1
|
Wiest A, Kielkowski P. Improved deconvolution of natural products' protein targets using diagnostic ions from chemical proteomics linkers. Beilstein J Org Chem 2024; 20:2323-2341. [PMID: 39290210 PMCID: PMC11406061 DOI: 10.3762/bjoc.20.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Identification of interactions between proteins and natural products or similar active small molecules is crucial for understanding of their mechanism of action on a molecular level. To search elusive, often labile, and low-abundant conjugates between proteins and active compounds, chemical proteomics introduces a feasible strategy that allows to enrich and detect these conjugates. Recent advances in mass spectrometry techniques and search algorithms provide unprecedented depth of proteome coverage and the possibility to detect desired modified peptides with high sensitivity. The chemical 'linker' connecting an active compound-protein conjugate with a detection tag is the critical component of all chemical proteomic workflows. In this review, we discuss the properties and applications of different chemical proteomics linkers with special focus on their fragmentation releasing diagnostic ions and how these may improve the confidence in identified active compound-peptide conjugates. The application of advanced search options improves the identification rates and may help to identify otherwise difficult to find interactions between active compounds and proteins, which may result from unperturbed conditions, and thus are of high physiological relevance.
Collapse
Affiliation(s)
- Andreas Wiest
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Pavel Kielkowski
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
2
|
Zou M, Zhou H, Gu L, Zhang J, Fang L. Therapeutic Target Identification and Drug Discovery Driven by Chemical Proteomics. BIOLOGY 2024; 13:555. [PMID: 39194493 DOI: 10.3390/biology13080555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/07/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Throughout the human lifespan, from conception to the end of life, small molecules have an intrinsic relationship with numerous physiological processes. The investigation into small-molecule targets holds significant implications for pharmacological discovery. The determination of the action sites of small molecules provide clarity into the pharmacodynamics and toxicological mechanisms of small-molecule drugs, assisting in the elucidation of drug off-target effects and resistance mechanisms. Consequently, innovative methods to study small-molecule targets have proliferated in recent years, with chemical proteomics standing out as a vanguard development in chemical biology in the post-genomic age. Chemical proteomics can non-selectively identify unknown targets of compounds within complex biological matrices, with both probe and non-probe modalities enabling effective target identification. This review attempts to summarize methods and illustrative examples of small-molecule target identification via chemical proteomics. It delves deeply into the interactions between small molecules and human biology to provide pivotal directions and strategies for the discovery and comprehension of novel pharmaceuticals, as well as to improve the evaluation of drug safety.
Collapse
Affiliation(s)
- Mingjie Zou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Haiyuan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Letian Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Jingzi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Thangaraj M, Lialin K, Dandela R, Adepu R, David S, Mizrachi MS, Meijler MM. Four component Ugi reaction based small-molecule probes for integrated phenotypic screening. Bioorg Chem 2024; 146:107257. [PMID: 38493639 DOI: 10.1016/j.bioorg.2024.107257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
Quorum-sensing (QS) is a cell density-dependent signaling pathway regulated by gene expression for intra- and interspecies communication. We have targeted QS activity in Pseudomonas aeruginosa, an opportunistic human pathogen that causes disease in immunocompromised patients, with a set of probes containing a variety of functional groups, including photoreactive (diazirine) and affinity (alkyne) moieties, that were synthesized using a four-component Ugi reaction (Ugi-4CR).
Collapse
Affiliation(s)
- Manikandan Thangaraj
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel
| | - Ksenia Lialin
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel
| | - Rambabu Dandela
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel; Current Adress: Department of Industrial & Engineering Chemistry, Institute of Chemical Technology - Indian Oil Odisha Campus, India
| | - Raju Adepu
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel; Current Adress: Department of Natural Products & Medicinal Chemistry CSIR, Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Shimrit David
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel
| | - Meital Shema Mizrachi
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel
| | - Michael M Meijler
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel.
| |
Collapse
|
4
|
Dehghani A, Binder F, Zorn M, Feigler A, Fischer KI, Felix MN, Happersberger P, Reisinger B. Investigating pH Effects on Enzymes Catalyzing Polysorbate Degradation by Activity-Based Protein Profiling. J Pharm Sci 2024; 113:744-753. [PMID: 37758159 DOI: 10.1016/j.xphs.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Host cell proteins (HCPs) are process-related impurities that can negatively impact the quality of biotherapeutics. Some HCPs possess enzymatic activity and can affect the active pharmaceutical ingredient (API) or excipients such as polysorbates (PS). PSs are a class of non-ionic surfactants commonly used as excipients in biotherapeutics to enhance the stability of APIs. The enzyme activity of certain HCPs can result in the degradation of PSs, leading to particle formation and decreased shelf life of biotherapeutics. Identifying and characterizing these HCPs is therefore crucial. This study employed the Activity-Based Protein Profiling (ABPP) technique to investigate the effect of pH on the activity of HCPs that have the potential to degrade polysorbates. Two probes were utilized: the commercially available fluorophosphonate (FP)-Desthiobiotin probe and a probe based on the antiobesity drug, Orlistat. Over 50 HCPs were identified, showing a strong dependence on pH-milieu regarding their enzyme activity. These findings underscore the importance of accounting for pH variations in the ABPP method and other investigations of HCP activity. Notably, the Orlistat-based probe (OBP) enabled us to investigate the enzymatic activity of a wider range of HCPs, emphasizing the advantage of using more than one probe for ABPP. Finally, this study led to the discovery of previously unreported active enzymes, including three HCPs from the carboxylesterase enzyme family.
Collapse
Affiliation(s)
- Alireza Dehghani
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Florian Binder
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Michael Zorn
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Andreas Feigler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Kathrin Inge Fischer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Marius Nicolaus Felix
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Peter Happersberger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Bernd Reisinger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany.
| |
Collapse
|
5
|
Gao Y, Ma M, Li W, Lei X. Chemoproteomics, A Broad Avenue to Target Deconvolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305608. [PMID: 38095542 PMCID: PMC10885659 DOI: 10.1002/advs.202305608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/29/2023] [Indexed: 12/22/2023]
Abstract
As a vital project of forward chemical genetic research, target deconvolution aims to identify the molecular targets of an active hit compound. Chemoproteomics, either with chemical probe-facilitated target enrichment or probe-free, provides a straightforward and effective approach to profile the target landscape and unravel the mechanisms of action. Canonical methods rely on chemical probes to enable target engagement, enrichment, and identification, whereas click chemistry and photoaffinity labeling techniques improve the efficiency, sensitivity, and spatial accuracy of target recognition. In comparison, recently developed probe-free methods detect protein-ligand interactions without the need to modify the ligand molecule. This review provides a comprehensive overview of different approaches and recent advancements for target identification and highlights the significance of chemoproteomics in investigating biological processes and advancing drug discovery processes.
Collapse
Affiliation(s)
- Yihui Gao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Mingzhe Ma
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
| | - Wenyang Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
- Institute for Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
6
|
Punzalan C, Wang L, Bajrami B, Yao X. Measurement and utilization of the proteomic reactivity by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024; 43:166-192. [PMID: 36924435 DOI: 10.1002/mas.21837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Chemical proteomics, which involves studying the covalent modifications of proteins by small molecules, has significantly contributed to our understanding of protein function and has become an essential tool in drug discovery. Mass spectrometry (MS) is the primary method for identifying and quantifying protein-small molecule adducts. In this review, we discuss various methods for measuring proteomic reactivity using MS and covalent proteomics probes that engage through reactivity-driven and proximity-driven mechanisms. We highlight the applications of these methods and probes in live-cell measurements, drug target identification and validation, and characterizing protein-small molecule interactions. We conclude the review with current developments and future opportunities in the field, providing our perspectives on analytical considerations for MS-based analysis of the proteomic reactivity landscape.
