1
|
Paul H, Das D, Ariyan SK, Pradhan S, Chatterjee I. Photoredox catalyzed reductive trifluoromethylation of imines via a radical umpolung strategy. Chem Commun (Camb) 2024; 60:13016-13019. [PMID: 39423333 DOI: 10.1039/d4cc03897e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Visible light-induced radical umpolung chemistry is utilized to synthesize trifluoromethylated unnatural α-amino acid and amine derivatives. This approach utilizes photoredox catalysis to perform a single-electron-transfer reduction of imines generating a N-centred radical that eventually migrates to the C-centre followed by a radical-radical cross-coupling to deliver reductive trifluoromethylation products.
Collapse
Affiliation(s)
- Hrishikesh Paul
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Dibyangshu Das
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - S K Ariyan
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Suman Pradhan
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
2
|
Chen L, Liao G, Liu B. Ligand-Enabled Nickel(II)-Catalyzed β-C(sp 3)-H Thiolation of Ketones. Org Lett 2024; 26:9103-9107. [PMID: 39404507 DOI: 10.1021/acs.orglett.4c03404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
We present the first example of nickel(II)-catalyzed β-C(sp3)-H thiolation of ketones, employing 2-hydrazinopyridine as an efficient directing group. This approach enables the thiolation of a diverse array of ketones at the β-position. The straightforward installation and subsequent removal of the directing group significantly enhance the synthetic versatility and practicality of this transformation.
Collapse
Affiliation(s)
- Lili Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Gang Liao
- Xiangya School of Pharmaceutical Sciences, Furong Laboratory, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| |
Collapse
|
3
|
Rafaniello AA, Kumar R, Phillips RC, Gaunt MJ. Modular Synthesis of Heterobenzylic Amines via Carbonyl Azinylative Amination. Angew Chem Int Ed Engl 2024; 63:e202408287. [PMID: 38994685 DOI: 10.1002/anie.202408287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
Transformations enabling the synthesis of α-alkyl, α'-2-azinyl amines by addition of 2-heteroaryl-based nucleophiles to in situ-generated and non-activated alkyl-substituted iminium ions are extremely rare. Approaches involving classical 2-azinyl organometallics, such as the corresponding Grignard reagents, often fail to produce the desired products. Here, we report an operationally straightforward solution to this problem through the development of a multicomponent coupling process wherein a soft 2-azinyl indium nucleophile, generated in situ from the corresponding 2-iodo heteroarene and indium powder, adds to an iminium ion that is also formed directly in the reaction. This modular carbonyl azinylative amination (CAzA) displays a broad scope and only a metal reductant is needed to generate a reactive 2-azinyl nucleophile. Beyond the addition to iminium ions, the 2-azinyl addition to polyfluoromethyl ketones forms the corresponding tertiary alcohols. Together, the products of these reactions possess a high degree of functionality, are typically challenging to synthesize by other methods, and contain motifs recognized as privileged in the context of pharmaceuticals and agrochemicals.
Collapse
Affiliation(s)
- Alex A Rafaniello
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, United Kingdom
| | - Roopender Kumar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, United Kingdom
| | - Rachel C Phillips
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
4
|
Cao Q, Feng J, Chang KT, Liang W, Lu H. Emerging Opportunities of Colloidal Quantum Dots for Photocatalytic Organic Transformations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409096. [PMID: 39340294 DOI: 10.1002/adma.202409096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Colloidal quantum dots (QDs) have emerged as a versatile photocatalyst for a wide range of photocatalytic transformations owing to its high absorption coefficient, large surface-to-volume ratio, high stability, and efficient charge and energy transfer dynamics. The past decades have witnessed a rapid development of QDs for artificial photocatalysis. In this review, the unique characteristics of QDs are focused on, including quantum size effect, compositional and structural diversity, tunable surface chemistry, and photophysics, that can be utilized for photocatalytic transformations. The recent advancements in photocatalytic organic transformations enabled by QDs photocatalysts are summarized. The unique opportunities of QDs are highlighted to tackle organic reactions that are previously unattainable with small molecule photocatalysts. Lastly, an outlook is provided for future directions in this field.
Collapse
Affiliation(s)
- Qinxuan Cao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Jianning Feng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Kin Ting Chang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Wenfei Liang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Haipeng Lu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
5
|
Waller H, Gaunt MJ. Silyl Radicals as Single-Electron Reductants: α-Aminoalkyl Radical Formation via a Photocatalytic Oxidatively Initiated Radical Chain Process. J Am Chem Soc 2024; 146:25894-25901. [PMID: 39283265 PMCID: PMC11440502 DOI: 10.1021/jacs.4c08230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
The α-amino-radical constitutes a versatile reactive intermediate that has been used to great effect in the synthesis of complex amine-containing products. Here, we report the development of a multicomponent photocatalytic platform enabling access to all-alkyl α-amino-radicals, exploiting the oxidative formation of silyl-radicals from commercially available tris(trimethylsilyl)silane. A key design element of the new process involves the role of silyl-radicals in generating α-amino-radicals from iminium ions as part of an oxidatively initiated photocatalytic radical chain process. This distinct activation mode is showcased by engaging the ensuing radicals in cross-radical coupling with persistent arene radical anions, enabling the arylation of in situ-generated all-alkyl iminium ions to furnish alkyl-substituted benzylamines.
Collapse
Affiliation(s)
- Harry
C. Waller
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Matthew J. Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
6
|
Guo SY, Liu YP, Huang JS, He LB, He GC, Ji DW, Wan B, Chen QA. Visible light-induced chemoselective 1,2-diheteroarylation of alkenes. Nat Commun 2024; 15:6102. [PMID: 39030211 PMCID: PMC11271625 DOI: 10.1038/s41467-024-50460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
Visible-light photocatalysis has evolved as a powerful technique to enable controllable radical reactions. Exploring unique photocatalytic mode for obtaining new chemoselectivity and product diversity is of great significance. Herein, we present a photo-induced chemoselective 1,2-diheteroarylation of unactivated alkenes utilizing halopyridines and quinolines. The ring-fused azaarenes serve as not only substrate, but also potential precursors for halogen-atom abstraction for pyridyl radical generation in this photocatalysis. As a complement to metal catalysis, this photo-induced radical process with mild and redox neutral conditions assembles two different heteroaryl groups into alkenes regioselectively and contribute to broad substrates scope. The obtained products containing aza-arene units permit various further diversifications, demonstrating the synthetic utility of this protocol. We anticipate that this protocol will trigger the further advancement of photo-induced alkyl/aryl halides activation.
