1
|
Mukkukada Ravi R, Mani A, Rahim S, Anirudhan TS. A Self-Skin Permeable Doxorubicin Loaded Nanogel Composite as a Transdermal Device for Breast Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50407-50429. [PMID: 39259941 DOI: 10.1021/acsami.4c11373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Modern drug delivery research focuses on developing biodegradable nanopolymer systems. The present study proposed a polymer-based composite nanogel as a transdermal drug delivery system for the pH-responsive targeted and controlled delivery of anticancer drug doxorubicin (DOX). Nanogels have properties of both hydrogels and nanomaterials. The β-cyclodextrin-based nanogels can enhance the loading capacity of poorly soluble drugs and promote a sustained drug release. The β-cyclodextrin-grafted methacrylic acid conjugated hyaluronic acid composite nanogel was successfully synthesized. β-Cyclodextrin was first grafted onto methacrylic acid. The composite nanogel-based drug carrier was prepared by controlled radical polymerization (CRP) of β-cyclodextrin-grafted methacrylic acid with hyaluronic acid. The doxorubicin-loaded carrier was characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, zeta potential analysis, dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The drug loading and release efficiencies were carried out at different pH levels. The maximum drug loading and encapsulation efficiencies of the synthesized final nanogel composite material at pH 8.0 were 86.44 ± 2.12 and 96.07 ± 2.01%, respectively. The DOX-loaded final material showed a 90.0 ± 2.6% release percentage of DOX at pH 5.5, whereas at pH 7.4, the release percentage of DOX was observed to be only 35.0 ± 0.3%. In vitro swelling, degradation, hemocompatibility, drug release kinetics, cytotoxicity, apoptosis, cell colocalization, skin irritation, and skin permeation studies, along with in vivo pharmacokinetic studies, were performed to prove the efficacy of the synthesized nanogel composite as a transdermal carrier for doxorubicin.
Collapse
Affiliation(s)
- Rajeev Mukkukada Ravi
- Department of Chemistry, School of Physical and Mathematical Sciences, Research Centre, University of Kerala, Kariavattom, Trivandrum 695 581, India
| | - Athira Mani
- Department of Chemistry, School of Physical and Mathematical Sciences, Research Centre, University of Kerala, Kariavattom, Trivandrum 695 581, India
| | - Suriya Rahim
- Department of Chemistry, School of Physical and Mathematical Sciences, Research Centre, University of Kerala, Kariavattom, Trivandrum 695 581, India
| | - Thayyath Sreenivasan Anirudhan
- Department of Chemistry, School of Physical and Mathematical Sciences, Research Centre, University of Kerala, Kariavattom, Trivandrum 695 581, India
| |
Collapse
|
2
|
Zhang Y, Fu L, Tian F, Huang Y, Li X, Gu Y, Yang G, Qu L, Yang H. Designing carbon nanotube sponge/Au@MgO 2 for surface-enhanced Raman scattering detection and fenton-like degradation of organic pollutants. Talanta 2023; 265:124835. [PMID: 37385189 DOI: 10.1016/j.talanta.2023.124835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
With the acceleration of industry and agriculture process, the massive emission of organic pollutants is a major problem which seriously restricts the sustainable development of society. Rapid enrichment, efficient degradation and sensitive detection are three key steps to solve the problem of organic pollutants, while developing a simple method integrating the above three capabilities is still a challenge. Herein, a three-dimensional carbon nanotube sponge decorated with magnesium peroxide and gold nanoparticles (CNTs/Au@MgO2 sponge) was prepared for surface enhanced Raman scattering (SERS) detection and degradation of aromatic organics by advanced oxidation processes. The CNTs/Au@MgO2 sponge with porous structures adsorbed molecules rapidly through π-π and electrostatic interaction, thus more aromatic molecules were driven to the hot-spot areas for highly sensitive SERS detection. A detection of limit with 9.09 × 10-9 M was achieved for rhodamine B (RhB). The adsorbed molecules were degraded by an advanced oxidation process utilizing hydrogen peroxide produced by MgO2 nanoparticles under acidic condition with 99% efficiency. In addition, the CNTs/Au@MgO2 sponge exhibited high reproducibility with the relative standard deviation (RSD) at 1395 cm-1 of approximately 6.25%. The results showed the sponge can be used to effectively track the concentration of pollutants during the degradation process and maintain the SERS activity by re-modifying Au@MgO2 nanomaterials. Furthermore, the proposed CNTs/Au@MgO2 sponge demonstrated the simultaneous functions of enrichment, degradation, and detection for aromatic pollutants, thus significantly expanding the potential applications of nanomaterials in environmental analysis and treatment.
Collapse
Affiliation(s)
- Yingdi Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Lijie Fu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Fei Tian
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yi Huang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Xialian Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yingqiu Gu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Guohai Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Lulu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Haipeng Yang
- College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
3
|
Agasti N, Gautam V, Priyanka, Manju, Pandey N, Genwa M, Meena P, Tandon S, Samantaray R. Carbon nanotube based magnetic composites for decontamination of organic chemical pollutants in water: A review. APPLIED SURFACE SCIENCE ADVANCES 2022; 10:100270. [DOI: 10.1016/j.apsadv.2022.100270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
|
4
|
Prediction and Design of Cyclodextrin Inclusion Complexes formation via Machine Learning-based Strategies. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Liu C, Xu Q, Xu Y, Wang B, Long H, Fang S, Zhou D. Characterization of adsorption behaviors of U(VI) on bentonite colloids: batch experiments, kinetic evaluation and thermodynamic analysis. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08123-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Suresh D, Goh PS, Ismail AF, Hilal N. Surface Design of Liquid Separation Membrane through Graft Polymerization: A State of the Art Review. MEMBRANES 2021; 11:832. [PMID: 34832061 PMCID: PMC8621935 DOI: 10.3390/membranes11110832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
Surface modification of membranes is an effective approach for imparting unique characteristics and additional functionalities to the membranes. Chemical grafting is a commonly used membrane modification technique due to its versatility in tailoring and optimizing the membrane surface with desired functionalities. Various types of polymers can be precisely grafted onto the membrane surface and the operating conditions of grafting can be tailored to further fine-tune the membrane surface properties. This review focuses on the recent strategies in improving the surface design of liquid separation membranes through grafting-from technique, also known as graft polymerization, to improve membrane performance in wastewater treatment and desalination applications. An overview on membrane technology processes such as pressure-driven and osmotically driven membrane processes are first briefly presented. Grafting-from surface chemical modification approaches including chemical initiated, plasma initiated and UV initiated approaches are discussed in terms of their features, advantages and limitations. The innovations in membrane surface modification techniques based on grafting-from techniques are comprehensively reviewed followed by some highlights on the current challenges in this field. It is concluded that grafting-from is a versatile and effective technique to introduce various functional groups to enhance the surface properties and separation performances of liquid separation membranes.