Collapse
Affiliation(s)
- Clodette Punzalan
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Lei Wang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
- AD Bio US, Takeda, Lexington, Massachusetts, 02421, USA
| | - Bekim Bajrami
- Chemical Biology & Proteomics, Biogen, Cambridge, Massachusetts, USA
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
7
|
Lu F, Ye M, Hu C, Chen J, Yan L, Gu D, Xu L, Tian Y, Bai J, Tang Q. FABP5 regulates lipid metabolism to facilitate pancreatic neuroendocrine neoplasms progression via FASN mediated Wnt/β-catenin pathway. Cancer Sci 2023; 114:3553-3567. [PMID: 37302809 PMCID: PMC10475765 DOI: 10.1111/cas.15883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) are among the most frequently occurring neuroendocrine neoplasms (NENs) and require targeted therapy. High levels of fatty acid binding protein 5 (FABP5) are involved in tumor progression, but its role in pNENs remains unclear. We investigated the mRNA and protein levels of FABP5 in pNEN tissues and cell lines and found them to be upregulated. We evaluated changes in cell proliferation using CCK-8, colony formation, and 5-ethynyl-2'-deoxyuridine assays and examined the effects on cell migration and invasion using transwell assays. We found that knockdown of FABP5 suppressed the proliferation, migration, and invasion of pNEN cell lines, while overexpression of FABP5 had the opposite effect. Co-immunoprecipitation experiments were performed to clarify the interaction between FABP5 and fatty acid synthase (FASN). We further showed that FABP5 regulates the expression of FASN via the ubiquitin proteasome pathway and both proteins facilitate the progression of pNENs. Our study demonstrated that FABP5 acts as an oncogene by promoting lipid droplet deposition and activating the WNT/β-catenin signaling pathway. Moreover, the carcinogenic effects of FABP5 can be reversed by orlistat, providing a novel therapeutic intervention option.
Collapse
Affiliation(s)
- Feiyu Lu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Mujie Ye
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Chunhua Hu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Jinhao Chen
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Lijun Yan
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Danyang Gu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Lin Xu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Ye Tian
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Jianan Bai
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine TumorNanjing Medical UniversityNanjingChina
| |
Collapse
|
8
|
Kimishima A, Negami S, Tsuruoka I, Tsutsumi H, Matsui H, Sugamata M, Kondo N, Honsho M, Sakai K, Honma S, Naher K, Watanabe Y, Iwatsuki M, Inahashi Y, Hanaki H, Asami Y. Re-evaluation and a Structure-Activity Relationship Study for the Selective Anti-anaerobic Bacterial Activity of Luminamicin toward Target Identification. ACS Infect Dis 2023; 9:1602-1609. [PMID: 37418000 DOI: 10.1021/acsinfecdis.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Luminamicin (1) isolated in 1985, is a macrodiolide compound exhibiting selective antibacterial activity against anaerobes. However, the antibacterial activity of 1 was not fully examined. In this research, re-evaluation of the antibacterial activity of 1 revealed that 1 is a narrow spectrum and potent antibiotic againstClostridioides difficile(C. difficile) and effective against fidaxomicin resistantC. difficilestrain. This prompted us to obtain luminamicin resistantC. difficilestrains for the determination of the molecular target of 1 inC. difficile. Sequence analysis of 1-resistantC. difficileindicated that the mode of action of 1 differs from that of fidaxomicin. This is because no mutation was observed in RNA polymerase and mutations were observed in a hypothetical protein and cell wall protein. Furthermore, we synthesized derivatives from 1 to study the structure-activity relationship. This research indicated that the maleic anhydride and the enol ether moieties seem to be pivotal functional groups to maintain the antibacterial activity againstC. difficileand the 14-membered lactone may contribute to taking an appropriate molecular conformation.
Collapse
Affiliation(s)
- Aoi Kimishima
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Sota Negami
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Iori Tsuruoka
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hayama Tsutsumi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hidehito Matsui
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Miho Sugamata
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Naozumi Kondo
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masako Honsho
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazunari Sakai
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Sota Honma
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kamrun Naher
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshihiro Watanabe
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Inahashi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hideaki Hanaki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
9
|
Finin P, Khan RMN, Oh S, Boshoff HIM, Barry CE. Chemical approaches to unraveling the biology of mycobacteria. Cell Chem Biol 2023; 30:420-435. [PMID: 37207631 PMCID: PMC10201459 DOI: 10.1016/j.chembiol.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023]
Abstract
Mycobacterium tuberculosis (Mtb), perhaps more than any other organism, is intrinsically appealing to chemical biologists. Not only does the cell envelope feature one of the most complex heteropolymers found in nature1 but many of the interactions between Mtb and its primary host (we humans) rely on lipid and not protein mediators.2,3 Many of the complex lipids, glycolipids, and carbohydrates biosynthesized by the bacterium still have unknown functions, and the complexity of the pathological processes by which tuberculosis (TB) disease progress offers many opportunities for these molecules to influence the human response. Because of the importance of TB in global public health, chemical biologists have applied a wide-ranging array of techniques to better understand the disease and improve interventions.
Collapse
Affiliation(s)
- Peter Finin
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - R M Naseer Khan
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
10
|
Mons E, Kim RQ, Mulder MPC. Technologies for Direct Detection of Covalent Protein-Drug Adducts. Pharmaceuticals (Basel) 2023; 16:547. [PMID: 37111304 PMCID: PMC10146396 DOI: 10.3390/ph16040547] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
In the past two decades, drug candidates with a covalent binding mode have gained the interest of medicinal chemists, as several covalent anticancer drugs have successfully reached the clinic. As a covalent binding mode changes the relevant parameters to rank inhibitor potency and investigate structure-activity relationship (SAR), it is important to gather experimental evidence on the existence of a covalent protein-drug adduct. In this work, we review established methods and technologies for the direct detection of a covalent protein-drug adduct, illustrated with examples from (recent) drug development endeavors. These technologies include subjecting covalent drug candidates to mass spectrometric (MS) analysis, protein crystallography, or monitoring intrinsic spectroscopic properties of the ligand upon covalent adduct formation. Alternatively, chemical modification of the covalent ligand is required to detect covalent adducts by NMR analysis or activity-based protein profiling (ABPP). Some techniques are more informative than others and can also elucidate the modified amino acid residue or bond layout. We will discuss the compatibility of these techniques with reversible covalent binding modes and the possibilities to evaluate reversibility or obtain kinetic parameters. Finally, we expand upon current challenges and future applications. Overall, these analytical techniques present an integral part of covalent drug development in this exciting new era of drug discovery.
Collapse
Affiliation(s)
- Elma Mons
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Robbert Q. Kim
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
| | - Monique P. C. Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.M.)
| |
Collapse
|
11
|
Kimishima A, Tsuruoka I, Kanto H, Tsutsumi H, Arima N, Sakai K, Sugamata M, Matsui H, Watanabe Y, Iwatsuki M, Honsho M, Naher K, Inahashi Y, Hanaki H, Asami Y. Rediscovery of Tetronomycin as a Broad-Spectrum and Potent Antibiotic against Drug-Resistant Gram-Positive Bacteria. ACS OMEGA 2023; 8:11556-11563. [PMID: 37008151 PMCID: PMC10061530 DOI: 10.1021/acsomega.3c00651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Tetronomycin (1), first isolated from a cultured broth of Streptomyces sp. by Juslen et al. in 1974, is a polycyclic polyether compound. However, the biological activity of 1 has not been thoroughly examined. In this study, we found that 1 exhibits more potent antibacterial activity than two well-known antibacterial drugs (vancomycin and linezolid) and is effective against several drug-resistant clinical isolates including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. Furthermore, we reassigned the 13C NMR spectra of 1 and performed a preliminary structure-activity relationship study of 1 to synthesize a chemical probe for target identification, which implied different targets based on its ionophore activity.