Collapse
Affiliation(s)
- Shi-Yu Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yi-Peng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jin-Song Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Li-Bowen He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gu-Cheng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Sennari G, Yamagishi H, Sarpong R. Remote C-H Amination and Alkylation of Camphor at C8 through Hydrogen-Atom Abstraction. J Am Chem Soc 2024; 146:7850-7857. [PMID: 38447162 DOI: 10.1021/jacs.4c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Camphor continues to serve as a versatile chiral building block for chemical synthesis. We have developed a novel method to functionalize the camphor skeleton at C8 using an intramolecular hydrogen atom abstraction. The key advance involves the use of a camphor-derived aminonitrile, which is converted to the corresponding nitrogen-centered radical under photoredox conditions to effect the 1,5-hydrogen atom transfer at C8. The resulting carbon-centered radical at C8 was utilized in a C-H amination to access topologically complex proline derivatives. Furthermore, the total synthesis of several sesquiterpenoids was accomplished by engaging the radical generated at C8 in alkylation reactions.
Collapse
Affiliation(s)
- Goh Sennari
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroki Yamagishi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Wang C, Liu X, Wang Q, Fang WH, Chen X. Unveiling Mechanistic Insights and Photocatalytic Advancements in Intramolecular Photo-(3 + 2)-Cycloaddition: A Comparative Assessment of Two Paradigmatic Single-Electron-Transfer Models. JACS AU 2024; 4:419-431. [PMID: 38425917 PMCID: PMC10900211 DOI: 10.1021/jacsau.3c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 03/02/2024]
Abstract
The synthesis of 1-aminonorbornane (1-aminoNB), a potential aniline bioisostere, through photochemistry or photoredox catalysis signifies a remarkable breakthrough with implications in organic chemistry, pharmaceutical chemistry, and sustainable chemistry. However, an understanding of the underlying mechanisms involved in these reactions remains limited and ambiguous. Herein, we employ high-precision CASPT2//CASSCF calculations to elucidate the intricate mechanisms regulating the intramolecular photo-(3 + 2)-cycloaddition reactions for the synthesis of 1-aminoNB in the presence or absence of the Ir-complex-based photocatalyst. Our investigations delve into radical cascades, stereoselectivity, particularly single-electron-transfer (SET) events, etc. Furthermore, we innovatively introduce and compare two SET models integrating Marcus electron-transfer theory and transition-state theory. These models combined with kinetic data contribute to recognizing the critical control factors in diverse photocatalysis, thereby guiding the design and manipulation of photoredox catalysis as well as the improvement and modification of photocatalysts.
Collapse
Affiliation(s)
- Chu Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Xiao Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Qian Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| |
Collapse
|
9
|
Samanta D, Saha P, Maity S, Mondal S, Ghosh P. Coligands Controlled Reactivities of Ruthenium(II) Precursors: Antiferromagnetically Coupled Ruthenium(III)-Phenoxyl versus Ruthenium(II)-Phenoxyl Forms. Inorg Chem 2024; 63:229-246. [PMID: 38141026 DOI: 10.1021/acs.inorgchem.3c03060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The study disclosed that the reactivities of [RuII (PPh3)3Cl2] and [RuII(PPh3)3(CO)(H)Cl] precursors toward a trimethoxyarylimino-phenol derivative are sensibly different. The former promotes methoxy demethylation reaction affording a [Phenolato-RuIII-Phenolato] unit, while the latter containing π-acidic CO and hydride as coligands leads to C-H activation reaction, generating a [Phenolato-RuII-Aryl] unit. Notably, the oxidized analogues of these two forms produce antiferromagnetically coupled [RuIII-phenoxyl] and paramagnetic [RuII-phenoxyl] forms, which exhibit diverse reactivities. Surprisingly, the magnetically coupled [RuIII-phenoxyl] form obtained from [Phenolato-RuIII-Phenolato] motif leads to coligand, PPh3 oxidation and undergoes dimerization, making a Ru-Ru bond (2.599(2) Å), while the [RuII-phenoxyl] form obtained from [Phenolato-RuII-Aryl] motif leads to C-C coupling and H abstraction reactions. The coupling reaction affords a 4,4'-dibenzosemiquinonate anion radical complex, but the H-abstraction of the phenoxyl form gives a [RuII-Phenol] complex. For comparison, [RuII(IQR 0)] and [RuII(ISQR·-)] complexes were also isolated, where IQR 0 and ISQR·- are p-R-o-iminobenzoquinone and p-R-o-iminobenzosemiquinonate anion radicals. However, they fail to promote any bond-formation reaction. The molecular and electronic structures of the ruthenium (II/III) complexes were confirmed by single-crystal X-ray crystallography, EPR spectroscopy, and DFT calculations.
