1
|
Neumann K. The case for poly(ylides) as a class of charge-neutral, hydrophilic polymers with applications in biomaterials science. Biomater Sci 2024; 12:5481-5490. [PMID: 39279503 DOI: 10.1039/d4bm00928b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Many applications of biomaterials require hydrophilic polymers as building blocks, including hydrogels and nanomedicinal devices. Besides enabling sufficient swelling properties in aqueous environments, hydrophilic polymers provide hydration layers, which are considered a major requirement when designing non-fouling surfaces and materials. For the last few decades, polyethylene glycol has been seen as the gold standard for such applications. However, reports on its stability and immunogenicity have urged chemists to identify alternatives with comparable or superior properties. In addition to biopolymers, zwitterionic polymers have gained increasing attention by effectively offering an overall charge-neutral scaffold capable of forming strong hydration layers. Driven by an enhanced understanding of the structure-property relationship of zwitterionic materials, poly(ylides) have emerged as a new class of hydrophilic and charge-neutral polymers. By having the negative charge adjacent to the positive charge, ylides offer not only a minimal dipole moment but also maintain their overall charge-neutral nature. Despite some early reports on their synthesis during the 1980s, polymeric ylides were largely overlooked as a class of polymers, and their utility as unique hydrophilic building blocks for the design of biomaterials and nanomedicinal tools remained elusive. In recent years, several groups have reported N-oxide and carbon-centered ylide-based polymers as highly effective building blocks for the design of antifouling materials and nanomedicines. Here, by reviewing recent progress and understanding of structure-property relationships, arguments are provided explaining why polymeric ylides should be classified as a standalone class of hydrophilic polymers. Consequently, the author concludes that the term 'poly(ylide)' or 'polymeric ylides' should be routinely used to adequately describe this emerging class of polymers.
Collapse
Affiliation(s)
- Kevin Neumann
- Institute for Molecules and Materials, Radboud University, The Netherlands.
| |
Collapse
|
2
|
Deng L, Olea AR, Ortiz-Perez A, Sun B, Wang J, Pujals S, Palmans ARA, Albertazzi L. Imaging Diffusion and Stability of Single-Chain Polymeric Nanoparticles in a Multi-Gel Tumor-on-a-Chip Microfluidic Device. SMALL METHODS 2024; 8:e2301072. [PMID: 38348928 DOI: 10.1002/smtd.202301072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Indexed: 10/18/2024]
Abstract
The performance of single-chain polymeric nanoparticles (SCPNs) in biomedical applications highly depends on their conformational stability in cellular environments. Until now, such stability studies are limited to 2D cell culture models, which do not recapitulate the 3D tumor microenvironment well. Here, a microfluidic tumor-on-a-chip model is introduced that recreates the tumor milieu and allows in-depth insights into the diffusion, cellular uptake, and stability of SCPNs. The chip contains Matrigel/collagen-hyaluronic acid as extracellular matrix (ECM) models and is seeded with cancer cell MCF7 spheroids. With this 3D platform, it is assessed how the polymer's microstructure affects the SCPN's behavior when crossing the ECM, and evaluates SCPN internalization in 3D cancer cells. A library of SCPNs varying in microstructure is prepared. All SCPNs show efficient ECM penetration but their cellular uptake/stability behavior depends on the microstructure. Glucose-based nanoparticles display the highest spheroid uptake, followed by charged nanoparticles. Charged nanoparticles possess an open conformation while nanoparticles stabilized by internal hydrogen bonding retain a folded structure inside the tumor spheroids. The 3D microfluidic tumor-on-a-chip platform is an efficient tool to elucidate the interplay between polymer microstructure and SCPN's stability, a key factor for the rational design of nanoparticles for targeted biological applications.
Collapse
Affiliation(s)
- Linlin Deng
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Alis R Olea
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, Barcelona, 08028, Spain
| | - Ana Ortiz-Perez
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Molecular Biosensing for Medical Diagnostics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Bingbing Sun
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Jianhong Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Silvia Pujals
- Institute for Advanced Chemistry of Catalonia (IQAC), Barcelona, 08034, Spain
| | - Anja R A Palmans
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Lorenzo Albertazzi
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Molecular Biosensing for Medical Diagnostics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
3
|
Grimm AP, Plank M, Stihl A, Schmitt CW, Voll D, Schacher FH, Lahann J, Théato P. Inverse Vulcanization of Activated Norbornenyl Esters-A Versatile Platform for Functional Sulfur Polymers. Angew Chem Int Ed Engl 2024; 63:e202411010. [PMID: 38895894 DOI: 10.1002/anie.202411010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Elemental sulfur has shown to be a promising alternative feedstock for development of novel polymeric materials with high sulfur content. However, the utilization of inverse vulcanized polymers is restricted by the limitation of functional comonomers suitable for an inverse vulcanization. Control over properties and structure of inverse vulcanized polymers still poses a challenge to current research due to the dynamic nature of sulfur-sulfur bonds and high temperature of inverse vulcanization reactions. In here, we report for the first time the inverse vulcanization of norbornenyl pentafluorophenyl ester (NB-PFPE), allowing for post-modification of inverse vulcanized polymers via amidation of reactive PFP esters to yield high sulfur content polymers under mild conditions. Amidation of the precursor material with three functional primary amines (α-amino-ω-methoxy polyethylene glycol, aminopropyl trimethoxy silane, allylamine) was investigated. The resulting materials were applicable as sulfur containing poly(ethylene glycol) nanoparticles in aqueous environment. Cross-linked mercury adsorbents, sulfur surface coatings, and high-sulfur content networks with predictable thermal properties were achievable using aminopropyl trimethoxy silane and allylamine for post-polymerization modification, respectively. With the broad range of different amines available and applicable for post-polymerization modification, the versatility of poly(sulfur-random-NB-PFPE) as a platform precursor polymer for novel specialized sulfur containing materials was showcased.
Collapse
Affiliation(s)
- Alexander P Grimm
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martina Plank
- Institute of Functional Interfaces (IFG) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andreas Stihl
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena (FSU), Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena (FSU), Philosophenweg 7, 07743, Jena, Germany
| | - Christian W Schmitt
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dominik Voll
- Institute for Technical Chemistry and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena (FSU), Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena (FSU), Philosophenweg 7, 07743, Jena, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstraße 12-14, 07743, Jena, Germany
| | - Jörg Lahann
- Institute of Functional Interfaces (IFG) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Patrick Théato
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Technical Chemistry and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany
| |
Collapse
|
4
|
Makri K, Pispas S. Block and Statistical Copolymers of Methacrylate Monomers with Dimethylamino and Diisopropylamino Groups on the Side Chains: Synthesis, Chemical Modification and Self-Assembly in Aqueous Media. Polymers (Basel) 2024; 16:1284. [PMID: 38732753 PMCID: PMC11085793 DOI: 10.3390/polym16091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The synthesis of amphiphilic diblock and statistical (random) copolymers of poly(dimethylamino ethyl methacrylate) and poly((2-(diisopropylamino) ethyl methacrylate) using the reversible addition-fragmentation chain transfer polymerization technique (RAFT polymerization) is reported. The precursor copolymers were chemically modified to create derivative copolymers of polyelectrolyte and polyampholyte nature with novel solution properties. Moreover, their molecular and physicochemical characteristics, as well as their self-assembly in aqueous media as a function of molecular architecture and composition, are investigated by using size exclusion chromatography, spectroscopic characterization techniques and light scattering techniques. Furthermore, the behavior and properties of the obtained micelles and aggregates were studied, depending on the pH, temperature and ionic strength of the aqueous solutions. The response of the systems to changes in these parameters shows interesting behavior and new properties that are useful for their utilization as nanocarriers of pharmaceutical compounds.
