1
|
Matsugi A, Suzuki S. Ring Growth Mechanism in the Reaction between Fulvenallenyl and Cyclopentadienyl Radicals. J Phys Chem A 2024; 128:1327-1338. [PMID: 38351621 DOI: 10.1021/acs.jpca.3c07441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Recombination between resonance-stabilized hydrocarbon radicals is an important class of reactions that contribute to molecular growth chemistry in combustion. In the present study, the ring growth mechanism in the reaction between fulvenallenyl (C7H5) and cyclopentadienyl (C5H5) radicals is investigated computationally. The reaction pathways are explored by quantum chemical calculations, and the phenomenological and steady-state rate constants are determined by solving the multiple-well master equations. The primary reaction routes following the recombination between the two radicals are found to be as follows: formation of the adducts, isomerization by hydrogen shift reactions, cyclization to form tricyclic compounds, and their isomerization and dissociation reactions, leading to the formation of acenaphthylene. The overall process can be approximately represented as C7H5 + C5H5 → acenaphthylene + 2H with the bimolecular rate constant of about 4 × 10-12 cm3 molecule-1 s-1. A reaction mechanism consisting of 20 reactions, including the formation, isomerization, and dissociation processes of major intermediate species, is proposed for use in kinetic modeling.
Collapse
Affiliation(s)
- Akira Matsugi
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Shunsuke Suzuki
- Research Institute for Energy Conversion, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba 305-8564, Japan
| |
Collapse
|
2
|
Li W, Zhao L, Kaiser RI. A unified reaction network on the formation of five-membered ringed polycyclic aromatic hydrocarbons (PAHs) and their role in ring expansion processes through radical-radical reactions. Phys Chem Chem Phys 2023; 25:4141-4150. [PMID: 36655590 DOI: 10.1039/d2cp05305e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Exploiting a chemical microreactor in combination with an isomer-selective product identification through fragment-free photoionization utilizing tunable vacuum ultraviolet (VUV) light in tandem with the detection of the ionized molecules by a high resolution reflection time-of-flight mass spectrometer (Re-TOF-MS), the present investigation reveals molecular mass growth processes to four distinct polycyclic aromatic hydrocarbons carrying two six- and one five-membered ring (C13H10): 3H-cyclopenta[a]naphthalene, 1H-cyclopenta[b]naphthalene, 1H-cyclopenta[a]naphthalene, and fluorene in the gas phase. Temperatures of 973 and 1023 K simulating conditions in combustion settings along with circumstellar envelopes of carbon-rich stars and planetary nebulae. These reactions highlight the importance of methyl-substituted aromatic reactants (biphenyl, naphthalene) which can be converted to the methylene (-CH2˙) motive by hydrogen abstraction or photolysis. Upon reaction with acetylene, methylene-substituted aromatics carrying a hydrogen atom at the ortho position of the ring can be then converted to cyclopentadiene-annulated aromatics thus providing a versatile pathway to five-membered ring aromatics at elevated temperatures.
Collapse
Affiliation(s)
- Wang Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China.
| | - Long Zhao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China. .,School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
3
|
Dobulis MA, Thompson MC, Jarrold CC. Identification of Isoprene Oxidation Reaction Products via Anion Photoelectron Spectroscopy. J Phys Chem A 2021; 125:10089-10102. [PMID: 34755517 DOI: 10.1021/acs.jpca.1c08176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a study on the oxidation of isoprene under several different conditions that may model both atmospheric and combustion chemistry. Anions, formed by passing isoprene/oxidant gas mixtures through a pulsed discharge generating a range of species, are separated via mass spectrometry and characterized by anion photoelectron (PE) spectroscopy supported by computations. Specifically, a UV-irradiated isoprene/O2 mixture, which additionally produces O3, and an isoprene/O2/H2 mixture, which generates •OH when passed through the discharge, were sampled. The mass spectra of ions generated under both conditions show the production of intact molecular ions, ion-molecule complexes (e.g., O2-, O4-, and O2-·isoprene), and singly deprotonated species (e.g., deprotonated isoprene, C5H7-). In addition, both smaller and oxidized fragments are observed using both gas mixtures, though relative abundances differ. From the UV-irradiated isoprene/O2 gas mixture, additional intact molecular products of reactions initiated by ozonolysis of isoprene, methylglyoxal, and dimethylglyoxal were observed. Fragmentation and oxidation of isoprene observed in both gas mixtures included species with m/z 39, 53, 67, 69, and 83 that we attribute to a series of alkyl- and alkenoxide-based anions. The coexistence of intact molecules and complexes with fragments and reaction products demonstrates the versatility of this ion source as a simple and efficient anion formation method for studying species that may be relevant in atmospheric and combustion chemistry.
Collapse
Affiliation(s)
- Marissa A Dobulis
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Michael C Thompson
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
4
|
Bouwman J, Hrodmarsson HR, Ellison GB, Bodi A, Hemberger P. Five Birds with One Stone: Photoelectron Photoion Coincidence Unveils Rich Phthalide Pyrolysis Chemistry. J Phys Chem A 2021; 125:1738-1746. [PMID: 33616395 DOI: 10.1021/acs.jpca.1c00149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phthalide pyrolysis has been assumed to be a clean fulvenallene source. We show that this is only true at low temperatures, and the C7H6 isomers 1-, 2-, and 5-ethynylcyclopentadiene are also formed at high pyrolysis temperatures. Photoion mass-selected threshold photoelectron spectra are analyzed with the help of (time-dependent) density functional theory, (TD-)DFT, and equation-of-motion ionization potential coupled cluster, EOM-IP-CCSD, calculations, as well as Franck-Condon simulations of partly overlapping bands, to determine ionization energies. The fulvenallene ionization energy is confirmed at 8.23 ± 0.01 eV, and the ionization energies of 1-, 2 and 5-ethynylcyclopentadiene are newly determined at 8.27 ± 0.01, 8.49 ± 0.01 and 8.76 ± 0.02 eV, respectively. Excited state features in the photoelectron spectrum, in particular the Ã+ 2A' band of 1-ethynylcyclopentadiene, are shown to be practical to isomer-selectively detect species when the ground-state band is congested. At high pyrolysis temperatures, the C7H6 isomers may lose a hydrogen atom and yield the fulvenallenyl radical. Its ionization energy is confirmed at 8.20 ± 0.01 eV. The vibrational fingerprint of the first triplet fulvenallenyl cation state is also revealed and yields an ionization energy of 8.33 ± 0.02 eV. Further triplet cation states are identified and modeled in the 10-11 eV range. A reaction mechanism is proposed based on potential energy surface calculations. Based on a simplified reactor model, we show that the C7H6 isomer distribution is far from thermal equilibrium in the reactor, presumably because irreversible H loss competes efficiently with isomerization.