Collapse
Affiliation(s)
- Deepa Suresh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
7
|
Shaumbwa VR, Liu D, Archer B, Li J, Su F. Preparation and application of magnetic chitosan in environmental remediation and other fields: A review. J Appl Polym Sci 2021. [DOI: 10.1002/app.51241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Veino Risto Shaumbwa
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering Nanjing University of Information Science & Technology Nanjing China
| | - Dagang Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering Nanjing University of Information Science & Technology Nanjing China
| | - Bright Archer
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering Nanjing University of Information Science & Technology Nanjing China
| | - Jinlei Li
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Fan Su
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering Nanjing University of Information Science & Technology Nanjing China
| |
Collapse
|
8
|
Fasfous I, El-Sheikh A, Awwad A, Al-Degs Y, Fayyoumi E, Dawoud J. Factorial Investigation of Cobalt Retention by Ti and Fe Oxides-Modified Carbon Nanotubes: Multivariate Against Univariate Analysis. Front Chem 2021; 9:690420. [PMID: 34222198 PMCID: PMC8241930 DOI: 10.3389/fchem.2021.690420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022] Open
Abstract
Fe/Ti-oxides-modified-carbon nanotubes CNTs nanocomposites were prepared and tested toward Co removal from solution under different operational conditions. The final performance of the nanocomposites for Co was highly dependent on the type and loaded amount of the oxides. The nanocomposites were characterized by standard methods and the results evidenced that the presence of CNTs hampers the growth of Fe3O4 and TiO2 particles and forming smaller nano-particles leading to better Co removal from solution. Analysis of isotherms at different temperatures indicated that Co retention was two-fold increased upon adding Ti-oxides up to 90.2%. All isotherms were fairly presented using Langmuir-Freundlich isotherm and most surfaces have high heterogeneity particularly after deposition of oxides. The combined influence of the factors was investigated by running a multivariate analysis. An empirical equation was generated by principal component analysis (PCA) for predicting Co retention assuming different relationships and the binary-interaction behavior between factors was the most dominant: Co retention (mg/g) = 5.12 + 1.25Conc + 1.47Temp - 1.38CNT% - 6.03Ti% - 5.03Fe% - 0.01Conc2 + 0.12Temp2 - 0.55CNT%2 - 1.53Ti%2 - 3.44Fe%2 + 0.17Conc × Temp + 0.07Conc × CNT% + 0.07Conc × Ti% + 0.10Conc × Fe% + 0.21Temp × CNT% + 0.10Temp × Ti% + 0.17Temp × Fe% - 1.67CNT% × Ti% - 1.45CNT% × Fe% - 4.11Ti% × Fe%. The most dominant factors on Co retention were temperature and concentration (positive linear correlation) and the positive interaction between temperature/concentration and temperature/CNTs mass. PCA indicated that the coefficient Temp × CNTs (+0.21) was higher than Temp × Ti% (+0.10). The negative coefficients of Ti/Fe with CNTs (1.45-4.11) indicated better Co retention at higher Ti/Fe loads and lower mass of CNTs. The results support that fact that incorporation of CNTs with Ti/Fe oxides may have a positive synergic impact on Co retention.
Collapse
Affiliation(s)
- Ismail Fasfous
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Amjad El-Sheikh
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Anas Awwad
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Yahya Al-Degs
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Ebaa Fayyoumi
- Department of Computer Science, Faculty of Prince Al-Hussein Bin Abdullah II for Information Technology, The Hashemite University, Zarqa, Jordan
| | - Jamal Dawoud
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
9
|
Tummino ML, Nisticò R, Franzoso F, Bianco Prevot A, Calza P, Laurenti E, Paganini MC, Scalarone D, Magnacca G. The "Lab4treat" Outreach Experience: Preparation of Sustainable Magnetic Nanomaterials for Remediation of Model Wastewater. Molecules 2021; 26:3361. [PMID: 34199539 PMCID: PMC8199662 DOI: 10.3390/molecules26113361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
The Lab4treat experience has been developed to demonstrate the use of magnetic materials in environmental applications. It was projected in the frame of the European project Mat4Treat, and it was tested several times in front of different audiences ranging from school students to the general public in training and/or divulgation events. The experience lends itself to discuss several aspects of actuality, physics and chemistry, which can be explained by modulating the discussion depth level, in order to meet the interests of younger or more experienced people and expand their knowledge. The topic is relevant, dealing with the recycling of urban waste and water depollution. The paper is placed within the field of water treatment for contaminant removal; therefore, a rich collection of recent (and less recent) papers dealing with magnetic materials and environmental issues is described in the Introduction section. In addition, the paper contains a detailed description of the experiment and a list of the possible topics which can be developed during the activity. The experimental approach makes the comprehension of scientific phenomena effective, and, from this perspective, the paper can be considered to be an example of interactive teaching.
Collapse
Affiliation(s)
- Maria Laura Tummino
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (M.L.T.); (F.F.); (A.B.P.); (P.C.); (E.L.); (M.C.P.); (D.S.)
| | - Roberto Nisticò
- Department of Applied Science and Technology DISAT, Polytechnic of Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Flavia Franzoso
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (M.L.T.); (F.F.); (A.B.P.); (P.C.); (E.L.); (M.C.P.); (D.S.)
| | - Alessandra Bianco Prevot
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (M.L.T.); (F.F.); (A.B.P.); (P.C.); (E.L.); (M.C.P.); (D.S.)
| | - Paola Calza
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (M.L.T.); (F.F.); (A.B.P.); (P.C.); (E.L.); (M.C.P.); (D.S.)
| | - Enzo Laurenti
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (M.L.T.); (F.F.); (A.B.P.); (P.C.); (E.L.); (M.C.P.); (D.S.)
| | - Maria Cristina Paganini
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (M.L.T.); (F.F.); (A.B.P.); (P.C.); (E.L.); (M.C.P.); (D.S.)
| | - Dominique Scalarone
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (M.L.T.); (F.F.); (A.B.P.); (P.C.); (E.L.); (M.C.P.); (D.S.)
| | - Giuliana Magnacca
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (M.L.T.); (F.F.); (A.B.P.); (P.C.); (E.L.); (M.C.P.); (D.S.)