Collapse
Affiliation(s)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
5
|
Pu Y, Fan J. Thermoresponsive Skin-like Fabric for Personal Comfort and Protection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10960-10968. [PMID: 38361387 DOI: 10.1021/acsami.3c17270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Acting as a "second skin", clothing plays an indispensable role in providing comfort and protection in the wide range of environments in which we live. However, comfort and protection are often competing requirements and are difficult to improve simultaneously. By mimicking the exceptional thermoresponsive one-way liquid transport property of human skin, here we developed a scalable and ecofriendly skin-like fabric that has a tunable directional water transport rate while having excellent water repellency. The water transport rate is also temperature-responsive, just like skin. As the temperature increases, the wettability gradient in the spatially distributed channels (acting like "sweat glands") increases, promoting sweat transport and evaporative heat dissipation. As the temperature decreases, on the other hand, the wettability gradient diminishes, reducing liquid transport and evaporative heat loss, thereby promoting heat retention. The fabric is highly suitable for sportswear and functional clothing and can have wider applications, such as oil-water separation, fog harvesting, etc.
Collapse
Affiliation(s)
- Yi Pu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Kowloon 999077, Hong Kong
| | - Jintu Fan
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Kowloon 999077, Hong Kong
- Research Institute of Sports Science and Technology, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Kowloon 999077, Hong Kong
- Research Centre of Textiles for Future Fashion, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Kowloon 999077, Hong Kong
| |
Collapse
|
6
|
Gitter SR, Li R, Boydston AJ. Access to Functionalized Materials by Metal-Free Ring-Opening Metathesis Polymerization of Active Esters and Divergent Postpolymerization Modification. ACS Macro Lett 2024:144-150. [PMID: 38226917 DOI: 10.1021/acsmacrolett.3c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-free ring-opening metathesis polymerization (MF-ROMP) is an emerging polymerization strategy that provides access to ROMP materials by using organic initiators and photoredox catalysts. Unlike metal-mediated ROMP, MF-ROMP is not highly tolerant toward functionalized monomers. Herein, we report that pentafluorophenyl esters are polymerizable under MF-ROMP conditions to produce homopolymers, statistical copolymers, and block copolymers. Amine coupling agents were then used to install a range of functional groups via acyl substitution including alkynes, amino acid derivatives, fluorophores, and redox active moieties. Overall, these findings provide a framework to prepare functionalized ROMP polymers without the risk of metal contamination.
Collapse
Affiliation(s)
- Sean R Gitter
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Ruojia Li
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Andrew J Boydston
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Pickett PD, Ma Y, Prabhu VM. Polyzwitterion fast and slow mode behavior are coupled to phase separation as observed by dynamic laser light scattering. J Chem Phys 2023; 159:104902. [PMID: 37694748 DOI: 10.1063/5.0162376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
A model zwitterionic polysulfobetaine, poly(3-(acrylamidopropyl-dimethyl-ammonium) propyl-1-sulfonate) (pAPAPS), phase separates upon cooling and exhibits an upper critical solution temperature (UCST) behavior with no added salt in deuterium oxide solutions. Dynamic light scattering measurements indicate the presence of distinct fast and slow diffusive modes, where the fast mode is interpreted as a collective diffusion coefficient and the slow mode is attributed to the diffusion of multi-chain dynamic clusters. The relative population of fast and slow modes varies systematically with temperature and concentration. A clustering temperature (T*) was assigned when the slow mode first appeared upon cooling. The slow mode then increases in relative scattering amplitude as the phase boundary is approached. The fast mode exhibits a concentration dependence above T* consistent with the virial expansion in the collective diffusion. The sign of the virial coefficient (kd) is negative, even in the good solvent region above the expected Flory temperature (Θ ≈ 39 °C), a behavior distinct from synthetic neutral polymers in organic solvents. The onset of multi-chain clustering at T < T* coincides with the poor solvent regime (T < Θ). Attractive dipolar interactions due to the zwitterionic sulfobetaine groups in pAPAPS are suggested as the origin of the multi-chain clusters with no salt. Upon the addition of 100 mM NaCl, the slow mode is suppressed, and the hydrodynamic radius is consistent with polyzwitterion chain dimensions in a dilute solution. We find that concentration dependent diffusion is highly linked to the theta temperature and the emergence of dynamic clusters as the polymer goes from good to poor solvent on approach to the UCST. The slow mode in the semidilute regime is reported along with preliminary small-angle neutron scattering data that show salt reduces clustering and leads to predominantly chain scattering.
Collapse
Affiliation(s)
- Phillip D Pickett
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Yuanchi Ma
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Vivek M Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
8
|
Amgoth C, Patra S, Wasnik K, Maity P, Paik P. Controlled synthesis of thermosensitive tunable porous film of (
pNIPAM
)‐
b
‐(
PCL
) copolymer for sustain drug delivery. J Appl Polym Sci 2023. [DOI: 10.1002/app.53854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Chander Amgoth
- School of Engineering Sciences and Technology University of Hyderabad Hyderabad Telangana India
| | - Sukanya Patra
- School of Biomedical Engineering Indian Institute of Technology (BHU) Varanasi Uttar Pradesh India
| | - Kirti Wasnik
- School of Biomedical Engineering Indian Institute of Technology (BHU) Varanasi Uttar Pradesh India
| | - Pradip Maity
- CSIR‐National Chemical Laboratory Pune Maharashtra India
| | - Pradip Paik
- School of Biomedical Engineering Indian Institute of Technology (BHU) Varanasi Uttar Pradesh India
| |
Collapse
|
9
|
Jin B, Cui Z, Manthiram A. In situ Interweaved Binder Framework Mitigating the Structural and Interphasial Degradations of High-nickel Cathodes in Lithium-ion Batteries. Angew Chem Int Ed Engl 2023; 62:e202301241. [PMID: 36781391 DOI: 10.1002/anie.202301241] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
The practical viability of high-nickel layered oxide cathodes is compromised by the interphasial and structural degradations. Herein, we demonstrate that by applying an in situ interweaved binder, the cycling stability of high-nickel cathodes can be significantly improved. Specifically, the results show that the resilient binder network immobilizes the transition-metal ions, suppresses electrolyte oxidative decomposition, and mitigates cathode particles pulverization, thus resulting in suppressed cathode-to-anode chemical crossover and ameliorated chemistry and architecture of electrode-electrolyte interphases. Pouch full cells with high-mass-loading LiNi0.8 Mn0.1 Co0.1 O2 cathodes achieve 0.02 % capacity decay per cycle at 1 C rate over 1 000 deep cycles at 4.4 V (vs. graphite). This work demonstrates a rational structural and compositional design strategy of polymer binders to mitigate the structural and interphasial degradations of high-Ni cathodes in lithium-ion batteries.
