solutions and maintaining them without cell aggregation in long channels (>5 cm). In this study, we developed a short pinched flow channel (5 mm) to separate cell aggregates and to form a uniform cell distribution in a droplet-generating platform that encapsulated single cells with >55% encapsulation efficiency beating Poisson encapsulation statistics. Using this platform and commercially available Sox substrates (8-hydroxy-5-(N,N-dimethylsulfonamido)-2-methylquinoline), we have demonstrated a high throughput dynamic single cell signaling assay to measure the activity of receptor tyrosine kinases (RTKs) in lung cancer cells triggered by cell surface ligand binding. The phosphorylation of the substrates resulted in fluorescent emission, showing a sigmoidal increase over a 12 h period. The result exhibited a heterogeneous signaling rate in individual cells and showed various levels of drug resistance when treated with the tyrosine kinase inhibitor, gefitinib.
Collapse
Affiliation(s)
- Ramesh Ramji
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| | - Ming Wang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| | | | | | - Nitish V Thakor
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575 ; Singapore Institute for Neurotechnology, Singapore 117456
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575 ; Department of Mechanical Engineering, National University of Singapore, Singapore 117575
| | - Chia-Hung Chen
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575 ; Singapore Institute for Neurotechnology, Singapore 117456
| |
Collapse
|
49
|
Silva RG, Geoghegan KF, Qiu X, Aulabaugh A. A continuous and direct assay to monitor leucine-rich repeat kinase 2 activity. Anal Biochem 2014; 450:63-9. [DOI: 10.1016/j.ab.2014.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/07/2014] [Accepted: 01/13/2014] [Indexed: 12/01/2022]
|
50
|
Sarkar A, Kolitz S, Lauffenburger DA, Han J. Microfluidic probe for single-cell analysis in adherent tissue culture. Nat Commun 2014; 5:3421. [PMID: 24594667 PMCID: PMC4179103 DOI: 10.1038/ncomms4421] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 02/10/2014] [Indexed: 12/12/2022] Open
Abstract
Single-cell analysis provides information critical to understanding key disease processes that are characterized by significant cellular heterogeneity. Few current methods allow single-cell measurement without removing cells from the context of interest, which not only destroys contextual information but also may perturb the process under study. Here we present a microfluidic probe that lyses single adherent cells from standard tissue culture and captures the contents to perform single-cell biochemical assays. We use this probe to measure kinase and housekeeping protein activities, separately or simultaneously, from single human hepatocellular carcinoma cells in adherent culture. This tool has the valuable ability to perform measurements that clarify connections between extracellular context, signals and responses, especially in cases where only a few cells exhibit a characteristic of interest.
Collapse
Affiliation(s)
- Aniruddh Sarkar
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah Kolitz
- Department of Biological Engineering Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|