1
|
Beisl J, Jochum K, Chen Y, Varga E, Marko D. Combinatory Effects of Acrylamide and Deoxynivalenol on In Vitro Cell Viability and Cytochrome P450 Enzymes of Human HepaRG Cells. Toxins (Basel) 2024; 16:389. [PMID: 39330847 PMCID: PMC11436166 DOI: 10.3390/toxins16090389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Acrylamide (AA) can be formed during the thermal processing of carbohydrate-rich foods. Deoxynivalenol (DON), a mycotoxin produced by Fusarium spp., contaminates many cereal-based products. In addition to potential co-exposure through a mixed diet, co-occurrence of AA and DON in thermally processed cereal-based products is also likely, posing the question of combinatory toxicological effects. In the present study, the effects of AA (0.001-3 mM) and DON (0.1-30 µM) on the cytotoxicity, gene transcription, and expression of major cytochrome P450 (CYP) enzymes were investigated in differentiated human hepatic HepaRG cells. In the chosen ratios of AA-DON (10:1; 100:1), cytotoxicity was clearly driven by DON and no overadditive effects were observed. Using quantitative real-time PCR, about twofold enhanced transcript levels of CYP1A1 were observed at low DON concentrations (0.3 and 1 µM), reflected by an increase in CYP1A activity in the EROD assay. In contrast, CYP2E1 and CYP3A4 gene transcription decreased in a concentration-dependent manner after incubation with DON (0.01-0.3 µM). Nevertheless, confocal microscopy showed comparably constant protein levels. The present study provided no indication of an induction of CYP2E1 as a critical step in AA bioactivation by co-occurrence with DON. Taken together, the combination of AA and DON showed no clear physiologically relevant interaction in HepaRG cells.
Collapse
Affiliation(s)
- Julia Beisl
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Kristina Jochum
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- German Federal Institute of Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Unit Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinarplatz 1, 1210 Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Albaqami A, Alosaimi ME, Jafri I, Mohamed AAR, Abd El-Hakim YM, Khamis T, Elazab ST, Noreldin AE, Elhamouly M, El-Far AH, Eskandrani AA, Alotaibi BS, M Abdelnour H, Saleh AA. Pulmonary damage induction upon Acrylic amide exposure via activating miRNA-223-3p and miRNA-325-3p inflammasome/pyroptosis and fibrosis signaling pathway: New mechanistic approaches of A green-synthesized extract. Toxicology 2024; 506:153869. [PMID: 38909937 DOI: 10.1016/j.tox.2024.153869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Exposure to acrylic amide (AD) has garnered worldwide attention due to its potential adverse health effects, prompting calls from the World Health Organization for intensified research into associated risks. Despite this, the relationship between oral acrylic amide (acrylamide) (AD) exposure and pulmonary dysfunction remains poorly understood. Our study aimed to investigate the correlation between internal oral exposure to AD and the decline in lung function, while exploring potential mediating factors such as tissue inflammation, oxidative stress, pyroptosis, and apoptosis. Additionally, we aimed to evaluate the potential protective effect of zinc oxide nanoparticles green-synthesized moringa extract (ZNO-MONPs) (10 mg/kg b.wt) against ACR toxicity and conducted comprehensive miRNA expression profiling to uncover novel targets and mechanisms of AD toxicity (miRNA 223-3 P and miRNA 325-3 P). Furthermore, we employed computational techniques to predict the interactions between acrylic amide and/or MO-extract components and tissue proteins. Using a rat model, we exposed animals to oral acrylamide (20 mg/kg b.wt for 2 months). Our findings revealed that AD significantly downregulated the expression of miRNA 223-3 P and miRNA 325-3 P, targeting NLRP-3 & GSDMD, respectively, indicating the induction of pyroptosis in pulmonary tissue via an inflammasome activating pathway. Moreover, AD exposure resulted in lipid peroxidative damage and reduced levels of GPX, CAT, GSH, and GSSG. Notably, AD exposure upregulated apoptotic, pyroptotic, and inflammatory genes, accompanied by histopathological damage in lung tissue. Immunohistochemical and immunofluorescence techniques detected elevated levels of indicative harmful proteins including vimentin and 4HNE. Conversely, concurrent administration of ZNO-MONPs with AD significantly elevated the expression of miRNA 223-3 P and miRNA 325-3 P, protecting against oxidative stress, apoptosis, pyroptosis, inflammation, and fibrosis in rat lungs. In conclusion, our study highlights the efficacy of ZNO-MONPs NPs in protecting pulmonary tissue against the detrimental impacts of foodborne toxin AD.
Collapse
Affiliation(s)
- Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif 21944, Saudi Arabia
| | - Manal E Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O Box 84428, Riyadh 11671, Saudi Arabia.
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Yasmina M Abd El-Hakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Moustafa Elhamouly
- Department of Histology and Cytology Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ali H El-Far
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, P.O. Box 344, Medina 30002, Saudi Arabia
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hanim M Abdelnour
- Department of Biochemistry, Faculty of Medicine, Zagazig University, Egypt
| | - Ayman A Saleh
- Department of Pathology, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Eltayeb HA, Stewart L, Morgem M, Johnson T, Nguyen M, Earl K, Sodipe A, Jackson D, Olufemi SE. Antioxidants Amelioration Is Insufficient to Prevent Acrylamide and Alpha-Solanine Synergistic Toxicity in BEAS-2B Cells. Int J Mol Sci 2023; 24:11956. [PMID: 37569330 PMCID: PMC10418752 DOI: 10.3390/ijms241511956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Cells produce free radicals and antioxidants when exposed to toxic compounds during cellular metabolism. However, free radicals are deleterious to lipids, proteins, and nucleic acids. Antioxidants neutralize and eliminate free radicals from cells, preventing cell damage. Therefore, the study aims to determine whether the antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) will ameliorate the maximum dose of acrylamide and alpha (α)-solanine synergistic toxic effects in exposed BEAS-2B cells. These toxic compounds are consumed worldwide by eating potato products. BEAS-2B cells were simultaneously treated with BHA 10 μM and BHT 20 μM and incubated in a 5% CO2 humidified incubator for 24 h, followed by individual or combined treatment with acrylamide (3.5 mM) and α-solanine (44 mM) for 48 h, including the controls. Cell morphology, DNA, RNA, and protein were analyzed. The antioxidants did not prevent acrylamide and α-solanine synergistic effects in exposed BEAS-2B cells. However, cell morphology was altered; polymerase chain reaction (PCR) showed reduced RNA constituents but not DNA. In addition, the toxic compounds synergistically inhibited AKT/PKB expression and its downstream genes. The study showed BHA and BHT are not protective against the synergetic toxic effects of acrylamide and α-solanine in exposed BEAS-2B cells.
Collapse
Affiliation(s)
- Hoda Awad Eltayeb
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Leandra Stewart
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Mounira Morgem
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Tommie Johnson
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Michael Nguyen
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Kadeshia Earl
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Ayodotun Sodipe
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Desirée Jackson
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | | |
Collapse
|
4
|
Shen C, Wang C, Zhao S, Guo Q. Acrylamide, acrylic acid, or 2-acrylamido-2-methyl-1-propanesulfonic acid induced cytotoxic in Photobacterium phosphoreum, PC12, and SK-N-SH cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:489-499. [PMID: 36583560 DOI: 10.1002/tox.23673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 06/17/2023]
Abstract
In enhancing oil recovery, more and more new water-soluble polymers are developed to replace the high toxicity and low stability acrylamide (ACR) monomer. The common replacement monomer is acrylic acid (AA) and 2-acrylamido-2-methylamido-2-methyl-1-propanesulfonic acid (AMPS), which are considered safe and efficient. In this study, AA, ACR and AMPS caused remarkable cytotoxicity in Photobacterium phosphoreum, the rat pheochromocytoma cells (PC12) and the Human neuroblastoma cells (SK-N-SH). ACR is much more lethal than AA and AMPS in PC12 and SK-N-SH cells, meanwhile, the toxicity of AA and AMPS decreases with the decrease of acid. Furthermore, similar to ACR, AA, and AMPS can induce severe DNA double-strand breakage in PC12 and SK-N-SH cells. Both AA and ACR can cause cell cycle arrest in the G0/G1 phase in PC12 and SK-N-SH cells. In addition, like ACR, AA, and AMPS can generate reactive oxygen species (ROS) accumulation, mitochondrial dysfunction and mitochondrial-dependent apoptosis in both PC12 and SK-N-SH cells. The acute toxicity of AA and AMPS is lower than ACR, however, the decline in acute toxicity in monomers does not mean toxic-free. We should focus on the toxicity of AA and ACR and reduce occupational contact to protect employee occupational health.
Collapse
Affiliation(s)
- Chen Shen
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Chen Wang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Sheng Zhao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Qiangzhi Guo
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| |
Collapse
|
5
|
Bodur M, Aydoğdu G, Özçelik AÖ, Yilmaz E. An in vitro Approach to Protective Effect of Lactoferrin on Acrylamide-induced Oxidative Damage. AN ACAD BRAS CIENC 2022; 94:e20201882. [PMID: 36477225 DOI: 10.1590/0001-3765202220201882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Acrylamide is a compound that occurs with high temperature during food processing and causes oxidative damage. Recently, the importance of antioxidative components is increasing to prevent oxidative damage. Lactoferrin is an antioxidant protein mainly found in milk. Therefore, the aim of this study is to determine the dose-dependent protective effects of lactoferrin on oxidative damage caused by acrylamide. In this study, HepG2 cell lines were treated with lactoferrin doses (0, 25, 50, 100µM) and half maximal inhibitory concentration of acrylamide. After 24 hours malondialdehyde, superoxide dismutase, catalase and glutathione reductase levels were measured. Acrylamide significantly increased malondialdehyde levels in HepG2 cells compared to the control group; however, catalase, superoxide dismutase and glutathione reductace significantly reduced. On the other hand, added lactoferrin doses (50-100µM) significantly reduced lipid peroxidation levels. Besides, it was found that glutathione reductase, catalase and superoxide dismutase levels significantly increased. As a result, the protective effect of lactoferrin against the oxidative damage caused by acrylamide in HepG2 cells was determined. This effect is thought to be due to the antioxidant capacity of lactoferrin. In this context, it is recommended that more studies are carried out on the mechanism of action of lactoferrin on oxidative stress caused by acrylamide.