Collapse
Affiliation(s)
- Biyu Jin
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zehao Cui
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Arumugam Manthiram
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
10
|
Damsongsang P, Yusa SI, Hoven VP. Zwitterionic nano-objects having functionalizable hydrophobic core: Formation via polymerization-induced self-assembly and their morphology. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Engineering sterilization-resistant and fouling-resistant porous membranes by the vapor-induced phase separation process using a sulfobetaine methacrylamide amphiphilic derivative. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Pickett PD, Ma Y, Lueckheide M, Mao Y, Prabhu VM. Temperature dependent single-chain structure of poly[3-(acrylamidopropyl-dimethyl-ammonium) propyl-1-sulfonate] via small-angle neutron scattering. J Chem Phys 2022; 156:214904. [DOI: 10.1063/5.0093158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Responsive polyzwitterionic materials have become important for a range of applications such as environmental remediation and targeted drug delivery. Much is known about the macroscopic phase-behaviors of such materials, but how the smaller scale single-chain structures of polyzwitterions respond to external stimuli is not well understood, especially at temperatures close to their phase boundaries. Such chain conformation responses are important in directing larger-scale associative properties. Here, we study the temperature dependent single-chain structure of a model polysulfobetaine, poly[3-(acrylamidopropyl-dimethyl-ammonium) propyl-1-sulfonate], using small angle neutron scattering. In the absence of salt, we find that temperature has a large effect on solvent quality with a decreasing trend from good solvent conditions at 50 °C to poor solvent at 10 °C (a temperature just above the cloud point of 7.6 °C) and an estimated theta temperature of 39 °C. When 100 mM NaCl is present, the solvent quality is good with weak temperature dependence. Without salt present, the polymer chain appears to have a nearly Gaussian coil conformation and the backbone becomes slightly more rigid as the temperature is lowered to the cloud point as determined by the Debye-local rod model on a Kratky plot. The addition of salt has a notable effect on the intra-chain correlations where an increase in chain dimensions to a swollen coil conformation and an increase in chain rigidity is observed at 100 mM NaCl in D2O, however, with a negligible temperature dependence.
Collapse
Affiliation(s)
- Phillip D. Pickett
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - Yuanchi Ma
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - Michael Lueckheide
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - Yimin Mao
- Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, USA
| | - Vivek M. Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
13
|
Nguyen TPT, Barroca-Aubry N, Costa L, Bourdreux Y, Doisneau G, Roger P. Cu(0)-mediated RDRP as new alternative for controlled synthesis of poly(pentafluorophenyl methacrylate). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Diehl F, Hageneder S, Fossati S, Auer SK, Dostalek J, Jonas U. Plasmonic nanomaterials with responsive polymer hydrogels for sensing and actuation. Chem Soc Rev 2022; 51:3926-3963. [PMID: 35471654 PMCID: PMC9126188 DOI: 10.1039/d1cs01083b] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/25/2022]
Abstract
Plasmonic nanomaterials have become an integral part of numerous technologies, where they provide important functionalities spanning from extraction and harvesting of light in thin film optical devices to probing of molecular species and their interactions on biochip surfaces. More recently, we witness increasing research efforts devoted to a new class of plasmonic nanomaterials that allow for on-demand tuning of their properties by combining metallic nanostructures and responsive hydrogels. This review addresses this recently emerged vibrant field, which holds potential to expand the spectrum of possible applications and deliver functions that cannot be achieved by separate research in each of the respective fields. It aims at providing an overview of key principles, design rules, and current implementations of both responsive hydrogels and metallic nanostructures. We discuss important aspects that capitalize on the combination of responsive polymer networks with plasmonic nanostructures to perform rapid mechanical actuation and actively controlled nanoscale confinement of light associated with resonant amplification of its intensity. The latest advances towards the implementation of such responsive plasmonic nanomaterials are presented, particularly covering the field of plasmonic biosensing that utilizes refractometric measurements as well as plasmon-enhanced optical spectroscopy readout, optically driven miniature soft actuators, and light-fueled micromachines operating in an environment resembling biological systems.
Collapse
Affiliation(s)
- Fiona Diehl
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf Reichwein-Straße 2, 57074 Siegen, Germany.
| | - Simone Hageneder
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Stefan Fossati
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Simone K Auer
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
- CEST Competence Center for Electrochemical Surface Technologies, 3430 Tulln an der Donau, Austria
| | - Jakub Dostalek
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
- FZU-Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 21, Czech Republic
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf Reichwein-Straße 2, 57074 Siegen, Germany.
| |
Collapse
|
15
|
Liu Y, Zhao C, Chen C. Chirality-Governed UCST Behavior in Polypeptides. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yali Liu
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chuanzhuang Zhao
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chongyi Chen
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
16
|
Santa Chalarca CF, Dalal RJ, Chapa A, Hanson MG, Reineke TM. Cation Bulk and p Ka Modulate Diblock Polymer Micelle Binding to pDNA. ACS Macro Lett 2022; 11:588-594. [PMID: 35575319 DOI: 10.1021/acsmacrolett.2c00015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polymer-based gene delivery relies on the binding, protection, and final release of nucleic acid cargo using polycations. Engineering polymeric vectors, by exploring novel topologies and cationic moieties, is a promising avenue to improve their performance, which hinges on the development of simple synthetic methods that allow facile preparation. In this work, we focus on cationic micelles formed from block polymers, which are examined as promising gene compaction agents and carriers. In this study, we report the synthesis and assembly of six amphiphilic poly(n-butyl acrylate)-b-poly(cationic acrylamide) diblock polymers with different types of cationic groups ((dialkyl)amine, morpholine, or imidazole) in their hydrophilic corona. The polycations were obtained through the parallel postpolymerization modification of a poly(n-butyl acrylate)-b-poly(pentafluorophenyl acrylate) reactive scaffold, which granted diblock polymers with equivalent degrees of polymerization and subsequent quantitative functionalization with cations of different pKa. Ultrasound-assisted direct dissolution of the polycations in different aqueous buffers (pH = 1-7) afforded micellar structures with low size dispersities and hydrodynamic radii below 100 nm. The formation and properties of micelle-DNA complexes ("micelleplexes") were explored via DLS, zeta potential, and dye-exclusion assays revealing that binding is influenced by the cation type present in the micelle corona where bulkiness and pKa are the drivers of micelleplex formation. Combining parallel synthesis strategies with simple direct dissolution formulation opens opportunities to optimize and expand the range of micelle delivery vehicles available by facile tuning of the composition of the cationic micelle corona.