Collapse
Affiliation(s)
- Jordy Bouwman
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
| | - Helgi R Hrodmarsson
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
| | - G Barney Ellison
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
| | - Andras Bodi
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
5
|
Chen P, Fatayer S, Schuler B, Metz JN, Gross L, Yao N, Zhang Y. The Role of Methyl Groups in the Early Stage of Thermal Polymerization of Polycyclic Aromatic Hydrocarbons Revealed by Molecular Imaging. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2021; 35:2224-2233. [PMID: 33574639 PMCID: PMC7869141 DOI: 10.1021/acs.energyfuels.0c04016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Indexed: 05/03/2023]
Abstract
The initial thermal reactions of aromatic hydrocarbons are relevant to many industrial applications. However, tracking the growing number of heavy polycyclic aromatic hydrocarbon (PAH) products is extremely challenging because many reactions are unfolding in parallel from a mixture of molecules. Herein, we studied the reactions of 2,7-dimethylpyrene (DMPY) to decipher the roles of methyl substituents during mild thermal treatment. We found that the presence of methyl substituents is key for reducing the thermal severity required to initiate chemical reactions in natural molecular mixtures. A complex mixture of thermal products including monomers, dimers, and trimers was characterized by NMR, mass spectrometry, and noncontact atomic force microscopy (nc-AFM). A wide range of structural transformations including methyl transfer and polymerization reactions were identified. A detailed mechanistic understanding on the roles of H radicals during the polymerization of polycyclic aromatic hydrocarbons was obtained.
Collapse
Affiliation(s)
- Pengcheng Chen
- Princeton
Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08540, United States
| | - Shadi Fatayer
- IBM
Research−Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Bruno Schuler
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Jordan N. Metz
- Corporate
Strategic Research, ExxonMobil Research
and Engineering Company, 1545 Route 22 E., Annandale, New Jersey 08801, United States
| | - Leo Gross
- IBM
Research−Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Nan Yao
- Princeton
Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08540, United States
| | - Yunlong Zhang
- Corporate
Strategic Research, ExxonMobil Research
and Engineering Company, 1545 Route 22 E., Annandale, New Jersey 08801, United States
| |
Collapse
|
6
|
He C, Zhao L, Doddipatla S, Thomas AM, Nikolayev AA, Galimova GR, Azyazov VN, Mebel AM, Kaiser RI. Gas-Phase Synthesis of 3-Vinylcyclopropene via the Crossed Beam Reaction of the Methylidyne Radical (CH; X 2 Π) with 1,3-Butadiene (CH 2 CHCHCH 2 ; X 1 A g ). Chemphyschem 2020; 21:1295-1309. [PMID: 32291897 DOI: 10.1002/cphc.202000183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/12/2020] [Indexed: 12/18/2022]
Abstract
The crossed molecular beam reactions of the methylidyne radical (CH; X2 Π) with 1,3-butadiene (CH2 CHCHCH2 ; X1 Ag ) along with their (partially) deuterated counterparts were performed at collision energies of 20.8 kJ mol-1 under single collision conditions. Combining our laboratory data with ab initio calculations, we reveal that the methylidyne radical may add barrierlessly to the terminal carbon atom and/or carbon-carbon double bond of 1,3-butadiene, leading to doublet C5 H7 intermediates with life times longer than the rotation periods. These collision complexes undergo non-statistical unimolecular decomposition through hydrogen atom emission yielding the cyclic cis- and trans-3-vinyl-cyclopropene products with reaction exoergicities of 119±42 kJ mol-1 . Since this reaction is barrierless, exoergic, and all transition states are located below the energy of the separated reactants, these cyclic C5 H6 products are predicted to be accessed even in low-temperature environments, such as in hydrocarbon-rich atmospheres of planets and cold molecular clouds such as TMC-1.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| | - Long Zhao
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| | - Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| | - Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| | | | - Galiya R Galimova
- Samara National Research University, Samara, 443086, Russian Federation.,Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Valeriy N Azyazov
- Samara National Research University, Samara, 443086, Russian Federation.,Lebedev Physical Institute, Samara, 443011, Russian Federation
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii, 96822, USA
| |
Collapse
|
7
|
Zhang H, Li YB, Zhu L, Chen J, Yu YP, Li ZH, Lin X, Shan XB, Liu FY, Sheng LS. Investigation of vacuum ultraviolet photoionization of methylcyclohexane in energy region of 9−15.5 eV. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1905095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hang Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yan-bo Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Long Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Jun Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Ye-peng Yu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Zhao-hui Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Xuan Lin
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Xiao-bin Shan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Fu-yi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Liu-si Sheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
8
|
McCabe M, Hemberger P, Reusch E, Bodi A, Bouwman J. Off the Beaten Path: Almost Clean Formation of Indene from the ortho-Benzyne + Allyl Reaction. J Phys Chem Lett 2020; 11:2859-2863. [PMID: 32202794 PMCID: PMC7168585 DOI: 10.1021/acs.jpclett.0c00374] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) play an important role in chemistry both in the terrestrial setting and in the interstellar medium. Various, albeit often inefficient, chemical mechanisms have been proposed to explain PAH formation, but few yield polycyclic hydrocarbons cleanly. Alternative and quite promising pathways have been suggested to address these shortcomings with key starting reactants including resonance stabilized radicals (RSRs) and o-benzyne. Here we report on a combined experimental and theoretical study of the reaction allyl + o-benzyne. Indene was found to be the primary product and statistical modeling predicts only 0.1% phenylallene and 0.1% 3-phenyl-1-propyne as side products. The quantitative and likely barrierless formation of indene yields important insights into the role resonance stabilized radicals play in the formation of polycyclic hydrocarbons.