- NIS Interdepartmental Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
10
|
Plasma-enhanced modification of polysaccharides for wastewater treatment: A review. Carbohydr Polym 2021; 252:117195. [PMID: 33183635 DOI: 10.1016/j.carbpol.2020.117195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 01/23/2023]
Abstract
In this work, novel polysaccharide-based sorbents modified with plasma technologies are discussed. Plasma selectively modifies the surface properties by generating specific moieties, enhancing adsorption performance, and the physical-chemical properties of the material without modifying its bulk properties. Among plasma technologies, cold plasma is more suitable and energy-efficient, since thermal-sensitive materials could be modified using this technology. Besides, atmospheric-pressure plasma systems possess the required features to scale-up plasma technologies for surface modification of sorbents. Moreover, a big challenge is the semi-continuous operation to modify sorbents as it would decrease overall process costs. Due to its low-cost and extensive availability, polysaccharide-based sorbents are promising substrates for plasma-enhanced modification to develop highly efficient adsorbents. The development of polysaccharide-based materials includes modified cellulose, chitosan, or lignocellulosic materials with functionalities that increase adsorption capacity and selectivity towards a specific organic or inorganic pollutant.
Collapse
|
11
|
Halloysite nanotubes: an eco-friendly adsorbent for the adsorption of Th(IV)/U(VI) ions from aqueous solution. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07142-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Zhou L, Li N, Jin X, Owens G, Chen Z. A new nFe@ZIF-8 for the removal of Pb(II) from wastewater by selective adsorption and reduction. J Colloid Interface Sci 2020; 565:167-176. [DOI: 10.1016/j.jcis.2020.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
|
13
|
Basheer BV, George JJ, Siengchin S, Parameswaranpillai J. Polymer grafted carbon nanotubes—Synthesis, properties, and applications: A review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100429] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Yang G, Huang Q, Huang H, Chen J, Lei Y, Deng F, Liu M, Wen Y, Zhang X, Wei Y. Preparation of cationic poly(ionic liquids) functionalization of silica nanoparticles via multicomponent condensation reaction with significant enhancement of adsorption capacity. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112267] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Hu X, Hu Y, Xu G, Li M, Zhu Y, Jiang L, Tu Y, Zhu X, Xie X, Li A. Green synthesis of a magnetic β-cyclodextrin polymer for rapid removal of organic micro-pollutants and heavy metals from dyeing wastewater. ENVIRONMENTAL RESEARCH 2020; 180:108796. [PMID: 31629085 DOI: 10.1016/j.envres.2019.108796] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 05/12/2023]
Abstract
Adsorption is one of the most preferred techniques in the advanced treatment of dyeing wastewater. Magnetic porous materials with good adsorption performance, excellent reusability, and a green synthesis route are highly desirable adsorbents in commerce. In this study, we synthesized a magnetic β-cyclodextrin polymer (MNP-CM-CDP) containing many macro- and ultramicropores in aqueous phase. CO2 adsorption-desorption isotherms and a dye adsorption method provided Langmuir specific surface areas for the MNP-CM-CDP of 114.4 m2 g-1 and 153 m2 g-1, respectively. Model pollutants (BPA, MB, BO2, RhB, Cr(III), Pb(II), Zn(II), and Cu(II)) were rapidly and efficiently removed from the aqueous solution by the MNP-CM-CDP. In addition, the polymer could be easily separated from the solution under an external magnetic field. The adsorption of the contaminants was dependent on pH, while the effects of ionic strength and humic acid were slight in the concentration range studied. The polymer could be easily regenerated at room temperature and retained good adsorption performance. Moreover, the MNP-CM-CDP showed good feasibility for the removal of pollutants from actual dyeing wastewater samples.
Collapse
Affiliation(s)
- Xuejiao Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Yue Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Meng Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Yuanting Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Lu Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Yizhou Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Xingqi Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China; Nanjing Innovation Center for Environmental Protection Industry CO;Ltd., Nanjing, PR China.
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| |
Collapse
|
16
|
Yang G, Huang Q, Gan D, Huang H, Chen J, Deng F, Liu M, Wen Y, Zhang X, Wei Y. Biomimetic functionalization of carbon nanotubes with poly(ionic liquids) for highly efficient adsorption of organic dyes. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.112059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Liu Y, Cheng M, Liu Z, Zeng G, Zhong H, Chen M, Zhou C, Xiong W, Shao B, Song B. Heterogeneous Fenton-like catalyst for treatment of rhamnolipid-solubilized hexadecane wastewater. CHEMOSPHERE 2019; 236:124387. [PMID: 31336240 DOI: 10.1016/j.chemosphere.2019.124387] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
The treatment of wastewater containing hydrophobic organic pollutants solubilized by surfactants is of great environmental importance. In this work, the removal of rhamnolipid-solubilized hexadecane via a salicylic acid-methanol-acetone modified steel converter slag (SMA-SCS) catalyzed Fenton-like process was studied. First, we investigated the adsorption of rhamnolipid and hexadecane onto SCS and SMA-modified SCS. Compared to that of SCS, SMA-SCS exhibited better adsorption performance with maximum adsorption capacities of 0.23 and 0.28 mg/g for hexadecane and rhamnolipid, respectively. Degradation experiments showed that hexadecane was more readily degraded by the Fenton-like process than rhamnolipid. Up to 81.1% of hexadecane removal was achieved over 20 g/L of SMA-SCS within 24 h, whereas only 36% of rhamnolipid was degraded. On the other hand, the results indicated that increased rhamnolipid concentration had a negative effect on the degradation of hexadecane. During the oxidation reaction, the pH value of solution remained between 6.0 and 6.72. All these results demonstrated that the SMA-SCS/H2O2 Fenton-like process could be a cost-effective and promising approach for the treatment of surfactant-solubilized hydrophobic organic compounds.