Collapse
Affiliation(s)
| | - Rishad J. Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alejandra Chapa
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Mckenna G. Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Precise Synthesis and Thermoresponsive Property of Poly(ethyl glycidyl ether) and Its Block and Statistic Copolymers with Poly(glycidol). Polymers (Basel) 2021; 13:polym13223873. [PMID: 34833172 PMCID: PMC8623496 DOI: 10.3390/polym13223873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, we describe a comprehensive study of the thermoresponsive properties of statistic copolymers and multiblock copolymers synthesized by poly(glycidol)s (PG) and poly(ethyl glycidyl ether) (PEGE) with different copolymerization methods. These copolymers were first synthesized by ring-opening polymerization (ROP), which was initiated by tert-butylbenzyl alcohol (tBBA) and 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)phosphoranylidenamino]-2Λ5,4Λ5-catenadi(phosphazene) (t-Bu-P4) as the catalyst, and then the inherent protective groups were removed to obtain the copolymers without any specific chain end groups. The thermoresponsive property of the statistic copolymer PGx-stat-PEGEy was compared with the diblock copolymer PGx-b-PEGEy, and the triblock copolymers were compared with the pentablock copolymers. Among them, PG-stat-PEGE, PG-b-PEGE-b-PG-b-PEGE-b-PG, and PEGE-b-PG-b-PEGE-b-PG-b-PEGE, and even the specific ratio of PEGE-b-PG-b-PEGE, exhibited LCST-type phase transitions in water, which were characterized by cloud point (Tcp). Although the ratio of x to y affected the value of the Tcp of PGx-stat-PEGEy, we found that the disorder of the copolymer has a decisive effect on the phase-transition behavior. The phase-transition behaviors of PG-b-PEGE, part of PEGE-b-PG-b-PEGE, and PG-b-PEGE-b-PG copolymers in water present a two-stage phase transition, that is, firstly LCST-type and then the upper critical solution temperature (UCST)-like phase transition. In addition, we have extended the research on the thermoresponsive properties of EGE homopolymers without specific α-chain ends.
Collapse
|
18
|
Audureau N, Veith C, Coumes F, Nguyen TPT, Rieger J, Stoffelbach F. RAFT-Polymerized N-Cyanomethylacrylamide-Based (Co)polymers Exhibiting Tunable UCST Behavior in Water. Macromol Rapid Commun 2021; 42:e2100556. [PMID: 34658099 DOI: 10.1002/marc.202100556] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/02/2021] [Indexed: 11/09/2022]
Abstract
In this present work, the synthesis of a new family of upper critical solution temperature (UCST)-thermoresponsive polymers based on N-cyanomethylacrylamide (CMAm) is reported. It is demonstrated that the thermally initiated reversible addition fragmentation chain transfer (RAFT) polymerization of CMAm conducted in N,N-dimethylformamide (DMF) is well controlled. The homopolymer presents a sharp and reversible UCST-type phase transition in pure water with a very small hysteresis between cooling and heating cycles. It is demonstrated that the cloud point (TCP ) of poly(N-cyanomethylacrylamide) (PCMAm) is strongly molar mass dependent and shifts toward lower temperatures in saline water. Moreover, the transition temperature can be tuned over a large temperature range by copolymerization of CMAm with acrylamide or acrylic acid. The latter copolymers are both thermoresponsive and pH responsive. Interestingly, by this strategy sharp and reversible UCST-type transitions close to physiological temperature can be reached, which makes the copolymers extremely interesting candidates for biomedical applications.
Collapse
Affiliation(s)
- Nicolas Audureau
- Sorbonne Université, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, Paris Cedex 05, 75252, France
| | - Clémence Veith
- Sorbonne Université, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, Paris Cedex 05, 75252, France
| | - Fanny Coumes
- Sorbonne Université, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, Paris Cedex 05, 75252, France
| | - Thi Phuong Thu Nguyen
- Sorbonne Université, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, Paris Cedex 05, 75252, France
| | - Jutta Rieger
- Sorbonne Université, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, Paris Cedex 05, 75252, France
| | - François Stoffelbach
- Sorbonne Université, CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, 4 Place Jussieu, Paris Cedex 05, 75252, France
| |
Collapse
|
19
|
Pang B, Yu Y, Zhang W. Thermoresponsive Polymers Based on Tertiary Amine Moieties. Macromol Rapid Commun 2021; 42:e2100504. [PMID: 34523742 DOI: 10.1002/marc.202100504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Thermoresponsive polymers exhibiting unique reversible phase transition properties in aqueous solution in response to temperature stimuli have been extensively investigated. In the past two decades, thermoresponsive polymers based on tertiary amine moieties have achieved considerable progress and become an important family of thermoresponsive polymers, including tertiary amine functionalized poly((meth)acrylamide)s, poly((meth)acrylate)s, poly(styrene)s, poly(vinyl alcohol)s, and poly(ethylene oxide)s, which exhibit lower critical solution temperature and/or upper critical solution temperature in water or aliphatic alcohols. Their phase transition behavior can be modulated by the solution pH and CO2 due to the protonation of tertiary amine moieties in acidic condition and deprotonation in alkaline condition and the charged ammonium bicarbonate formed by the tertiary amine moieties and CO2 . The aim of this review is to summarize the recent progress in the thermoresponsive polymers based on tertiary amine moieties.
Collapse
Affiliation(s)
- Bo Pang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuewen Yu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
20
|
Fang R, Pi J, Wei T, Ali A, Guo L. Stimulus-Responsive Polymers Based on Polypeptoid Skeletons. Polymers (Basel) 2021; 13:2089. [PMID: 34202869 PMCID: PMC8271857 DOI: 10.3390/polym13132089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Polypeptoids have attracted a lot of atteSDntion because of their unique structural characteristics and special properties. Polypeptoids have the same main chain structures to polypeptides, making them have low cytotoxicity and excellent biocompatibility. Polypeptoids can also respond to external environmental changes by modifying the configurations of the side chains. The external stimuli can be heat, pH, ions, ultraviolet/visible light and active oxygen or their combinations. This review paper discussed the recent research progress in the field of stimulus-responsive polypeptoids, including the design of new stimulus-responsive polypeptoid structures, controlled actuation factors in response to external stimuli and the application of responsive polypeptoid biomaterials in various biomedical and biological nanotechnology, such as drug delivery, tissue engineering and biosensing.