Collapse
Affiliation(s)
- Morgan
N. McCabe
- Laboratory
for Astrophysics, Leiden Observatory, Leiden
University, P.O. Box 9513, 2300 RA Leiden, The Netherlands
| | - Patrick Hemberger
- Laboratory
for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Engelbert Reusch
- Institute
of Physical and Theoretical Chemistry, University
of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Andras Bodi
- Laboratory
for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jordy Bouwman
- Laboratory
for Astrophysics, Leiden Observatory, Leiden
University, P.O. Box 9513, 2300 RA Leiden, The Netherlands
| |
Collapse
|
9
|
He C, Thomas AM, Galimova GR, Morozov AN, Mebel AM, Kaiser RI. Gas-Phase Formation of Fulvenallene (C 7H 6) via the Jahn-Teller Distorted Tropyl (C 7H 7) Radical Intermediate under Single-Collision Conditions. J Am Chem Soc 2020; 142:3205-3213. [PMID: 31961149 DOI: 10.1021/jacs.9b13269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The fulvenallene molecule (C7H6) has been synthesized via the elementary gas-phase reaction of the methylidyne radical (CH) with the benzene molecule (C6H6) on the doublet C7H7 surface under single collision conditions. The barrier-less route to the cyclic fulvenallene molecule involves the addition of the methylidyne radical to the π-electron density of benzene leading eventually to a Jahn-Teller distorted tropyl (C7H7) radical intermediate and exotic ring opening-ring contraction sequences terminated by atomic hydrogen elimination. The methylidyne-benzene system represents a benchmark to probe the outcome of the elementary reaction of the simplest hydrocarbon radical-methylidyne-with the prototype of a closed-shell aromatic molecule-benzene-yielding nonbenzenoid fulvenallene. Combined with electronic structure and statistical calculations, this bimolecular reaction sheds light on the unusual reaction dynamics of Hückel aromatic systems and remarkable (polycyclic) reaction intermediates, which cannot be studied via classical organic, synthetic methods, thus opening up a versatile path to access this previously largely obscure class of fulvenallenes.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| | - Aaron M Thomas
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States.,Samara National Research University , Samara 443086 , Russia
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Ralf I Kaiser
- Department of Chemistry , University of Hawai'i at Manoa , Honolulu , Hawaii 96822 , United States
| |
Collapse
|
10
|
Mercier X, Faccinetto A, Batut S, Vanhove G, Božanić DK, Hróðmarsson HR, Garcia GA, Nahon L. Selective identification of cyclopentaring-fused PAHs and side-substituted PAHs in a low pressure premixed sooting flame by photoelectron photoion coincidence spectroscopy. Phys Chem Chem Phys 2020; 22:15926-15944. [DOI: 10.1039/d0cp02740e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective on-line identification of polycyclic aromatic hydrocarbons (PAHs) formed in a low-pressure methane sooting flame, carried out using the double imaging Photoelectron Photoion Coincidence Spectroscopy method (i2PEPICO).
Collapse
Affiliation(s)
- X. Mercier
- Université Lille
- CNRS
- UMR 8522 – PC2A – Physicochimie des Processus de Combustion et de l’Atmosphère
- F-59000 Lille
- France
| | - A. Faccinetto
- Université Lille
- CNRS
- UMR 8522 – PC2A – Physicochimie des Processus de Combustion et de l’Atmosphère
- F-59000 Lille
- France
| | - S. Batut
- Université Lille
- CNRS
- UMR 8522 – PC2A – Physicochimie des Processus de Combustion et de l’Atmosphère
- F-59000 Lille
- France
| | - G. Vanhove
- Université Lille
- CNRS
- UMR 8522 – PC2A – Physicochimie des Processus de Combustion et de l’Atmosphère
- F-59000 Lille
- France
| | - D. K. Božanić
- Synchrotron SOLEIL
- L ‘Orme des Merisiers
- 91192 Gif sur Yvette
- France
| | | | - G. A. Garcia
- Synchrotron SOLEIL
- L ‘Orme des Merisiers
- 91192 Gif sur Yvette
- France
| | - L. Nahon
- Synchrotron SOLEIL
- L ‘Orme des Merisiers
- 91192 Gif sur Yvette
- France
| |
Collapse
|
11
|
Baroncelli M, Mao Q, Galle S, Hansen N, Pitsch H. Role of ring-enlargement reactions in the formation of aromatic hydrocarbons. Phys Chem Chem Phys 2020; 22:4699-4714. [DOI: 10.1039/c9cp05854k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ring-enlargement reactions can provide a fast route towards the formation of six-membered single-ring or polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Martina Baroncelli
- Institute for Combustion Technology
- RWTH Aachen University
- 52062 Aachen
- Germany
| | - Qian Mao
- Institute for Combustion Technology
- RWTH Aachen University
- 52062 Aachen
- Germany
| | - Simon Galle
- Institute for Combustion Technology
- RWTH Aachen University
- 52062 Aachen
- Germany
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories
- Livermore
- USA
| | - Heinz Pitsch
- Institute for Combustion Technology
- RWTH Aachen University
- 52062 Aachen
- Germany
| |
Collapse
|
12
|
Brown AR, Brice JT, Franke PR, Douberly GE. Infrared Spectrum of Fulvenallene and Fulvenallenyl in Helium Droplets. J Phys Chem A 2019; 123:3782-3792. [DOI: 10.1021/acs.jpca.9b01661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alaina R. Brown
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Joseph T. Brice
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Peter R. Franke
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Gary E. Douberly
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
13
|
Abstract
Abstract
Current topics in combustion chemistry include aspects of a changing fuel spectrum with a focus on reducing emissions and increasing efficiency. This article is intended to provide an overview of selected recent work in combustion chemistry, especially addressing reaction pathways from fuel decomposition to emissions. The role of the molecular fuel structure will be emphasized for the formation of certain regulated and unregulated species from individual fuels and their mixtures, exemplarily including fuel compounds such as alkanes, alkenes, ethers, alcohols, ketones, esters, and furan derivatives. Depending on the combustion conditions, different temperature regimes are important and can lead to different reaction classes. Laboratory reactors and flames are prime sources and targets from which such detailed chemical information can be obtained and verified with a number of advanced diagnostic techniques, often supported by theoretical work and simulation with combustion models developed to transfer relevant details of chemical mechanisms into practical applications. Regarding the need for cleaner combustion processes, some related background and perspectives will be provided regarding the context for future chemistry research in combustion energy science.
Collapse
Affiliation(s)
- Katharina Kohse-Höinghaus
- Department of Chemistry , Bielefeld University , Universitätsstraße 25 , Bielefeld D-33615 , Germany , Phone: +49 5211062052
| |
Collapse
|
14
|
Rousso AC, Hansen N, Jasper AW, Ju Y. Identification of the Criegee intermediate reaction network in ethylene ozonolysis: impact on energy conversion strategies and atmospheric chemistry. Phys Chem Chem Phys 2019; 21:7341-7357. [DOI: 10.1039/c9cp00473d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction network of the simplest Criegee intermediate (CI) CH2OO has been studied experimentally during the ozonolysis of ethylene.
Collapse
Affiliation(s)
- Aric C. Rousso
- Department of Mechanical and Aerospace Engineering
- Princeton University
- USA
| | - Nils Hansen
- Combustion Research Facility
- Sandia National Laboratories
- Livermore
- USA
| | - Ahren W. Jasper
- Chemical Sciences and Engineering Division
- Argonne National Laboratory
- Lemont
- USA
| | - Yiguang Ju
- Department of Mechanical and Aerospace Engineering
- Princeton University
- USA
| |
Collapse
|
15
|
Steglich M, Knopp G, Hemberger P. How the methyl group position influences the ultrafast deactivation in aromatic radicals. Phys Chem Chem Phys 2019; 21:581-588. [DOI: 10.1039/c8cp06087h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excited xylyl (methyl–benzyl) radical isomers have been studied by femtosecond time-resolved photoelectron spectroscopy and mass spectrometry.