Collapse
Affiliation(s)
- Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Hua Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430070, China.
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
18
|
Synthesis of graphene oxide nano-materials coated bio-char using carbonaceous industrial waste for phenol separation from water. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Effective Adsorption of Methylene Blue dye onto Magnetic Nanocomposites. Modeling and Reuse Studies. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214563] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, new adsorbent beads of alginate (A)/maghemite nanoparticles (γ-Fe2O3)/functionalized multiwalled carbon nanotubes (f-CNT) were prepared and characterized by several techniques, e.g., N2 adsorption-desorption isotherms, Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA/DTG), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM) and further tested for the adsorption of the dye methylene blue (MB) from water. The beads (A/γ-Fe2O3/f-CNT) presented a relatively low BET specific surface area value of 59 m2g−1. The magnetization saturation values of A/γ-Fe2O3/f-CNT beads determined at 295 K was equal to 27.16 emu g−1, indicating a magnetic character. The time needed to attain the equilibrium of MB adsorption onto the beads was estimated within 48 h. Thus, several kinetic and isotherm equation models were used to fit the kinetic and equilibrium experimental results. The number of adsorbed MB molecules per active site, the anchorage number, the receptor sites density, the adsorbed quantity at saturation, the concentration at half saturation and the molar adsorption energy were quantified using the monolayer model. The calculated negative ΔG0 and positive ΔH0 values suggested the spontaneous and endothermic nature of the adsorption process. In addition, A/γ-Fe2O3/f-CNT composites can be used at least for six times maintaining their significant adsorptive performance and could be easily separated by using a magnet from water after treatment.
Collapse
|
20
|
Sarkar A, Sarkar A, Paul B, Khan GG. Designing of Functionalized MWCNTs/Anodized Stainless Steel Heterostructure Electrode for Anodic Oxidation of Low Concentration As(III) in Drinking Water. ChemistrySelect 2019. [DOI: 10.1002/slct.201901239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arpan Sarkar
- Department of Environmental Science and EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad 826 004, Jharkhand India
| | - Ayan Sarkar
- Centre for Research in Nanoscience and NanotechnologyUniversity of Calcutta, Sector-III, Block- JD2, Salt Lake Kolkata 700 106 India
- Centre for Advanced Functional Materials and Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata, Mohanpur Nadia 741 246, West Bengal India
| | - Biswajit Paul
- Department of Environmental Science and EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad 826 004, Jharkhand India
| | - Gobinda Gopal Khan
- Department of Material Science and EngineeringTripura University (A Central University), Suryamaninagar, Agartala Tripura 799 022 India
| |
Collapse
|
21
|
Kunde GB, Sehgal B, Ganguli AK. Synthesis of mesoporous rebar MWCNT/alumina composite (RMAC) nodules for the effective removal of methylene blue and Cr (VI) from an aqueous medium. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:140-151. [PMID: 30991166 DOI: 10.1016/j.jhazmat.2019.03.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
The distinctive and tuneable physical, chemical and configurational properties of carbon nanotubes (CNTs), has prompted their combination with metal oxides to contrive carbon composites showing entrancing adsorption property with incredible potential in water treatment. MWCNT/Alumina (RMAC) nodules with effective adsorption capacity were synthesized following aqueous sol-gel route. Batch sorption experiments examined the efficiency of removal of dyes and heavy metal ions from an aqueous solution on RMAC nodules. The factors affecting adsorption were studied for adsorption of methylene blue dye (MB) and hexavalent chromium by altering the MWCNT concentration from 1 wt.% to 5 wt.%. The adsorption experiment demonstrated an adsorption capacity of 187.5 and 597 mg g-1 at 25 °C for MB and Cr (VI) respectively. Various characterization techniques such as XRD, BET, TEM, Raman, FTIR, TPD and CHN were employed to study the initial development of the material. Multiple adsorption interaction mechanisms (electrostatic interactions, hydrogen bonding, π-π electron-donor-acceptor interactions) may be credited for the remarkable adsorption capacity of these nodules. Results of this work are of great significance for environmental applications of Alumina/MWCNT composite as a promising adsorbent nanomaterial for organic pollutants from aqueous solutions. Apart from high sorption ability, these nodules offer ease of separation with splendid regeneration ability.
Collapse
Affiliation(s)
- G B Kunde
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - B Sehgal
- Department of Applied Chemistry, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India.
| | - A K Ganguli
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
22
|
Correction to: Adsorption of Eu(III) on iron oxide/multiwalled carbon nanotube magnetic composites. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Liu Y, Guo L, Huang H, Dou J, Huang Q, Gan D, Chen J, Li Y, Zhang X, Wei Y. Facile preparation of magnetic composites based on carbon nanotubes: Utilization for removal of environmental pollutants. J Colloid Interface Sci 2019; 545:8-15. [DOI: 10.1016/j.jcis.2019.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
|
24
|
Wang H, Li J, Gao X, Chang Y. Ionic liquid vortex‐simplified matrix solid‐phase dispersion for the simultaneous determination of terpenoids, crocins, quinic acid derivatives and flavonoids in
Gardeniae fructus
by UHPLC. J Sep Sci 2019; 42:1886-1895. [DOI: 10.1002/jssc.201801354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/16/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Huilin Wang
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical AnalysisTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Jin Li
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical AnalysisTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Xiu‐mei Gao
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical AnalysisTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Yan‐xu Chang
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical AnalysisTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| |
Collapse
|
25
|
Open-tubular capillary electrochromatography with β-cyclodextrin-functionalized magnetic nanoparticles as stationary phase for enantioseparation of dansylated amino acids. Mikrochim Acta 2019; 186:244. [PMID: 30877441 DOI: 10.1007/s00604-019-3318-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/13/2019] [Indexed: 12/11/2022]
Abstract
Magnetic nanoparticles (MNPs) modified with β-cyclodextrin and mono-6-deoxy-6-(1-methylimidazolium)-β-cyclodextrin tosylate (an ionic liquid), which called MNP-β-CD and MNP-β-CD-IL, were coated into the capillary inner wall. Compared to an uncoated capillary, the new systems show good reproducibility and durability. The systems based on the use of MNP-β-CD or MNP-β-CD-IL as stationary phases were established for enantioseparation of Dns-modified amino acids. Improved resolutions were obtained for both CEC systems. Primary parameters such as running buffer pH value and applied voltage were systematically optimized in order to obtain optimal enantioseparations. Under the optimized conditions, the capillaries exhibited excellent chiral recognition ability for six Dns-amino acids (the DL-forms of alanine, leucine, lsoleucine, valine, methionine, glutamic acid) and provided a promising way for the preparation of chiral column. Graphical Abstract Schematic presentation of the open-tubular capillary electrochromatography systems with MNP-β-CD and MNP-β-CD-IL as stationary phases for enantioseparation of dansylated amino acids.