Collapse
Affiliation(s)
- Aoi Kimishima
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Iori Tsuruoka
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroki Kanto
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hayama Tsutsumi
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Naoaki Arima
- Tokyo
New Drug Research Laboratories, Pharmaceutical Business Unit, Kowa Company, Ltd., 2-17-43 Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
| | - Kazunari Sakai
- Tokyo
New Drug Research Laboratories, Pharmaceutical Business Unit, Kowa Company, Ltd., 2-17-43 Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
| | - Miho Sugamata
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hidehito Matsui
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshihiro Watanabe
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masako Honsho
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kamrun Naher
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Inahashi
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hideaki Hanaki
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Tokyo
New Drug Research Laboratories, Pharmaceutical Business Unit, Kowa Company, Ltd., 2-17-43 Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
| | - Yukihiro Asami
- Graduate
School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura
Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
12
|
Sahadevan R, Binoy A, Vechalapu SK, Nanjan P, Sadhukhan S. In situ global proteomics profiling of EGCG targets using a cell-permeable and Click-able bioorthogonal probe. Int J Biol Macromol 2023; 237:123991. [PMID: 36907293 DOI: 10.1016/j.ijbiomac.2023.123991] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Despite possessing a wide spectrum of biological activities, molecular targets of EGCG remain elusive and as a result, its precise mode of action is still unknown. Herein, we have developed a novel cell-permeable and Click-able bioorthogonal probe for EGCG, YnEGCG for in situ detection and identification of its interacting proteins. The strategic structural modification on YnEGCG allowed it to retain innate biological activities of EGCG (IC50 59.52 ± 1.14 μM and 9.07 ± 0.01 μM for cell viability and radical scavenging activity, respectively). Chemoproteomics profiling identified 160 direct EGCG targets, with H:L ratio ≥ 1.10 from the list of 207 proteins, including multiple new proteins that were previously unknown. The targets were broadly distributed in various subcellular compartments suggesting a polypharmacological mode of action of EGCG. GO analysis revealed that the primary targets belonged to the enzymes that regulate key metabolic processes including glycolysis and energy homeostasis, also the cytoplasm (36 %) and mitochondria (15.6 %) contain the majority of EGCG targets. Further, we validated that EGCG interactome was closely associated with apoptosis indicating its role in inducing toxicity in cancer cells. For the first time, this in situ chemoproteomics approach could identify a direct and specific EGCG interactome under physiological conditions in an unbiased manner.
Collapse
Affiliation(s)
- Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Sai K Vechalapu
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India
| | - Pandurangan Nanjan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India; Physical & Chemical Biology Laboratory, Indian Institute of Technology Palakkad, Kerala, India; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala, India.
| |
Collapse
|
13
|
Chang B, Xu Q, Guo H, Zhong M, Shen R, Zhao L, Zhao J, Ma T, Chu Y, Zhang J, Fang J. Puromycin Prodrug Activation by Thioredoxin Reductase Overcomes Its Promiscuous Cytotoxicity. J Med Chem 2023; 66:3250-3261. [PMID: 36855911 DOI: 10.1021/acs.jmedchem.2c01509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Overexpression of the selenoprotein thioredoxin reductase (TrxR) has been documented in malignant tissues and is of pathological significance for many types of tumors. The antibiotic puromycin (Puro) is a protein synthesis inhibitor causing premature polypeptide chain termination during translation. The well-defined action mechanism of Puro makes it a useful tool in biomedical studies. However, the nonselective cytotoxicity of Puro limits its therapeutic applications. We report herein the construction and evaluation of two Puro prodrugs, that is, S1-Puro with a five-membered cyclic disulfide trigger and S2-Puro with a linear disulfide trigger. S1-Puro is selectively activated by TrxR and shows the TrxR-dependent cytotoxicity to cancer cells, while S2-Puro is readily activated by thiols. Furthermore, S1-Puro displays higher stability in plasma than S2-Puro. We expect that this prodrug strategy may promote the further development of Puro as a therapeutic agent.
Collapse
Affiliation(s)
- Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Qianhe Xu
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hairui Guo
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan 453100, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ruipeng Shen
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lanning Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jintao Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yajun Chu
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
14
|
Racioppo B, Qiu N, Adibekian A. Serine Hydrolase Activity‐Based Probes for use in Chemical Proteomics. Isr J Chem 2023. [DOI: 10.1002/ijch.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Brittney Racioppo
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research La Jolla California 92037 United States
| | - Nan Qiu
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research La Jolla California 92037 United States
| | - Alexander Adibekian
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
| |
Collapse
|
15
|
Nisar N, Mir SA, Kareem O, Pottoo FH. Proteomics approaches in the identification of cancer biomarkers and drug discovery. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
16
|
Small bioactive molecules designed to be probes as baits “fishing out” cellular targets: finding the fish in the proteome sea. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Yang MH, Russell JL, Mifune Y, Wang Y, Shi H, Moresco EMY, Siegwart DJ, Beutler B, Boger DL. Next-Generation Diprovocims with Potent Human and Murine TLR1/TLR2 Agonist Activity That Activate the Innate and Adaptive Immune Response. J Med Chem 2022; 65:9230-9252. [PMID: 35767437 DOI: 10.1021/acs.jmedchem.2c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diprovocims, a new class of toll-like receptor (TLR) agonists, bear no similarity to prior TLR agonists, act through a well-defined mechanism (TLR1/TLR2 agonist), exhibit exquisite structure-activity relationships, and display in vivo adjuvant activity. They possess potent and efficacious agonist activity toward human TLR1/TLR2 but modest agonism toward the murine receptor. A manner by which diprovocims can be functionalized without impacting hTLR1/TLR2 activity is detailed, permitting future linkage to antigenic, targeting, or delivery moieties. Improvements in both potency and its low efficacy in the murine system were also achieved, permitting more effective use in animal models while maintaining the hTLR1/TLR2 activity. The prototypical member diprovocim-X exhibits the excellent potency/efficacy of diprovocim-1 in human cells, displays substantially improved potency/efficacy in mouse macrophages, and serves as an adjuvant in mice when coadministered with a nonimmunogenic antigen, indicating stimulation of the adaptive as well as innate immune response.
Collapse
Affiliation(s)
- Ming-Hsiu Yang
- Department of Chemistry and the Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jamie L Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Yuto Mifune
- Department of Chemistry and the Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Ying Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Hexin Shi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Daniel J Siegwart
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Dale L Boger
- Department of Chemistry and the Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
18
|
Khan SS, Sudasinghe TD, Landgraf AD, Ronning DR, Sucheck SJ. Total Synthesis of Tetrahydrolipstatin, Its Derivatives, and Evaluation of Their Ability to Potentiate Multiple Antibiotic Classes against Mycobacterium Species. ACS Infect Dis 2021; 7:2876-2888. [PMID: 34478259 PMCID: PMC8630808 DOI: 10.1021/acsinfecdis.1c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrahydrolipstatin (THL, 1a) has been shown to inhibit both mammalian and bacterial α/β hydrolases. In the case of bacterial systems, THL is a known inhibitor of several Mycobacterium tuberculosis hydrolases involved in mycomembrane biosynthesis. Herein we report a highly efficient eight-step asymmetric synthesis of THL using a route that allows modification of the THL α-chain substituent to afford compounds 1a through 1e. The key transformation in the synthesis was use of a (TPP)CrCl/Co2(CO)8-catalyzed regioselective and stereospecific carbonylation on an advanced epoxide intermediate to yield a trans-β-lactone. These compounds are modest inhibitors of Ag85A and Ag85C, two α/β hydrolases of M. tuberculosis involved in the biosynthesis of the mycomembrane. Among these compounds, 10d showed the highest inhibitory effect on Ag85A (34 ± 22 μM) and Ag85C (66 ± 8 μM), and its X-ray structure was solved in complex with Ag85C to 2.5 Å resolution. In contrast, compound 1e exhibited the best-in-class MICs of 50 μM (25 μg/mL) and 16 μM (8.4 μg/mL) against M. smegmatis and M. tuberculosis H37Ra, respectively, using a microtiter assay plate. Combination of 1e with 13 well-established antibiotics synergistically enhanced the potency of few of these antibiotics in M. smegmatis and M. tuberculosis H37Ra. Compound 1e applied at concentrations 4-fold lower than its MIC enhanced the MIC of the synergistic antibiotic by 2-256-fold. In addition to observing synergy with first-line drugs, rifamycin and isoniazid, the MIC of vancomycin against M. tuberculosis H37Ra was 65 μg/mL; however, the MIC was lowered to 0.25 μg/mL in the presence of 2.1 μg/mL 1e demonstrating the potential of targeting mycobacterial hydrolases involved in mycomembrane and peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Saniya S Khan
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Thanuja D Sudasinghe
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Alexander D Landgraf
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Steven J Sucheck
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
19
|
Yao T, Xu X, Huang R. Recent Advances about the Applications of Click Reaction in Chemical Proteomics. Molecules 2021; 26:5368. [PMID: 34500797 PMCID: PMC8434046 DOI: 10.3390/molecules26175368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Despite significant advances in biological and analytical approaches, a comprehensive portrait of the proteome and its dynamic interactions and modifications remains a challenging goal. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to elucidate protein composition, distribution, and relevant physiological and pharmacological functions. Click chemistry focuses on the development of new combinatorial chemical methods for carbon heteroatom bond (C-X-C) synthesis, which have been utilized extensively in the field of chemical proteomics. Click reactions have various advantages including high yield, harmless by-products, and simple reaction conditions, upon which the molecular diversity can be easily and effectively obtained. This paper reviews the application of click chemistry in proteomics from four aspects: (1) activity-based protein profiling, (2) enzyme-inhibitors screening, (3) protein labeling and modifications, and (4) hybrid monolithic column in proteomic analysis.