Collapse
Affiliation(s)
| | - Gregor Knopp
- Paul Scherrer Institute
- CH-5232 Villigen-PSI
- Switzerland
| | | |
Collapse
|
16
|
Adamson BD, Skeen SA, Ahmed M, Hansen N. Detection of Aliphatically Bridged Multi-Core Polycyclic Aromatic Hydrocarbons in Sooting Flames with Atmospheric-Sampling High-Resolution Tandem Mass Spectrometry. J Phys Chem A 2018; 122:9338-9349. [PMID: 30415549 DOI: 10.1021/acs.jpca.8b08947] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper provides experimental evidence for the chemical structures of aliphatically substituted and bridged polycyclic aromatic hydrocarbon (PAH) species in gas-physe combustion environments. The identification of these single- and multicore aromatic species, which have been hypothesized to be important in PAH growth and soot nucleation, was made possible through a combination of sampling gaseous constituents from an atmospheric pressure inverse coflow diffusion flame of ethylene and high-resolution tandem mass spectrometry (MS-MS). In these experiments, the flame-sampled components were ionized using a continuous VUV lamp at 10.0 eV and the ions were subsequently fragmented through collisions with Ar atoms in a collision-induced dissociation (CID) process. The resulting fragment ions, which were separated using a reflectron time-of-flight mass spectrometer, were used to extract structural information about the sampled aromatic compounds. The high-resolution mass spectra revealed the presence of alkylated single-core aromatic compounds and the fragment ions that were observed correspond to the loss of saturated and unsaturated units containing up to a total of 6 carbon atoms. Furthermore, the aromatic structures that form the foundational building blocks of the larger PAHs were identified to be smaller single-ring and pericondensed aromatic species with repetitive structural features. For demonstrative purposes, details are provided for the CID of molecular ions at masses 202 and 434. Insights into the role of the aliphatically substituted and bridged aromatics in the reaction network of PAH growth chemistry were obtained from spatially resolved measurements of the flame. The experimental results are consistent with a growth mechanism in which alkylated aromatics are oxidized to form pericondensed ring structures or react and recombine with other aromatics to form larger, potentially three-dimensional, aliphatically bridged multicore aromatic hydrocarbons.
Collapse
Affiliation(s)
- B D Adamson
- Combustion Research Facility , Sandia National Laboratories , Livermore , California 94551 , United States
| | - S A Skeen
- Combustion Research Facility , Sandia National Laboratories , Livermore , California 94551 , United States
| | - M Ahmed
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - N Hansen
- Combustion Research Facility , Sandia National Laboratories , Livermore , California 94551 , United States
| |
Collapse
|
17
|
Moreno-Armenta MG, Pearce HR, Winter P, Cooksy AL. Computational search for metastable high-spin C5Hn (n = 4, 5, 6) species. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Steglich M, Bodi A, Maier JP, Hemberger P. Probing different spin states in xylyl radicals and ions. Phys Chem Chem Phys 2018; 20:7180-7189. [PMID: 29480313 DOI: 10.1039/c7cp08466h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resonant one-color two-photon ionization spectroscopy and mass-selected threshold photoelectron spectroscopy were applied to study the electronic doublet states of the three xylyl (methyl-benzyl) radicals above 3.9 eV as well as the singlet and triplet states of the cations up to 10.5 eV. The experiments are complemented by quantum chemical calculations and Franck-Condon simulations to characterize the transitions and to identify the origin bands, allowing a precise determination of singlet-triplet splittings in the cations. Torsional motions of the methyl group notably affect the D0 → D3 transition of m-xylyl. All other investigated transitions either lead to electronic states with very low rotational barriers or suffer from spectral broadening in excess of methyl torsional energy levels. The methyl internal rotational potential is faithfully reproduced with the most basic ab initio methods, yet hyperconjugation could not be identified as a significant force shaping them. Time-dependent density functional theory describes the excited electronic states better than wave function theory approaches, notably EOM-CCSD.
Collapse
|
19
|
Isomer Identification in Flames with Double-Imaging Photoelectron/Photoion Coincidence Spectroscopy (i2PEPICO) using Measured and Calculated Reference Photoelectron Spectra. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/zpch-2017-1009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Double-imaging photoelectron/photoion coincidence (i2PEPICO) spectroscopy using a multiplexing, time-efficient, fixed-photon-energy approach offers important opportunities of gas-phase analysis. Building on successful applications in combustion systems that have demonstrated the discriminative power of this technique, we attempt here to push the limits of its application further to more chemically complex combustion examples. The present investigation is devoted to identifying and potentially quantifying compounds featuring five heavy atoms in laminar, premixed low-pressure flames of hydrocarbon and oxygenated fuels and their mixtures. In these combustion examples from flames of cyclopentene, iso-pentane, iso-pentane blended with dimethyl ether (DME), and diethyl ether (DEE), we focus on the unambiguous assignment and quantitative detection of species with the sum formulae C5H6, C5H7, C5H8, C5H10, and C4H8O in the respective isomer mixtures, attempting to provide answers to specific chemical questions for each of these examples. To analyze the obtained i2PEPICO results from these combustion situations, photoelectron spectra (PES) from pure reference compounds, including several examples previously unavailable in the literature, were recorded with the same experimental setup as used in the flame measurements. In addition, PES of two species where reference spectra have not been obtained, namely 2-methyl-1-butene (C5H10) and the 2-cyclopentenyl radical (C5H7), were calculated on the basis of high-level ab initio calculations and Franck-Condon (FC) simulations. These reference measurements and quantum chemical calculations support the early fuel decomposition scheme in the cyclopentene flame towards 2-cyclopentenyl as the dominant fuel radical as well as the prevalence of branched intermediates in the early fuel destruction reactions in the iso-pentane flame, with only minor influences from DME addition. Furthermore, the presence of ethyl vinyl ether (EVE) in DEE flames that was predicted by a recent DEE combustion mechanism could be confirmed unambiguously. While combustion measurements using i2PEPICO can be readily obtained in isomer-rich situations, we wish to highlight the crucial need for high-quality reference information to assign and evaluate the obtained spectra.
Collapse
|
20
|
Qiu S, Zhang Y, Huang X, Bao L, Hong Y, Zeng Z, Wu J. 9-Ethynylfluoroenyl Radicals: Regioselective Dimerization and Post Ring-Cyclization Reactions. Org Lett 2016; 18:6018-6021. [PMID: 27934347 DOI: 10.1021/acs.orglett.6b02904] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
9-Ethynylfluorenyl radical derivatives were readily prepared in situ and underwent simultaneous intermolecular coupling reactions. Interestingly, the dimerization process took place in either a head-to-tail or a head-to-head mode between the acetylenic or the allenic resonance forms dependent on the terminal substituents, which could be well explained by their different spin distribution and steric hindrance effects. The structures of the products were confirmed by X-ray crystallographic and other spectroscopic analyses. It was also found that the newly generated dipropinyl dimers underwent a rearrangement and ring-cyclization reaction at room temperature, eventually giving unique difluorenylidene cyclobutene derivatives.