Collapse
|
26
|
Yakout AA, Albishri HM. Solvothermal synthesis of EDTA-functionalized magnetite-carboxylated graphene oxide nanocomposite as a potential magnetic solid phase extractor of p-phenylenediamine from environmental samples. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1469415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Amr A. Yakout
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hassan M. Albishri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Geng J, Tao Q, Liu L, Wang B, Chen L. Study on adsorptive behavior of pyrolytic nitrogen-doped graphene gel. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Lee XJ, Show PL, Katsuda T, Chen WH, Chang JS. Surface grafting techniques on the improvement of membrane bioreactor: State-of-the-art advances. BIORESOURCE TECHNOLOGY 2018; 269:489-502. [PMID: 30172460 DOI: 10.1016/j.biortech.2018.08.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 05/26/2023]
Abstract
Membrane bioreactor (MBR) is regarded as the state-of-the-art technology in separation processes. Surface modification techniques play a critical role in improving the conventional membrane system which is mostly hydrophobic in nature. The hydrophobic nature of membranes is known to cause fouling, resulting in high maintenance costs and shorter lifespan of MBR. Thus, surface grafting aims to improve the hydrophilicity of bio-based membrane systems. This review describes the major surface grafting techniques currently used in membranes, including photo induced grafting, plasma treatment and plasma induced grafting, radiation induced grafting, thermal induced grafting and ozone induced grafting. The advantages and disadvantages of each method is discussed along with their parametric studies. The potential applications of MBR are very promising, but some integral membrane properties could be a major challenge that hinders its wider reach. The fouling issue could be resolved with the surface grafting techniques to achieve better performance of MBRs.
Collapse
Affiliation(s)
- Xin Jiat Lee
- Department of Chemical and Environmental Engineering, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Tomohisa Katsuda
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan
| | - Jo-Shu Chang
- Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
29
|
Fabrication of magnetite-functionalized-graphene oxide and hexadecyltrimethyl ammonium bromide nanocomposite for efficient nanosorption of sunset yellow. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:287-296. [DOI: 10.1016/j.msec.2018.06.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/24/2018] [Accepted: 06/28/2018] [Indexed: 01/18/2023]
|
30
|
Investigation of the adsorption mechanisms of Pb(II) and 1-naphthol by β-cyclodextrin modified graphene oxide nanosheets from aqueous solution. J Colloid Interface Sci 2018; 530:154-162. [DOI: 10.1016/j.jcis.2018.06.083] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 11/19/2022]
|
31
|
Hosseinzadeh S, Hosseinzadeh H, Pashaei S, Khodaparast Z. Synthesis of magnetic functionalized MWCNT nanocomposite through surface RAFT co-polymerization of acrylic acid and N-isopropyl acrylamide for removal of cationic dyes from aqueous solutions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:34-44. [PMID: 29857231 DOI: 10.1016/j.ecoenv.2018.05.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
In this study, magnetic multi-walled carbon nanotube (MMWCNT) composites were prepared via surface reversible addition fragmentation chain transfer (RAFT) co-polymerization of acrylic acid (AA) and N-isopropyl acrylamide (NIPAM) in the presence of Fe3O4 nanoparticles. First, a novel RAFT agent (RA) was prepared and then immobilized onto the surface of MWCNT to fabricate RA-g-MWCNT. Then, Fe3O4 nanoparticles were attached onto the surface of RA-g-MWCNT. Finally, RAFT co-polymerization of AA and NIPAM monomers was carried out via Fe3O4-g-RA-g-MWCNT RAFT agent. The structure and morphology of the prepared polymer-coated MWCNT was examined by FTIR, SEM, TEM, XRD, VSM, and TGA. The adsorption behaviours of the cationic dyes were studied. The equilibrium isotherm and kinetics of cationic dyes were investigated. Thermodynamics investigations also depicted that the adsorptions of cationic dyes were spontaneous and endothermic in nature. The synthesized dye adsorbent with high adsorption capacities, reusability, and easy recovery makes it as a good candidate for wastewater treatment.
Collapse
Affiliation(s)
| | | | - Shahryar Pashaei
- Chemistry Department, Payame Noor University, 19395-4697 Tehran, Iran
| | - Zahra Khodaparast
- Chemical Engineering Department, Payame Noor University, 19395-4697 Tehran, Iran
| |
Collapse
|
32
|
Rivas BL, Urbano BF, Sánchez J. Water-Soluble and Insoluble Polymers, Nanoparticles, Nanocomposites and Hybrids With Ability to Remove Hazardous Inorganic Pollutants in Water. Front Chem 2018; 6:320. [PMID: 30109224 PMCID: PMC6079269 DOI: 10.3389/fchem.2018.00320] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/10/2018] [Indexed: 11/13/2022] Open
Abstract
The polymeric materials have presented a great development in adsorption processes for the treatment of polluted waters. The aim of the current review is to present the recent developments in this field of study by examining research of systems like functional water-soluble polymers and water-soluble polymer-metal complexes coupled to ultrafiltration membranes for decontamination processes in liquid-liquid phase. Noticing that a water-soluble polymer can be turned into insoluble compounds by setting a crosslinking point, connecting the polymer chains leading to polymer resins suitable for solid-liquid extraction processes. Moreover, these crosslinked polymers can be used to develop more complex systems such as (nano)composite and hybrid adsorbents, combining the polymers with inorganic moieties such as metal oxides. This combination results in novel materials that overcome some drawbacks of each separated components and enhance the sorption performance. In addition, new trends in hybrid methods combining of water-soluble polymers, membranes, and electrocatalysis/photocatalysis to remove inorganic pollutants have been discussed in this review.