Collapse
Affiliation(s)
- Tingting Yao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China;
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaowei Xu
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Rong Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China;
| |
Collapse
|
20
|
Suto N, Kamoshita S, Hosoya S, Sakurai K. Exploration of the Reactivity of Multivalent Electrophiles for Affinity Labeling: Sulfonyl Fluoride as a Highly Efficient and Selective Label. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nanako Suto
- Department of Bioengineering and Life Science Tokyo University of Agriculture and Technology 4-24-16, Naka-cho, Koganei-shi Tokyo 184-8588 Japan
| | - Shione Kamoshita
- Department of Bioengineering and Life Science Tokyo University of Agriculture and Technology 4-24-16, Naka-cho, Koganei-shi Tokyo 184-8588 Japan
| | - Shoichi Hosoya
- Institute of Research Tokyo Medical and Dental University 1-5-45, Yushima, Bunkyo-ku Tokyo 113-8510 Japan
| | - Kaori Sakurai
- Department of Bioengineering and Life Science Tokyo University of Agriculture and Technology 4-24-16, Naka-cho, Koganei-shi Tokyo 184-8588 Japan
| |
Collapse
|
21
|
Suto N, Kamoshita S, Hosoya S, Sakurai K. Exploration of the Reactivity of Multivalent Electrophiles for Affinity Labeling: Sulfonyl Fluoride as a Highly Efficient and Selective Label. Angew Chem Int Ed Engl 2021; 60:17080-17087. [PMID: 34060195 DOI: 10.1002/anie.202104347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/16/2021] [Indexed: 12/23/2022]
Abstract
Here we explored the reactivity of a set of multivalent electrophiles cofunctionalized with a carbohydrate ligand on gold nanoparticles to achieve efficient affinity labeling for target protein analysis. Evaluation of the reactivity and selectivity of the electrophiles against three different cognate binding proteins identified arylsulfonyl fluoride as the most efficient protein-reactive group in this study. We demonstrated that multivalent arylsulfonyl fluoride probe 4 at 50 nm concentration achieved selective affinity labeling and enrichment of a model protein PNA in cell lysate, which was more effective than photoaffinity probe 1 with arylazide group. Labeling site analysis by LC-MS/MS revealed that the nanoparticle-immobilized arylsulfonyl fluoride group can target multiple amino acid residues around the ligand binding site of the target proteins. Our study highlights the utility of arylsulfonyl fluoride as a highly effective multivalent affinity label suitable for covalently capturing unknown target proteins.
Collapse
Affiliation(s)
- Nanako Suto
- Department of Bioengineering and Life Science, Tokyo University of Agriculture and Technology, 4-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Shione Kamoshita
- Department of Bioengineering and Life Science, Tokyo University of Agriculture and Technology, 4-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Shoichi Hosoya
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kaori Sakurai
- Department of Bioengineering and Life Science, Tokyo University of Agriculture and Technology, 4-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| |
Collapse
|
22
|
Paiva P, Medina FE, Viegas M, Ferreira P, Neves RPP, Sousa JPM, Ramos MJ, Fernandes PA. Animal Fatty Acid Synthase: A Chemical Nanofactory. Chem Rev 2021; 121:9502-9553. [PMID: 34156235 DOI: 10.1021/acs.chemrev.1c00147] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids are crucial molecules for most living beings, very well spread and conserved across species. These molecules play a role in energy storage, cell membrane architecture, and cell signaling, the latter through their derivative metabolites. De novo synthesis of fatty acids is a complex chemical process that can be achieved either by a metabolic pathway built by a sequence of individual enzymes, such as in most bacteria, or by a single, large multi-enzyme, which incorporates all the chemical capabilities of the metabolic pathway, such as in animals and fungi, and in some bacteria. Here we focus on the multi-enzymes, specifically in the animal fatty acid synthase (FAS). We start by providing a historical overview of this vast field of research. We follow by describing the extraordinary architecture of animal FAS, a homodimeric multi-enzyme with seven different active sites per dimer, including a carrier protein that carries the intermediates from one active site to the next. We then delve into this multi-enzyme's detailed chemistry and critically discuss the current knowledge on the chemical mechanism of each of the steps necessary to synthesize a single fatty acid molecule with atomic detail. In line with this, we discuss the potential and achieved FAS applications in biotechnology, as biosynthetic machines, and compare them with their homologous polyketide synthases, which are also finding wide applications in the same field. Finally, we discuss some open questions on the architecture of FAS, such as their peculiar substrate-shuttling arm, and describe possible reasons for the emergence of large megasynthases during evolution, questions that have fascinated biochemists from long ago but are still far from answered and understood.
Collapse
Affiliation(s)
- Pedro Paiva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fabiola E Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Matilde Viegas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rui P P Neves
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - João P M Sousa
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
23
|
Chen L, Wang HJ, Ji TF, Zhang CJ. Chemoproteomics-based target profiling of sinomenine reveals multiple protein regulators of inflammation. Chem Commun (Camb) 2021; 57:5981-5984. [PMID: 34027538 DOI: 10.1039/d1cc01522b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although sinomenine (SIN) has been used to treat several inflammation-related diseases in the clinic for decades, the detailed anti-inflammatory mechanism remains elusive. Here, we present a chemoproteomic study that supports a polypharmacological mode of action for SIN to inhibit inflammation. Notably, functional validation revealed multiple new protein regulators whose knockdown could significantly affect inflammation.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Hong-Jian Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Teng-Fei Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|
24
|
Alwaseem H, Giovani S, Crotti M, Welle K, Jordan CT, Ghaemmaghami S, Fasan R. Comprehensive Structure-Activity Profiling of Micheliolide and its Targeted Proteome in Leukemia Cells via Probe-Guided Late-Stage C-H Functionalization. ACS CENTRAL SCIENCE 2021; 7:841-857. [PMID: 34079900 PMCID: PMC8161485 DOI: 10.1021/acscentsci.0c01624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 05/03/2023]
Abstract
The plant-derived sesquiterpene lactone micheliolide was recently found to possess promising antileukemic activity, including the ability to target and kill leukemia stem cells. Efforts toward improving the biological activity of micheliolide and investigating its mechanism of action have been hindered by the paucity of preexisting functional groups amenable for late-stage derivatization of this molecule. Here, we report the implementation of a probe-based P450 fingerprinting strategy to rapidly evolve engineered P450 catalysts useful for the regio- and stereoselective hydroxylation of micheliolide at two previously inaccessible aliphatic positions in this complex natural product. Via P450-mediated chemoenzymatic synthesis, a broad panel of novel micheliolide analogs could thus be obtained to gain structure-activity insights into the effect of C2, C4, and C14 substitutions on the antileukemic activity of micheliolide, ultimately leading to the discovery of "micheliologs" with improved potency against acute myelogenic leukemia cells. These late-stage C-H functionalization routes could be further leveraged to generate a panel of affinity probes for conducting a comprehensive analysis of the protein targeting profile of micheliolide in leukemia cells via chemical proteomics analyses. These studies introduce new micheliolide-based antileukemic agents and shed new light onto the biomolecular targets and mechanism of action of micheliolide in leukemia cells. More broadly, this work showcases the value of the present P450-mediated C-H functionalization strategy for streamlining the late-stage diversification and elucidation of the biomolecular targets of a complex bioactive molecule.
