1
|
Ding N, Zhou F, Li G, Shen H, Bai L, Su J. Quantum dots for bone tissue engineering. Mater Today Bio 2024; 28:101167. [PMID: 39205871 PMCID: PMC11350444 DOI: 10.1016/j.mtbio.2024.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
In confronting the global prevalence of bone-related disorders, bone tissue engineering (BTE) has developed into a critical discipline, seeking innovative materials to revolutionize treatment paradigms. Quantum dots (QDs), nanoscale semiconductor particles with tunable optical properties, are at the cutting edge of improving bone regeneration. This comprehensive review delves into the multifaceted roles that QDs play within the realm of BTE, emphasizing their potential to not only revolutionize imaging but also to osteogenesis, drug delivery, antimicrobial strategies and phototherapy. The customizable nature of QDs, attributed to their size-dependent optical and electronic properties, has been leveraged to develop precise imaging modalities, enabling the visualization of bone growth and scaffold integration at an unprecedented resolution. Their nanoscopic scale facilitates targeted drug delivery systems, ensuring the localized release of therapeutics. QDs also possess the potential to combat infections at bone defect sites, preventing and improving bacterial infections. Additionally, they can be used in phototherapy to stimulate important bone repair processes and work well with the immune system to improve the overall healing environment. In combination with current trendy artificial intelligence (AI) technology, the development of bone organoids can also be combined with QDs. While QDs demonstrate considerable promise in BTE, the transition from laboratory research to clinical application is fraught with challenges. Concerns regarding the biocompatibility, long-term stability of QDs within the biological environment, and the cost-effectiveness of their production pose significant hurdles to their clinical adoption. This review summarizes the potential of QDs in BTE and highlights the challenges that lie ahead. By overcoming these obstacles, more effective, efficient, and personalized bone regeneration strategies will emerge, offering new hope for patients suffering from debilitating bone diseases.
Collapse
Affiliation(s)
- Ning Ding
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Hao Shen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
2
|
Baig MS, Ahmad A, Pathan RR, Mishra RK. Precision Nanomedicine with Bio-Inspired Nanosystems: Recent Trends and Challenges in Mesenchymal Stem Cells Membrane-Coated Bioengineered Nanocarriers in Targeted Nanotherapeutics. J Xenobiot 2024; 14:827-872. [PMID: 39051343 PMCID: PMC11270309 DOI: 10.3390/jox14030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/09/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
In the recent past, the formulation and development of nanocarriers has been elaborated into the broader fields and opened various avenues in their preclinical and clinical applications. In particular, the cellular membrane-based nanoformulations have been formulated to surpass and surmount the limitations and restrictions associated with naïve or free forms of therapeutic compounds and circumvent various physicochemical and immunological barriers including but not limited to systemic barriers, microenvironmental roadblocks, and other cellular or subcellular hinderances-which are quite heterogeneous throughout the diseases and patient cohorts. These limitations in drug delivery have been overcome through mesenchymal cells membrane-based precision therapeutics, where these interventions have led to the significant enhancements in therapeutic efficacies. However, the formulation and development of nanocarriers still focuses on optimization of drug delivery paradigms with a one-size-fits-all resolutions. As mesenchymal stem cell membrane-based nanocarriers have been engineered in highly diversified fashions, these are being optimized for delivering the drug payloads in more and better personalized modes, entering the arena of precision as well as personalized nanomedicine. In this Review, we have included some of the advanced nanocarriers which have been designed and been utilized in both the non-personalized as well as precision applicability which can be employed for the improvements in precision nanotherapeutics. In the present report, authors have focused on various other aspects of the advancements in stem cells membrane-based nanoparticle conceptions which can surmount several roadblocks and barriers in drug delivery and nanomedicine. It has been suggested that well-informed designing of these nanocarriers will lead to appreciable improvements in the therapeutic efficacy in therapeutic payload delivery applications. These approaches will also enable the tailored and customized designs of MSC-based nanocarriers for personalized therapeutic applications, and finally amending the patient outcomes.