Collapse
Affiliation(s)
- Bernabé L Rivas
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Julio Sánchez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago, Santiago, Chile
| |
Collapse
|
33
|
Wang S, Hou Y, Zhang S, Li J, Chen Q, Yu M, Li W. Sustained antibacterial activity of berberine hydrochloride loaded supramolecular organoclay networks with hydrogen-bonding junctions. J Mater Chem B 2018; 6:4972-4984. [PMID: 32255069 DOI: 10.1039/c8tb01018h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The environmental risk from antibiotics is an issue of increasing concern. So, carboxymethyl β-cyclodextrin-functionalized montmorillonite nanosheets were for the first time successfully synthesized through a cheap, environmentally friendly and scalable approach and confirmed by FTIR, XRD and TGA. FE-SEM investigation showed that the resulting functional material could be further self-assembled into dense supramolecular organoclay networks (D-networks). The antibacterial properties of the D-networks loaded with natural berberine hydrochloride (BBH) were investigated toward E. coli and S. aureus by using colony growth on agar plates, bacterial growth curves based on optical densities, and confocal and fluorescence microscopy. Our studies demonstrated that the BBH loaded D-network antibacterial activity was concentration dependent and significantly exceeded that of free BBH. FE-SEM observation confirmed that E. coli and S. aureus can directly contact the D-networks and confocal and fluorescence microscopy showed that free BBH was only very poorly internalized, while the BBH released from the BBH-loaded D-network could be internalized efficiently into bacterial cells, resulting in an increment of the intracellular BBH level compared with the free BBH group. Time-dependent antibacterial activity was observed and it was found that the BBH-loaded D-network dispersion at the BBH dosage of 600 μg mL-1 almost completely suppressed the growth of E. coli, leading to a viability loss of up to 98.45 ± 1.22%, while the BBH-loaded D-network dispersion at the BBH concentration of 250 μg mL-1 exhibited a growth inhibition of 97.81 ± 0.83% toward S. aureus over three days. Our results suggest that supramolecular organoclay networks, in the future, may function as promising antibacterial drug carrier systems to promote BBH delivery in E. coli and S. aureus, which can reduce the environmental risk of antibiotics.
Collapse
Affiliation(s)
- Shiwei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Alam AU, Qin Y, Catalano M, Wang L, Kim MJ, Howlader MMR, Hu NX, Deen MJ. Tailoring MWCNTs and β-Cyclodextrin for Sensitive Detection of Acetaminophen and Estrogen. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21411-21427. [PMID: 29856206 DOI: 10.1021/acsami.8b04639] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Monitoring of trace amount of acetaminophen and estrogen in drinking water is of great importance because of their potential links to gastrointestinal diseases and breast and prostate cancers. The sensitive and accurate detection of acetaminophen and estrogen requires the development of advanced sensing materials that possess appropriate number of analyte-capturing sites and suitable signal conduction path. This can be achieved by implementing appropriate chemical attachment of multiwalled carbon nanotubes (MWCNTs) and β-cyclodextrin (βCD). Here, we report a systematic investigation of four types of modified MWCNT-βCD: (1) physical mixing, (2) "click reaction", (3) thionyl chloride esterification, and (4) Steglich esterification. The Steglich esterification is a one-step approach with shorter reaction time, lower reaction temperature, and eliminates handling of air/moisture-sensitive reagents. MWCNT-βCD prepared by Steglich esterification possessed moderate βCD loading (5-10 wt %), large effective surface area, and fast electron transfer. The host-guest interaction of βCD and redox properties of MWCNT enabled sensitive detection of acetaminophen and 17β-estradiol (E2 is a primary female sex hormone) in the range of 0.005-20 and 0.01-15 μM, with low detection limits of 3.3 and 2.5 nM, respectively. We demonstrated accurate detection results of pharmaceutical compositions in water and urine samples. These results indicate that Steglich esterification method may be applied in fabricating pharmaceutical contaminants sensors for health and environmental applications.
Collapse
Affiliation(s)
- Arif Ul Alam
- Department of Electrical and Computer Engineering , McMaster University , 1280 Main Street West , Hamilton , Ontario L8S 4K1 , Canada
- Advanced Materials Laboratory , Xerox Research Centre of Canada , 2660 Speakman Drive , Mississauga , Ontario L5K 2L1 , Canada
| | - Yiheng Qin
- Department of Electrical and Computer Engineering , McMaster University , 1280 Main Street West , Hamilton , Ontario L8S 4K1 , Canada
- Advanced Materials Laboratory , Xerox Research Centre of Canada , 2660 Speakman Drive , Mississauga , Ontario L5K 2L1 , Canada
| | - Massimo Catalano
- Department of Materials Science and Engineering , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
- CNR-IMM , Via Monteroni, ed.A3 , Lecce 73100 , Italy
| | - Luhua Wang
- Department of Materials Science and Engineering , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| | - Moon J Kim
- Department of Materials Science and Engineering , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| | - Matiar M R Howlader
- Department of Electrical and Computer Engineering , McMaster University , 1280 Main Street West , Hamilton , Ontario L8S 4K1 , Canada
| | - Nan-Xing Hu
- Advanced Materials Laboratory , Xerox Research Centre of Canada , 2660 Speakman Drive , Mississauga , Ontario L5K 2L1 , Canada
| | - M Jamal Deen
- Department of Electrical and Computer Engineering , McMaster University , 1280 Main Street West , Hamilton , Ontario L8S 4K1 , Canada
| |
Collapse
|
35
|
Insights into Metal Oxide and Zero-Valent Metal Nanocrystal Formation on Multiwalled Carbon Nanotube Surfaces during Sol-Gel Process. NANOMATERIALS 2018; 8:nano8060403. [PMID: 29874789 PMCID: PMC6026900 DOI: 10.3390/nano8060403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
Carbon nanotubes are hybridized with metal crystals to impart multifunctionality into the nanohybrids (NHs). Simple but effective synthesis techniques are desired to form both zero-valent and oxides of different metal species on carbon nanotube surfaces. Sol-gel technique brings in significant advantages and is a viable technique for such synthesis. This study probes the efficacy of sol-gel process and aims to identify underlying mechanisms of crystal formation. Standard electron potential (SEP) is used as a guiding parameter to choose the metal species; i.e., highly negative SEP (e.g., Zn) with oxide crystal tendency, highly positive SEP (e.g., Ag) with zero-valent crystal-tendency, and intermediate range SEP (e.g., Cu) to probe the oxidation tendency in crystal formation are chosen. Transmission electron microscopy and X-ray diffraction are used to evaluate the synthesized NHs. Results indicate that SEP can be a reliable guide for the resulting crystalline phase of a certain metal species, particularly when the magnitude of this parameter is relatively high. However, for intermediate range SEP-metals, mix phase crystals can be expected. For example, Cu will form Cu2O and zero-valent Cu crystals, unless the synthesis is performed in a reducing environment.