Collapse
Affiliation(s)
- Hanan Alwaseem
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Simone Giovani
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Michele Crotti
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Kevin Welle
- Mass
Spectrometry Resource Laboratory, University
of Rochester Medical School, Rochester, New York 14627, United States
| | - Craig T. Jordan
- Department
of Hematology, School of Medicine, University
of Colorado, Aurora, Colorado 80045, United
States
| | - Sina Ghaemmaghami
- Mass
Spectrometry Resource Laboratory, University
of Rochester Medical School, Rochester, New York 14627, United States
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
25
|
Kang D, Cheung ST, Wong-Rolle A, Kim J. Enamine N-Oxides: Synthesis and Application to Hypoxia-Responsive Prodrugs and Imaging Agents. ACS CENTRAL SCIENCE 2021; 7:631-640. [PMID: 34056093 PMCID: PMC8155465 DOI: 10.1021/acscentsci.0c01586] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 05/10/2023]
Abstract
Tumor hypoxia induces the large-scale adaptive reprogramming of cancer cells, promoting their transformation into highly invasive and metastatic species that lead to highly negative prognoses for cancer patients. We describe the synthesis and application of a hypoxia-responsive trigger derived from previously inaccessible enamine N-oxide structures. Hypoxia-dependent reduction of this motif by hemeproteins results in the concomitant activation of a caged molecule and a latent electrophile. We exploit the former in a hypoxia-activated prodrug application using a caged staurosporine molecule as a proof-of-principle. We demonstrate the latter in in vivo tumor labeling applications with enamine-N-oxide-modified near-infrared probes. Hypoxia-activated prodrug development has long been complicated by the heterogeneity of tumor hypoxia in patients. The dual drug release and imaging modalities of the highly versatile enamine N-oxide motif present an attractive opportunity for theranostic development that can address the need not only for new therapeutics but paired methods for patient stratification.
Collapse
|
26
|
Wang L, Riel LP, Bajrami B, Deng B, Howell AR, Yao X. α-Methylene-β-Lactone Scaffold for Developing Chemical Probes at the Two Ends of the Selectivity Spectrum. Chembiochem 2021; 22:505-515. [PMID: 32964640 PMCID: PMC8114233 DOI: 10.1002/cbic.202000605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Indexed: 11/09/2022]
Abstract
The utilities of an α-methylene-β-lactone (MeLac) moiety as a warhead composed of multiple electrophilic sites are reported. We demonstrate that a MeLac-alkyne not only reacts with diverse proteins as a broadly reactive measurement probe, but also recruits reduced endogenous glutathione (GSH) to assemble a selective chemical probe of GSH-β-lactone (GSH-Lac)-alkyne in live cells. Tandem mass spectrometry reveals that MeLac reacts with nucleophilic cysteine, serine, lysine, threonine, and tyrosine residues, through either Michael or acyl addition. A peptide-centric proteomics platform demonstrates that the proteomic selectivity profiles of orlistat and parthenolide, which have distinct reactivities, are measurable by MeLac-alkyne as a high-coverage probe. The GSH-Lac-alkyne selectively probes the glutathione S-transferase P responsible for multidrug resistance. The assembly of the GSH-Lac probe exemplifies a modular and scalable route to develop selective probes with different recognizing moieties.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Louis P Riel
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Bekim Bajrami
- Chemical Biology & Proteomics, Biogen, Cambridge, MA 02142, USA
| | - Bin Deng
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
- Vermont Genetics Network Proteomics Facility, University of Vermont, Burlington, VT 05405, USA
| | - Amy R Howell
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
27
|
Zhang L, Qu Z, Wu J, Yao S, Zhang Q, Zhang T, Mo L, Yao Q, Xu Y, Chen R. SARs of a novel series of s-triazine compounds targeting vimentin to induce methuotic phenotype. Eur J Med Chem 2021; 214:113188. [PMID: 33550185 DOI: 10.1016/j.ejmech.2021.113188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/25/2022]
Abstract
Herein, we describe the design, synthesis and structure-activity relationships of a series of novel s-triazine compounds can induce methuotic phenotype in various types of cancer cells. (E)-1-(4-Chlorophenyl)-3-(4-((4-morpholino-6-styryl-1,3,5-triazine-2-yl)amino)phenyl)urea, compound V6, exhibited a striking methuotic phenotype with a minimal effective concentration of less than 10 nM in U87 glioblastoma cells. Based on structure-activity relationship studies, we designed and synthesized an active probe P1 that retained the full potential of V6 in inducing the methuotic phenotype in U87 glioblastoma cells. Using this probe following affinity-based proteomic profiling strategy, we identified vimentin as the specific target protein of compound V6. Molecular docking revealed that V6 can form hydrogen bonds with vimentin at 273R and 276Y in its rod domain.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| | - Zhipeng Qu
- Cambridge-Suda Genomic Resource Center, Medical College of Soochow University, Suzhou, Jiangsu, 215123, China; Luoda Biosciences, Inc., Chuzhou, Auhui, 239234, China
| | - Jianping Wu
- Luoda Biosciences, Inc., Chuzhou, Auhui, 239234, China; Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Shining Yao
- Najing Shiqi Pharmaceutical Co. Ltd., Nanjing, Jiangsu, 211198, China
| | - Qingqing Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Tao Zhang
- Cambridge-Suda Genomic Resource Center, Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lian Mo
- Aluda Pharmaceuticals, Inc., Union City, CA, 94587, USA
| | - Qizheng Yao
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| | - Ying Xu
- Cambridge-Suda Genomic Resource Center, Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Ruihuan Chen
- Cambridge-Suda Genomic Resource Center, Medical College of Soochow University, Suzhou, Jiangsu, 215123, China; Luoda Biosciences, Inc., Chuzhou, Auhui, 239234, China; Aluda Pharmaceuticals, Inc., Union City, CA, 94587, USA.
| |
Collapse
|
28
|
Ha J, Park H, Park J, Park SB. Recent advances in identifying protein targets in drug discovery. Cell Chem Biol 2020; 28:394-423. [PMID: 33357463 DOI: 10.1016/j.chembiol.2020.12.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Phenotype-based screening has emerged as an alternative route for discovering new chemical entities toward first-in-class therapeutics. However, clarifying their mode of action has been a significant bottleneck for drug discovery. For target protein identification, conventionally bioactive small molecules are conjugated onto solid supports and then applied to isolate target proteins from whole proteome. This approach requires a high binding affinity between bioactive small molecules and their target proteins. Besides, the binding affinity can be significantly hampered after structural modifications of bioactive molecules with linkers. To overcome these limitations, two major strategies have recently been pursued: (1) the covalent conjugation between small molecules and target proteins using photoactivatable moieties or electrophiles, and (2) label-free target identification through monitoring target engagement by tracking the thermal, proteolytic, or chemical stability of target proteins. This review focuses on recent advancements in target identification from covalent capturing to label-free strategies.
Collapse
Affiliation(s)
- Jaeyoung Ha
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea
| | - Hankum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea.
| | - Seung Bum Park
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea; CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
29
|
Lim Y, Kuang Y, Wu J, Yao SQ. Late‐Stage C(sp
2
)−H Functionalization: A Powerful Toolkit To Arm Natural Products for In Situ Proteome Profiling? Chemistry 2020; 27:3575-3580. [DOI: 10.1002/chem.202004373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/04/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ying‐Jie Lim
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Yulong Kuang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jie Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
30
|
Yang J, He Y, Li Y, Zhang X, Wong YK, Shen S, Zhong T, Zhang J, Liu Q, Wang J. Advances in the research on the targets of anti-malaria actions of artemisinin. Pharmacol Ther 2020; 216:107697. [PMID: 33035577 PMCID: PMC7537645 DOI: 10.1016/j.pharmthera.2020.107697] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 01/01/2023]
Abstract
Malaria has been a global epidemic health threat since ancient times. It still claims roughly half a million lives every year in this century. Artemisinin and its derivatives, are frontline antimalarial drugs known for their efficacy and low toxicity. After decades of wide use, artemisinins remain our bulwark against malaria. Here, we review decades of efforts that aim to understand the mechanism of action (MOA) of artemisinins, which help explain the specificity and potency of this anti-malarial drug. We summarize the methods and approaches employed to unravel the MOA of artemisinin over the last three decades, showing how the development of advanced techniques can help provide mechanistic insights and resolve some long-standing questions in the field of artemisinin research. We also provide examples to illustrate how to better repurpose artemisinins for anti-cancer therapies by leveraging on MOA. These examples point out a practical direction to engineer artemisinin for broader applications beyond malaria.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China; Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingke He
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China; Department of Anaesthesiology, Singapore General Hospital, Singapore
| | - Yinbao Li
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, JiangXi 341000, China
| | - Xing Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yin-Kwan Wong
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengnan Shen
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyu Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China; Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| | - Jianbin Zhang
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Qian Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.