Collapse
Affiliation(s)
- Debasish Samanta
- Department of Chemistry, Ramakrishna Mission Residential College, Narendrapur, Kolkata 700103, India
| | - Pinaki Saha
- Department of Chemistry, Ramakrishna Mission Residential College, Narendrapur, Kolkata 700103, India
| | - Suvendu Maity
- Department of Chemistry, Ramakrishna Mission Residential College, Narendrapur, Kolkata 700103, India
| | - Sudipto Mondal
- Department of Chemistry, Ramakrishna Mission Residential College, Narendrapur, Kolkata 700103, India
| | - Prasanta Ghosh
- Department of Chemistry, Ramakrishna Mission Residential College, Narendrapur, Kolkata 700103, India
| |
Collapse
|
10
|
Mörsdorf JM, Ballmann J. Coordination-Induced Radical Generation: Selective Hydrogen Atom Abstraction via Controlled Ti-C σ-Bond Homolysis. J Am Chem Soc 2023; 145:23452-23460. [PMID: 37861658 DOI: 10.1021/jacs.3c05748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A method for the generation of transient alkyl radicals via homolytic Ti-C bond cleavage was developed by employing a tailor-made organotitanium half-cage complex. In contrast to established metal-mediated radical initiation protocols via thermal or photochemical M-C σ-bond homolysis, radical formation is triggered solely by coordination of a solvent molecule (thf) to a titanium(IV) center. During the reaction, the nonstabilized alkyl radical is formed along with a persistent titanium(III) metalloradical, thus taming the former transient radical (persistent radical effect). Radical coupling and hydrogen atom abstraction (HAT) reactions have been explored not only experimentally but also computationally and by means of kinetic analysis. Exploiting these findings led to the development of selective HAT transformations, for example, with 9,10-dihydroanthracene. Deuterium labeling studies using selectively deuterated alkyls and 9,10-dihydroanthracene-d4 confirmed a radical pathway, which was underpinned by developing a radical-radical cross-coupling reaction for transferring the alkyl radical to a stable Sn-centered radical. To set the stage for an application in organic synthesis, a 5-endo-trig radical cyclization based on our methodology was established, and a dihydroxylated sesquiterpene was thus prepared in high diastereomeric excess.
Collapse
Affiliation(s)
- Jean-Marc Mörsdorf
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, D-69120 Heidelberg, Germany
| |
Collapse
|
11
|
Dolcini L, Gandini T, Castiglioni R, Bossi A, Penconi M, Dal Corso A, Gennari C, Pignataro L. Visible Light-Promoted β-Functionalization of Carbonyl Compounds in the Presence of Organic Dyes. J Org Chem 2023; 88:14283-14291. [PMID: 37792665 PMCID: PMC10594657 DOI: 10.1021/acs.joc.3c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 10/06/2023]
Abstract
Herein, we investigate the use of organic photocatalysts in the visible light-promoted β-functionalization of carbonyl compounds. In particular, we studied the addition of aliphatic aldehydes to α,β-unsaturated compounds (β-Michael addition), and the reaction of cyclic ketones with either ketones (β-aldol condensation) or imines (β-Mannich reaction). Among the dyes tested, donor-acceptor cyanoarenes gave the best results, promoting the transformations of interest in moderate to good yields. The reaction scope was investigated on substrates with different steric and electronic properties. Fluorescence quenching analysis (Stern-Volmer experiments) led us to propose for these reactions a reductive quenching mechanism involving a transient 5πe- activation mode.
Collapse
Affiliation(s)
- Luigi Dolcini
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| | - Tommaso Gandini
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| | - Riccardo Castiglioni
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| | - Alberto Bossi
- Istituto
di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)
del Consiglio Nazionale delle Ricerche (CNR), via Fantoli 16/15; SmartMatLab Center, via C. Golgi
19, Milano 20138, Italy
| | - Marta Penconi
- Istituto
di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)
del Consiglio Nazionale delle Ricerche (CNR), via Fantoli 16/15; SmartMatLab Center, via C. Golgi
19, Milano 20138, Italy
| | - Alberto Dal Corso
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| | - Cesare Gennari
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| | - Luca Pignataro
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| |
Collapse
|
12
|
Bosveli A, Griboura N, Kampouropoulos I, Kalaitzakis D, Montagnon T, Vassilikogiannakis G. The Rapid Synthesis of Colibactin Warhead Model Compounds Using New Metal-Free Photocatalytic Cyclopropanation Reactions Facilitates the Investigation of Biological Mechanisms. Chemistry 2023; 29:e202301713. [PMID: 37452669 DOI: 10.1002/chem.202301713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Herein, we report the synthesis of a series of colibactin warhead model compounds using two newly developed metal-free photocatalytic cyclopropanation reactions. These mild cyclopropanations expand the known applications of eosin within synthesis. A halogen atom transfer reaction mode has been harnessed so that dihalides can be used as the cyclopropanating agents. The colibactin warhead models were then used to provide new insight into two key mechanisms in colibactin chemistry. An explanation is provided for why the colibactin warhead sometimes undergoes a ring expansion-addition reaction to give fused cyclobutyl products while at other times nucleophiles add directly to the cyclopropyl unit (as when DNA adds to colibactin). Finally, we provide some evidence that Cu(II) chelated to colibactin may catalyze an important oxidation of the colibactin-DNA adduct. The Cu(I) generated as a result could then also play a role in inducing double strand breaks in DNA.
Collapse
Affiliation(s)
- Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | - Nefeli Griboura
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | | | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | | |
Collapse
|
13
|
Meger FS, Murphy JA. Recent Advances in C-H Functionalisation through Indirect Hydrogen Atom Transfer. Molecules 2023; 28:6127. [PMID: 37630379 PMCID: PMC10459052 DOI: 10.3390/molecules28166127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The functionalisation of C-H bonds has been an enormous achievement in synthetic methodology, enabling new retrosynthetic disconnections and affording simple synthetic equivalents for synthons. Hydrogen atom transfer (HAT) is a key method for forming alkyl radicals from C-H substrates. Classic reactions, including the Barton nitrite ester reaction and Hofmann-Löffler-Freytag reaction, among others, provided early examples of HAT. However, recent developments in photoredox catalysis and electrochemistry have made HAT a powerful synthetic tool capable of introducing a wide range of functional groups into C-H bonds. Moreover, greater mechanistic insights into HAT have stimulated the development of increasingly site-selective protocols. Site-selectivity can be achieved through the tuning of electron density at certain C-H bonds using additives, a judicious choice of HAT reagent, and a solvent system. Herein, we describe the latest methods for functionalizing C-H/Si-H/Ge-H bonds using indirect HAT between 2018-2023, as well as a critical discussion of new HAT reagents, mechanistic aspects, substrate scopes, and background contexts of the protocols.