Collapse
Affiliation(s)
- Shuhai Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, P. R. China
| | - Xiaobo Huang
- College of Chemistry and Materials Engineering, Wenzhou University , Wenzhou 325035, P. R. China
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST) , Wuhan 430074, P. R. China
| | - Youhua Hong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore , 3 Science Drive 3, 117543 Singapore
| |
Collapse
|
21
|
Thapa J, Spencer M, Akhmedov NG, Goulay F. Kinetics of the OH Radical Reaction with Fulvenallene from 298 to 450 K. J Phys Chem Lett 2015; 6:4997-5001. [PMID: 26625195 DOI: 10.1021/acs.jpclett.5b02417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Self-recombination and cross-reactions of large resonant stabilized hydrocarbon radicals such as fulvenallenyl (C7H5) are predicted to form polycyclic aromatic hydrocarbons in combustion and the interstellar medium. Although fulvenallenyl is likely to be present in these environments, large uncertainties remain about its formation mechanisms. We have investigated the formation of fulvenallenyl by reacting the OH radical with fulvenallene (C7H6) over the 298 to 450 K temperature range and at a pressure of 5 Torr (667 Pa). The reaction rate coefficient is found to be 8.8(±1.7) × 10(-12) cm(3) s(-1) at room temperature with a negative temperature dependence that can be fit from 298 to 450 K to k(T) = 8.8(±1.7) × 10(-12) (T/298 K)(-6.6(±1.1)) exp[-(8.72(±3.03) kJ mol(-1))/(R((1/T) - (1/298 K)))] cm(3) s(-1). The comparison of the experimental data with calculated abstraction rate coefficients suggests that over the experimental temperature range, association of the OH radical to fulvenallene plays a significant role likely leading to a low fulvenallenyl branching fraction.
Collapse
Affiliation(s)
- Juddha Thapa
- Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Michael Spencer
- Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Novruz G Akhmedov
- Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Fabien Goulay
- Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506, United States
| |
Collapse
|
22
|
Savee JD, Selby TM, Welz O, Taatjes CA, Osborn DL. Time- and Isomer-Resolved Measurements of Sequential Addition of Acetylene to the Propargyl Radical. J Phys Chem Lett 2015; 6:4153-4158. [PMID: 26722791 DOI: 10.1021/acs.jpclett.5b01896] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Soot formation in combustion is a complex process in which polycyclic aromatic hydrocarbons (PAHs) are believed to play a critical role. Recent works concluded that three consecutive additions of acetylene (C2H2) to propargyl (C3H3) create a facile route to the PAH indene (C9H8). However, the isomeric forms of C5H5 and C7H7 intermediates in this reaction sequence are not known. We directly investigate these intermediates using time- and isomer-resolved experiments. Both the resonance stabilized vinylpropargyl (vp-C5H5) and 2,4-cyclopentadienyl (c-C5H5) radical isomers of C5H5 are produced, with substantially different intensities at 800 K vs 1000 K. In agreement with literature master equation calculations, we find that c-C5H5 + C2H2 produces only the tropyl isomer of C7H7 (tp-C7H7) below 1000 K, and that tp-C7H7 + C2H2 terminates the reaction sequence yielding C9H8 (indene) + H. This work demonstrates a pathway for PAH formation that does not proceed through benzene.
Collapse
Affiliation(s)
- John D Savee
- Combustion Research Facility, Sandia National Laboratories , Mail Stop 9055, Livermore, California 94551-0969, United States
| | - Talitha M Selby
- Combustion Research Facility, Sandia National Laboratories , Mail Stop 9055, Livermore, California 94551-0969, United States
| | - Oliver Welz
- Combustion Research Facility, Sandia National Laboratories , Mail Stop 9055, Livermore, California 94551-0969, United States
| | - Craig A Taatjes
- Combustion Research Facility, Sandia National Laboratories , Mail Stop 9055, Livermore, California 94551-0969, United States
| | - David L Osborn
- Combustion Research Facility, Sandia National Laboratories , Mail Stop 9055, Livermore, California 94551-0969, United States
| |
Collapse
|
23
|
Maranzana A, Ghigo G, Tonachini G. Combustive, Postcombustive, and Tropospheric Butadiyne Oxidation by O 2, Following Initial HO Attack. Theoretical Study. J Phys Chem A 2015; 119:10172-80. [DOI: 10.1021/acs.jpca.5b06548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Maranzana
- Dipartimento di Chimica, Università di Torino, via Pietro
Giuria, 7, I-10125 Torino, Italy
| | - Giovanni Ghigo
- Dipartimento di Chimica, Università di Torino, via Pietro
Giuria, 7, I-10125 Torino, Italy
| | - Glauco Tonachini
- Dipartimento di Chimica, Università di Torino, via Pietro
Giuria, 7, I-10125 Torino, Italy
| |
Collapse
|
24
|
Wentrup C, Becker J, Diehl M. C15H10 and C15H12 Thermal Chemistry: Phenanthrylcarbene Isomers and Phenylindenes by Falling Solid Flash Vacuum Pyrolysis of Tetrazoles. J Org Chem 2015; 80:7144-9. [DOI: 10.1021/acs.joc.5b01007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Curt Wentrup
- Fachbereich Chemie der Philipps-Universität Marburg, D-35037 Marburg, Germany
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Jürgen Becker
- Fachbereich Chemie der Philipps-Universität Marburg, D-35037 Marburg, Germany
| | - Manfred Diehl
- Fachbereich Chemie der Philipps-Universität Marburg, D-35037 Marburg, Germany
| |
Collapse
|
25
|
Krüger J, Garcia GA, Felsmann D, Moshammer K, Lackner A, Brockhinke A, Nahon L, Kohse-Höinghaus K. Photoelectron-photoion coincidence spectroscopy for multiplexed detection of intermediate species in a flame. Phys Chem Chem Phys 2015; 16:22791-804. [PMID: 25237782 DOI: 10.1039/c4cp02857k] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complex reactive processes in the gas phase often proceed via numerous reaction steps and intermediate species that must be identified and quantified to develop an understanding of the reaction pathways and establish suitable reaction mechanisms. Here, photoelectron-photoion coincidence (PEPICO) spectroscopy has been applied to analyse combustion intermediates present in a premixed fuel-rich (ϕ = 1.7) ethene-oxygen flame diluted with 25% argon, burning at a reduced pressure of 40 mbar. For the first time, multiplexing fixed-photon-energy PEPICO measurements were demonstrated in a chemically complex reactive system such as a flame in comparison with the scanning "threshold" TPEPICO approach used in recent pioneering combustion investigations. The technique presented here is capable of detecting and identifying multiple species by their cations' vibronic fingerprints, including radicals and pairs or triplets of isomers, from a single time-efficient measurement at a selected fixed photon energy. Vibrational structures for these species have been obtained in very good agreement with scanning-mode threshold photoelectron spectra taken under the same conditions. From such spectra, the temperature in the ionisation volume was determined. Exemplary analysis of species profiles and mole fraction ratios for isomers shows favourable agreement with results obtained by more common electron ionisation and photoionisation mass spectrometry experiments. It is expected that the multiplexing fixed-photon-energy PEPICO technique can contribute effectively to the analysis of chemical reactivity and kinetics in and beyond combustion.