| | - Jigang Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China; Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Tsao KK, Lee AC, Racine KÉ, Keillor JW. Site-Specific Fluorogenic Protein Labelling Agent for Bioconjugation. Biomolecules 2020; 10:E369. [PMID: 32121143 PMCID: PMC7175205 DOI: 10.3390/biom10030369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/29/2023] Open
Abstract
Many clinically relevant therapeutic agents are formed from the conjugation of small molecules to biomolecules through conjugating linkers. In this study, two novel conjugating linkers were prepared, comprising a central coumarin core, functionalized with a dimaleimide moiety at one end and a terminal alkyne at the other. In our first design, we developed a protein labelling method that site-specifically introduces an alkyne functional group to a dicysteine target peptide tag that was genetically fused to a protein of interest. This method allows for the subsequent attachment of azide-functionalized cargo in the facile synthesis of novel protein-cargo conjugates. However, the fluorogenic aspect of the reaction between the linker and the target peptide was less than we desired. To address this shortcoming, a second linker reagent was prepared. This new design also allowed for the site-specific introduction of an alkyne functional group onto the target peptide, but in a highly fluorogenic and rapid manner. The site-specific addition of an alkyne group to a protein of interest was thus monitored in situ by fluorescence increase, prior to the attachment of azide-functionalized cargo. Finally, we also demonstrated that the cargo can also be attached first, in an azide/alkyne cycloaddition reaction, prior to fluorogenic conjugation with the target peptide-fused protein.
Collapse
Affiliation(s)
| | | | | | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.K.T.); (A.C.L.); (K.É.R.)
| |
Collapse
|
32
|
Xu Y, Deng Z, Shi Y, Chen X, Xu J, Zhong S, Xiao Y, Wong NK, Zhou Y. Molecular Imaging and In Situ Quantitative Profiling of Fatty Acid Synthase with a Chemical Probe. Anal Chem 2020; 92:4419-4426. [PMID: 32053360 DOI: 10.1021/acs.analchem.9b05327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cancer cells rely on fatty acid synthase (FASN), a key enzyme for de novo biosynthesis of long chain fatty acids, to sustain their proliferative potential and drive invasion. Unfortunately, conventional FASN assays are technically inadequate for discerning otherwise elusive FASN activity in complex biological milieux, which has hindered progress in the functional study of FASN and development of its inhibitors. Here, we describe a chemical probe with unprecedented selectivity and sensitivity for the labeling of active FASN in living cells, thus demonstrating a new analytical modality for visualizing endogenous FASN activity and exploring opportunities for drug discovery.
Collapse
Affiliation(s)
- Yue Xu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Yue Shi
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Xin Chen
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jingyuan Xu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Suyun Zhong
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nai-Kei Wong
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.,CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
33
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemical Epigenetics: The Impact of Chemical and Chemical Biology Techniques on Bromodomain Target Validation. Angew Chem Int Ed Engl 2019; 58:17930-17952. [DOI: 10.1002/anie.201812164] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/08/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
34
|
Lang W, Yuan C, Zhu B, Pan S, Liu J, Luo J, Nie S, Zhu Q, Lee JS, Ge J. Expanding the "minimalist" small molecule tagging approach to different bioactive compounds. Org Biomol Chem 2019; 17:3010-3017. [PMID: 30816385 DOI: 10.1039/c8ob03175d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
"Minimalist" small molecule tagging (MSMT) is a promising approach that easily converts bioactive compounds into affinity-based probes (AfBPs) for proteomic studies. In this work, seven bioactive compounds targeting diversified protein classes were installed with "minimalist" linkers through common reactions to generate the corresponding AfBPs. These probes were evaluated for cell-based protein profiling and target validation. Among them, the entinostat-derived probe EN and the camptothecin-derived probe CA were further utilized in cellular imaging and SILAC-based large-scale target identification. Our extensive studies suggest that the "minimalist" small molecule tagging approach could be expanded to different classes of bioactive compounds for modification into AfBPs as a dual functional tool for both proteomics and cellular imaging.
Collapse
Affiliation(s)
- Wenjie Lang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemische Epigenetik: der Einfluss chemischer und chemo‐biologischer Techniken auf die Zielstruktur‐Validierung von Bromodomänen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| |
Collapse
|
36
|
A functionalized hydroxydopamine quinone links thiol modification to neuronal cell death. Redox Biol 2019; 28:101377. [PMID: 31760358 PMCID: PMC6880099 DOI: 10.1016/j.redox.2019.101377] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/09/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023] Open
Abstract
Recent findings suggest that dopamine oxidation contributes to the development of Parkinson's disease (PD); however, the mechanistic details remain elusive. Here, we compare 6-hydroxydopamine (6-OHDA), a product of dopamine oxidation that commonly induces dopaminergic neurodegeneration in laboratory animals, with a synthetic alkyne-functionalized 6-OHDA variant. This synthetic molecule provides insights into the reactivity of quinone and neuromelanin formation. Employing Huisgen cycloaddition chemistry (or “click chemistry”) and fluorescence imaging, we found that reactive 6-OHDA p-quinones cause widespread protein modification in isolated proteins, lysates and cells. We identified cysteine thiols as the target site and investigated the impact of proteome modification by quinones on cell viability. Mass spectrometry following cycloaddition chemistry produced a large number of 6-OHDA modified targets including proteins involved in redox regulation. Functional in vitro assays demonstrated that 6-OHDA inactivates protein disulfide isomerase (PDI), which is a central player in protein folding and redox homeostasis. Our study links dopamine oxidation to protein modification and protein folding in dopaminergic neurons and the PD model. Chemical modification of 6-OHDA increases stability of 6-OHDA p-quinone by preventing neuromelanin formation. Modified 6-OHDA enables visualization of thiol-dependent protein modification by p-quinone. Wide-spread proteome modification by 6-OHDA p-quinone impairs neuroblastoma viability. 6-OHDA p-quinone inactivates PDI linking dopamine oxidation to protein unfolding.
Collapse
|
37
|
Fluorescent cyclic phosphoramide mustards and their cytotoxicity against cancer and cancer stem cells. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
38
|
Fatty Acid Inhibition Sensitizes Androgen-Dependent and -Independent Prostate Cancer to Radiotherapy via FASN/NF-κB Pathway. Sci Rep 2019; 9:13284. [PMID: 31527721 PMCID: PMC6746859 DOI: 10.1038/s41598-019-49486-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Elevated fatty acid synthase (FASN) has been reported in both androgen-dependent and -independent prostate cancers. Conventional treatment for prostate cancer is radiotherapy (RT); however, the following radiation-induced radioresistance often causes treatment failure. Upstream proteins of FASN such as Akt and NF-κB are found increased in the radioresistant prostate cancer cells. Nevertheless, whether inhibition of FASN could improve RT outcomes and reverse radiosensitivity of prostate cancer cells is still unknown. Here, we hypothesised that orlistat, a FASN inhibitor, could improve RT outcomes in prostate cancer. Orlistat treatment significantly reduced the S phase population in both androgen-dependent and -independent prostate cancer cells. Combination of orlistat and RT significantly decreased NF-κB activity and related downstream proteins in both prostate cancer cells. Combination effect of orlistat and RT was further investigated in both LNCaP and PC3 tumour-bearing mice. Combination treatment showed the best tumour inhibition compared to that of orlistat alone or RT alone. These results suggest that prostate cancer treated by conventional RT could be improved by orlistat via inhibition of FASN.
Collapse
|
39
|
Weigt D, Parrish CA, Krueger JA, Oleykowski CA, Rendina AR, Hopf C. Mechanistic MALDI-TOF Cell-Based Assay for the Discovery of Potent and Specific Fatty Acid Synthase Inhibitors. Cell Chem Biol 2019; 26:1322-1331.e4. [PMID: 31279605 DOI: 10.1016/j.chembiol.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022]
Abstract
Human cancers require fatty acid synthase (FASN)-dependent de novo long-chain fatty acid synthesis for proliferation. FASN is therefore an attractive drug target, but fast technologies for reliable label-free cellular compound profiling are lacking. Recently, MALDI-mass spectrometry (MALDI-MS) has emerged as an effective technology for discovery of recombinant protein target inhibitors. Here we present an automated, mechanistic MALDI-MS cell assay, which monitors accumulation of the FASN substrate, malonyl-coenzyme A (CoA), in whole cells with limited sample preparation. Profiling of inhibitors, including unpublished compounds, identified compound 1 as the most potent FASN inhibitor (1 nM in A549 cells) discovered to date. Moreover, cellular MALDI-MS assays enable parallel profiling of additional pathway metabolites. Surprisingly, several compounds triggered cytidine 5'-diphosphocholine (CDP-choline) but not malonyl-CoA accumulation indicating that they inhibit diacylglycerol generation but not FASN activity. Taken together, our study suggests that MALDI-MS cell assays may become important tools in drug profiling that provide additional mechanistic insights concerning compound action on metabolic pathways.