Collapse
Affiliation(s)
- Mahmut Bodur
- Ankara University, Faculty of Health Sciences, Department of Nutrition and Dietetics, 06290, Ankara, Turkey
| | - Gülizar Aydoğdu
- Ordu University, Faculty of Science and Literature, Department of Molecular Biology and Genetics, 52200, Ordu, Turkey
| | - Ayşe Özfer Özçelik
- Ankara University, Faculty of Health Sciences, Department of Nutrition and Dietetics, 06290, Ankara, Turkey
| | - Erkan Yilmaz
- Ankara University, Biotechnology Institute, 06135, Ankara, Turkey
| |
Collapse
|
6
|
Dlamini MB, Bao S, Gao Z, Mei J, Ge H, Jiang L, Geng C, Li Q, Shi X, Liu Y, Cao J. Curcumin attenuates Cr (VI)-induced cell growth and migration by targeting autophagy-dependent reprogrammed metabolism. J Biochem Mol Toxicol 2022; 36:e23193. [PMID: 35924427 DOI: 10.1002/jbt.23193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 05/16/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
Hexavalent chromium [Cr (VI)] is a well-established carcinogen. Cr (VI)-treated cells are phenotypically characterized by aberrant levels of growth and migration. Curcumin, a polyphenolic compound from the plant turmeric, has been found to possess antiproliferation, anti-inflammation, and antioxidant properties. In this study, the effect of curcumin on Cr (VI)-induced cell survival and migration and the underlying mechanism were investigated. Cell viability assay on A549 and human embryonic lung fibroblast cells showed that curcumin at the concentration of 10 µM could significantly attenuate Cr (VI)-induced viability in both cell lines. Following Western blot assay and metabolomics assays, cotreatment with curcumin and Cr (VI) resulted in the suppression of Cr (VI)-induced glycolysis-, autophagy-, and migration-related proteins. Meanwhile, curcumin increased Cr (VI)-reduced oxidative phosphorylation (OXPHOS)-related proteins, COXIV and ND1. Moreover, curcumin suppressed Cr (VI)-induced mitochondrial dysfunction, mitochondrial mass decrease, and mitochondrial membrane potential loss. Treatment with curcumin for 24 h significantly attenuated pcATG4B-induced autophagy and the subsequent expression of glucose transporter 1, hexokinase II, and pyruvate kinase M2. Wound healing and transwell assay demonstrated that curcumin reduced Cr (VI)-induced cell migration. Taken together, these results showed that curcumin was able to attenuate Cr (VI)-induced cell viability and migration by targeting autophagy-dependent reprogrammed metabolism from OXPHOS to glycolysis.
Collapse
Affiliation(s)
- Mongameli B Dlamini
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Shibo Bao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Zeyun Gao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Junjie Mei
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Hong Ge
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Chengyan Geng
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Yong Liu
- Lab of Pharmacology & Toxicology, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Quercetin Attenuates Quinocetone-Induced Cell Apoptosis In Vitro by Activating the P38/Nrf2/HO-1 Pathway and Inhibiting the ROS/Mitochondrial Apoptotic Pathway. Antioxidants (Basel) 2022; 11:antiox11081498. [PMID: 36009217 PMCID: PMC9405464 DOI: 10.3390/antiox11081498] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Quinocetone (QCT), a member of the quinoxaline 1,4-di-N-oxides (QdNOs) family, can cause genotoxicity and hepatotoxicity, however, the precise molecular mechanisms of QCT are unclear. This present study investigated the protective effect of quercetin on QCT-induced cytotoxicity and the underlying molecular mechanisms in human L02 and HepG2 cells. The results showed that quercetin treatment (at 7.5–30 μM) significantly improved QCT-induced cytotoxicity and oxidative damage in human L02 and HepG2 cells. Meanwhile, quercetin treatment at 30 μM significantly inhibited QCT-induced loss of mitochondrial membrane potential, an increase in the expression of the CytC protein and the Bax/Bcl-2 ratio, and an increase in caspases-9 and -3 activity, and finally improved cell apoptosis. Quercetin pretreatment promoted the expression of the phosphorylation of p38, Nrf2, and HO-1 proteins. Pharmacological inhibition of p38 significantly inhibited quercetin-mediated activation of the Nrf2/HO-1 pathway. Consistently, pharmacological inhibitions of the Nrf2 or p38 pathways both promoted QCT-induced cytotoxicity and partly abolished the protective effects of quercetin. In conclusion, for the first time, our results reveal that quercetin could improve QCT-induced cytotoxicity and apoptosis by activating the p38/Nrf2/HO-1 pathway and inhibiting the ROS/mitochondrial apoptotic pathway. Our study highlights that quercetin may be a promising candidate for preventing QdNOs-induced cytotoxicity in humans or animals.
Collapse
|
8
|
Kovár M, Navrátilová A, Kolláthová R, Trakovická A, Požgajová M. Acrylamide-Derived Ionome, Metabolic, and Cell Cycle Alterations Are Alleviated by Ascorbic Acid in the Fission Yeast. Molecules 2022; 27:molecules27134307. [PMID: 35807551 PMCID: PMC9268660 DOI: 10.3390/molecules27134307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Acrylamide (AA), is a chemical with multiple industrial applications, however, it can be found in foods that are rich in carbohydrates. Due to its genotoxic and cytotoxic effects, AA has been classified as a potential carcinogen. With the use of spectrophotometry, ICP-OES, fluorescence spectroscopy, and microscopy cell growth, metabolic activity, apoptosis, ROS production, MDA formation, CAT and SOD activity, ionome balance, and chromosome segregation were determined in Schizosaccharomyces pombe. AA caused growth and metabolic activity retardation, enhanced ROS and MDA production, and modulated antioxidant enzyme activity. This led to damage to the cell homeostasis due to ionome balance disruption. Moreover, AA-induced oxidative stress caused alterations in the cell cycle regulation resulting in chromosome segregation errors, as 4.07% of cells displayed sister chromatid non-disjunction during mitosis. Ascorbic acid (AsA, Vitamin C), a strong natural antioxidant, was used to alleviate the negative impact of AA. Cell pre-treatment with AsA significantly improved AA impaired growth, and antioxidant capacity, and supported ionome balance maintenance mainly due to the promotion of calcium uptake. Chromosome missegregation was reduced to 1.79% (44% improvement) by AsA pre-incubation. Results of our multiapproach analyses suggest that AA-induced oxidative stress is the major cause of alteration to cell homeostasis and cell cycle regulation.
Collapse
Affiliation(s)
- Marek Kovár
- Institute of Plant and Environmental Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Alica Navrátilová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.N.); (A.T.)
| | - Renata Kolláthová
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Anna Trakovická
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.N.); (A.T.)
| | - Miroslava Požgajová
- AgroBioTech Research Center, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Correspondence: ; Tel.: +421-37-641-4919
| |
Collapse
|
9
|
Wang A, Chen X, Wang L, Jia W, Wan X, Jiao J, Yao W, Zhang Y. Catechins protect against acrylamide- and glycidamide-induced cellular toxicity via rescuing cellular apoptosis and DNA damage. Food Chem Toxicol 2022; 167:113253. [PMID: 35738327 DOI: 10.1016/j.fct.2022.113253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/05/2022] [Accepted: 06/19/2022] [Indexed: 10/18/2022]
Abstract
Acrylamide (AA) occurs in both various environmental and dietary sources and has raised widespread concern as a probable carcinogen. Glycidamide (GA) is the main genotoxic metabolite through P450 2E1 (CYP2E1). In the present study, we investigate the protective effect of (-)-epigallocatechin gallate (EGCG) and (-)-epicatechin (EC) against AA- and GA-induced hepatotoxicity in HepG2 cells. The results demonstrated that EC and EGCG inhibited AA- and GA-induced cytotoxicity and mitochondria-mediated cellular apoptosis. Moreover, exposure to AA (100 μg/mL) and GA (50 μg/mL) caused cell cycle arrest and DNA damage, while EC and EGCG ranging from 12.5 to 50 μg/mL rescued cell cycle arrest and inhibited DNA damage. Furthermore, EC and EGCG down-regulated pro-apoptotic protein Bax and Caspase 3 after 24 h treatment in HepG2 cells exposed to AA (100 μg/mL) or GA (50 μg/mL). Also, the intervention with EC or EGCG up-regulated DNA repair related protein PARP and down-regulated expression of cleaved-PARP. Besides, EC exerted better protective effect than EGCG against AA- and GA-induced cytotoxicity in HepG2 cells. Altogether, EC and EGCG were effective in protecting AA- and GA-induced hepatotoxicity via rescuing cellular apoptosis and DNA damage, as well as promoting cell cycle progression in HepG2 cells.
Collapse
Affiliation(s)
- Anli Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Laizhao Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Jia
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuzhi Wan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China.
| | - Yu Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Gu W, Liu D, Sun J. Co-crystallization of curcumin for improved photodynamic inactivation of Vibrio parahaemolyticus and its application for the preservation of cooked clams. Int J Food Microbiol 2022; 378:109816. [PMID: 35749911 DOI: 10.1016/j.ijfoodmicro.2022.109816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/19/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
Curcumin (CUR) is a natural active product widely used as photosensitizer in photodynamic inactivation (PDI) due to low toxicity and low cost. However, the main challenge that limit the efficacy of CUR in PDI are its low solubility in water medium and hence low bioavailability. The co-crystallization is a novel process enables improvements in physicochemical properties such as solubility and bioavailability of water insoluble compound by the incidence of molecular interactions between the active pharmaceutical ingredient and conformer. The main objective of this work is to produce CUR-d-Tyr co-crystal (CDC) by co-crystallization technique using d-Tyrosine (d-Tyr) as the conformer in order to increase CUR water solubility as well as antimicrobial photodynamic activity. CDC presented a different crystalline structure compared with pure CUR. The solubility of CDC in water medium was about 16.5 times greater than pure CUR. The co-crystallization process increased CUR-mediated photodynamic inactivation efficacy of Vibrio parahaemolyticus (V. parahaemolyticus), probably due to alterations in its bioavailability. Moreover, cell membrane damage and production of cytotoxic singlet oxygen (1O2) was proved as main photosensitization mechanism. Furthermore, the application of CDC-mediated PDI on cooked clam reduced weightlessness of cooked clams, inhibited lipid oxidation, and maintained a better appearance, serving as a promising preservation techniques in food industry.