Collapse
Affiliation(s)
- Julia Krüger
- Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Fulara J, Chakraborty A, Nagy A, Filipkowski K, Maier JP. Electronic transitions of C₅H₃⁺ and C₅H₃: neon matrix and CASPT2 studies. J Phys Chem A 2015; 119:2338-43. [PMID: 25180760 DOI: 10.1021/jp506706f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two absorption systems of C5H3(+) starting at 350 and 345 nm were detected following mass-selective deposition of m/e = 63 ions in a 6 K neon matrix. These are assigned to the 1 (1)A1 ← X (1)A1 electronic transition of 1,2,3,4-pentatetraenylium H2CCCCCH(+) (isomer B(+)) and 1 (1)B2 ← X (1)A1 of penta-1,4-diyne-3-ylium HCCCHCCH(+) (C(+)). The absorptions of neutral C5H3 isomers with onsets at 434.5, 398.3, 369.0, and 267.3 nm are also detected. The first two systems are assigned to the 1 (2)B1 ← X (2)B1 and 1 (2)A2 ← X (2)B1 transitions of isomer B and C, respectively, and the latter two to ethynylcyclopropenyl (A) and 3-vinylidenecycloprop-1-enyl (D) radicals. The structural assignments are based on the adiabatic excitation energies calculated with the MS-CASPT2 method. A vibrational analysis of the electronic spectra, based on the calculated harmonic frequencies, supports this.
Collapse
Affiliation(s)
- Jan Fulara
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Arghya Chakraborty
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Adam Nagy
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Karol Filipkowski
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - John P Maier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
27
|
Moshammer K, Jasper AW, Popolan-Vaida DM, Lucassen A, Diévart P, Selim H, Eskola AJ, Taatjes CA, Leone SR, Sarathy SM, Ju Y, Dagaut P, Kohse-Höinghaus K, Hansen N. Detection and Identification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether. J Phys Chem A 2015; 119:7361-74. [PMID: 25695304 DOI: 10.1021/acs.jpca.5b00101] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper we report the detection and identification of the keto-hydroperoxide (hydroperoxymethyl formate, HPMF, HOOCH2OCHO) and other partially oxidized intermediate species arising from the low-temperature (540 K) oxidation of dimethyl ether (DME). These observations were made possible by coupling a jet-stirred reactor with molecular-beam sampling capabilities, operated near atmospheric pressure, to a reflectron time-of-flight mass spectrometer that employs single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation. On the basis of experimentally observed ionization thresholds and fragmentation appearance energies, interpreted with the aid of ab initio calculations, we have identified HPMF and its conceivable decomposition products HC(O)O(O)CH (formic acid anhydride), HC(O)OOH (performic acid), and HOC(O)OH (carbonic acid). Other intermediates that were detected and identified include HC(O)OCH3 (methyl formate), cycl-CH2-O-CH2-O- (1,3-dioxetane), CH3OOH (methyl hydroperoxide), HC(O)OH (formic acid), and H2O2 (hydrogen peroxide). We show that the theoretical characterization of multiple conformeric structures of some intermediates is required when interpreting the experimentally observed ionization thresholds, and a simple method is presented for estimating the importance of multiple conformers at the estimated temperature (∼100 K) of the present molecular beam. We also discuss possible formation pathways of the detected species: for example, supported by potential energy surface calculations, we show that performic acid may be a minor channel of the O2 + ĊH2OCH2OOH reaction, resulting from the decomposition of the HOOCH2OĊHOOH intermediate, which predominantly leads to the HPMF.
Collapse
Affiliation(s)
- Kai Moshammer
- †Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States.,‡Department of Chemistry, Bielefeld University, D-33615 Bielefeld, Germany
| | - Ahren W Jasper
- †Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Denisia M Popolan-Vaida
- §Departments of Chemistry and Physics, University of California, Berkeley, California 94720, United States.,∥Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Arnas Lucassen
- †Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Pascal Diévart
- ⊥Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Hatem Selim
- #Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Arkke J Eskola
- †Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Craig A Taatjes
- †Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Stephen R Leone
- §Departments of Chemistry and Physics, University of California, Berkeley, California 94720, United States.,∥Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - S Mani Sarathy
- #Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yiguang Ju
- ⊥Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Philippe Dagaut
- ∇Centre National de la Recherche Scientifique (CNRS), INSIS, 45071 Orléans Cedex 2, France
| | | | - Nils Hansen
- †Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
28
|
West B, Sit A, Bodi A, Hemberger P, Mayer PM. Dissociative photoionization and threshold photoelectron spectra of polycyclic aromatic hydrocarbon fragments: an imaging photoelectron photoion coincidence (iPEPICO) study of four substituted benzene radical cations. J Phys Chem A 2014; 118:11226-34. [PMID: 25348328 DOI: 10.1021/jp5085982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four molecules were investigated by imaging photoelectron photoion coincidence (iPEPICO) spectroscopy: 1-propynylbenzene, indene, ethynylbenzene, and benzocyclobutene. Their threshold photoelectron spectrum was obtained and electronic transitions were assigned by OVGF (outer valence Green's function) calculations. Vibrational progressions observed in the electronic ground and excited states were simulated by calculating Franck-Condon factors based on the neutral as well as the cation ground and excited state geometries. iPEPICO was used to obtain ion dissociation data in threshold photoionization as a function of photon energy, which were modeled with RRKM theory to extract kinetic parameters for the reactions C9H8(+•) (1-propynylbezene) → C9H7(+) + H (R1); C9H8(+•) (indene) → C9H7(+) + H (R2); C8H8(+•) (benzocyclobutene) → C8H7(+) + H (R3); C8H8(+•) (benzocyclobutene) → C6H6(+) + C2H2 (R4); C8H6(+•) (1-ethynylbenzene, aka phenylacetylene) → C6H4(+) + C2H2 (R5). These results were compared to G3 level calculations. In addition, the enthalpy of formation of the indenyl radical was estimated to be ΔfH°0K = 249 ± 50 kJ mol(-1) based on a previously measured IE and a cation ΔfH°0K = 976 kJ mol(-1), determined herein.