Collapse
Affiliation(s)
| | | | | | - Amjad Ali
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China; (R.F.); (J.P.); (T.W.)
| | - Li Guo
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China; (R.F.); (J.P.); (T.W.)
| |
Collapse
|
21
|
One-pot synthesis of double and triple polybetaine block copolymers and their temperature-responsive solution behavior. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04846-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Işık D, Joshi AA, Guo X, Rancan F, Klossek A, Vogt A, Rühl E, Hedtrich S, Klinger D. Sulfoxide-functionalized nanogels inspired by the skin penetration properties of DMSO. Biomater Sci 2021; 9:712-725. [PMID: 33285562 DOI: 10.1039/d0bm01717e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Among polymeric nanocarriers, nanogels are especially promising non-irritating delivery vehicles to increase dermal bioavailability of therapeutics. However, accurately tailoring defined interactions with the amphiphilic skin barrier is still challenging. To address this limited specificity, we herein present a new strategy to combine biocompatible nanogels with the outstanding skin interaction properties of sulfoxide moieties. These chemical motifs are known from dimethyl sulfoxide (DMSO), a potent chemical penetration enhancer, which can often cause undesired skin damage upon long-term usage. By covalently functionalizing the nanogels' polymer network with such methyl sulfoxide side groups, tailor-made dermal delivery vehicles are developed to circumvent the skin disrupting properties of the small molecules. Key to an effective nanogel-skin interaction is assumed to be the specific nanogel amphiphilicity. This is examined by comparing the delivery efficiency of sulfoxide-based nanogels (NG-SOMe) with their corresponding thioether (NG-SMe) and sulfone-functionalized (NG-SO2Me) analogues. We demonstrate that the amphiphilic sulfoxide-based NG-SOMe nanogels are superior in their interaction with the likewise amphipathic stratum corneum (SC) showing an increased topical delivery efficacy of Nile red (NR) to the viable epidermis (VE) of excised human skin. In addition, toxicological studies on keratinocytes and fibroblasts show good biocompatibility while no perturbation of the complex protein and lipid distribution is observed via stimulated Raman microscopy. Thus, our NG-SOMe nanogels show high potential to effectively emulate the skin penetration enhancing properties of DMSO without its negative side effects.
Collapse
Affiliation(s)
- Doğuş Işık
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany.
| | - Aaroh Anand Joshi
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany.
| | - Xiao Guo
- Clinical Research Center of Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Fiorenza Rancan
- Clinical Research Center of Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - André Klossek
- Physical Chemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Annika Vogt
- Clinical Research Center of Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Eckart Rühl
- Physical Chemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Sarah Hedtrich
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany. and The University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, V6T1Z3, BC, Canada
| | - Daniel Klinger
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany.
| |
Collapse
|
23
|
Kollár J, Popelka A, Tkac J, Žabka M, Mosnáček J, Kasak P. Sulfobetaine-based polydisulfides with tunable upper critical solution temperature (UCST) in water alcohols mixture, depolymerization kinetics and surface wettability. J Colloid Interface Sci 2021; 588:196-208. [PMID: 33387822 DOI: 10.1016/j.jcis.2020.12.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
HYPOTHESIS Synthesis of a new family of polymers having a polydisulfide structure can be conducted from sulfobetaine-based derivative of natural (R)-lipoic acid. A polydisulfide backbone of polymer can be depolymerized by response to external stimuli and sulfobetaine pendant groups ensure the upper critical solution temperature (UCST) behaviour temperatures that can be modulated according to the nature of the solvent and concentration. EXPERIMENTS Sulfobetaine-bearing polydisulfides were synthesized from dithiolane derivatives and then characterized. UCST behavior of the polymers in water and in mixtures containing different alcohols (methanol, ethanol, isopropanol) was investigated. The regeneration of monomers from the polymers in response to external stimuli was examined using UV-vis and circular dichroism (CD) spectroscopy. Tunable surface wettability were shown on the grafted polymers. FINDINGS Decreasing polarity and/or increasing alcohol percentage in the water mixtures induced an increase in the cloud points of the polymers in the solutions. Thermoresponsive behaviour were repeatable and fully reversible with negligible hysteresis from aggregate to unimer state. The regeneration of monomers by depolymerization was tunable by temperature and sunlight. A thickness dependence on surface wettability was observed on wafers covalently modified with polydisulfides. This is the first report of sulfobetaine-based polydisulfides showing tunable UCST behavior and surface wettability.
Collapse
Affiliation(s)
- Jozef Kollár
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar; Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovak Republic
| | - Anton Popelka
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Matej Žabka
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Jaroslav Mosnáček
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovak Republic; Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava, Slovak Republic
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
24
|
Du Y, Zeng Q, Yuan L, He L. Post-polymerization modification based on reactive fluorinated polymers reaction. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1903328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yiying Du
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiugui Zeng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Yuan
- Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Materials Science and Engineering, Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, China
| | - Lirong He
- Polymer Research Insititute, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Huang X, Mutlu H, Lin S, Theato P. Oxygen-switchable thermo-responsive polymers with unprecedented UCST in water. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Liu D, Sun J. Thermoresponsive Polypeptoids. Polymers (Basel) 2020; 12:E2973. [PMID: 33322804 PMCID: PMC7763442 DOI: 10.3390/polym12122973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 01/02/2023] Open
Abstract
Stimuli-responsive polymers have been widely studied in many applications such as biomedicine, nanotechnology, and catalysis. Temperature is one of the most commonly used external triggers, which can be highly controlled with excellent reversibility. Thermoresponsive polymers exhibiting a reversible phase transition in a controlled manner to temperature are a promising class of smart polymers that have been widely studied. The phase transition behavior can be tuned by polymer architectures, chain-end, and various functional groups. Particularly, thermoresponsive polypeptoid is a type of promising material that has drawn growing interest because of its excellent biocompatibility, biodegradability, and bioactivity. This paper summarizes the recent advances of thermoresponsive polypeptoids, including the synthetic methods and functional groups as well as their applications.
Collapse
Affiliation(s)
| | - Jing Sun
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| |
Collapse
|
27
|
Kim D, Sakamoto H, Matsuoka H, Saruwatari Y. Complex Formation of Sulfobetaine Surfactant and Ionic Polymers and Their Stimuli Responsivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12990-13000. [PMID: 33095985 DOI: 10.1021/acs.langmuir.0c02323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigated the kinds of complexes sulfobetaine surfactant and ionic polymer formed using lauramidopropyl hydroxysultane (LAPHS) as a sulfobetaine surfactant, poly(sodium styrenesulfonate) (PSSNa) as the anionic polymer and poly[3-(methacrylamido)propyl trimethylammonium chloride] (PMAPTAC) as the cationic polymer. The fundamental properties of LAPHS at various salt concentrations were estimated by various measurements, and it was confirmed that the LAPHS micelles alone did not show temperature responsiveness. The presence of large aggregates in addition to LAPHS micelles was confirmed in the aggregates prepared by adding PSSNa to LAPHS at a charge ratio of 1:0.5, 1:1, and 1:2. However, the aggregates could not be formed when the salt concentration was high or when a monomer was added instead of the polymer. This revealed that the cation part of sulfobetaine, which is the shell of LAPHS micelles, and the anion part of PSSNa electrostatically interacted with each other to form a large aggregate. On the other hand, unlike the case of LAPHS micelles alone and the aggregate consisting of LAPHS micelles and PSSNa, the aggregate of LAPHS micelles and PMAPTAC showed an unprecedented phenomenon of "clear → opaque → clear" with increasing concentration in the concentration range above CMC. The change in the transition temperature due to the change of concentration was a factor. Additionally, we confirmed that the transition temperature was lowered when the concentration was higher than CMC or the salt concentration was increased, and the transition temperature was increased when the PMAPTAC with a high degree of polymerization was added. These results suggested that the LAPHS micelles and the ionic polymer form an aggregate, and the temperature responsivity can be expressed by the interaction with the cationic polymer.