Collapse
Affiliation(s)
- Weiming Gu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jianxia Sun
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
11
|
Das R, Paul S, Mourya GK, Kumar N, Hussain M. Recent Trends and Practices Toward Assessment and Rehabilitation of Neurodegenerative Disorders: Insights From Human Gait. Front Neurosci 2022; 16:859298. [PMID: 35495059 PMCID: PMC9051393 DOI: 10.3389/fnins.2022.859298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 12/06/2022] Open
Abstract
The study of human movement and biomechanics forms an integral part of various clinical assessments and provides valuable information toward diagnosing neurodegenerative disorders where the motor symptoms predominate. Conventional gait and postural balance analysis techniques like force platforms, motion cameras, etc., are complex, expensive equipment requiring specialist operators, thereby posing a significant challenge toward translation to the clinics. The current manuscript presents an overview and relevant literature summarizing the umbrella of factors associated with neurodegenerative disorder management: from the pathogenesis and motor symptoms of commonly occurring disorders to current alternate practices toward its quantification and mitigation. This article reviews recent advances in technologies and methodologies for managing important neurodegenerative gait and balance disorders, emphasizing assessment and rehabilitation/assistance. The review predominantly focuses on the application of inertial sensors toward various facets of gait analysis, including event detection, spatiotemporal gait parameter measurement, estimation of joint kinematics, and postural balance analysis. In addition, the use of other sensing principles such as foot-force interaction measurement, electromyography techniques, electrogoniometers, force-myography, ultrasonic, piezoelectric, and microphone sensors has also been explored. The review also examined the commercially available wearable gait analysis systems. Additionally, a summary of recent progress in therapeutic approaches, viz., wearables, virtual reality (VR), and phytochemical compounds, has also been presented, explicitly targeting the neuro-motor and functional impairments associated with these disorders. Efforts toward therapeutic and functional rehabilitation through VR, wearables, and different phytochemical compounds are presented using recent examples of research across the commonly occurring neurodegenerative conditions [viz., Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis, Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS)]. Studies exploring the potential role of Phyto compounds in mitigating commonly associated neurodegenerative pathologies such as mitochondrial dysfunction, α-synuclein accumulation, imbalance of free radicals, etc., are also discussed in breadth. Parameters such as joint angles, plantar pressure, and muscle force can be measured using portable and wearable sensors like accelerometers, gyroscopes, footswitches, force sensors, etc. Kinetic foot insoles and inertial measurement tools are widely explored for studying kinematic and kinetic parameters associated with gait. With advanced correlation algorithms and extensive RCTs, such measurement techniques can be an effective clinical and home-based monitoring and rehabilitation tool for neuro-impaired gait. As evident from the present literature, although the vast majority of works reported are not clinically and extensively validated to derive a firm conclusion about the effectiveness of such techniques, wearable sensors present a promising impact toward dealing with neurodegenerative motor disorders.
Collapse
Affiliation(s)
- Ratan Das
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Gajendra Kumar Mourya
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Neelesh Kumar
- Biomedical Applications Unit, Central Scientific Instruments Organisation, Chandigarh, India
| | - Masaraf Hussain
- Department of Neurology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, India
| |
Collapse
|
12
|
Hashem MM, Abo-EL-Sooud K, Abd El-Hakim YM, Abdel-hamid Badr Y, El-Metwally AE, Bahy-EL-Dien A. The impact of long-term oral exposure to low doses of acrylamide on the hematological indicators, immune functions, and splenic tissue architecture in rats. Int Immunopharmacol 2022; 105:108568. [DOI: 10.1016/j.intimp.2022.108568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/07/2022] [Accepted: 01/20/2022] [Indexed: 01/01/2023]
|
13
|
Yesildag K, Eroz R, Genc A, Dogan T, Satici E. Evaluation of the protective effects of morin against acrylamide‐induced lung toxicity by biomarkers of oxidative stress, inflammation, apoptosis, and autophagy. J Food Biochem 2022; 46:e14111. [DOI: 10.1111/jfbc.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Kerim Yesildag
- Department of Chest Diseases Konya Numune Hospital Konya Turkey
| | - Recep Eroz
- Medical Faculty, Department of Medical Genetic Aksaray University Aksaray Turkey
| | - Aydin Genc
- Faculty of Veterinary Medicine, Department of Biochemistry Atatürk University Erzurum Turkey
| | - Tuba Dogan
- Faculty of Veterinary Medicine, Department of Biochemistry Atatürk University Erzurum Turkey
| | - Emine Satici
- Faculty of Veterinary Medicine, Department of Biochemistry Atatürk University Erzurum Turkey
| |
Collapse
|
14
|
Yedier SK, Şekeroğlu ZA, Şekeroğlu V, Aydın B. Cytotoxic, genotoxic, and carcinogenic effects of acrylamide on human lung cells. Food Chem Toxicol 2022; 161:112852. [DOI: 10.1016/j.fct.2022.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
15
|
Yan D, Wang N, Yao J, Wu X, Yuan J, Yan H. Curcumin Attenuates the PERK-eIF2α Signaling to Relieve Acrylamide-Induced Neurotoxicity in SH‑SY5Y Neuroblastoma Cells. Neurochem Res 2022; 47:1037-1048. [PMID: 35037165 DOI: 10.1007/s11064-021-03504-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 02/06/2023]
Abstract
Curcumin is a natural polyphenolic compound with neuroprotective and antioxidant properties. Acrylamide (ACR) is a by-product of food processing that produces neurotoxicity in humans and animals. The pancreatic endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor-2α (eIF2α) signaling is involved in the occurrence of neurotoxicities. This study is aimed to investigate the protective effect of curcumin on ACR-induced cytotoxicity and explore the role of PERK-eIF2α signaling in this process. ACR exposure at 2.5 mM for 24 h caused oxidative stress as revealed by the distinct increase in cellular reactive oxygen species (ROS) and malondialdehyde (MDA) level, and a significant decrease in glutathione (GSH) content. ACR induced phosphorylated tau aggregation, phosphorylated cAMP response elements binding protein (CREB) reduction, and Bax/Bcl-2 ratio up-regulation in SH-SY5Y cells. ACR also activated the PERK-eIF2α signaling in SH-SY5Y cells and triggered the activation of glycogen synthase kinase-3β (GSK-3β), up-regulated activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). Curcumin pretreatment significantly attenuated ACR-induced neuronal toxicity as revealed by the ameliorated cell viability, mitigated intracellular ROS and MDA level, and elevated GSH content. Moreover, curcumin pretreatment inhibited PERK-dependent eIF2α phosphorylation, further suppressed GSK-3β and ATF4 function, and abolished abnormal tau phosphorylation, P-CREB reduction, and CHOP-induced apoptosis in SH-SY5Y cells. These results provided empirical evidence between curcumin and PERK-eIF2α signaling in ACR-induced neurotoxicity.
Collapse
Affiliation(s)
- Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, China
| | - Na Wang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, China
| | - Jianling Yao
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, China
| | - Xu Wu
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, China.
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, China.
| |
Collapse
|
16
|
Zhou L, Luo S, Wang X, Zhou Y, Zhang Y, Zhu S, Chen T, Feng S, Yuan M, Ding C. Blumea laciniata protected Hep G2 cells and Caenorhabditis elegans against acrylamide-induced toxicity via insulin/IGF-1 signaling pathway. Food Chem Toxicol 2021; 158:112667. [PMID: 34762976 DOI: 10.1016/j.fct.2021.112667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/30/2021] [Accepted: 11/07/2021] [Indexed: 02/07/2023]
Abstract
Acrylamide (AC), a proved toxin is mainly used in industrial fields and proved to possess various toxicities. In recent years, AC has been found in starch-containing foods due to Maillard reaction in a high-temperature process. Therefore, how to mitigate the toxic effect of AC is a research spot. Blumea laciniata is a widely used folk medicine in Asia and the extract from B. laciniata (EBL) exhibited a strong protection on cells against oxidative stress. In this work, we used EBL to protect Hep G2 cells and Caenorhabditis elegans against AC toxicity. As the results turned out, EBL increased cell viability under AC stress and notably reduced the cell apoptosis through decreasing the high level of ROS. Moreover, EBL extended the survival time of C. elegans, while EBL failed to prolong the survival time of mutants that were in Insulin signaling pathway. Besides, the expressions of antioxidant enzymes were activated after the worms were treated with EBL and daf-16 gene was activated. Our results indicated that EBL exhibited a protective effect against AC induced toxicity in Hep G2 cells and C. elegans via Insulin/IGF-1 signaling pathway. These outcomes may provide a promising natural drug to alleviate the toxic effect of AC.
Collapse
Affiliation(s)
- Lijun Zhou
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Siyuan Luo
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Xiaoju Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Yiling Zhou
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Yuan Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Shuai Zhu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Tao Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Shiling Feng
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
17
|
Kacar S, Sahinturk V. The Protective Agents Used against Acrylamide Toxicity: An In Vitro Cell Culture Study-Based Review. CELL JOURNAL 2021; 23:367-381. [PMID: 34455711 PMCID: PMC8405082 DOI: 10.22074/cellj.2021.7286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/19/2020] [Indexed: 01/23/2023]
Abstract
Acrylamide is a dangerous electrophile with the potency to react with many biological moieties including proteins, and nucleic acids as well as other macromolecules. Acrylamide was first only known a chemical exposed in working areas as a neurotoxicant, it was later discovered that beyond just being a neurotoxicant exposed in industrial areas, acrylamide is exposed via daily foods as well. As such, several strategies have been sought to be developed to relieve the toxic spectrum of this chemical. The utilization of a protective agent against acrylamide toxicity was one of those strategies. To date, many agents with protective potency have been investigated. Herein, we compiled these agents and their effects shown in in vitro studies. We used the search engines of Web of Knowledge and searched the keywords "acrylamide" and "protect" in the titles along with the keyword "cell" in the topics. Twenty-one directly related articles out of 35 articles were examined. Briefly, all agents used against acrylamide were reported to exhibit protective activity. In most of these reports, 5 mM concentration of acrylamide and 24-hour treatment were the employed dose and duration. Usually, the beneficial agents were pre-treated to the cells. PC12 cells were the most utilized cell line, and the mitogen-activated protein kinase (MAPK) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways were the most studied pathways. This study, beside other importance, can be utilized as a guide for how the protective studies against acrylamide were done and which parameters were investigated in in vitro acrylamide studies. In conclusion, taking measures is of utmost importance to prevent or alleviate the toxicity of acrylamide, to which we are daily exposed even in our homes. Therefore, future studies should persist in focusing on mitigating acrylamide toxicity.