Collapse
Affiliation(s)
- David Weigt
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim Technical University, Paul-Wittsack-Strasse 10, 68163 Mannheim, Germany
| | - Cynthia A Parrish
- Medicinal Chemistry, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Julie A Krueger
- Immuno-Oncology and Combinations Research Unit, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Catherine A Oleykowski
- Immuno-Oncology and Combinations Research Unit, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Alan R Rendina
- Screening, Profiling and Mechanistic Biology, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim Technical University, Paul-Wittsack-Strasse 10, 68163 Mannheim, Germany.
| |
Collapse
|
40
|
Yang Y, Cao L, Gao H, Wu Y, Wang Y, Fang F, Lan T, Lou Z, Rao Y. Discovery, Optimization, and Target Identification of Novel Potent Broad-Spectrum Antiviral Inhibitors. J Med Chem 2019; 62:4056-4073. [DOI: 10.1021/acs.jmedchem.9b00091] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yiqing Yang
- Tsinghua University−Peking University Joint Center for Life Sciences, Beijing 100084, P. R. China
| | - Lin Cao
- College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Hongying Gao
- Tsinghua University−Peking University Joint Center for Life Sciences, Beijing 100084, P. R. China
| | | | - Yaxin Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | | | | | | | | |
Collapse
|
41
|
Zhou J, Mock ED, Martella A, Kantae V, Di X, Burggraaff L, Baggelaar MP, Al-Ayed K, Bakker A, Florea BI, Grimm SH, den Dulk H, Li CT, Mulder L, Overkleeft HS, Hankemeier T, van Westen GJP, van der Stelt M. Activity-Based Protein Profiling Identifies α-Ketoamides as Inhibitors for Phospholipase A2 Group XVI. ACS Chem Biol 2019; 14:164-169. [PMID: 30620559 PMCID: PMC6379856 DOI: 10.1021/acschembio.8b00969] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023]
Abstract
Phospholipase A2, group XVI (PLA2G16) is a thiol hydrolase from the HRASLS family that regulates lipolysis in adipose tissue and has been identified as a host factor enabling the cellular entry of picornaviruses. Chemical tools are essential to visualize and control PLA2G16 activity, but they have not been reported to date. Here, we show that MB064, which is a fluorescent lipase probe, also labels recombinant and endogenously expressed PLA2G16. Competitive activity-based protein profiling (ABPP) using MB064 enabled the discovery of α-ketoamides as the first selective PLA2G16 inhibitors. LEI110 was identified as a potent PLA2G16 inhibitor ( Ki = 20 nM) that reduces cellular arachidonic acid levels and oleic acid-induced lipolysis in human HepG2 cells. Gel-based ABPP and chemical proteomics showed that LEI110 is a selective pan-inhibitor of the HRASLS family of thiol hydrolases (i.e., PLA2G16, HRASLS2, RARRES3 and iNAT). Molecular dynamic simulations of LEI110 in the reported crystal structure of PLA2G16 provided insight in the potential ligand-protein interactions to explain its binding mode. In conclusion, we have developed the first selective inhibitor that can be used to study the cellular role of PLA2G16.
Collapse
Affiliation(s)
- Juan Zhou
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Elliot D. Mock
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Andrea Martella
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Vasudev Kantae
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Department
of Analytical BioSciences and Metabolomics, Leiden Academic Centre
for Drug Research, Leiden University, Leiden, The Netherlands
| | - Xinyu Di
- Department
of Analytical BioSciences and Metabolomics, Leiden Academic Centre
for Drug Research, Leiden University, Leiden, The Netherlands
| | - Lindsey Burggraaff
- Department
of Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Marc P. Baggelaar
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Karol Al-Ayed
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Bakker
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Bogdan I. Florea
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Sebastian H. Grimm
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Hans den Dulk
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Chun T. Li
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Laura Mulder
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Herman S. Overkleeft
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Thomas Hankemeier
- Department
of Analytical BioSciences and Metabolomics, Leiden Academic Centre
for Drug Research, Leiden University, Leiden, The Netherlands
| | - Gerard J. P. van Westen
- Department
of Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mario van der Stelt
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
42
|
You BJ, Chen LY, Hsu PH, Sung PH, Hung YC, Lee HZ. Orlistat Displays Antitumor Activity and Enhances the Efficacy of Paclitaxel in Human Hepatoma Hep3B Cells. Chem Res Toxicol 2019; 32:255-264. [DOI: 10.1021/acs.chemrestox.8b00269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bang-Jau You
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan
| | - Li-Yun Chen
- School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Po-Hsiang Hsu
- School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Pei-Hsuan Sung
- School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Yu-Ching Hung
- School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Hong-Zin Lee
- School of Pharmacy, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
43
|
Tian DM, Qiao J, Bao YZ, Liu J, Zhang XK, Sun XL, Zhang YW, Yao XS, Tang JS. Design and synthesis of biotinylated cardiac glycosides for probing Nur77 protein inducting pathway. Bioorg Med Chem Lett 2019; 29:707-712. [PMID: 30670347 DOI: 10.1016/j.bmcl.2019.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/13/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022]
Abstract
The orphan nuclear receptor Nur77 (also known as TR3 or nerve growth factor-induced clone B NGFI-B) functions as a nuclear transcription factor in the regulation of target gene expression and plays a critical role in the regulation of differentiation, proliferation, apoptosis, and survival of many different cell types. Recent studies demonstrate that Nur77 also involves many important physiological and pathological processes including cancer, inflammation and immunity, cardiovascular diseases, and bone diseases. Our previous studies showed that cardiac glycosides could induce the expression of Nur77 protein and its translocation from the nucleus to the cytoplasm and subsequent targeting to mitochondria, leading to apoptosis of cancer cells. In order to probe the Nur77 protein inducting pathway, we designed and synthesized a series of novel biotinylated cardiac glycosides from β-Antiarin and α-Antiarin, two typical cardiac glycosides from the plant of Antiaris toxicaria. The induction of Nur77 protein expression of these biotinylated cardiac glycosides and their inhibitory effects on NIH-H460 cancer cell proliferation were evaluated. Results displayed that some biotinylated cardiac glycosides could significantly induce the expression of Nur77 protein comparable with their parent compounds β-Antiarin and α-Antiarin. Also, their streptavidin binding activities were evaluated. Among them, biotinylated cardiac glycosides P4b and P5a exhibited significant effect on the induction of Nur77 expression along with high binding capacity with streptavidin, suggesting that they can be used as probes for probing Nur77 protein inducting pathway.
Collapse
Affiliation(s)
- Dan-Mei Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jia Qiao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yu-Zhou Bao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jie Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, United States
| | - You-Wei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Jin-Shan Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
44
|
Ying S, Du S, Dong J, Ng BX, Zhang C, Li L, Ge J, Zhu Q. Intracellular effects of prodrug-like wortmannin probes. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Guo C, Chang Y, Wang X, Zhang C, Hao P, Ding K, Li Z. Minimalist linkers suitable for irreversible inhibitors in simultaneous proteome profiling, live-cell imaging and drug screening. Chem Commun (Camb) 2019; 55:834-837. [DOI: 10.1039/c8cc08685k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of minimalist linkers were developed and have been demonstrated to be suitable for irreversible inhibitors in simultaneous proteome profiling, live-cell imaging and drug screening, thus facilitating the discovery of first-in-class anticancer drugs.