Collapse
Affiliation(s)
- Filip S. Meger
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 16 Avinguda dels Països Catalans, 43007 Tarragona, Catalonia, Spain
| | - John A. Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
14
|
Sakkani N, Jha DK, Sadiq N, Zhao JCG. Organocatalytic synthesis of β-enaminyl radicals as single-electron donors for phenyliodine(III) dicarboxylates: direct one-pot alkylation-aminoxidation of styrenes. Org Biomol Chem 2023; 21:761-767. [PMID: 36594169 DOI: 10.1039/d2ob01826h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A direct one-pot alkylation-aminoxidation of styrene derivatives was achieved using in situ-generated alkyl and N-oxyl radicals. The corresponding O-alkylated hydroxylamine derivatives were obtained in moderate to good yields. The reaction features the generation of the alkyl radicals from phenyliodine(III) dicarboxylates via an organocatalytic process, the use of phenyliodine(III) dicarboxylates as the source of the alkyl radicals and oxidants for the generation of N-oxyl radicals, and the first generation of the β-enaminyl radicals via a HAT process and their use as single-electron donors.
Collapse
Affiliation(s)
- Nagaraju Sakkani
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, USA.
| | - Dhiraj Kumar Jha
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, USA.
| | - Nouraan Sadiq
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, USA.
| | - John C-G Zhao
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, USA.
| |
Collapse
|
15
|
Zhou B, Deng S, Xu Y, Qi X, Dong G. Iridium-Catalyzed Intramolecular β-C-H Alkenylation of Ketones with Alkynes via a Hydride-Transfer Approach. J Am Chem Soc 2022; 144:23230-23238. [PMID: 36508583 DOI: 10.1021/jacs.2c11505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Direct functionalization of carbonyl β C-H bonds without using directing groups has not been a trivial task, and it is even more challenging to realize the corresponding atom-economical transformations with common alkenes or alkynes as the coupling partner. Here, we describe the development of an iridium-catalyzed intramolecular direct β-alkenylation of ketones with regular alkynes. The reaction is redox neutral, avoids strong acids or bases, and tolerates various functional groups. The combined experimental and computational mechanistic studies reveal a hydride-transfer pathway, involving ketone α,β-desaturation, iridium-hydride-mediated alkyne insertion, conjugate addition, and α-protonation.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Shuang Deng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yin Xu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
16
|
Lopat’eva ER, Krylov IB, Lapshin DA, Terent’ev AO. Redox-active molecules as organocatalysts for selective oxidative transformations - an unperceived organocatalysis field. Beilstein J Org Chem 2022; 18:1672-1695. [PMID: 36570566 PMCID: PMC9749543 DOI: 10.3762/bjoc.18.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Organocatalysis is widely recognized as a key synthetic methodology in organic chemistry. It allows chemists to avoid the use of precious and (or) toxic metals by taking advantage of the catalytic activity of small and synthetically available molecules. Today, the term organocatalysis is mainly associated with redox-neutral asymmetric catalysis of C-C bond-forming processes, such as aldol reactions, Michael reactions, cycloaddition reactions, etc. Organophotoredox catalysis has emerged recently as another important catalysis type which has gained much attention and has been quite well-reviewed. At the same time, there are a significant number of other processes, especially oxidative, catalyzed by redox-active organic molecules in the ground state (without light excitation). Unfortunately, many of such processes are not associated in the literature with the organocatalysis field and thus many achievements are not fully consolidated and systematized. The present article is aimed at overviewing the current state-of-art and perspectives of oxidative organocatalysis by redox-active molecules with the emphasis on challenging chemo-, regio- and stereoselective CH-functionalization processes. The catalytic systems based on N-oxyl radicals, amines, thiols, oxaziridines, ketone/peroxide, quinones, and iodine(I/III) compounds are the most developed catalyst types which are covered here.
Collapse
Affiliation(s)
- Elena R Lopat’eva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry A Lapshin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
17
|
Wu W, Zhao H, Chen J, Zhang F, Fan B. Umpolung Reactivity of Imine Ester: Visible-Light Mediated Transfer Hydrogenation of α-Aryl Imino Esters by Phenylsilane and Water. Chemistry 2022; 28:e202202460. [PMID: 36089553 DOI: 10.1002/chem.202202460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 12/13/2022]
Abstract
A visible-light mediated chemoselective transfer hydrogenation of α-aryl imino esters was demonstrated. The methodology allowed the efficient and practical preparation of α-amino acid esters. The mechanism of the reaction was probed by DFT calculations, and deuteration experiments indicated deuterium was introduced into amino acid esters efficiently (up to 99 % D ratio), enabling a feasible way to obtain deuterated amino acids using D2 O as a cheap deuterium source.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan, P. R. China
| | - HengYuan Zhao
- Key Laboratory of Advanced Synthetic Chemistry, Yunnan Minzu University, Kunming, Yunnan, People's Republic of China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan, P. R. China
| | - FuQin Zhang
- Key Laboratory of Advanced Synthetic Chemistry, Yunnan Minzu University, Kunming, Yunnan, People's Republic of China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan, P. R. China.,Key Laboratory of Advanced Synthetic Chemistry, Yunnan Minzu University, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
18
|
Yang Y, Liu L, Fang WH, Shen L, Chen X. Theoretical Exploration of Energy Transfer and Single Electron Transfer Mechanisms to Understand the Generation of Triplet Nitrene and the C(sp 3)-H Amidation with Photocatalysts. JACS AU 2022; 2:2596-2606. [PMID: 36465545 PMCID: PMC9709952 DOI: 10.1021/jacsau.2c00490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 05/20/2023]
Abstract
Mechanistic explorations and kinetic evaluations were performed based on electronic structure calculations at the CASPT2//CASSCF level of theory, the Fermi's golden rule combined with the Dexter model, and the Marcus theory to unveil the key factors regulating the processes of photocatalytic C(sp3)-H amidation starting from the newly emerged nitrene precursor of hydroxamates. The highly reactive nitrene was found to be generated efficiently via a triplet-triplet energy transfer process and to be benefited from the advantages of hydroxamates with long-range charge-transfer (CT) excitation from the N-centered lone pair to the 3,5-bis(trifluoromethyl)benzoyl group. The properties of the metal-to-ligand charge-transfer (MLCT) state of photocatalysts, the functionalization of chemical moieties for substrates involved in the charge-transfer (CT) excitation, such as the electron-withdrawing trifluoromethyl group, and the energetic levels of singlet and triplet reaction pathways may regulate the reaction yield of C(sp3)-H amidation. Kinetic evaluations show that the triplet-triplet energy transfer is the main driving force of the reaction rather than the single electron transfer process. The effects of electronic coupling, molecular rigidity, and excitation energies on the energy transfer efficiency were further discussed. Finally, we investigated the inverted behavior of single-electron transfer, which is correlated unfavorably to the catalytic efficiency and amidation reaction. All theoretical explorations allow us to better understand the generation of nitrene with visible-light photocatalysts, to expand highly efficient substrate sources, and to broaden our scope of available photosensitizers for various cross-coupling reactions and the construction of N-heterocycles.