Collapse
Affiliation(s)
- Mirza Salman Baig
- Anjuman-I-Islam Kalsekar Technical Campus School of Pharmacy, Sector-16, Near Thana Naka, Khandagao, New Panvel, Navi Mumbai 410206, Maharashtra, India;
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Rakesh Kumar Mishra
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007, Uttarakhand, India;
| |
Collapse
|
3
|
Yadav P, Singh SK, Rajput S, Allawadhi P, Khurana A, Weiskirchen R, Navik U. Therapeutic potential of stem cells in regeneration of liver in chronic liver diseases: Current perspectives and future challenges. Pharmacol Ther 2024; 253:108563. [PMID: 38013053 DOI: 10.1016/j.pharmthera.2023.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The deposition of extracellular matrix and hyperplasia of connective tissue characterizes chronic liver disease called hepatic fibrosis. Progression of hepatic fibrosis may lead to hepatocellular carcinoma. At this stage, only liver transplantation is a viable option. However, the number of possible liver donors is less than the number of patients needing transplantation. Consequently, alternative cell therapies based on non-stem cells (e.g., fibroblasts, chondrocytes, keratinocytes, and hepatocytes) therapy may be able to postpone hepatic disease, but they are often ineffective. Thus, novel stem cell-based therapeutics might be potentially important cutting-edge approaches for treating liver diseases and reducing patient' suffering. Several signaling pathways provide targets for stem cell interventions. These include pathways such as TGF-β, STAT3/BCL-2, NADPH oxidase, Raf/MEK/ERK, Notch, and Wnt/β-catenin. Moreover, mesenchymal stem cells (MSCs) stimulate interleukin (IL)-10, which inhibits T-cells and converts M1 macrophages into M2 macrophages, producing an anti-inflammatory environment. Furthermore, it inhibits the action of CD4+ and CD8+ T cells and reduces the activity of TNF-α and interferon cytokines by enhancing IL-4 synthesis. Consequently, the immunomodulatory and anti-inflammatory capabilities of MSCs make them an attractive therapeutic approach. Importantly, MSCs can inhibit the activation of hepatic stellate cells, causing their apoptosis and subsequent promotion of hepatocyte proliferation, thereby replacing dead hepatocytes and reducing liver fibrosis. This review discusses the multidimensional therapeutic role of stem cells as cell-based therapeutics in liver fibrosis.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sumeet Kumar Singh
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sonu Rajput
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Prince Allawadhi
- Department of Pharmacy, Vaish Institute of Pharmaceutical Education and Research (VIPER), Pandit Bhagwat Dayal Sharma University of Health Sciences (Pt. B. D. S. UHS), Rohtak, Haryana 124001, India
| | - Amit Khurana
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
4
|
Farhoudi M, Sadigh-Eteghad S, Farjami A, Salatin S. Nanoparticle and Stem Cell Combination Therapy for the Management of Stroke. Curr Pharm Des 2023; 29:15-29. [PMID: 36515043 DOI: 10.2174/1381612829666221213113119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022]
Abstract
Stroke is currently one of the primary causes of morbidity and mortality worldwide. Unfortunately, the available treatments for stroke are still extremely limited. Indeed, stem cell (SC) therapy is a new option for the treatment of stroke that could significantly expand the therapeutic time window of stroke. Some proposed mechanisms for stroke-based SC therapy are the incorporation of SCs into the host brain to replace dead or damaged cells/tissues. Moreover, acute cell delivery can inhibit apoptosis and decrease lesion size, providing immunomudolatory and neuroprotection effects. However, several major SC problems related to SCs such as homing, viability, uncontrolled differentiation, and possible immune response, have limited SC therapy. A combination of SC therapy with nanoparticles (NPs) can be a solution to address these challenges. NPs have received considerable attention in regulating and controlling the behavior of SCs because of their unique physicochemical properties. By reviewing the pathophysiology of stroke and the therapeutic benefits of SCs and NPs, we hypothesize that combined therapy will offer a promising future in the field of stroke management. In this work, we discuss recent literature in SC research combined with NP-based strategies that may have a synergistic outcome after stroke incidence.
Collapse
Affiliation(s)
- Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Ehsani A, Jodaei A, Barzegar-Jalali M, Fathi E, Farahzadi R, Adibkia K. Nanomaterials and Stem Cell Differentiation Potential: An Overview of Biological Aspects and Biomedical Efficacy. Curr Med Chem 2021; 29:1804-1823. [PMID: 34254903 DOI: 10.2174/0929867328666210712193113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
Nanoparticles (NPs) due to their medical applications are widely used. Accordingly, the use of mesenchymal stem cells is one of the most important alternatives in tissue engineering field. NPs play effective roles in stem cells proliferation and differentiation. The combination of NPs and tissue regeneration by stem cells has created new therapeutic approach towards humanity. Of note, the physicochemical properties of NPs determine their biological function. Interestingly, various mechanisms such as modulation of signaling pathways and generation of reactive oxygen species, are involved in NPs-induced cellular proliferation and differentiation. This review summarized the types of nanomaterials effective on stem cell differentiation, the physicochemical features, biomedical application of these materials and relationship between nanomaterials and environment.