Collapse
Affiliation(s)
- Dongwook Kim
- Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Hitomi Sakamoto
- Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Hideki Matsuoka
- Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiyuki Saruwatari
- Osaka Organic Chemical Industries Ltd., 7-20 Azuchi-Machi, 1-Chome, Chuo-ku, Osaka 541-0052, Japan
| |
Collapse
|
28
|
Fu X, Xing C, Sun J. Tunable LCST/UCST-Type Polypeptoids and Their Structure-Property Relationship. Biomacromolecules 2020; 21:4980-4988. [PMID: 33307699 DOI: 10.1021/acs.biomac.0c01177] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioinspired thermoresponsive polymeric materials with tunable phase-transition behaviors are highly desirable for biomedical applications. Here, we reported a facile approach for the synthesis of both lower critical solution temperature (LCST) and upper critical solution temperature (UCST) types of thermoresponsive polypeptoids with tunable phase-transition temperature in the range of 29--55 °C. The introduction of alkyl groups and ethylene glycol (EG) units results in a controlled phase-transition behavior under fairly mild conditions. A very sharp transition (ΔT ≤ 1.5 °C) is observed by simply adjusting pH and the alkyl chain length. In particular, the carboxyl-containing polypeptoids display designable UCST behavior, which can be finely tuned in both water and methanol. All these features make the obtained polymers beneficial for practical applications. More interestingly, we demonstrate that the hydrophilic EG group behaves as an excellent regulator to tune the UCST behavior, while the hydrophobic alkyl residues show remarkable capability to regulate the LCST behavior of the system. We hope that such systematic structure-property studies will enable the design of smart polymer materials to meet the specific needs of future applications.
Collapse
Affiliation(s)
- Xiaohui Fu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Xing
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
29
|
Cai S, Gu S, Li X, Wan S, Chen S, He X. Controlled grafting modification of starch and UCST-type thermosensitive behavior in water. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04670-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Liu M, Miao D, Wang X, Wang C, Deng W. Precise synthesis of heterogeneous glycopolymers with well‐defined saccharide motifs in the side chain via post‐polymerization modification and recognition with lectin. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Meina Liu
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
- Key laboratory of Synthetic and Self‐Assembly Chemistry for Organic Function Molecules, Shanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai China
- State Key laboratory of Molecular Engineering of PolymersFudan University Shanghai China
| | - Dengyun Miao
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
| | - Xingyou Wang
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
| | - Caiyun Wang
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
| | - Wei Deng
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
| |
Collapse
|
31
|
Luminescent Copolymer‐Rhenium(I) Hybrid Materials via Picolylamine‐Modified Poly(pentafluorophenyl acrylate). MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Tetrazole functional copolymers: Facile access to well-defined Rhenium(I)-Polymeric luminescent materials. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Li Z, Hao B, Tang Y, Li H, Lee TC, Feng A, Zhang L, Thang SH. Effect of end-groups on sulfobetaine homopolymers with the tunable upper critical solution temperature (UCST). Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109704] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Yuan L, He L, Wang Y, Lang X, Yang F, Zhao Y, Zhao H. Two- and Three-Component Post-Polymerization Modifications Based on Meldrum’s Acid. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00482] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ling Yuan
- Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Materials Science and Engineering, Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu 610031, China
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lirong He
- Institut für Technische und Makromolekulare Chemie, Universität Hamburg, Bundesstraße 45, Hamburg 20146, Germany
| | - Yixi Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xianhua Lang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Yang
- Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Materials Science and Engineering, Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Zhao
- Key Laboratory of Advanced Technology of Materials (Ministry of Education of China), School of Materials Science and Engineering, Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
35
|
Zhu S, Wen L, Xiao Y, Lang M. Poly( ε-caprolactone) with pH and UCST responsiveness as a 5-fluorouracil carrier. Polym Chem 2020. [DOI: 10.1039/d0py00865f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive polymers with excellent biocompatibility and biodegradability are highly demanded as carriers for controlled drug delivery.
Collapse
Affiliation(s)
- Shuang Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| | - Lianlei Wen
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| | - Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| |
Collapse
|
36
|
Zhou C, Chen Y, Huang M, Ling Y, Yang L, Zhao G, Chen J. A pH and UCST thermo-responsive tri-block copolymer (PAA- b-PDMA- b-P(AM- co-AN)) with micellization and gelatinization in aqueous media for drug release. NEW J CHEM 2020. [DOI: 10.1039/d0nj02755c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A brand new pH and thermo-responsive amphiphilic ABC triblock copolymer of poly(acrylic acid)-block-poly(N,N-dimethyl acrylamide)-block-poly(acrylamide-co-acrylonitrile) (PAA-b-PDMA-b-P(AM-co-AN)) was applied as drug carrier systems.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Chemical Engineering and Technology
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Yan Chen
- Department of Chemical Engineering and Technology
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Mingjun Huang
- Department of Chemical Engineering and Technology
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Yi Ling
- Department of Chemical Engineering and Technology
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Liming Yang
- Department of Chemical Engineering and Technology
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Guochen Zhao
- Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials
- Advanced Materials Institute
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250014
- China
| | - Jie Chen
- Department of Chemical Engineering and Technology
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| |
Collapse
|
37
|
Audureau N, Coumes F, Guigner JM, Nguyen TPT, Ménager C, Stoffelbach F, Rieger J. Thermoresponsive properties of poly(acrylamide- co-acrylonitrile)-based diblock copolymers synthesized (by PISA) in water. Polym Chem 2020. [DOI: 10.1039/d0py00895h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UCST-type poly(acrylamide-co-acrylonitrile) diblock copolymers synthesized in water (by PISA) can not only undergo reversible temperature-induced chain dissociation, but also temperature-induced morphological transition.