Collapse
|
19
|
Li Y, Yang J, Geng X, Tao P, Shen Y, Su Z, Zheng K. Modular Construction of Unnatural α‐Tertiary Amino Acid Derivatives by Multicomponent Radical Cross‐Couplings. Angew Chem Int Ed Engl 2022; 61:e202210755. [DOI: 10.1002/anie.202210755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Yujun Li
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Jie Yang
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Xinxin Geng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Pan Tao
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Yanling Shen
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
20
|
Heterogeneous asymmetric β-C-H functionalization of aldehydes under O2 catalyzed by hydroxide-layered Fe(III) sites synergistic with confined interlayer amine. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Zeng W, Li L, Wang C, Wang D, Zhou L. Synthesis of 3‐Amino‐1‐(difluoromethylidene)‐tetralins via Relay Photocatalytic Cascade Reactions of Arylalanines and 2‐Bromo‐3,3,3‐trifluoropropene. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Nair VV, Arunprasath D, Solai P, Sekar G. Synergistic Dual Amine/Transition Metal Catalysis ‐ Recent Advances. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Pandidurai Solai
- IIT Madras: Indian Institute of Technology Madras Department of Chemistry INDIA
| | - Govindasamy Sekar
- Indian Institute of Technology Madras Department of Chemistry IIT Campus 600 036 Chennai INDIA
| |
Collapse
|
23
|
Guo F, Wang H, Ye X, Tan CH. Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fenfen Guo
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Hong Wang
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Xinyi Ye
- Zhejiang University of Technology College of Pharmaceutical Science 18 Chaowang Road 310014 Hangzhou CHINA
| | - Choon-Hong Tan
- Nanyang Technological University School of Physical and Mathematical Sciences SINGAPORE
| |
Collapse
|
24
|
Zhang Y, Guo J, Zhang J, Qiu X, Zhang X, Han J, Zhang B, Long C, Shi Y, Yang Z, Zhao W, Tang Z. Metal-organic frameworks enable regio- and stereo-selective functionalization of aldehydes and ketones. Chem 2022. [DOI: 10.1016/j.chempr.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Zhou C, Gan QC, Zhou TP, Lei T, Ye C, He XJ, Chen B, Lu H, Wan Q, Liao RZ, Tung CH, Wu LZ. Site-Selective N-1 and C-3 Heteroarylation of Indole with Heteroarylnitriles by Organocatalysis under Visible Light. Angew Chem Int Ed Engl 2022; 61:e202116421. [PMID: 34985181 DOI: 10.1002/anie.202116421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 01/10/2023]
Abstract
Site-selective N-1 and C-3 arylation of indole has been sought after because of the prevalent application of arylindoles and the intricate reactivities associated with the multiple sites of the N-unsubstituted indole. Represented herein is the first regioselective heteroarylation of indole via a radical-radical cross-coupling by visible-light irradiation. Steady and time-resolved spectroscopic and computational studies revealed that the hydrogen-bonding interaction of organic base and its conjugated acid, namely with indole and heteroarylnitrile, determined the reaction pathway, which underwent either proton-coupled electron-transfer or energy-transfer for the subsequent radical-radical cross-coupling, leading to the regioselective formation of C-3 and N-1 heteroarylation of indoles, respectively. The parallel methodologies for regioisomeric N-1 and C-3 heteroaryl indoles with good functional group compatibility could be applied to large-scale synthesis and late-stage derivatization of bioactive compounds under extremely mild reaction conditions.
Collapse
Affiliation(s)
- Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Chao Gan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tai-Ping Zhou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Jun He
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Wan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
26
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
27
|
Zhou C, Gan Q, Zhou T, Lei T, Ye C, He X, Chen B, Lu H, Wan Q, Liao R, Tung C, Wu L. Site‐Selective
N
‐1 and C‐3 Heteroarylation of Indole with Heteroarylnitriles by Organocatalysis under Visible Light. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Qi‐Chao Gan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Tai‐Ping Zhou
- School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiao‐Jun He
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Heng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Qian Wan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Rong‐Zhen Liao
- School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
28
|
Zhang M, Shi Y, zhang J. A Convergent Paired Electrolysis Strategy Enables Cross-Coupling of Methylarenes with Imines. Org Chem Front 2022. [DOI: 10.1039/d2qo00085g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we have developed a metal-free convergent paired electrolysis strategy for α-benzyl amine synthesis from readily available imines and methylarenes, taking advantage of both anodic oxidation and cathodic...
Collapse
|
29
|
Zhang W, Ning S, Li Y, Wu X. Visible-light-driven photocatalyst-free deoxygenative alkylation of imines with alcohols. Chem Commun (Camb) 2022; 58:12843-12846. [DOI: 10.1039/d2cc05098f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Upon easy access and direct photoexcitation of xanthate anions, visible-light-driven deoxygenative alkylation of imines with a wide variety of alcohols has been achieved via a phosphine-assisted one-pot protocol, without any photocatalysts.