Collapse
|
36
|
Chen J, Cao S, Zhu M, Xi C, Zhang L, Li X, Wang G, Zhou Y, Chen Z. Fabrication of a high selectivity magnetic solid phase extraction adsorbent based on β-cyclodextrin and application for recognition of plant growth regulators. J Chromatogr A 2018; 1547:1-13. [DOI: 10.1016/j.chroma.2018.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/22/2017] [Accepted: 03/03/2018] [Indexed: 11/26/2022]
|
37
|
Controlled Release of Curcumin via Folic Acid Conjugated Magnetic Drug Delivery System. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7293-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Preparation and characterization of xanthan gum-cl-poly(acrylic acid)/o-MWCNTs hydrogel nanocomposite as highly effective re-usable adsorbent for removal of methylene blue from aqueous solutions. J Colloid Interface Sci 2018; 513:700-714. [DOI: 10.1016/j.jcis.2017.11.060] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
|
39
|
Sarkar B, Mandal S, Tsang YF, Kumar P, Kim KH, Ok YS. Designer carbon nanotubes for contaminant removal in water and wastewater: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:561-581. [PMID: 28865273 DOI: 10.1016/j.scitotenv.2017.08.132] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/31/2017] [Accepted: 08/13/2017] [Indexed: 05/21/2023]
Abstract
The search for effective materials for environmental cleanup is a scientific and technological issue of paramount importance. Among various materials, carbon nanotubes (CNTs) possess unique physicochemical, electrical, and mechanical properties that make them suitable for potential applications as environmental adsorbents, sensors, membranes, and catalysts. Depending on the intended application and the chemical nature of the target contaminants, CNTs can be designed through specific functionalization or modification processes. Designer CNTs can remarkably enhance contaminant removal efficiency and facilitate nanomaterial recovery and regeneration. An increasing number of CNT-based materials have been used to treat diverse organic, inorganic, and biological contaminants. These success stories demonstrate their strong potential in practical applications, including wastewater purification and desalination. However, CNT-based technologies have not been broadly accepted for commercial use due to their prohibitive cost and the complex interactions of CNTs with other abiotic and biotic environmental components. This paper presents a critical review of the existing literature on the interaction of various contaminants with CNTs in water and soil environments. The preparation methods of various designer CNTs (surface functionalized and/or modified) and the functional relationships between their physicochemical characteristics and environmental uses are discussed. This review will also help to identify the research gaps that must be addressed for enhancing the commercial acceptance of CNTs in the environmental remediation industry.
Collapse
Affiliation(s)
- Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; Department of Geological Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Sanchita Mandal
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Pawan Kumar
- Department of Nano Science and Materials, Central University of Jammu, Jammu 181143, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Yong Sik Ok
- Korea Biochar Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea; O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Deng X, Feng Y, Li H, Yuan F, Teng Q, Wang H. Adsorption properties of Pseudomonas monteilii for removal of uranium from aqueous solution. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5658-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Sun Y, Lu S, Wang X, Xu C, Li J, Chen C, Chen J, Hayat T, Alsaedi A, Alharbi NS, Wang X. Plasma-Facilitated Synthesis of Amidoxime/Carbon Nanofiber Hybrids for Effective Enrichment of 238U(VI) and 241Am(III). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12274-12282. [PMID: 29017009 DOI: 10.1021/acs.est.7b02745] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plasma- and chemical-grafted amidoxime/carbon nanofiber hybrids (p-AO/CNFs and c-AO/CNFs) were utilized to remove 238U(VI) and 241Am(III) from aqueous solutions, seawater, and groundwater. Characteristic results indicated more nitrogen-containing groups in p-AO/CNFs compared to c-AO/CNFs. The maximum adsorption capacities of p-AO/CNFs at pH 3.5 and T = 293 K (588.24 mg of 238U(VI)/g and 40.79 mg of 241Am(III)/g from aqueous solutions, respectively) were significantly higher than those of c-AO/CNFs (263.18 and 22.77 mg/g for 238U(VI) and 241Am(III), respectively), which indicated that plasma-grafting was a highly effective, low-cost, and environmentally friendly method. Adsorption of 238U(VI) on AO/CNFs from aqueous solutions was significantly higher than that of 238U(VI) from seawater and groundwater; moreover, AO/CNFs displayed the highest effective selectivity for 238U(VI) compared to the other radionuclides. Adsorption of 238U(VI) onto AO/CNFs created inner-sphere complexes (e.g., U-C shells) as shown by X-ray absorption fine structure analysis, which was supported by surface complexation modeling. Three inner-sphere complexes gave excellent fits to pH-edge and isothermal adsorption of 238U(VI) on the AO/CNFs. These observations are crucial for the utilization of plasma-grafted, AO-based composites in the preconcentration and immobilization of lanthanides and actinides in environmental remediation.