Collapse
Affiliation(s)
- Nicolas Audureau
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| | - Fanny Coumes
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| | - Jean-Michel Guigner
- Sorbonne Université
- CNRS
- UMR 7590 Institut de Minéralogie
- de Physique des Matériaux et de Cosmochimie (IMPMC)-IRD-MNHN
- F-75005 Paris
| | - Thi Phuong Thu Nguyen
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| | - Christine Ménager
- Sorbonne Université
- CNRS
- UMR 8234
- PHENIX Laboratory
- 75252 Paris cedex 05
| | - François Stoffelbach
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| | - Jutta Rieger
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| |
Collapse
|
38
|
Hess A, Schmidt BVKJ, Schlaad H. Aminolysis induced functionalization of (RAFT) polymer-dithioester with thiols and disulfides. Polym Chem 2020. [DOI: 10.1039/d0py01365j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Efficient exchange of the polymer-dithioester end group by aminolysis/functionalization with thiol or disulfide under ambient atmospheric conditions.
Collapse
Affiliation(s)
- Andreas Hess
- University of Potsdam
- Institute of Chemistry
- 14476 Potsdam
- Germany
| | | | - Helmut Schlaad
- University of Potsdam
- Institute of Chemistry
- 14476 Potsdam
- Germany
| |
Collapse
|
39
|
Zhang JL, Tan JY, Wan XH, Zhang J. A Luminescent Thermometer Based on Linearly Thermo-responsive Copolymer and Polyoxometalates. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2287-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Dsouza RF, Parthiban A. Polymaleimide-Based Polysulfobetaines Bearing Functional and Nonfunctional Hydrophobic Units and Its Aggregation Behavior in Aqueous Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13942-13949. [PMID: 31568729 DOI: 10.1021/acs.langmuir.9b02290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Copolymaleimide-based zwitterionic polysulfobetaines (PM-SBs) were prepared by a "top down" method for the first time. Interfacial studies of these polymers showed many interesting characteristics. These PM-SBs did not require any salt in the form of sodium chloride (NaCl) to dissolve in water and exhibited exceptional salt tolerance. PM-SBs showed very mild thermogelling behavior. The viscosity of 5 wt % aqueous solution of polymers increased with increasing concentration of salt without showing any limits within the salt concentrations studied [200g/L of NaCl (3.4 M)] in contrast to other reported zwitterionic polysulfobetaines. Dynamic light scattering (DLS) studies also indicated a structure-dependent particle size with varying concentrations of NaCl solution. The uniformity of particles of 5 wt % aqueous solution of PM-SBs increased with increasing concentration of NaCl. At 0.1 wt % concentration, even in the absence of NaCl, mild aggregation was noticed. The concentration of aggregated particles increased with the increasing concentration of NaCl. Because of the exceptionally high salt tolerance, these polymers are potentially suitable for applications in antifouling, oil field, personal care formulations, and water purification.
Collapse
Affiliation(s)
- Roshan F Dsouza
- Institute of Chemical and Engineering Sciences , Agency for Science, Technology and Research (A*STAR) , 1 Pesek Road, Jurong Island , Singapore 627833 , Singapore
| | - Anbanandam Parthiban
- Institute of Chemical and Engineering Sciences , Agency for Science, Technology and Research (A*STAR) , 1 Pesek Road, Jurong Island , Singapore 627833 , Singapore
| |
Collapse
|
41
|
Jiang D, Chen C, Xue Y, Cao H, Wang C, Yang G, Gao Y, Wang P, Zhang W. NIR-Triggered "OFF/ON" Photodynamic Therapy through a Upper Critical Solution Temperature Block Copolymer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37121-37129. [PMID: 31525015 DOI: 10.1021/acsami.9b12889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Activatable photodynamic therapy (A-PDT) has attracted great attention in precision medicine, which can be activated by endogenous or exogenous stimuli to selectively produce reactive oxygen species (ROS) at the disease site. Thermal responsive polymers with a lower critical solution temperature (LCST) have normally been utilized for constructing A-PDT system. Herein, we fabricated a photothermal activatable photosensitizer (A-PS) by the combination of thermal responsive porphyrin-containing P(AAm-co-AN-co-TPP)-b-POEGMA amphiphilic block copolymer with an upper critical solution temperature (UCST) of 42 °C and a cyanine dye of IR780. The photoactivity of porphyrin units could be severely inhibited by IR780 due to the fluorescence resonance energy transfer (FRET) from TPP to IR780 during blood circulation process ("OFF" state). After an uptake by A549 cells and then irradiated with 808 nm laser, A-PS nanoparticles were subsequently dissociated owing to the increased local temperature above the UCST of the polymer chains by excellent photothermal conversion of IR780, resulting in the enhanced photoactivity of TPP ("ON" state) and the remarkable antitumor effect. Therefore, the UCST-based A-PS extended the biological application of thermal responsive polymers, which may provide a new insight into the design of smart cancer therapeutic systems.
Collapse
Affiliation(s)
- Dawei Jiang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, Biomedical Nanotechnology Center, School of Biotechnology , East China University of Science and Technology , No. 130 Meilong Road , Xuhui District, Shanghai 200237 China
| | - Yudong Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 China
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 China
| | - Chaochao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 China
| | - Guoliang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 China
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 China
| | - Ping Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, Biomedical Nanotechnology Center, School of Biotechnology , East China University of Science and Technology , No. 130 Meilong Road , Xuhui District, Shanghai 200237 China
- Bioproducts and Biosystems Engineering , University of Minnesota , 2004 Folwell Avenue , St. Paul , Minnesota 55108 United States
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 China
| |
Collapse
|
42
|
Otsuka C, Wakahara Y, Okabe K, Sakata J, Okuyama M, Hayashi A, Tokuyama H, Uchiyama S. Fluorescent Labeling Method Re-Evaluates the Intriguing Thermoresponsive Behavior of Poly(acrylamide-co-acrylonitrile)s with Upper Critical Solution Temperatures. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00880] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chie Otsuka
- Research Laboratories, KOSÉ Corporation, 48-18 Sakae-cho, Kita-ku, Tokyo 114-0005, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuko Wakahara
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Juri Sakata
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Masaki Okuyama
- Research Laboratories, KOSÉ Corporation, 48-18 Sakae-cho, Kita-ku, Tokyo 114-0005, Japan
| | - Akinobu Hayashi
- Research Laboratories, KOSÉ Corporation, 48-18 Sakae-cho, Kita-ku, Tokyo 114-0005, Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
43
|
Yokota D, Kanazawa A, Aoshima S. Alternating Degradable Copolymers of an Ionic Liquid-Type Vinyl Ether and a Conjugated Aldehyde: Precise Synthesis by Living Cationic Copolymerization and Dual Rare Thermosensitive Behavior in Solution. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Daichi Yokota
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
44
|
Schönemann E, Laschewsky A, Wischerhoff E, Koc J, Rosenhahn A. Surface Modification by Polyzwitterions of the Sulfabetaine-Type, and Their Resistance to Biofouling. Polymers (Basel) 2019; 11:E1014. [PMID: 31181764 PMCID: PMC6631746 DOI: 10.3390/polym11061014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Films of zwitterionic polymers are increasingly explored for conferring fouling resistance to materials. Yet, the structural diversity of polyzwitterions is rather limited so far, and clear structure-property relationships are missing. Therefore, we synthesized a series of new polyzwitterions combining ammonium and sulfate groups in their betaine moieties, so-called poly(sulfabetaine)s. Their chemical structures were varied systematically, the monomers carrying methacrylate, methacrylamide, or styrene moieties as polymerizable groups. High molar mass homopolymers were obtained by free radical polymerization. Although their solubilities in most solvents were very low, brine and lower fluorinated alcohols were effective solvents in most cases. A set of sulfabetaine copolymers containing about 1 mol % (based on the repeat units) of reactive benzophenone methacrylate was prepared, spin-coated onto solid substrates, and photo-cured. The resistance of these films against the nonspecific adsorption by two model proteins (bovine serum albumin-BSA, fibrinogen) was explored, and directly compared with a set of references. The various polyzwitterions reduced protein adsorption strongly compared to films of poly(nbutyl methacrylate) that were used as a negative control. The poly(sulfabetaine)s showed generally even somewhat higher anti-fouling activity than their poly(sulfobetaine) analogues, though detailed efficacies depended on the individual polymer-protein pairs. Best samples approach the excellent performance of a poly(oligo(ethylene oxide) methacrylate) reference.