Collapse
Affiliation(s)
- Wei Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shen Ning
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Macroocean Materials Technology Co., Ltd., Suzhou 215000, China
| | - Yi Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
30
|
Lu L, Shi R, Lei A. Single-electron transfer oxidation-induced C–H bond functionalization via photo-/electrochemistry. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Wang M, Li M, Zhang L, Song R, Yang D, Lv J. Photocatalytic Redox-Neutral Reaction of γ-Indolyl α-Keto Esters. Org Chem Front 2022. [DOI: 10.1039/d1qo01890f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct γ-C(sp3)-H activation of saturated α-keto esters has long been an elusive transformation. We found that photo-redox catalysis IrIII in combination with DABCO as dual hydrogen-bonding donor and organic...
Collapse
|
32
|
Chen JJ, Zhang Y, Huang HM. Radical umpolung chemistry enabled by dual catalysis: concept and recent advances. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01161a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a perspective on recent advances in radical umpolung chemistry; some selected examples in this area have been highlighted.
Collapse
Affiliation(s)
- Jun-Jie Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ying Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
33
|
Sombret J, Quintaine J, Biremond T, Barnes Q, Saint‐Laumer J, Saudan L. High
trans
‐2‐Decalones by Photoredox Catalyzed β‐Isomerization. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Juliette Sombret
- Synthesis & Process Engineering Research & Dev. Firmenich SA 7 rue de la Bergère CH-1242 Satigny, Geneva Switzerland
| | - Julie Quintaine
- Synthesis & Process Engineering Research & Dev. Firmenich SA 7 rue de la Bergère CH-1242 Satigny, Geneva Switzerland
| | - Tony Biremond
- Synthesis & Process Engineering Research & Dev. Firmenich SA 7 rue de la Bergère CH-1242 Satigny, Geneva Switzerland
| | - Quentin Barnes
- Synthesis & Process Engineering Research & Dev. Firmenich SA 7 rue de la Bergère CH-1242 Satigny, Geneva Switzerland
| | - Jean‐Yves Saint‐Laumer
- Synthesis & Process Engineering Research & Dev. Firmenich SA 7 rue de la Bergère CH-1242 Satigny, Geneva Switzerland
| | - Lionel Saudan
- Synthesis & Process Engineering Research & Dev. Firmenich SA 7 rue de la Bergère CH-1242 Satigny, Geneva Switzerland
| |
Collapse
|
34
|
Yao Z, Luo Z, Pan Y, Zhang X, Li B, Xu L, Wang P, Shi Q. Metal‐Free Tandem One‐Pot Construction of 3,3‐Disubsituted 3,4‐Dihydroquinoxalin‐2(1
H
)‐Ones under Visible‐Light Photoredox Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhen Yao
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Zhenli Luo
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Yixiao Pan
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Xin Zhang
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Bohan Li
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Peng Wang
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Qian Shi
- College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| |
Collapse
|
35
|
Maitland JAP, Leitch JA, Yamazaki K, Christensen KE, Cassar DJ, Hamlin TA, Dixon DJ. Switchable, Reagent‐Controlled Diastereodivergent Photocatalytic Carbocyclisation of Imine‐Derived α‐Amino Radicals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J. Andrew P. Maitland
- Department of Chemistry Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Jamie A. Leitch
- Department of Chemistry Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Current address: Department of Pharmaceutical and Biological Chemistry UCL (University College London) School of Pharmacy 29–39 Brunswick Square London WC1N 1AX UK
| | - Ken Yamazaki
- Department of Chemistry Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Kirsten E. Christensen
- Department of Chemistry Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | | | - Trevor A. Hamlin
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Darren J. Dixon
- Department of Chemistry Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
36
|
Maitland JAP, Leitch JA, Yamazaki K, Christensen KE, Cassar DJ, Hamlin TA, Dixon DJ. Switchable, Reagent-Controlled Diastereodivergent Photocatalytic Carbocyclisation of Imine-Derived α-Amino Radicals. Angew Chem Int Ed Engl 2021; 60:24116-24123. [PMID: 34449968 PMCID: PMC8597041 DOI: 10.1002/anie.202107253] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/13/2021] [Indexed: 12/15/2022]
Abstract
A reagent-controlled stereodivergent carbocyclisation of aryl aldimine-derived, photocatalytically generated, α-amino radicals possessing adjacent conjugated alkenes, affording either bicyclic or tetracyclic products, is described. Under net reductive conditions using commercial Hantzsch ester, the α-amino radical species underwent a single stereoselective cyclisation to give trans-configured amino-indane structures in good yield, whereas using a substituted Hantzsch ester as a milder reductant afforded cis-fused tetracyclic tetrahydroquinoline frameworks, resulting from two consecutive radical cyclisations. Judicious choice of the reaction conditions allowed libraries of both single and dual cyclisation products to be synthesised with high selectivity, notable predictability, and good-to-excellent yields. Computational analysis employing DFT revealed the reaction pathway and mechanistic rationale behind this finely balanced yet readily controlled photocatalytic system.