Collapse
Affiliation(s)
- Sedat Kacar
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Varol Sahinturk
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
18
|
Gur C, Kandemir FM, Darendelioglu E, Caglayan C, Kucukler S, Kandemir O, Ileriturk M. Morin protects against acrylamide-induced neurotoxicity in rats: an investigation into different signal pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49808-49819. [PMID: 33939091 DOI: 10.1007/s11356-021-14049-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
The presented study investigates the effects of morin against toxicity induced by acrylamide (ACR) in the brains of Sprague Dawley rats. In this study, neurotoxicity was induced by orally administering 38.27 mg/kg/b.w ACR to rats through gastric gavage for 10 days. Morin was administered at the same time and at different doses (50 and 100 mg/kg/b.w) with ACR. Biochemical and Western blot analyses showed that ACR increased malondialdehyde (MDA), p38α mitogen-activated protein kinase (p38α MAPK), nuclear factor kappa-B (NF-κB), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), p53, caspase-3, bcl-2 associated X protein (Bax), Beclin-1, light chain 3A (LC3A), and light chain 3B (LC3B) levels and decreased those of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), b-cell lymphoma-2 (Bcl-2), mammalian target of rapamycin (mTOR), phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt) in brain tissue and therefore induced neurotoxicity by causing oxidative stress, inflammation, apoptosis, and autophagy. On the other hand, it was determined that morin positively affected the levels of these markers by displaying antioxidant, anti-inflammatory, anti-apoptotic, and anti-autophagic properties and had a protective effect on ACR-induced neurotoxicity. As a result, morin is an effective substance against brain damage caused by ACR, yet further studies are needed to use it effectively.
Collapse
Affiliation(s)
- Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey.
| | - Ekrem Darendelioglu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Bingol University, Bingol, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Ozge Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Mustafa Ileriturk
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
19
|
Acrylamide Induced Oxidative Cellular Senescence in Embryonic Fibroblast Cell Line (NIH 3T3): A Protection by Carvacrol. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.109399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Stress-induced cellular senescence is a perpetual state of cell cycle arrest occurring in proliferating cells in response to stressful conditions. It is believed that oxidative stress plays a unique role in this process. As a reactive chemical compound that can induce oxidative stress, acrylamide is widely applied in several fields. Carvacrol is a liquid phenolic monoterpenoid found in essential oils of some plants and is known for its antioxidant and anticarcinogenic properties. Objectives: The current study aimed to evaluate the effects of carvacrol on oxidative stress and cellular senescence induced by acrylamide in the NIH 3T3 cell line. Methods: NIH 3T3 embryonic fibroblast cells were exposed to different concentrations of acrylamide, carvacrol, and H2O2 in a cell culture medium. The level of β-galactosidase (SA-β-gal) activity, as a marker of cellular senescence, was measured using staining and quantitative assays. Furthermore, to measure oxidative stress parameters, the content of glutathione and lipid peroxidation were determined. Results: Acrylamide could induce premature senescence evident by the elevated lipid peroxidation and SA-β-gal activity and declined cell viability and glutathione. Moreover, carvacrol showed beneficial effects on both acrylamide- and H2O2-induced cellular senescence by significantly reversing or subsiding the effect of oxidative stress and mediating its consequences. Conclusions: It can be concluded that carvacrol has protective effects against oxidative cellular senescence induced by acrylamide in the NIH 3T3 cell line.
Collapse
|
20
|
Krivohlavek A, Kuharić Ž, Marjanović Čermak AM, Šikić S, Pavičić I, Domijan AM. Assessment of intracellular accumulation of cadmium and thallium. J Pharmacol Toxicol Methods 2021; 110:107087. [PMID: 34153452 DOI: 10.1016/j.vascn.2021.107087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022]
Abstract
The aim of the study was to develop fast and accurate method for assessment of intracellular level of cadmium (Cd) and thallium (Tl), and to establish accumulation of the metals in the cells. HepG2 cells were treated with Cd or Tl (1.0 or 10.0 mg/L; 24 h) and level of Cd or Tl was assessed. ICP-MS was applied and the method was optimized and validated. Correlation coefficient (R2) for Cd was 0.9999 with intercept 0.0732 while for Tl was 1.00009 with intercept -0.1497, and limit of detection (LOD) for Cd was 0.020 μg/L and for Tl 0.097 μg/L. Both metals, Cd and Tl, accumulate in the cells in concentration-dependent manner. However, higher uptake of Cd in comparison to Tl was observed. Cells treated with the same concentration of the metal (1.0 mg/L) accumulated 10.0% of Cd and 1.0% of Tl. Higher uptake of Cd than Tl can explain higher toxicity of Cd toward HepG2 cells. Obtained results imply to the importance of monitoring the level of metals in the cells in order to connect changes at the molecular level with exposure to specific metal.
Collapse
Affiliation(s)
- Adela Krivohlavek
- Teaching Institute of Public Health Andrija Štampar, Mirogojska 16, Zagreb, Croatia
| | - Željka Kuharić
- Teaching Institute of Public Health Andrija Štampar, Mirogojska 16, Zagreb, Croatia
| | | | - Sandra Šikić
- Teaching Institute of Public Health Andrija Štampar, Mirogojska 16, Zagreb, Croatia
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, Zagreb, Croatia
| | - Ana-Marija Domijan
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Kovaciceva 1, Zagreb, Croatia.
| |
Collapse
|
21
|
Activity Guided Isolation of Phenolic Compositions from Anneslea fragrans Wall. and Their Cytoprotective Effect against Hydrogen Peroxide Induced Oxidative Stress in HepG2 Cells. Molecules 2021; 26:molecules26123690. [PMID: 34204227 PMCID: PMC8234824 DOI: 10.3390/molecules26123690] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/04/2023] Open
Abstract
Anneslea fragrans Wall., commonly known as “Pangpo Tea”, is traditionally used as a folk medicine and healthy tea for the treatment of liver and intestine diseases. The aim of this study was to purify the antioxidative and cytoprotective polyphenols from A. fragrans leaves. After fractionation with polar and nonpolar organic solvents, the fractions of aqueous ethanol extract were evaluated for their total phenolic (TPC) and flavonoid contents (TFC) and antioxidant activities (DPPH, ABTS, and FRAP assays). The n-butanol fraction (BF) showed the highest TPC and TFC with the strongest antioxidant activity. The bio-guided chromatography of BF led to the purification of six flavonoids (1–6) and one benzoquinolethanoid (7). The structures of these compounds were determined by NMR and MS techniques. Compound 6 had the strongest antioxidant capacity, which was followed by 5 and 2. The protective effect of the isolated compounds on hydrogen peroxide (H2O2)-induced oxidative stress in HepG2 cells revealed that the compounds 5 and 6 exhibited better protective effects by inhibiting ROS productions, having no significant difference with vitamin C (p > 0.05), whereas 6 showed the best anti-apoptosis activity. The results suggest that A. fragrans could serve as a valuable antioxidant phytochemical source for developing functional food and health nutraceutical products.
Collapse
|
22
|
Mohammadi Z, Attaran N, Sazgarnia A, Shaegh SAM, Montazerabadi A. Superparamagnetic cobalt ferrite nanoparticles as T2 contrast agent in MRI: in vitro study. IET Nanobiotechnol 2021; 14:396-404. [PMID: 32691742 DOI: 10.1049/iet-nbt.2019.0210] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Superparamagnetic cobalt ferrite nanoparticles (CoFe2O4) possess favourite advantages for theranostic applications. Most of previous studies reported that CoFe2O4 magnetic nanoparticles (MNPs) are suitable candidates for induction of hyperthermia and transfection agents for drug delivery. The present study synthesized and investigated the potential use of CoFe2O4 as a contrast agent in magnetic resonance imaging (MRI) by using a conventional MRI system. The CoFe2O4 were synthesized using co-precipitation method and characterized by TEM, XRD, FTIR, EDX and VSM techniques. Relaxivities r1 and r2 of CoFe2O4 were then calculated using a 1.5 Tesla clinical magnetic field. The cytotoxicity of CoFe2O4 was evaluated by the MTT assay. Finally, the optimal concentrations of MNPs for MRI uses were calculated through the analysis of T2 weighted imaging cell phantoms. The superparamagnetic CoFe2O4 NPs with an average stable size of 10.45 nm were synthesized. Relaxivity r1,2 calculations resulted in suitable r2 and r2/ r1 with values of 58.6 and 51 that confirmed the size dependency on relaxivity values. The optimal concentration of MNPs for MR image acquisition was calculated as 0.154 mM. Conclusion: CoFe2O4 synthesized in this study could be considered as a suitable T2 weighted contrast agent because of its high r2/r1 value.