Collapse
Affiliation(s)
- Brandi West
- Department of Chemistry, University of Ottawa , Ottawa, K1N 6N5, Canada
| | | | | | | | | |
Collapse
|
29
|
Kvaskoff D, Lüerssen H, Bednarek P, Wentrup C. Phenylnitrene, Phenylcarbene, and Pyridylcarbenes. Rearrangements to Cyanocyclopentadiene and Fulvenallene. J Am Chem Soc 2014; 136:15203-14. [DOI: 10.1021/ja506151p] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Kvaskoff
- School
of Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Holger Lüerssen
- School
of Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pawel Bednarek
- School
of Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Curt Wentrup
- School
of Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
30
|
Improved Ionization Energies for the Two Isomers of Phenylpropargyl Radical. Chemphyschem 2014; 15:3489-92. [DOI: 10.1002/cphc.201402446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Indexed: 11/07/2022]
|
31
|
Hansen N, Skeen SA, Michelsen HA, Wilson KR, Kohse-Höinghaus K. Flame experiments at the advanced light source: new insights into soot formation processes. J Vis Exp 2014. [PMID: 24894694 PMCID: PMC4207224 DOI: 10.3791/51369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The following experimental protocols and the accompanying video are concerned with the flame experiments that are performed at the Chemical Dynamics Beamline of the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory1-4. This video demonstrates how the complex chemical structures of laboratory-based model flames are analyzed using flame-sampling mass spectrometry with tunable synchrotron-generated vacuum-ultraviolet (VUV) radiation. This experimental approach combines isomer-resolving capabilities with high sensitivity and a large dynamic range5,6. The first part of the video describes experiments involving burner-stabilized, reduced-pressure (20-80 mbar) laminar premixed flames. A small hydrocarbon fuel was used for the selected flame to demonstrate the general experimental approach. It is shown how species’ profiles are acquired as a function of distance from the burner surface and how the tunability of the VUV photon energy is used advantageously to identify many combustion intermediates based on their ionization energies. For example, this technique has been used to study gas-phase aspects of the soot-formation processes, and the video shows how the resonance-stabilized radicals, such as C3H3, C3H5, and i-C4H5, are identified as important intermediates7. The work has been focused on soot formation processes, and, from the chemical point of view, this process is very intriguing because chemical structures containing millions of carbon atoms are assembled from a fuel molecule possessing only a few carbon atoms in just milliseconds. The second part of the video highlights a new experiment, in which an opposed-flow diffusion flame and synchrotron-based aerosol mass spectrometry are used to study the chemical composition of the combustion-generated soot particles4. The experimental results indicate that the widely accepted H-abstraction-C2H2-addition (HACA) mechanism is not the sole molecular growth process responsible for the formation of the observed large polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Nils Hansen
- Combustion Research Facility, Sandia National Laboratories;
| | - Scott A Skeen
- Combustion Research Facility, Sandia National Laboratories
| | | | - Kevin R Wilson
- Chemical Sciences Division, Advanced Light Source, Lawrence Berkeley National Laboratory
| | | |
Collapse
|
32
|
Hemberger P, Trevitt AJ, Gerber T, Ross E, da Silva G. Isomer-Specific Product Detection of Gas-Phase Xylyl Radical Rearrangement and Decomposition Using VUV Synchrotron Photoionization. J Phys Chem A 2014; 118:3593-604. [DOI: 10.1021/jp501117n] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrick Hemberger
- Molecular
Dynamics Group, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Adam J. Trevitt
- School
of Chemistry, University of Wollongong, New South Wales 2522, Australia
| | - Thomas Gerber
- Molecular
Dynamics Group, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Edward Ross
- Department
of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Gabriel da Silva
- Department
of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
33
|
Trogolo D, Maranzana A, Ghigo G, Tonachini G. First Ring Formation by Radical Addition of Propargyl to But-1-ene-3-yne in Combustion. Theoretical Study of the C7H7 Radical System. J Phys Chem A 2014; 118:427-40. [DOI: 10.1021/jp4082905] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniela Trogolo
- Dipartimento di Chimica, Università di Torino, Corso Massimo
D’Azeglio 48, I-10125 Torino, Italy
| | - Andrea Maranzana
- Dipartimento di Chimica, Università di Torino, Corso Massimo
D’Azeglio 48, I-10125 Torino, Italy
| | - Giovanni Ghigo
- Dipartimento di Chimica, Università di Torino, Corso Massimo
D’Azeglio 48, I-10125 Torino, Italy
| | - Glauco Tonachini
- Dipartimento di Chimica, Università di Torino, Corso Massimo
D’Azeglio 48, I-10125 Torino, Italy
| |
Collapse
|
34
|
Chakraborty A, Fulara J, Dietsche R, Maier JP. Spectroscopic characterization of C7H3+ and C7H3˙: electronic absorption and fluorescence in 6 K neon matrices. Phys Chem Chem Phys 2014; 16:7023-30. [DOI: 10.1039/c4cp00043a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electronic absorption spectra of mass-selected C7H3+ and C7H3˙ isomers in a neon matrix have been identified for the first time.
Collapse
Affiliation(s)
- Arghya Chakraborty
- Department of Chemistry, University of Basel, Klingelbergstarasse 80, CH-4056, Basel, Switzerland.
| | | | | | | |
Collapse
|
35
|
Giegerich J, Fischer I. Photodissociation dynamics of fulvenallene, C7H6. Phys Chem Chem Phys 2013; 15:13162-8. [DOI: 10.1039/c3cp52274a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Fischer KH, Herterich J, Fischer I, Jaeqx S, Rijs AM. Phenylpropargyl Radicals and Their Dimerization Products: An IR/UV Double Resonance Study. J Phys Chem A 2012; 116:8515-22. [PMID: 22830569 DOI: 10.1021/jp306075a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kathrin H. Fischer
- Institute
of Physical and Theoretical
Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Jörg Herterich
- Institute
of Physical and Theoretical
Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ingo Fischer
- Institute
of Physical and Theoretical
Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sander Jaeqx
- FOM institute for plasma physics Rijnhuizen, Edisonbaan 14, 3934 MN Nieuwegein,
The Netherlands
| | - Anouk M. Rijs
- Radboud University Nijmegen, Institute for Molecules and Materials, Toernooiveld
7, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
37
|
Rissanen MP, Popli K, Timonen RS. Kinetics of resonance stabilized CH3CCCH2 radical reactions with NO and NO2. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.06.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Raman S, Carstensen HH. Tree structure for intermolecular hydrogen abstraction from hydrocarbons (C/H) and generic rate constant rules for abstraction by vinyl radical. INT J CHEM KINET 2012. [DOI: 10.1002/kin.20718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
da Silva G, Trevitt AJ, Steinbauer M, Hemberger P. Pyrolysis of fulvenallene (C7H6) and fulvenallenyl (C7H5): Theoretical kinetics and experimental product detection. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.10.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Parker DDSN, Zhang DF, Kaiser DRI, Kislov DVV, Mebel DAM. Indene Formation under Single-Collision Conditions from the Reaction of Phenyl Radicals with Allene and Methylacetylene-A Crossed Molecular Beam and Ab Initio Study. Chem Asian J 2011; 6:3035-47. [DOI: 10.1002/asia.201100535] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Indexed: 11/09/2022]
|
41
|
Parker DSN, Zhang F, Kim YS, Kaiser RI, Mebel AM. On the formation of resonantly stabilized C5H3 radicals--a crossed beam and ab initio study of the reaction of ground state carbon atoms with vinylacetylene. J Phys Chem A 2011; 115:593-601. [PMID: 21194192 DOI: 10.1021/jp109800h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of polycyclic aromatic hydrocarbons in combustion environments is linked to resonance stabilized free radicals. Here, we investigated the reaction dynamics of ground state carbon atoms, C((3)P(j)), with vinylacetylene at two collision energies of 18.8 kJ mol(-1) and 26.4 kJ mol(-1) employing the crossed molecular beam technique leading to two resonantly stabilized free radicals. The reaction was found to be governed by indirect scattering dynamics and to proceed without an entrance barrier through a long-lived collision complex to reach the products, n- and i-C(5)H(3) isomers via tight exit transition states. The reaction pathway taken is dependent on whether the carbon atom attacks the π electron density of the double or triple bond, both routes have been compared to the reactions of atomic carbon with ethylene and acetylene. Electronic structure/statistical theory calculations determined the product branching ratio to be 2:3 between the n- and i-C(5)H(3) isomers.