Collapse
Affiliation(s)
- Cuiping Guo
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China
- Guangzhou
- China
| | - Yu Chang
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China
- Guangzhou
- China
| | - Xin Wang
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China
- Guangzhou
- China
| | - Chengqian Zhang
- School of Life Science and Technology, ShanghaiTech University
- Shanghai 201210
- China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University
- Shanghai 201210
- China
| | - Ke Ding
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China
- Guangzhou
- China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou City Key Laboratory of Precision Chemical Drug Development, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China
- Guangzhou
- China
| |
Collapse
|
46
|
Chen DM, Ziolkowski L, Benz A, Qian M, Zorumski CF, Covey DF, Mennerick S. A Clickable Oxysterol Photolabel Retains NMDA Receptor Activity and Accumulates in Neurons. Front Neurosci 2018; 12:923. [PMID: 30574068 PMCID: PMC6291516 DOI: 10.3389/fnins.2018.00923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/23/2018] [Indexed: 01/22/2023] Open
Abstract
Oxysterol analogs that modulate NMDA receptor function are candidates for therapeutic development to treat neuropsychiatric disorders. However, the cellular actions of these compounds are still unclear. For instance, how these compounds are compartmentalized or trafficked in neurons is unknown. In this study, we utilized a chemical biology approach combining photolabeling and click chemistry. We introduce a biologically active oxysterol analog that contains: (1) a diazirine group, allowing for the permanent labeling of cellular targets, and (2) an alkyne group, allowing for subsequent in situ visualization using Cu2+ catalyzed cycloaddition of an azide-conjugated fluorophore. The physiological properties of this analog at NMDA receptors resemble those of other oxysterols, including occlusion with other oxysterol-like compounds. Fluorescent imaging reveals that the analog accumulates diffusely in the cytoplasm of neurons through an energy-independent mechanism. Overall, this work introduces a novel chemical biology approach to investigate oxysterol actions and introduces a tool useful for further cell biological and biochemical studies of oxysterols.
Collapse
Affiliation(s)
- Daniel M Chen
- Department of Psychiatry, Washington University, St. Louis, MO, United States
| | - Luke Ziolkowski
- Department of Psychiatry, Washington University, St. Louis, MO, United States
| | - Ann Benz
- Department of Psychiatry, Washington University, St. Louis, MO, United States.,Taylor Family Institute for Innovative Psychiatric Research, St. Louis, MO, United States
| | - Mingxing Qian
- Department of Developmental Biology, Washington University, St. Louis MO, United States
| | - Charles F Zorumski
- Department of Psychiatry, Washington University, St. Louis, MO, United States.,Taylor Family Institute for Innovative Psychiatric Research, St. Louis, MO, United States
| | - Douglas F Covey
- Taylor Family Institute for Innovative Psychiatric Research, St. Louis, MO, United States.,Department of Developmental Biology, Washington University, St. Louis MO, United States
| | - Steven Mennerick
- Department of Psychiatry, Washington University, St. Louis, MO, United States.,Taylor Family Institute for Innovative Psychiatric Research, St. Louis, MO, United States
| |
Collapse
|
47
|
Abstract
Successful viral infection, as well as any resultant antiviral response, relies on numerous sequential interactions between host and viral factors. These interactions can take the form of affinity-based interactions between viral and host macromolecules or active, enzyme-based interactions, consisting both of direct enzyme activity performed by viral enzymes and indirect modulation of the activity of the host cell's enzymes via viral interference. This activity has the potential to transform the local microenvironment to the benefit or detriment of both the virus and the host, favouring either the continuation of the viral life cycle or the host's antiviral response. Comprehensive characterisation of enzymatic activity during viral infection is therefore necessary for the understanding of virally induced diseases. Activity-based protein profiling techniques have been established as effective and practicable tools with which to interrogate the regulation of enzymes' catalytic activity and the roles played by these enzymes in various cell processes. This paper will review the contributions of these techniques in characterising the roles of both host and viral enzymes during viral infection in humans.
Collapse
Affiliation(s)
- Benjamin F. Cravatt
- grid.214007.00000000122199231Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Ku-Lung Hsu
- grid.27755.320000 0000 9136 933XDepartment of Chemistry, University of Virginia, Charlottesville, VA USA
| | - Eranthie Weerapana
- grid.208226.c0000 0004 0444 7053Department of Chemistry, Boston College, Chestnut Hill, MA USA
| |
Collapse
|
48
|
Delineating the Physiological Roles of the PE and Catalytic Domains of LipY in Lipid Consumption in Mycobacterium-Infected Foamy Macrophages. Infect Immun 2018; 86:IAI.00394-18. [PMID: 29986895 DOI: 10.1128/iai.00394-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/03/2018] [Indexed: 12/29/2022] Open
Abstract
Within tuberculous granulomas, a subpopulation of Mycobacterium tuberculosis resides inside foamy macrophages (FM) that contain abundant cytoplasmic lipid bodies (LB) filled with triacylglycerol (TAG). Upon fusion of LB with M. tuberculosis-containing phagosomes, TAG is hydrolyzed and reprocessed by the bacteria into their own lipids, which accumulate as intracytosolic lipid inclusions (ILI). This phenomenon is driven by many mycobacterial lipases, among which LipY participates in the hydrolysis of host and bacterial TAG. However, the functional contribution of LipY's PE domain to TAG hydrolysis remains unclear. Here, enzymatic studies were performed to compare the lipolytic activities of recombinant LipY and its truncated variant lacking the N-terminal PE domain, LipY(ΔPE). Complementarily, an FM model was used where bone marrow-derived mouse macrophages were infected with M. bovis BCG strains either overexpressing LipY or LipY(ΔPE) or carrying a lipY deletion mutation prior to being exposed to TAG-rich very-low-density lipoprotein (VLDL). Results indicate that truncation of the PE domain correlates with increased TAG hydrolase activity. Quantitative electron microscopy analyses showed that (i) in the presence of lipase inhibitors, large ILI (ILI+3) were not formed because of an absence of LB due to inhibition of VLDL-TAG hydrolysis or inhibition of LB-neutral lipid hydrolysis by mycobacterial lipases, (ii) ILI+3 profiles in the strain overexpressing LipY(ΔPE) were reduced, and (iii) the number of ILI+3 profiles in the ΔlipY mutant was reduced by 50%. Overall, these results delineate the role of LipY and its PE domain in host and mycobacterial lipid consumption and show that additional mycobacterial lipases take part in these processes.
Collapse
|
49
|
Bumbaca B, Li W. Taxane resistance in castration-resistant prostate cancer: mechanisms and therapeutic strategies. Acta Pharm Sin B 2018; 8:518-529. [PMID: 30109177 PMCID: PMC6089846 DOI: 10.1016/j.apsb.2018.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Despite its good initial response and significant survival benefit in patients with castration-resistant prostate cancer (CRPC), taxane therapy inevitably encounters drug resistance in all patients. Deep understandings of taxane resistant mechanisms can significantly facilitate the development of new therapeutic strategies to overcome taxane resistance and improve CRPC patient survival. Multiple pathways of resistance have been identified as potentially crucial areas of intervention. First, taxane resistant tumor cells typically have mutated microtubule binding sites, varying tubulin isotype expression, and upregulation of efflux transporters. These mechanisms contribute to reducing binding affinity and availability of taxanes. Second, taxane resistant tumors have increased stem cell like characteristics, indicating higher potential for further mutation in response to therapy. Third, the androgen receptor pathway is instrumental in the proliferation of CRPC and multiple hypotheses leading to this pathway reactivation have been reported. The connection of this pathway to the AKT pathway has received significant attention due to the upregulation of phosphorylated AKT in CRPC. This review highlights recent advances in elucidating taxane resistant mechanisms and summarizes potential therapeutic strategies for improved treatment of CRPC.
Collapse
|
50
|
Ye B, Jiang P, Zhang T, Ding Y, Sun Y, Hao X, Li L, Wang L, Chen Y. Total Synthesis of the Highly N-Methylated Peptide Jahanyne. J Org Chem 2018; 83:6741-6747. [PMID: 29798667 DOI: 10.1021/acs.joc.8b00503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Total synthesis of jahanyne (1) was achieved from commercially available materials on a 38 mg scale. The Boc- N-Me- L-Val-OH fragment along with the HATU/DIPEA coupling condition was applied to avoid the diketopiperazine side reaction in solution phase synthesis.
Collapse
Affiliation(s)
- Baijun Ye
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300350 , People's Republic of China
| | - Peng Jiang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300350 , People's Republic of China
| | - Tingrong Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300350 , People's Republic of China
| | - Yahui Ding
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300350 , People's Republic of China
| | - Yuanjun Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300350 , People's Republic of China
| | - Xin Hao
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300350 , People's Republic of China
| | - Lanshu Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300350 , People's Republic of China
| | - Liang Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300350 , People's Republic of China
| | - Yue Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300350 , People's Republic of China
| |
Collapse
|