Collapse
Affiliation(s)
- Zahra Mohammadi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Attaran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ameneh Sazgarnia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Alireza Montazerabadi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Health Benefits of Turmeric and Curcumin Against Food Contaminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:171-197. [DOI: 10.1007/978-3-030-73234-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
24
|
Salimi A, Pashaei R, Bohlooli S, Vaghar-Moussavi M, Pourahmad J. Analysis of the acrylamide in breads and evaluation of mitochondrial/lysosomal protective agents to reduce its toxicity in vitro model. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1859543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rafat Pashaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Faculty of Pharmacy, Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shahab Bohlooli
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehrdad Vaghar-Moussavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Al-Hajm AYS, Ozgun E. Effects of acrylamide on protein degradation pathways in human liver-derived cells and the efficacy of N-acetylcysteine and curcumin. Drug Chem Toxicol 2020; 45:1536-1543. [PMID: 33198515 DOI: 10.1080/01480545.2020.1846548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Acrylamide is a harmful chemical, and its metabolism occurs mainly in the liver. Acrylamide can form adducts on proteins. Protein homeostasis is vital for metabolic and secretory functions of the liver. No study has investigated the effect of acrylamide on the ubiquitin-proteasome system (UPS). Also, the effect of acrylamide on autophagy and its regulation is not fully known. We aimed to investigate the effects of acrylamide on the UPS, autophagy, mammalian target of rapamycin (mTOR), and heat shock protein 70 (HSP70) in HepG2 cells as well as to examine the effects of N-acetylcysteine and curcumin on these parameters in acrylamide-treated cells. HepG2 cells were initially treated with variable concentrations of acrylamide (0.01-0.1-1-10 mM) for 24 hours. Then, HepG2 cells were treated with 5 mM N-acetylcysteine and 6.79 µM curcumin in the presence of 10 mM acrylamide for 24 hours. Cell viability was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Ubiquitinated protein, mTOR, microtubule-associated proteins 1 A/1B light chain 3B-II (LC3B-II), and HSP70 levels were measured by immunoblotting. Acrylamide at 10 mM concentration, without any significant change at lower concentrations, caused an increase in ubiquitinated protein, LC3B-II, and HSP70 levels and a decrease in mTOR phosphorylation. Furthermore, 5 mM N-acetylcysteine caused a decrease in ubiquitinated protein and HSP70 levels; however, 6.79 µM curcumin did not affect 10 mM in acrylamide-treated cells. Our study showed that acrylamide at high concentration inhibits UPS and mTOR, activates autophagy, and increases HSP70 levels in HepG2 cells, and N-acetylcysteine reduces UPS inhibition and HSP70 levels in acrylamide-treated cells.
Collapse
Affiliation(s)
| | - Eray Ozgun
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
26
|
Lewandowska H, Kalinowska M. New Polyphenol-Containing LDL Nano-Preparations in Oxidative Stress and DNA Damage: A Potential Route for Cell-Targeted PP Delivery. MATERIALS 2020; 13:ma13225106. [PMID: 33198280 PMCID: PMC7696759 DOI: 10.3390/ma13225106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 11/24/2022]
Abstract
Low-density lipoprotein (LDL) preparations of the chosen polyphenols (PPs) were prepared for the first time in the literature. The solubility of the PPs in the lipidic core of the LDL increased with the increase of their lipophilicity. The anti-/pro-oxidative properties and toxicity of LDL-entrapped PPs toward A 2780 human ovarian cancer cells were examined. The obtained preparations were found to be stable in PBS, and characterized by low toxicity. A binding affinity study revealed that the uptake of PP-loaded LDL particles is non-receptor-specific under experimental conditions. The antioxidative potential of the obtained PPs-doped LDL preparations was shown to be higher than for the PPs themselves, probably due to facilitating transport of LDL preparations into the cellular milieu, where they can interact with the cellular systems and change the redox status of the cell. The PPs-loaded LDL displayed the highest protective effect against Fenton-type reaction induced oxidative DNA damage.
Collapse
Affiliation(s)
- Hanna Lewandowska
- Centre for Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, 16 Dorodna St., 03195 Warsaw, Poland
- Correspondence: ; Tel.: +48-225-041-084
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15351 Bialystok, Poland;
| |
Collapse
|
27
|
Zeng C, Feng S. Optimized Extraction of Polysaccharides from Bergenia emeiensis Rhizome, Their Antioxidant Ability and Protection of Cells from Acrylamide-induced Cell Death. PLANTS (BASEL, SWITZERLAND) 2020; 9:E976. [PMID: 32752097 PMCID: PMC7465645 DOI: 10.3390/plants9080976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 01/13/2023]
Abstract
Bergeniaemeiensis is a traditional herb in Chinese folk medicine. Most related studies are focused on the bioactivity of bergenin, neglecting other bioactive compounds. In our previous work, polysaccharides were identified in B. emeiensis rhizome. To evaluate the extraction process and the antioxidant ability of these polysaccharides, a response surface method and antioxidant assays were applied. The results showed that the yield of polysaccharides was highly affected by extraction time, followed by temperature and solvent-to-sample ratio. Under the optimal conditions (43 °C, 30 min and 21 mL/g), the yield was 158.34 ± 0.98 mg/g. After removing other impurities, the purity of the polysaccharides from B. emeiensis (PBE) was 95.97 ± 0.92%. The infrared spectrum showed that PBE had a typical polysaccharide structure. Further investigations exhibited the PBE could scavenge well DPPH and ABTS free radicals and chelate Fe2+, showing an excellent antioxidant capacity. In addition, PBE also enhanced the cell viability of HEK 239T and Hep G2 cells under acrylamide-exposure conditions, exhibiting great protection against the damage induced by acrylamide. Therefore, PBE can be considered a potential natural antioxidant candidate for use in the pharmaceutical industry as a health product.
Collapse
Affiliation(s)
| | - Shiling Feng
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China;
| |
Collapse
|
28
|
Vazin A, Heidari R, Khodami Z. Curcumin Supplementation Alleviates Polymyxin E-Induced Nephrotoxicity. J Exp Pharmacol 2020; 12:129-136. [PMID: 32581601 PMCID: PMC7280086 DOI: 10.2147/jep.s255861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/15/2020] [Indexed: 01/04/2023] Open
Abstract
Background The last-line agent for gram-negative bacteria that have developed resistance towards commonly used antibiotics is polymyxin E (PolyE). The renal toxicity attributed to this agent limits its use, proper dosing, and eventually its clinical efficacy. Although the exact mechanism of PolyE-induced nephrotoxicity is not obvious, some investigations suggest the role of oxidative stress and its associated events in this complication. Curcumin (CUR) is a potent antioxidant molecule. The aim of the current investigation was the evaluation of the potential nephroprotective properties of CUR in PolyE-treated mice. Materials and Methods Mice were randomly allocated into five groups (n = 8 per group). PolyE (15 mg/kg/day, i.v, for 7 days) alone or in combination with CUR (10, 100 and 200 mg/kg, i.p) were administered to mice. Renal injury biomarkers, in addition to markers of oxidative stress and kidney histopathological alterations, were evaluated. Results Plasma creatinine (Cr) and blood urine nitrogen (BUN) significantly raised in PolyE group. Oxidative stress biomarkers consisting of reactive oxygen species (ROS) and lipid peroxidation (LPO) also increased, and concomitantly GSH and antioxidant capacity of renal cells significantly decreased following the use of PolyE. Interstitial nephritis, tissue necrosis, and glomerular atrophy were all induced by the use of PolyE in the mice kidney. CUR (10, 100, and 200 mg/kg, i.p) treatment alleviated PolyE-induced oxidative stress and histopathological alterations in the kidney tissue significantly. Conclusion According to the results of this study, CUR has a protective role against renal toxicity induced by PolyE. Hence, more research is necessary until this compound could be clinically applicable to alleviate PolyE-induced renal injury.
Collapse
Affiliation(s)
- Afsaneh Vazin
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodami
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Protective effects of morin against acrylamide-induced hepatotoxicity and nephrotoxicity: A multi-biomarker approach. Food Chem Toxicol 2020; 138:111190. [PMID: 32068001 DOI: 10.1016/j.fct.2020.111190] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 01/02/2023]
Abstract
Acrylamide (ACR) is a heat-induced carcinogen substance that is found in some foods due to cooking or other thermal processes. The aim of present study was to assess the probable protective effects of morin against ACR-induced hepatorenal toxicity in rats. The rats were treated with ACR (38.27 mg/kg b.w., p.o.) alone or with morin (50 and 100 mg/kg b.w., p.o.) for 10 consecutive days. Morin treatment attenuated the ACR-induced liver and kidney tissue injury by diminishing the serum AST, ALP, ALT, urea and creatinine levels. Morin increased activities of SOD, CAT and GPx and levels of GSH, and suppressed lipid peroxidation in ACR induced tissues. Histopathological changes and immunohistochemical expressions of p53, EGFR, nephrin and AQP2 in the ACR-induced liver and kidney tissues were decreased after administration of morin. In addition, morin reversed the changes in levels of apoptotic, autophagic and inflammatory parameters such as caspase-3, bax, bcl-2, cytochrome c, beclin-1, LC3A, LC3B, p38α MAPK, NF-κB, IL-1β, IL-6, TNF-α and COX-2 in the ACR-induced toxicity. Morin also affected the protein levels by regulating the PI3K/Akt/mTOR signaling pathway and thus alleviated ACR-induced apoptosis and autophagy. Overall, these findings may shed some lights on new approaches for the treatment of ACR-induced hepatotoxicity and nephrotoxicity.
Collapse
|
30
|
Fukushima T, Jintana W, Okabe S. Mixture toxicity of the combinations of silver nanoparticles and environmental pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6326-6337. [PMID: 31865577 DOI: 10.1007/s11356-019-07413-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Although toxicity of silver nanoparticles (AgNPs) has been well studied, the mixture toxicity of the combination of AgNPs and other environmental pollutants is still largely unknown. Here, we investigated the mixture toxicity of the combinations of AgNPs and common environmental pollutants such as arsenic (As), cadmium (Cd), and chromium (Cr) on human hepatoma cell line (HepG2) at noncytotoxic concentrations based on analyses of cytotoxicity, genotoxicity, reactive oxygen species (ROS) generation, and modes of cell death. In addition, DNA microarray analysis was performed to understand the cellular responses at a molecular level. AgNPs-As and AgNPs-Cd combinations exhibited synergistic effect on cytotoxicity while AgNPs-Cr showed additive effect. The AgNPs-Cd combination caused much stronger synergism than AgNPs-As combination. Based on cellular and molecular level analyses, the synergistic effect could be explained by overproduction of reactive oxygen species (ROS), which induced DNA damage and consequently apoptotic cell death. On the other hand, the additive effect caused by AgNPs-Cr could be attributed to reduction of the mixture toxicity by precipitation of Cr ions. Taken together, our results clearly demonstrated that the mixture toxicity of AgNPs with As, Cd, or Cr at noncytotoxic concentrations had different toxicity effects. Particularly, toxicogenomic approach using DNA microarray was useful to assess the mechanisms of the mixture toxicity.