Collapse
Affiliation(s)
- Yubing Sun
- Institute of Plasma Physics, Chinese Academy of Science , P.O. Box 1126, Hefei 230031, People's Republic of China
- College of Environmental Science and Engineering, North China Electric Power University , Beijing 102206, People's Republic of China
| | - Songhua Lu
- Institute of Plasma Physics, Chinese Academy of Science , P.O. Box 1126, Hefei 230031, People's Republic of China
| | - Xiangxue Wang
- College of Environmental Science and Engineering, North China Electric Power University , Beijing 102206, People's Republic of China
| | - Chao Xu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University , Beijing 100084, People's Republic of China
| | - Jiaxing Li
- Institute of Plasma Physics, Chinese Academy of Science , P.O. Box 1126, Hefei 230031, People's Republic of China
| | - Changlun Chen
- Institute of Plasma Physics, Chinese Academy of Science , P.O. Box 1126, Hefei 230031, People's Republic of China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University , Beijing 100084, People's Republic of China
| | - Tasawar Hayat
- NAAM Research Group, King Abdulaziz University , Jeddah 21589, Saudi Arabia
- Department of Mathematics, Quaid-I-Azam University , Islamabad 44000, Pakistan
| | - Ahmed Alsaedi
- NAAM Research Group, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| | - Njud S Alharbi
- NAAM Research Group, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University , Beijing 102206, People's Republic of China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences, Soochow University , Suzhou 215123, People's Republic of China
| |
Collapse
|
42
|
Tan P, Hu Y. Improved synthesis of graphene/β-cyclodextrin composite for highly efficient dye adsorption and removal. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
|
44
|
Benidris EB, Ghezzar MR, Ma A, Ouddane B, Addou A. Water purification by a new hybrid plasma-sensitization-coagulation process. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Li X, Zhao K, You C, Pan H, Tang X, Fang Y. Impact of contact time, pH, ionic strength, soil humic substances, and temperature on the uptake of Pb(II) onto graphene oxide. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1281302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xue Li
- School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, P.R. China
- College of Yuanpei, Shaoxing University, Shaoxing, P.R. China
| | - Kang Zhao
- School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, P.R. China
| | - Caiyin You
- School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, P.R. China
| | - Hui Pan
- College of Yuanpei, Shaoxing University, Shaoxing, P.R. China
| | - Xiaoping Tang
- College of Yuanpei, Shaoxing University, Shaoxing, P.R. China
| | - Yanfeng Fang
- College of Yuanpei, Shaoxing University, Shaoxing, P.R. China
| |
Collapse
|
46
|
Zhang Y, Jiao Z, Hu Y, Lv S, Fan H, Zeng Y, Hu J, Wang M. Removal of tetracycline and oxytetracycline from water by magnetic Fe 3O 4@graphene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:2987-2995. [PMID: 27848131 DOI: 10.1007/s11356-016-7964-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
In this paper, Fe3O4@graphene (Fe3O4@G) magnetic nanocomposite was prepared via in situ precipitation method for the removal of oxytetracycline (OTC) and tetracycline (TC) from aqueous solution. The properties of the prepared nanocomposite were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and magnetic property measurement system (MPMS). Adsorption isotherm and kinetics of OTC and TC were studied in batch experiments. The influence of the dosage of Fe3O4@G, the solution pH, and ion strength on the adsorption process were also assessed. The results demonstrated that the Langmuir model fitted the adsorption equilibrium data better than did the Freundlich model, and the pseudo-first-order model was more suitable than the pseudo-second-order to describe the adsorption process, with a good adsorption rate constant (k = 0.974 and 0.834 g mg-1 h-1, respectively). The adsorption ability reached maximum at pH of 7 with no NaCl. The removal efficiency of Fe3O4@G in lake, tap, and pool water were 95.45, 96.68, and 89.82 % for OTC and 98.77, 98.23, and 89.09 % for TC, respectively. The π-π interaction and cation-π bonding of the adsorbent and analytes make it suitable for the removal of OTC and TC. The present study suggests that the prepared composite can be deemed as a promising material for the removal of tetracycline antibiotics from aqueous solution.
Collapse
Affiliation(s)
- Yan Zhang
- College of Environment and Energy, Guangzhou, South China University of Technology, Guangzhou, 510006, China
- College of Chemistry and Environmental Engineering, Dongguan, Dongguan University of Technology, Dongguan, 523808, China
| | - Zhe Jiao
- College of Chemistry and Environmental Engineering, Dongguan, Dongguan University of Technology, Dongguan, 523808, China.
| | - Yongyou Hu
- College of Environment and Energy, Guangzhou, South China University of Technology, Guangzhou, 510006, China
| | - Sihao Lv
- College of Chemistry and Environmental Engineering, Dongguan, Dongguan University of Technology, Dongguan, 523808, China
| | - Hongbo Fan
- College of Chemistry and Environmental Engineering, Dongguan, Dongguan University of Technology, Dongguan, 523808, China.
| | - Yanyan Zeng
- College of Chemistry and Environmental Engineering, Dongguan, Dongguan University of Technology, Dongguan, 523808, China
| | - Jun Hu
- College of Electronic Engineering, Dongguan, Dongguan University of Technology, Dongguan, 523808, China
- NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mianmian Wang
- Dongguan Cleaner Production Center, Dongguan, 523808, China
| |
Collapse
|
47
|
Gogoi A, Navgire M, Sarma KC, Gogoi P. Novel highly stable β-cyclodextrin fullerene mixed valent Fe-metal framework for quick Fenton degradation of alizarin. RSC Adv 2017. [DOI: 10.1039/c7ra06447k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Degradation of alizarin by β-cyclodextrin supported magnetic nanoscaled fullerene/Fe3O4 (CDFMNPs) catalyst in a heterogeneous Fenton reaction.
Collapse
Affiliation(s)
- Aniruddha Gogoi
- Department of Instrumentation & USIC
- Gauhati University
- Guwahati 781014
- India
| | - Madhukar Navgire
- Department of Chemistry
- Jijamata College of Science & Arts
- Ahmadnagar
- India
| | | | - Parikshit Gogoi
- Department of Chemistry
- Nowgong College
- Nagaon 782001
- India
- School of Chemical and Biomolecular Engineering
| |
Collapse
|
48
|
Zong P, Cao D, Wang S, He C, Zhao Y. Synthesis of Fe3O4/CD magnetic nanocomposite via low temperature plasma technique with high enrichment of Ni(II) from aqueous solution. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Sheng G, Linghu W, Chen Z, Xu D, Alsaedi A, Shammakh W, Monaquel S, Sheng J. Sequestration of selenate and selenite onto titanate nanotube: A combined classical batch and advanced EXAFS approach. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.enmm.2016.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Facile preparation of carbon nanotubes based carboxymethyl chitosan nanocomposites through combination of mussel inspired chemistry and Michael addition reaction: Characterization and improved Cu2+ removal capability. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.09.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|