Collapse
Affiliation(s)
- Dorian S N Parker
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | | | | | | | | |
Collapse
|
42
|
Steinbauer M, Hemberger P, Fischer I, Bodi A. Photoionization of C7H6 and C7H5: Observation of the Fulvenallenyl Radical. Chemphyschem 2010; 12:1795-7. [DOI: 10.1002/cphc.201000892] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Indexed: 11/09/2022]
|
43
|
Köhler M, Brockhinke A, Braun-Unkhoff M, Kohse-Höinghaus K. Quantitative Laser Diagnostic and Modeling Study of C2 and CH Chemistry in Combustion. J Phys Chem A 2010; 114:4719-34. [DOI: 10.1021/jp908242y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Markus Köhler
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany, and Institut für Verbrennungstechnik, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany
| | - Andreas Brockhinke
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany, and Institut für Verbrennungstechnik, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany
| | - Marina Braun-Unkhoff
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany, and Institut für Verbrennungstechnik, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany
| | - Katharina Kohse-Höinghaus
- Department of Chemistry, Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany, and Institut für Verbrennungstechnik, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany
| |
Collapse
|
44
|
da Silva G, Cole JA, Bozzelli JW. Kinetics of the Cyclopentadienyl + Acetylene, Fulvenallene + H, and 1-Ethynylcyclopentadiene + H Reactions. J Phys Chem A 2010; 114:2275-83. [DOI: 10.1021/jp906835w] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriel da Silva
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia, and Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102
| | - John A. Cole
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia, and Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102
| | - Joseph W. Bozzelli
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia, and Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102
| |
Collapse
|
45
|
Hansen N, Li W, Law ME, Kasper T, Westmoreland PR, Yang B, Cool TA, Lucassen A. The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame. Phys Chem Chem Phys 2010; 12:12112-22. [DOI: 10.1039/c0cp00241k] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
da Silva G, Bozzelli JW. The C7H5 Fulvenallenyl Radical as a Combustion Intermediate: Potential New Pathways to Two- and Three-Ring PAHs. J Phys Chem A 2009; 113:12045-8. [DOI: 10.1021/jp907230b] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gabriel da Silva
- Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia, and Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Joseph W. Bozzelli
- Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia, and Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| |
Collapse
|
47
|
Struckmeier U, Oßwald P, Kasper T, Böhling L, Heusing M, Köhler M, Brockhinke A, Kohse-Höinghaus K. Sampling Probe Influences on Temperature and Species Concentrations in Molecular Beam Mass Spectroscopic Investigations of Flat Premixed Low-pressure Flames. ACTA ACUST UNITED AC 2009. [DOI: 10.1524/zpch.2009.6049] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
New operating regimes for engines and combustors and the advocated use of non-conventional transportation fuels demand investigation of the combustion chemistry of different classes of chemicals, especially under premixed conditions. Detailed species compositions during combustion are needed to estimate hazardous emissions, and models for their prediction must be validated for the intended combustion conditions.Molecular-beam mass spectrometry (MBMS) is a common technique to measure quantitative species concentrations in flames. It is widely employed to characterize the flame chemistry of laminar premixed combustion, and it has been complemented with optical measurements for the detection of a number of molecular species and radicals. Significant progress has been made in recent studies through the introduction of synchrotron-based MBMS instruments. They have improved the identification process by using tunable vacuum-ultraviolet radiation for photoionization of the species to be detected, and isomer-specific measurements are now almost routinely possible. Along with quantitative species measurements, the temperature profile is needed as input parameter for chemical kinetic modeling. It is usually determined either using thermocouples or laser spectroscopic techniques.It is an ongoing discussion how sampling probes affect these measurements, and how MBMS results can be compared to combustion modeling. The present article is intended to contribute to this discussion by providing optical and MBMS results obtained with several sampling configurations.
Collapse
|
48
|
Reilly NJ, Nakajima M, Troy TP, Chalyavi N, Duncan KA, Nauta K, Kable SH, Schmidt TW. Spectroscopic Identification of the Resonance-Stabilized cis- and trans-1-Vinylpropargyl Radicals. J Am Chem Soc 2009; 131:13423-9. [DOI: 10.1021/ja904521c] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Neil J. Reilly
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | | | - Tyler P. Troy
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Nahid Chalyavi
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Kieran A. Duncan
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Klaas Nauta
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Scott H. Kable
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
49
|
Silva GD, Bozzelli JW. Indene Formation from Alkylated Aromatics: Kinetics and Products of the Fulvenallene + Acetylene Reaction. J Phys Chem A 2009; 113:8971-8. [DOI: 10.1021/jp904261e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriel da Silva
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia, and Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102
| | - Joseph W. Bozzelli
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia, and Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102
| |
Collapse
|
50
|
Muszyńska M, Ratkiewicz A, Huynh LK, Truong TN. Kinetics of the Hydrogen Abstraction C2H3• + Alkane → C2H4 + Alkyl Radical Reaction Class. J Phys Chem A 2009; 113:8327-36. [PMID: 19569659 DOI: 10.1021/jp903762x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marta Muszyńska
- Chemistry Institute, University of Bialystok, Hurtowa 1 15-399 Bialystok, Poland, and Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, 315 South 1400 East Room 2020, Salt Lake City, Utah 84112
| | - Artur Ratkiewicz
- Chemistry Institute, University of Bialystok, Hurtowa 1 15-399 Bialystok, Poland, and Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, 315 South 1400 East Room 2020, Salt Lake City, Utah 84112
| | - Lam K. Huynh
- Chemistry Institute, University of Bialystok, Hurtowa 1 15-399 Bialystok, Poland, and Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, 315 South 1400 East Room 2020, Salt Lake City, Utah 84112
| | - Thanh N. Truong
- Chemistry Institute, University of Bialystok, Hurtowa 1 15-399 Bialystok, Poland, and Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, 315 South 1400 East Room 2020, Salt Lake City, Utah 84112
| |
Collapse
|