Collapse
Affiliation(s)
- Toshikazu Fukushima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Wongta Jintana
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| |
Collapse
|
31
|
Palus K, Całka J. Influence of Acrylamide Administration on the Neurochemical Characteristics of Enteric Nervous System (ENS) Neurons in the Porcine Duodenum. Int J Mol Sci 2019; 21:ijms21010015. [PMID: 31861419 PMCID: PMC6982244 DOI: 10.3390/ijms21010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/23/2022] Open
Abstract
The digestive tract, especially the small intestine, is one of the main routes of acrylamide absorption and is therefore highly exposed to the toxic effect of acrylamide contained in food. The aim of this experiment was to elucidate the effect of low (tolerable daily intake—TDI) and high (ten times higher than TDI) doses of acrylamide on the neurochemical phenotype of duodenal enteric nervous system (ENS) neurons using the pig as an animal model. The experiment was performed on 15 immature gilts of the Danish Landrace assigned to three experimental groups: control (C) group—pigs administered empty gelatine capsules, low dose (LD) group—pigs administered capsules with acrylamide at the TDI dose (0.5 μg/kg body weight (b.w.)/day), and the high dose (HD) group—pigs administered capsules with acrylamide at a ten times higher dose than the TDI (5 μg/kg b.w./day) with a morning feeding for 4 weeks. Administration of acrylamide, even in a low (TDI) dose, led to an increase in the percentage of enteric neurons immunoreactive to substance P (SP), calcitonin gene-related peptide (CGRP), galanin (GAL), neuronal nitric oxide synthase (nNOS), and vesicular acetylcholine transporter (VACHT) in the porcine duodenum. The severity of the changes clearly depended on the dose of acrylamide and the examined plexus. The obtained results suggest the participation of these neuroactive substances in acrylamide-inducted plasticity and the protection of ENS neurons, which may be an important line of defence from the harmful action of acrylamide.
Collapse
|
32
|
Role of Oxidative Stress, MAPKinase and Apoptosis Pathways in the Protective Effects of Thymoquinone Against Acrylamide-Induced Central Nervous System Toxicity in Rat. Neurochem Res 2019; 45:254-267. [PMID: 31728856 DOI: 10.1007/s11064-019-02908-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022]
Abstract
The present study evaluated biochemical endpoints characterizing acrylamide (ACR) neurotoxicity in the cortex of rats, following the possible neuroprotective activity of thymoquinone (TQ), an active constituent of Nigella sativa. ACR (50 mg/kg, intraperitoneal [i.p.]) concurrently with TQ (2.5, 5 and 10 mg/kg, i.p.) for 11 days were administered to rats. As positive control, vitamin E was used. After 11 days of injections, narrow beam test (NBT) was performed. The levels of reduced glutathione (GSH) and malondialdehyde (MDA) were measured and Western blotting was done for mitogen-activated protein kinases (MAPKinases) and apoptosis pathways proteins in the rats' cortex. Additionally, Evans blue assay was done to evaluate the integrity of blood brain barrier (BBB). Administration of ACR significantly induced gait abnormalities. A significant decrease and increase in the levels of GSH and MDA was observed in the cortex of ACR-treated rats, respectively. The elevation in the levels of caspases 3 and 9, glial fibrillary acidic protein (GFAP) content, and Bax/Bcl-2, P-P38/P38 and P-JNK/JNK ratios accompanied by reduction in myelin basic protein (MBP) content and P-ERK/ERK ratio were noticed in the ACR group. TQ (5 mg/kg) improved gait abnormalities, and restored these changes. ACR affected the integrity of BBB while TQ was able to maintain the integrity of this barrier. TQ reversed the alterations in the protein contents of MAP kinase and apoptosis signaling pathways as well as MBP and GFAP contents, induced by ACR. It protected against ACR-mediated neurotoxicity, partly through its antioxidant and antiapoptotic properties.
Collapse
|
33
|
Awasthi Y, Ratn A, Prasad R, Kumar M, Trivedi A, Shukla JP, Trivedi SP. A protective study of curcumin associated with Cr 6+ induced oxidative stress, genetic damage, transcription of genes related to apoptosis and histopathology of fish, Channa punctatus (Bloch, 1793). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 71:103209. [PMID: 31207396 DOI: 10.1016/j.etap.2019.103209] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Ameliorative potential of curcumin against Cr6+-induced eco-toxicological manifestations was assessed in liver of exposed Channa punctatus (Actinopterygii) in six groups for 45 d; Group I as control. Group II with 3 mg/L of curcumin; group III with 7.89 mg/L of Cr6+. Groups IV, V and VI were simultaneously co-exposed with 7.89 mg/L of Cr6+ and three different curcumin concentrations, 1, 2, and 3 mg/L, respectively. In group III, SOD-CAT, GR significantly (p < 0.05) increased; decreased GSH level; elevated MN and AC frequencies; and a significant (p < 0.05) up-regulation of cat (2.72-fold), p53 (1.73-fold), bax (1.33-fold) and apaf-1 (2.13-fold) together with a significant (p < 0.05) down-regulation of bcl-2 (0.51-fold). Co-exposure significantly (p < 0.05) brought down activities of SOD-CAT, GR, raised GSH, decreased micronuclei and apoptotic frequencies along with recovery of histopathological anomalies in liver. This study establishes the protective role of curcumin against Cr6+-induced hepatotoxicity in fish.
Collapse
Affiliation(s)
- Yashika Awasthi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Arun Ratn
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Rajesh Prasad
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Manoj Kumar
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Abha Trivedi
- Department of Zoology, MJP Rohilkhand University, Bareilly, 243006, India
| | - J P Shukla
- Department of Zoology, S. Kisan P.G College, Siddharth University, Kapilvastu, 272205, India
| | - Sunil P Trivedi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
34
|
Kacar S, Sahinturk V, Kutlu HM. Effect of acrylamide on BEAS-2B normal human lung cells: Cytotoxic, oxidative, apoptotic and morphometric analysis. Acta Histochem 2019; 121:595-603. [PMID: 31109687 DOI: 10.1016/j.acthis.2019.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 01/17/2023]
Abstract
Due to the broad toxic relevance of acrylamide, many measures have been taken since the 1900s. These measures increased day by day when acrylamide was discovered in foods in 2002, and its toxic spectrum was found to be wider than expected. Therefore, in some countries, the products with higher acrylamide content were restricted. On the other hand, the effects of acrylamide on the respiratory system cells have yet to be well understood. In this study, we aimed at investigating the effect of acrylamide on lung epithelial BEAS-2B cells. Initially, the cytotoxic effect of acrylamide on BEAS-2B was determined by MTT assay. Then, cellular oxidative stress was measured. Flow cytometry analysis was conducted for Annexin-V and caspase 3/7. Furthermore, Bax, Bcl-2 and Nrf-2 proteins were evaluated by immunocytochemistry. Finally, acrylamide-induced cellular morphological changes were observed under confocal and TEM microscopes. According to MTT results, the IC50 concentration of acrylamide was 2.00 mM. After acrylamide treatment, oxidative stress increased dose-dependently. Annexin V-labelled apoptotic cells and caspase 3/7 activity were higher than untreated cells in acrylamide-treated cells. Immunocytochemical examination revealed a marked decrease in Bcl-2, an increase in Bax and Nrf-2 protein staining upon acrylamide treatment. Furthermore, in confocal and TEM microscopy, apoptotic hallmarks were pronounced. In the present study, acrylamide was suggested to display anti-proliferative activity, decrease viability, induce apoptosis and oxidative stress and cause morphological changes in BEAS-2B cells.
Collapse
|
35
|
Çal T, Bucurgat ÜÜ. In vitro investigation of the effects of boron nitride nanotubes and curcumin on DNA damage. Daru 2019; 27:203-218. [PMID: 30941633 PMCID: PMC6593132 DOI: 10.1007/s40199-019-00263-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKROUND Stem cells provide an opportunity to analyse the effects of xenobiotic on cell viability, differentiation and cell functions. Evaluation of the possible cytotoxic and DNA damaging effects on bone marrow CD34+ stem cells is important for their ability to differentiate into blood cells, and also for bone marrow diseases therapy. Boron nitride nanotubes and curcumin are potential nanoformulation agents that can be used together in the treatment of cancer or bone marrow diseases. Therefore, it is important to evaluate their possible effects on different cell lines. OBJECTIVES In this study, it was aimed to evaluate the cytotoxic and DNA damaging effects of boron nitride nanotubes which are commonly used in pyroelectric, piezoelectric and optical applications, but there is not enough information about its biocompatibility. Also, it was intended to research the effects of curcumin being used frequently in treatment processes for antioxidant properties. METHODS The possible cytotoxic and DNA damaging effects of boron nitride nanotubes and curcumin on CD34+ cells, HeLa and V79 cells were evaluated by MTT assay and Comet assay, respectively. RESULTS AND CONCLUSION Boron nitride nanotubes and curcumin had cytotoxic effects and cause DNA damage on CD34+ cells, HeLa and V79 cells at several concentrations, probably because of increased ROS level. However, there were not concentration - dependent effect and there were controversial toxicity results of the studied cell lines. Its mechanism needs to be enlightened by further analysis for potential targeted drug development. Graphical abstract.
Collapse
Affiliation(s)
- Tuğbagül Çal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhıye, Ankara, Turkey
| | - Ülkü Ündeğer Bucurgat
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhıye, Ankara, Turkey.
| |
Collapse
|
36
|
Yildizbayrak N, Erkan M. Therapeutic effect of curcumin on acrylamide-induced apoptosis mediated by MAPK signaling pathway in Leydig cells. J Biochem Mol Toxicol 2019; 33:e22326. [PMID: 31081568 DOI: 10.1002/jbt.22326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/21/2019] [Accepted: 03/15/2019] [Indexed: 12/30/2022]
Abstract
The aim of this study was to investigate the possible therapeutic effects of curcumin (CUR), against acrylamide (AA)-induced toxic effects on Leydig cells. The AA and CUR-treated cells were evaluated for cell viability, lipid peroxidation, reactive oxygen species (hydroxyl radical and hydrogen peroxide), antioxidant levels (glutathione peroxidase, glutathione-S-transferase, and catalase), apoptosis/necrosis rates and phosphorylation status of mitogen-activated protein kinases (MAPKs). Leydig cells were exposed to four concentrations of AA (1, 10, 100, 1000 µM) in the presence and absence of CUR (2.5 µM) for 24 hours. According to the present result, AA concentration-dependently, increased the oxidative stress parameters and suppressed the antioxidant enzyme levels, meanwhile induced apoptosis and activated the phosphorylation of extracellular signal-regulated kinase, p38, and c-Jun NH 2 -terminal kinase. Moreover, CUR ameliorated the detrimental effects of AA. Thus, AA-induced apoptosis through activation of the MAPK signaling pathway and CUR has a protective effect against AA-induced damage in Leydig cells.