Collapse
Affiliation(s)
- J. Andrew P. Maitland
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Jamie A. Leitch
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
- Current address: Department of Pharmaceutical and Biological ChemistryUCL (University College London)School of Pharmacy29–39 Brunswick SquareLondonWC1N 1AXUK
| | - Ken Yamazaki
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Kirsten E. Christensen
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Darren J. Dixon
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
37
|
Pezzetta C, Folli A, Matuszewska O, Murphy D, Davidson RWM, Bonifazi D. peri
‐Xanthenoxanthene (PXX): a Versatile Organic Photocatalyst in Organic Synthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cristofer Pezzetta
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
- Dr. Reddy's Laboratories (EU) 410 Science Park, Milton Road Cambridge CB4 0PE United Kingdom
| | - Andrea Folli
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
| | - Oliwia Matuszewska
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
| | - Damien Murphy
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
| | - Robert W. M. Davidson
- Dr. Reddy's Laboratories (EU) 410 Science Park, Milton Road Cambridge CB4 0PE United Kingdom
| | - Davide Bonifazi
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
- Institute of Organic Chemistry Faculty of Chemistry University of Vienna Währinger Strasse 38 1090 Vienna Austria
| |
Collapse
|
38
|
Henry Blackwell J, Harris GR, Smith MA, Gaunt MJ. Modular Photocatalytic Synthesis of α-Trialkyl-α-Tertiary Amines. J Am Chem Soc 2021; 143:15946-15959. [PMID: 34551248 DOI: 10.1021/jacs.1c07402] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecules displaying an α-trialkyl-α-tertiary amine motif provide access to an important and versatile area of biologically relevant chemical space but are challenging to access through existing synthetic methods. Here, we report an operationally straightforward, multicomponent protocol for the synthesis of a range of functionally and structurally diverse α-trialkyl-α-tertiary amines, which makes use of three readily available components: dialkyl ketones, benzylamines, and alkenes. The strategy relies on the of use visible-light-mediated photocatalysis with readily available Ir(III) complexes to bring about single-electron reduction of an all-alkyl ketimine species to an α-amino radical intermediate; the α-amino radical undergoes Giese-type addition with a variety of alkenes to forge the α-trialkyl-α-tertiary amine center. The mechanism of this process is believed to proceed through an overall redox neutral pathway that involves photocatalytic redox-relay of the imine, generated from the starting amine-ketone condensation, through to an imine-derived product. This is possible because the presence of a benzylic amine component in the intermediate scaffold drives a 1,5-hydrogen atom transfer step after the Giese addition to form a stable benzylic α-amino radical, which is able to close the photocatalytic cycle. These studies detail the evolution of the reaction platform, an extensive investigation of the substrate scope, and preliminary investigation of some of the mechanistic features of this distinct photocatalytic process. We believe this transformation will provide convenient access to previously unexplored α-trialkyl-α-tertiary amine scaffolds that should be of considerable interest to practitioners of synthetic and medicinal chemistry in academic and industrial institutions.
Collapse
Affiliation(s)
- J Henry Blackwell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Georgia R Harris
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Milo A Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
39
|
Lu J, Leng Y, Dong B, Bao H, Zhang Y, Liu Y. Copper-Catalyzed Sulfonylation of Cyclobutanone Oxime Esters with Sulfonyl Hydrazides. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1516-8481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractA copper-catalyzed radical cross-coupling of cyclobutanone oxime esters with sulfonyl hydrazides has been developed. The copper-based catalytic system proved crucial for cleavage of the C−C bond of cyclobutanone oximes and for selective C–S bond-formation involving persistent sulfonyl-metal radical intermediates. This protocol is distinguished by the low-cost catalytic system, which does not require ligand, base, or toxic cyanide salt, and by the use of readily accessible starting materials, as well as broad substrate scope, providing an efficient approach to various diversely substituted cyano-containing sulfones.
Collapse
Affiliation(s)
- Jiansha Lu
- Green Catalysis Center, and College of Chemistry; Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University
| | - Yuting Leng
- Green Catalysis Center, and College of Chemistry; Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University
| | - Bingbing Dong
- Green Catalysis Center, and College of Chemistry; Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University
| | - Honghao Bao
- Green Catalysis Center, and College of Chemistry; Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University
| | - Yuanyuan Zhang
- Green Catalysis Center, and College of Chemistry; Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University
| | - Yingguo Liu
- Division of Molecular Catalysis & Synthesis, Henan Institute of Advanced Technology, Zhengzhou University
| |
Collapse
|
40
|
Tang K, Chen Y, Guan J, Wang Z, Chen K, Xiang H, Yang H. Visible-light-promoted olefinic trifluoromethylation of enamides with CF 3SO 2Na. Org Biomol Chem 2021; 19:7475-7479. [PMID: 34612366 DOI: 10.1039/d1ob01410b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A visible-light-promoted olefinic C-H trifluoromethylation of enamides was developed by employing cheap and stable Langlois' reagent as the CF3 source. A series of β-CF3 enamides were obtained in moderate to good yields with high E-isomer selectivity under mild conditions. Preliminary mechanistic studies suggest that molecular oxygen acts as the terminal oxidant for this net oxidative process, and the E isomer selectivity could be well explained by a base-assisted deprotonation of the cation intermediate.
Collapse
Affiliation(s)
- Kai Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Zhang C, Gao AZ, Nie X, Ye CX, Ivlev SI, Chen S, Meggers E. Catalytic α-Deracemization of Ketones Enabled by Photoredox Deprotonation and Enantioselective Protonation. J Am Chem Soc 2021; 143:13393-13400. [PMID: 34392683 DOI: 10.1021/jacs.1c06637] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study reports the catalytic deracemization of ketones bearing stereocenters in the α-position in a single reaction via deprotonation, followed by enantioselective protonation. The principle of microscopic reversibility, which has previously rendered this strategy elusive, is overcome by a photoredox deprotonation through single electron transfer and subsequent hydrogen atom transfer (HAT). Specifically, the irradiation of racemic pyridylketones in the presence of a single photocatalyst and a tertiary amine provides nonracemic carbonyl compounds with up to 97% enantiomeric excess. The photocatalyst harvests the visible light, induces the redox process, and is responsible for the asymmetric induction, while the amine serves as a single electron donor, HAT reagent, and proton source. This conceptually simple light-driven strategy of coupling a photoredox deprotonation with a stereocontrolled protonation, in conjunction with an enrichment process, serves as a blueprint for other deracemizations of ubiquitous carbonyl compounds.
Collapse
Affiliation(s)
- Chenhao Zhang
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Anthony Z Gao
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Xin Nie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Chen-Xi Ye
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Sergei I Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| |
Collapse
|
42
|
Visible-Light Radical–Radical Coupling vs. Radical Addition: Disentangling a Mechanistic Knot. Catalysts 2021. [DOI: 10.3390/catal11080922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A highly enantioselective protocol has been recently described as allowing the synthesis of five-membered cyclic imines harnessing the selective generation of a β-Csp3-centered radical of acyl heterocyclic derivatives and its subsequent interaction with diverse NH-ketimines. The overall transformation represents a novel cascade process strategy crafted by individual well-known steps; however, the construction of the new C-C bond highlights a crucial knot from a mechanistically perspective. We believe that the full understanding of this enigmatic step may enrich the current literature and expand latent future ideas. Therefore, a detailed mechanistic study of the protocol has been conducted. Here, we provide theoretical insight into the mechanism using quantum chemistry calculations. Two possible pathways have been investigated: (a) imine reduction followed by radical–radical coupling and (b) radical addition followed by product reduction. In addition, investigations to unveil the origin behind the enantioselectivity of the 1-pyrroline derivatives have been conducted as well.