Collapse
Affiliation(s)
- Eric Schönemann
- Department of Chemistry, University Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
| | - André Laschewsky
- Department of Chemistry, University Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
- Fraunhofer Institute of Applied Polymer Research IAP, 14476 Potsdam-Golm, Germany.
| | - Erik Wischerhoff
- Fraunhofer Institute of Applied Polymer Research IAP, 14476 Potsdam-Golm, Germany.
| | - Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany.
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
45
|
Zheng Z, Zhang L, Ling Y, Tang H. Triblock copolymers containing UCST polypeptide and poly(propylene glycol): Synthesis, thermoresponsive properties, and modification of PVA hydrogel. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Bhattacharya K, Banerjee SL, Das S, Samanta S, Mandal M, Singha NK. REDOX Responsive Fluorescence Active Glycopolymer Based Nanogel: A Potential Material for Targeted Anticancer Drug Delivery. ACS APPLIED BIO MATERIALS 2019; 2:2587-2599. [DOI: 10.1021/acsabm.9b00267] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Zhao C, Ma Z, Zhu X. Rational design of thermoresponsive polymers in aqueous solutions: A thermodynamics map. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.01.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Synthesis and characterization of biocompatible copolymers containing plant-based cardanol and zwitterionic groups for antifouling and bactericidal coating applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.10.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Nakahata R, Yusa SI. Solution Properties of Amphoteric Random Copolymers Bearing Pendant Sulfonate and Quaternary Ammonium Groups with Controlled Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1690-1698. [PMID: 29272916 DOI: 10.1021/acs.langmuir.7b03785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amphoteric random copolymers P(AMPS/APTAC50) x, where x = 41, 89, and 117, composed of sodium 2-acrylamido-2-methylpropanesulfonate (AMPS) and 3-acrylamidopropyltrimethylammonium chloride (APTAC) were prepared via reversible addition-fragmentation chain transfer radical polymerization. P(AMPS/APTAC50) x can dissolve in pure water to form small interpolymer aggregates. In aqueous solutions of NaCl, P(AMPS/APTAC50) x can dissolve in the unimer state. Amphoteric random copolymer P(AMPS/APTAC50)c with high molecular weight was prepared via conventional free-radical polymerization. Although P(AMPS/APTAC50)c cannot dissolve in pure water, it can dissolve in aqueous solutions of NaCl. In amphoteric random copolymers with high molecular weight, the possibility of continuous sequences of monomers with the same charge may increase, which may cause strong interactions between polymer chains. When fetal bovine serum (FBS) and polyelectrolytes were mixed in phosphate-buffered saline, the hydrodynamic radius and light-scattering intensity increased. There was no interaction between P(AMPS/APTAC50) x and FBS because corresponding increases could not be observed.
Collapse
Affiliation(s)
- Rina Nakahata
- Department of Applied Chemistry , University of Hyogo , 2167 Shosha , Himeji , Hyogo 671-2280 , Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry , University of Hyogo , 2167 Shosha , Himeji , Hyogo 671-2280 , Japan
| |
Collapse
|
50
|
Danko M, Kroneková Z, Mrlik M, Osicka J, Bin Yousaf A, Mihálová A, Tkac J, Kasak P. Sulfobetaines Meet Carboxybetaines: Modulation of Thermo- and Ion-Responsivity, Water Structure, Mechanical Properties, and Cell Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1391-1403. [PMID: 30134095 DOI: 10.1021/acs.langmuir.8b01592] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A procedure for the preparation of copolymers bearing sulfobetaine and carboxybetaine methacrylic-based monomers by free-radical polymerization is described and discussed. A combination of monomers affects the upper critical solution temperature (UCST) in water and in the presence of a simple NaCl electrolyte while retaining the zwitterionic character. In addition, hydrogel samples were prepared and showed tunable water structure and mechanical properties. The total nonfreezable water content decreases with the amount of carboxybetaine segment in the hydrogel feed and the compression moduli were in a range of 0.7-1.6 MPa. Responses to external conditions such as temperature and ion strength were investigated and a potential application such as modulated thermal detection is proposed. The presence of the carboxylate group in the carboxybetaine segment enables a small fluorescence probe and peptide bearing RDG motif to be attached to polymer and hydrogel samples, respectively. The hydrogel samples functionalized with the RGD motif exhibit controlled cell adhesion. Such synthetic strategy based on combination of different zwitterionic segments offers a simple pathway for the development of zwitterionic materials with programmable properties.
Collapse
Affiliation(s)
- Martin Danko
- Center for Advanced Materials , Qatar University , P.O. Box 2713, Doha , Qatar
- Polymer Institute , Slovak Academy of Sciences , Dúbravská cesta 9 , 84541 Bratislava , Slovak Republic
| | - Zuzana Kroneková
- Polymer Institute , Slovak Academy of Sciences , Dúbravská cesta 9 , 84541 Bratislava , Slovak Republic
| | - Miroslav Mrlik
- Centre of Polymer Systems, University Institute , Tomas Bata University in Zlin , Trida T, Bati 5678 , 76001 , Zlin , Czech Republic
| | - Josef Osicka
- Center for Advanced Materials , Qatar University , P.O. Box 2713, Doha , Qatar
| | - Ammar Bin Yousaf
- Center for Advanced Materials , Qatar University , P.O. Box 2713, Doha , Qatar
| | - Andrea Mihálová
- Polymer Institute , Slovak Academy of Sciences , Dúbravská cesta 9 , 84541 Bratislava , Slovak Republic
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry , Slovak Academy of Sciences , Dúbravská cesta 9 , 84538 Bratislava , Slovak Republic
| | - Peter Kasak
- Center for Advanced Materials , Qatar University , P.O. Box 2713, Doha , Qatar
| |
Collapse
|