Collapse
Affiliation(s)
- Nebahat Yildizbayrak
- Department of Biology, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Melike Erkan
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| |
Collapse
|
37
|
Perker MC, Orta Yilmaz B, Yildizbayrak N, Aydin Y, Erkan M. Protective effects of curcumin on biochemical and molecular changes in sodium arsenite‐induced oxidative damage in embryonic fibroblast cells. J Biochem Mol Toxicol 2019; 33:e22320. [DOI: 10.1002/jbt.22320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Mehmet Can Perker
- Department of BiologyInstitute of Graduate Studies in Sciences, Istanbul UniversityIstanbul Turkey
| | - Banu Orta Yilmaz
- Department of BiologyFaculty of Sciences, Istanbul UniversityIstanbul Turkey
| | - Nebahat Yildizbayrak
- Department of BiologyInstitute of Graduate Studies in Sciences, Istanbul UniversityIstanbul Turkey
| | - Yasemin Aydin
- Department of BiologyFaculty of Sciences, Istanbul UniversityIstanbul Turkey
| | - Melike Erkan
- Department of BiologyFaculty of Sciences, Istanbul UniversityIstanbul Turkey
| |
Collapse
|
38
|
Domijan AM, Marjanović Čermak AM, Vulić A, Tartaro Bujak I, Pavičić I, Pleadin J, Markov K, Mihaljević B. Cytotoxicity of gamma irradiated aflatoxin B 1 and ochratoxin A. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:155-162. [PMID: 30614388 DOI: 10.1080/03601234.2018.1536578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Toxicity of gamma irradiated mycotoxins aflatoxin B1 (AFB1) and ochratoxin A (OTA) was investigated in vitro. AFB1 and OTA stock solutions (50 mM, in methanol) were gamma irradiated (5 and 10 kGy) and non-irradiated and irradiated mycotoxins solutions were tested for cytotoxicity on Pk15, HepG2 and SH-SY5Y cell lines (MTT assay, 1-500 μM concentration range; 24 h exposure). Degradation of mycotoxin molecules was examined by liquid chromatography tandem mass spectrometry (HPLC-MS/MS). AFB1 and OTA radiolytic products were less toxic than the parent mycotoxins to all of the tested cell lines. Gamma irradiation even at 5 kGy had effect on AFB1 and OTA molecules however, this effect was dependent on chemical structure of mycotoxin. Since gamma irradiation at low dose reduced initial level of both mycotoxins, and gamma irradiated mycotoxins had lower toxicity in comparison to non-irradiated mycotoxins, it can be concluded that gamma irradiation could be used as decontamination method.
Collapse
Affiliation(s)
- Ana-Marija Domijan
- a Faculty of Pharmacy and Biochemistry , University of Zagreb , Zagreb , Croatia
| | | | - Ana Vulić
- c Croatian Veterinary Institute , Zagreb , Croatia
| | | | - Ivan Pavičić
- b Institute for Medical Research and Occupational Health , Zagreb , Croatia
| | | | - Ksenija Markov
- e Faculty of Food Technology and Biotechnology , University of Zagreb , Zagreb , Croatia
| | | |
Collapse
|
39
|
Lee EJ, Hwang JS, Kang ES, Lee SB, Hur J, Lee WJ, Choi MJ, Kim JT, Seo HG. Nanoemulsions improve the efficacy of turmeric in palmitate- and high fat diet-induced cellular and animal models. Biomed Pharmacother 2018; 110:181-189. [PMID: 30469082 DOI: 10.1016/j.biopha.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 02/09/2023] Open
Abstract
Turmeric is a well-known functional food exhibiting multiple biological activities in health and disease. However, low aqueous solubility and poor bioavailability limit its therapeutic potential. Herein, we investigated the utility of nanoemulsions as a carrier to improve the efficacy of turmeric. Compared with turmeric extract (TE), 5% TE-loaded nanoemulsion (TE-NE), which contains 20-fold lower curcumin content than TE, achieved similar inhibition of palmitate-induced lipotoxicity in HepG2 cells. Exposure of HepG2 cells to 5% TE-NE also suppressed the palmitate-induced accumulation of lipid vacuoles and reactive oxygen species comparably with TE, and was accompanied by decreased levels of sterol regulatory element-binding protein (SREBP)-1, peroxisome proliferator-activated receptor-γ2 (PPAR-γ2), cleaved caspase-3, and poly (ADP-ribose) polymerase (PARP). Consistent with these effects in HepG2 cells, oral administration of 5% TE-NE to mice fed a high fat diet (HFD) markedly suppressed lipid accumulation in liver, leading to a significant reduction in body weight and adipose tissue weight, equivalent to the effects observed with TE. Compared with TE, 5% TE-NE also equivalently inhibited the levels of SREBP-1, PPAR-γ2, cleaved caspase-3, and PARP in the liver of mice fed a HFD. Furthermore, TE and 5% TE-NE significantly improved serum lipid profiles in a similar manner. These observations indicate that nanoemulsions can improve the efficacy of turmeric, thereby eliciting more potent biological efficacy against palmitate- and high fat diet (HFD)-induced cellular damage.
Collapse
Affiliation(s)
- Eun Ji Lee
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung Seok Hwang
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Eun Sil Kang
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Su Bi Lee
- Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea
| | - Jinwoo Hur
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Won Jin Lee
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jun Tae Kim
- Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
40
|
Sahinturk V, Kacar S, Vejselova D, Kutlu HM. Acrylamide exerts its cytotoxicity in NIH/3T3 fibroblast cells by apoptosis. Toxicol Ind Health 2018; 34:481-489. [PMID: 29734925 DOI: 10.1177/0748233718769806] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Acrylamide is a chemical utilized in various industries, and many studies have demonstrated its toxicity. The NIH/3T3 mouse embryonic cell line is the standard cell line of fibroblasts, which have a pivotal role with their versatile functions in the body. However, only two studies have attempted to investigate the effect of acrylamide on these crucial cells. To fill this knowledge gap, we aimed to determine the effects of acrylamide on NIH/3T3 cells. METHOD First, we performed the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay and calculated the IC50 dose of acrylamide. Then, we treated cells with the IC50 dose of acrylamide for 24 h and determined whether the dominant death mode of NIH/3T3 cells was apoptosis or necrosis by annexin V and caspase 3/7 assays. Finally, we performed confocal microscopy and transmission electron microscope (TEM) analysis for observing the morphological alterations. RESULTS MTT assay results showed that acrylamide treatment reduced the viability of NIH/3T3 cells dose-dependently and that the IC50 of acrylamide was 6.73 mM. Based on annexin V and caspase 3/7 assays, the dominant death mode of NIH/3T3 cells was determined to be apoptosis. Also, caspase 3/7 activities of the acrylamide-treated NIH/3T3 cells were three times greater than those of the untreated NIH/3T3 cells. Furthermore, we observed membrane blebbing, nuclear chromatin clumping, and cytoplasmic vacuolization in TEM analysis and apparent apoptotic bodies, nuclear fragmentations, and condensations in confocal microscopy. CONCLUSIONS In conclusion, our results suggested that the IC50 of acrylamide against NIH/3T3 cells for 24 h was 6.73 mM and that acrylamide exerted its cytotoxic and anti-proliferative effects on these cells mainly via apoptosis.
Collapse
Affiliation(s)
- Varol Sahinturk
- 1 Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Sedat Kacar
- 1 Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Djanan Vejselova
- 2 Department of Biology, Faculty of Science, Anadolu University, Eskisehir, Turkey
| | - Hatice Mehtap Kutlu
- 2 Department of Biology, Faculty of Science, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
41
|
Marković J, Stošić M, Kojić D, Matavulj M. Effects of acrylamide on oxidant/antioxidant parameters and CYP2E1 expression in rat pancreatic endocrine cells. Acta Histochem 2018; 120:73-83. [PMID: 29224921 DOI: 10.1016/j.acthis.2017.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 01/11/2023]
Abstract
Oxidative stress is one of the principle mechanism of acrylamide-induced toxicity. Acrylamide is metabolized by cytochrome P450 2E1 (CYP2E1) to glycidamide or by direct conjugation with glutathione. Bearing in mind that up to now the effects of acrylamide on oxidative stress status and CYP2E1 level in endocrine pancreas have not been studied we performed qualitative and quantitative immunohistochemical evaluation of inducible nitric oxide synthase (iNOS), superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), catalase (CAT) and CYP2E1 expression in islets of Langerhans of rats subchronically treated with 25 or 50mg/kg bw of acrylamide. Since the majority of cells (>80%) in rodent islets are beta cells, in parallel studies, we employed the Rin-5F beta cell line to examine effects of acrylamide on redox status and the activity of CAT, SOD and glutathione-S-transferase (GST), their gene expression, and CYP2E1, NF-E2 p45-related factor 2 (Nrf2) and iNOS expression. Immunohistochemically stained pancreatic sections revealed that acrylamide induced increase of iNOS and decrease of CYP2E1 protein expression, while expression of antioxidant enzymes was not significantly affected by acrylamide in islets of Langerhans. Analysis of Mallory-Azan stained pancreatic sections revealed increased diameter of blood vessels lumen in pancreatic islets of acrylamide-treated rats. Increase in the GST activity, lipid peroxidation and nitrite level, and decrease in GSH content, CAT and SOD activities was observed in acrylamide-exposed Rin-5F cells. Level of mRNA was increased for iNOS, SOD1 and SOD2, and decreased for GSTP1, Nrf2 and CYP2E1 in acrylamide-treated Rin-5F cells. This is the first report of the effects of acrylamide on oxidant/antioxidant parameters and CYP2E1 expression in pancreatic endocrine cells.