Collapse
|
43
|
Mastandrea MM, Pericàs MA. Photoredox Dual Catalysis: A Fertile Playground for the Discovery of New Reactivities. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Marco M. Mastandrea
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Instutite of Science and Technology (BIST) Avda. Països Catalans 16 43007 Tarragona Spain
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Instutite of Science and Technology (BIST) Avda. Països Catalans 16 43007 Tarragona Spain
- Department de Química Inorgànica i Orgànica Universitat de Barcelona c/Martí i Franqués 1–11 08028 Barcelona Spain
| |
Collapse
|
44
|
Wen L, Wang N, Du W, Zhu M, Pan C, Zhang L, Li M. Electrochemical Selective Oxidative Synthesis of Diversified Sulfur Heterocycles from
β‐Ketothioamides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Li‐Rong Wen
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao Shandong 266042 China
| | - Ning‐Ning Wang
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao Shandong 266042 China
| | - Wu‐Bo Du
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao Shandong 266042 China
| | - Ming‐Zhe Zhu
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao Shandong 266042 China
| | - Chao Pan
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao Shandong 266042 China
| | - Lin‐Bao Zhang
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao Shandong 266042 China
| | - Ming Li
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao Shandong 266042 China
| |
Collapse
|
45
|
Yadav D, Srivastava A, Ansari MA, Singh MS. Unusual Behavior of Ketoximes: Reagentless Photochemical Pathway to Alkynyl Sulfides. J Org Chem 2021; 86:5908-5921. [PMID: 33821649 DOI: 10.1021/acs.joc.1c00417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The unique properties of ketoximes are used prominently for the synthesis of heterocycles. In contrast, their potential to absorb light and photoelectron transfer processes remains challenging. Widespread interest in controlling direct excitation of ketoxime tacticity unlocks unconventional reaction pathways, enabling photochemical intramolecular skeletal modification to constitute alkynyl sulfides that cannot be realized via traditional activation. Despite decades of advancements, the alkynyl sulfides, particularly those composed of polar functionalities and derived from renewable sources, remain unknown. These findings demonstrate the importance of decelerated ketoxime from β-oxodithioester for the identification of reaction conditions. The method uses mild reaction conditions to generate excited-state photoreductant for the functionalization of an array of alkynyl sulfides. Additionally, a fundamental understanding of elementary steps using electrochemical and spectroscopic techniques/experiments revealed a PCET pathway to this transformation, while the involved substrates and their properties with improved economical tools indicated the translational potential of this method.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Abhijeet Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Monish Arbaz Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
46
|
Xu GQ, Xiao TF, Feng GX, Liu C, Zhang B, Xu PF. Metal-Free α-C(sp3)–H Aroylation of Amines via a Photoredox Catalytic Radical–Radical Cross-Coupling Process. Org Lett 2021; 23:2846-2852. [DOI: 10.1021/acs.orglett.1c00226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Teng-Fei Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guo-Xuan Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chen Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
47
|
Rodríguez RI, Mollari L, Alemán J. Light‐Driven Enantioselective Synthesis of Pyrroline Derivatives by a Radical/Polar Cascade Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ricardo I. Rodríguez
- Organic Chemistry Department, Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Leonardo Mollari
- Organic Chemistry Department, Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
48
|
Friestad GK, Cullen STJ. Synthesis of Chiral Amines by C–C Bond Formation with Photoredox Catalysis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1396-8343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractChiral amines are key substructures of biologically active natural products and drug candidates. The advent of photoredox catalysis has changed the way synthetic chemists think about building these substructures, opening new pathways that were previously unavailable. New developments in this area are reviewed, with an emphasis on C–C bond constructions involving radical intermediates generated through photoredox processes.1 Introduction2 Radical–Radical Coupling of α-Amino Radicals2.1 Radical–Radical Coupling Involving Amine Oxidation2.2 Radical–Radical Coupling Involving Imine Reduction2.3 Couplings Involving both Amine Oxidation and Imine Reduction3 Addition Reactions of α-Amino Radicals3.1 Conjugate Additions of α-Amino Radicals3.2 Addition of α-Amino Radicals to Heteroaromatic Systems3.3 Cross Coupling via Additions to Transition Metal Complexes4 Radical Addition to C=N Bonds Using Photoredox Catalysis4.1 Intramolecular Radical Addition to C=N Bonds4.2 Intermolecular Radical Addition to C=N Bonds5 Conclusion
Collapse
|
49
|
Rodríguez RI, Mollari L, Alemán J. Light‐Driven Enantioselective Synthesis of Pyrroline Derivatives by a Radical/Polar Cascade Reaction. Angew Chem Int Ed Engl 2021; 60:4555-4560. [DOI: 10.1002/anie.202013020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Ricardo I. Rodríguez
- Organic Chemistry Department, Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Leonardo Mollari
- Organic Chemistry Department, Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
50
|
Bhowmick A, Warghude PK, Dharpure PD, Bhat RG. Direct access to α-acyloxycarbonyl compounds and esters via oxidative esterification of aldehydes under visible light. Org Chem Front 2021. [DOI: 10.1039/d1qo00731a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An efficient synthesis of α-acyloxycarbonyl compounds and esters from aldehydes and α-bromocarbonyl compounds/benzyl bromide derivatives via photoredox catalysis has been developed.
Collapse
Affiliation(s)
- Anindita Bhowmick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India
| | - Prakash K. Warghude
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India
| | - Pankaj D. Dharpure
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India
| | - Ramakrishna G. Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India
| |
Collapse
|