Collapse
|
42
|
Li X, Liu H, Lv L, Yan H, Yuan Y. Antioxidant activity of blueberry anthocyanin extracts and their protective effects against acrylamide‐induced toxicity in HepG2 cells. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13568] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xuenan Li
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Huangyou Liu
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Lingzhu Lv
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Haiyang Yan
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Yuan Yuan
- College of Food Science and Engineering Jilin University Changchun 130062 China
| |
Collapse
|
43
|
Zhao M, Wang P, Li D, Shang J, Hu X, Chen F. Protection against neo-formed contaminants (NFCs)-induced toxicity by phytochemicals. Food Chem Toxicol 2017; 108:392-406. [DOI: 10.1016/j.fct.2017.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/27/2016] [Accepted: 01/25/2017] [Indexed: 01/18/2023]
|
44
|
Saberi-Karimian M, Katsiki N, Caraglia M, Boccellino M, Majeed M, Sahebkar A. Vascular endothelial growth factor: An important molecular target of curcumin. Crit Rev Food Sci Nutr 2017; 59:299-312. [DOI: 10.1080/10408398.2017.1366892] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maryam Saberi-Karimian
- Student Research Committee, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania “L. Vanvitelli” 7, Via L. De Crecchio 7, Naples, Italy
| | - Mariarosaria Boccellino
- Department of Biochemistry, Biophysics and General Pathology, University of Campania “L. Vanvitelli” 7, Via L. De Crecchio 7, Naples, Italy
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Yashin A, Yashin Y, Xia X, Nemzer B. Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants (Basel) 2017; 6:E70. [PMID: 28914764 PMCID: PMC5618098 DOI: 10.3390/antiox6030070] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/14/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023] Open
Abstract
Antioxidants are substances that prevent oxidation of other compounds or neutralize free radicals. Spices and herbs are rich sources of antioxidants. They have been used in food and beverages to enhance flavor, aroma and color. Due to their excellent antioxidant activity, spices and herbs have also been used to treat some diseases. In this review article, the chemical composition and antioxidant activity of spices and culinary herbs are presented. The content of flavonoids and total polyphenols in different spices and herbs are summarized. The applications of spices and their impacts on human health are briefly described. The extraction and analytical methods for determination of antioxidant capacity are concisely reviewed.
Collapse
Affiliation(s)
- Alexander Yashin
- International Analytical Center of Zelinsky Institute of Organic Chemistry of Russian, Academy of Science, 119991 Moscow, Russia.
| | - Yakov Yashin
- International Analytical Center of Zelinsky Institute of Organic Chemistry of Russian, Academy of Science, 119991 Moscow, Russia.
| | - Xiaoyan Xia
- Department of Research & Development, VDF FutureCeuticals, Inc., Momence, IL 60954, USA.
| | - Boris Nemzer
- Department of Research & Development, VDF FutureCeuticals, Inc., Momence, IL 60954, USA.
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
46
|
Kacar S, Vejselova D, Kutlu HM, Sahinturk V. Acrylamide-derived cytotoxic, anti-proliferative, and apoptotic effects on A549 cells. Hum Exp Toxicol 2017; 37:468-474. [PMID: 28569085 DOI: 10.1177/0960327117712386] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Acrylamide is a very common compound even reaching up to our daily foods. It has been studied in a wealth of cell lines on which it proved to have various toxic effects. Among these cell lines, human lung adenocarcinoma cell line (A549) is one of that on which acrylamide's toxicity has not been studied well yet. AIM We intended to determine the half maximal inhibitory concentration (IC50) dose of acrylamide and to investigate its cytotoxic, anti-proliferative and apoptotic effects on A549 cells. METHODS We determined the IC50 dose by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Then, the mode of cell death was evaluated by flow cytometry using Annexin-V fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. Next, we performed transmission electron microscopy (TEM) and confocal microscopy analyses for morphological alterations and apoptotic indices. RESULTS According to the MTT assay results, A549 cell viability decreases proportionally with increasing acrylamide concentrations and IC50 for A549 was 4.6 mM for 24 h. Annexin-V FITC/PI assay results indicated that acrylamide induces apoptosis in 64% of the A549 cells. TEM and confocal microscopy analyses showed nuclear condensations, fragmentations, cytoskeleton laceration, and membrane blebbing, which are morphological characteristics of apoptosis. CONCLUSION Our research suggests that acrylamide causes cytotoxic, anti-proliferative, and apoptotic effects on A549 cells at 4.6 mM IC50 dose in 24 h.
Collapse
Affiliation(s)
- S Kacar
- 1 Faculty of Medicine, Department of Histology and Embryology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - D Vejselova
- 2 Faculty of Science, Department of Biology, Anadolu University, Eskisehir, Turkey
| | - H M Kutlu
- 2 Faculty of Science, Department of Biology, Anadolu University, Eskisehir, Turkey
| | - V Sahinturk
- 1 Faculty of Medicine, Department of Histology and Embryology, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
47
|
Shimamura Y, Iio M, Urahira T, Masuda S. Inhibitory effects of Japanese horseradish (Wasabia japonica) on the formation and genotoxicity of a potent carcinogen, acrylamide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2419-2425. [PMID: 27670634 DOI: 10.1002/jsfa.8055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/02/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The formation of acrylamide (AA) in cooked foods has raised human health concerns. AA is metabolized by cytochrome P450 2E1 (CYP2E1) to glycidamide (GA), which forms DNA adducts. This study examined the inhibitory effects of wasabi (Japanese horseradish, Wasabia japonica) roots and leaves as well as their active component, allyl isothiocyanate (AIT), on the formation and genotoxicity of AA. RESULTS AA formation (51.8 ± 4.2 µg kg-1 ) was inhibited with ≥2 mg mL-1 of AIT. Wasabi roots also inhibited AA formation (∼90% reduction), but wasabi leaves were not effective at 2 mg mL-1 . Wasabi roots and leaves decreased the number of cells with micronuclei by approximately 33 and 24% respectively compared with the AA treatment group. Moreover, wasabi roots and leaves (100 mg kg-1 body weight (BW) day-1 for each) decreased AA (100 mg kg-1 BW day-1 )-induced DNA damage. The AA-induced CYP2E1 activity was decreased by 39 and 26% with wasabi roots and leaves respectively. Further, the activity of glutathione S-transferase, which catalyzes the detoxification of AA via glutathione conjugation, increased by 54 and 33% with wasabi roots and leaves respectively. CONCLUSION These results indicate that wasabi roots and leaves are effective ingredients for inhibiting the formation and genotoxicity of AA. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuko Shimamura
- Department of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Misako Iio
- Department of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Tomoko Urahira
- Department of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shuichi Masuda
- Department of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
48
|
Said Salem NI, Noshy MM, Said AA. Modulatory effect of curcumin against genotoxicity and oxidative stress induced by cisplatin and methotrexate in male mice. Food Chem Toxicol 2017; 105:370-376. [PMID: 28428088 DOI: 10.1016/j.fct.2017.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/04/2017] [Accepted: 04/07/2017] [Indexed: 12/13/2022]
Abstract
The use of dietary antioxidants to modulate the toxic side effects induced by the anticancer drugs used in chemotherapy is currently eliciting considerable interest. This study was undertaken to investigate the possible protective role of the antioxidant curcumin (CMN) against genotoxicity, cytotoxicity and oxidative stress induced by cisplatin and methotrexate. Male mice were administered CMN orally in the dosages of 60, 90, and 120 mg/kg for three consecutive days before a single intraperitoneal injection of either cisplatin (6.5 mg/kg) or methotrexate (10 mg/kg). Animals were sacrificed 24 h after treatment with the used anticancer drugs. The protective role of CMN against the genotoxic and cytotoxic effects of the tested anticancer drugs was evaluated by using micronucleus and comet assay. The oxidative stress induced by the two anticancer drugs was assessed by determining malondialdehyde and reduced glutathione levels in kidney tissues. The results indicated that CMN pretreatment at the tested doses reduced the incidence of micronuclei and DNA damage induced by cisplatin and methotrexate. Moreover, malondialdhyde level was significantly decreased while glutathione level was significantly increased in CMN pretreated groups compared with cisplatin- and methotrexate-treated groups. This protective effect of CMN could be attributed to its ability to scavenge reactive oxygen species.
Collapse
Affiliation(s)
| | - Magda Mohammad Noshy
- Professor of Genetics, Department of Zoology, Faculty of Science, Cairo University, Egypt
| | - Azza Ali Said
- Associate Professor of Physiology, Department of Zoology, Faculty of Science, Fayoum University, Egypt
| |
Collapse
|
49
|
Celik R, Topaktas M. Genotoxic effects of 4-methylimidazole on human peripheral lymphocytes in vitro. Drug Chem Toxicol 2017; 41:27-32. [DOI: 10.1080/01480545.2017.1281289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rima Celik
- Department of Biology, Faculty of Science and Letters, Cukurova University, Adana, Turkey
| | - Mehmet Topaktas
- Department of Biology, Faculty of Science and Letters, Cukurova University, Adana, Turkey
| |
Collapse
|
50
|
Chen W, Su H, Xu Y, Jin C. In vitro gastrointestinal digestion promotes the protective effect of blackberry extract against acrylamide-induced oxidative stress. Sci Rep 2017; 7:40514. [PMID: 28084406 PMCID: PMC5233992 DOI: 10.1038/srep40514] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/06/2016] [Indexed: 12/04/2022] Open
Abstract
Acrylamide (AA)-induced toxicity has been associated with accumulation of excessive reactive oxygen species. The present study was therefore undertaken to investigate the protective effect of blackberry digests produced after (BBD) in vitro gastrointestinal (GI) digestion against AA-induced oxidative damage. The results indicated that the BBD (0.5 mg/mL) pretreatment significantly suppressed AA-induced intracellular ROS generation (56.6 ± 2.9% of AA treatment), mitochondrial membrane potential (MMP) decrease (297 ± 18% of AA treatment) and glutathione (GSH) depletion (307 ± 23% of AA treatment), thereby ameliorating cytotoxicity. Furthermore, LC/MS/MS analysis identified eight phenolic compounds with high contents in BBD, including ellagic acid, ellagic acid pentoside, ellagic acid glucuronoside, methyl-ellagic acid pentoside, methyl-ellagic acid glucuronoside, cyanidin glucoside, gallic acid and galloyl esters, as primary active compounds responsible for antioxidant action. Collectively, our study uncovered that the protective effect of blackberry was reserved after gastrointestinal digestion in combating exogenous pollutant-induced oxidative stress.
Collapse
Affiliation(s)
- Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hongming Su
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yang Xu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Chao Jin
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|