Collapse
Affiliation(s)
- Ali Ehsani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asma Jodaei
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Huang H, Du X, He Z, Yan Z, Han W. Nanoparticles for Stem Cell Tracking and the Potential Treatment of Cardiovascular Diseases. Front Cell Dev Biol 2021; 9:662406. [PMID: 34277609 PMCID: PMC8283769 DOI: 10.3389/fcell.2021.662406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/12/2021] [Indexed: 01/15/2023] Open
Abstract
Stem cell-based therapies have been shown potential in regenerative medicine. In these cells, mesenchymal stem cells (MSCs) have the ability of self-renewal and being differentiated into different types of cells, such as cardiovascular cells. Moreover, MSCs have low immunogenicity and immunomodulatory properties, and can protect the myocardium, which are ideal qualities for cardiovascular repair. Transplanting mesenchymal stem cells has demonstrated improved outcomes for treating cardiovascular diseases in preclinical trials. However, there still are some challenges, such as their low rate of migration to the ischemic myocardium, low tissue retention, and low survival rate after the transplantation. To solve these problems, an ideal method should be developed to precisely and quantitatively monitor the viability of the transplanted cells in vivo for providing the guidance of clinical translation. Cell imaging is an ideal method, but requires a suitable contrast agent to label and track the cells. This article reviews the uses of nanoparticles as contrast agents for tracking MSCs and the challenges of clinical use of MSCs in the potential treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Huihua Huang
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Health Science Center, Shenzhen, China
| | - Xuejun Du
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Zhiguo He
- Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zifeng Yan
- Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Wei Han
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Luu T, Li W, O'Brien‐Simpson NM, Hong Y. Recent Applications of Aggregation Induced Emission Probes for Antimicrobial Peptide Studies. Chem Asian J 2021; 16:1027-1040. [DOI: 10.1002/asia.202100102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/12/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Tracey Luu
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Wenyi Li
- Bio21 Institute University of Melbourne Centre for Oral Health Research Melbourne Dental School Melbourne VIC 3010 Australia
| | - Neil M. O'Brien‐Simpson
- Bio21 Institute University of Melbourne Centre for Oral Health Research Melbourne Dental School Melbourne VIC 3010 Australia
| | - Yuning Hong
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| |
Collapse
|
8
|
Ren N, Feng Z, Liang N, Xie J, Wang A, Sun C, Yu X. NaGdF 4:Yb/Er nanoparticles of different sizes for tracking mesenchymal stem cells and their effects on cell differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110827. [PMID: 32279755 DOI: 10.1016/j.msec.2020.110827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/29/2020] [Accepted: 03/07/2020] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cells (MSCs) hold great promise in the field of regenerative medicine, and great effort goes into investigating the mechanisms underlying their therapeutic effects. These investigations necessitate the development of sensitive and reliable methods of tracking stem cells. As the unique physicochemical properties of β-NaGdF4:Yb/Er upconversion nanoparticles make them highly efficient fluorescent probes, they could be utilized to track stem cells through bio-imaging. However, their biocompatibility constitutes a major challenge to their use in biomedical applications. In this paper, we prepared ligand-free spherical β- NaGdF4:Yb/Er nanoparticles of two different sizes (~15 and ~30 nm in diameter) and investigated their internalization into rat bone marrow-derived MSCs (rBMSCs), as well as their effects on cell proliferation, osteogenic and adipogenic differentiation. Even though particles of both sizes were efficiently taken up by the cells, the larger particles had a stronger fluorescence intensity but their proliferation was not significantly affected; this makes them superior for cell imaging. Analysis of multiple markers revealed that the nanoparticles, especially the larger ones, promoted the process of osteogenic differentiation. In contrast, adipogenesis was slightly hindered by the larger particles, whereas the smaller ones did not affect the process. As a whole, this study suggests that ligand-free spherical β-NaGdF4:Yb/Er particles of appropriate size are compatible with stem cell proliferation and differentiation, which makes them promising agents for biomedical applications.
Collapse
Affiliation(s)
- Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China.
| | - Zhichao Feng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China; School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Na Liang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China; School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Juan Xie
- School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Aizhu Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Xin Yu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China.
| |
Collapse
|
9
|
Zhao H, Liu C, Gu Z, Dong L, Li F, Yao C, Yang D. Persistent Luminescent Nanoparticles Containing Hydrogels for Targeted, Sustained, and Autofluorescence-Free Tumor Metastasis Imaging. NANO LETTERS 2020; 20:252-260. [PMID: 31793303 DOI: 10.1021/acs.nanolett.9b03755] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Metastasis is the primary cause of cancer morbidity and mortality. To obtain an effective diagnosis and treatment, precise imaging of tumor metastasis is required. Here we prepared persistent luminescent nanoparticles (PLNPs) containing a hydrogel (PL-gel) for targeted, sustained, and autofluorescence-free tumor metastasis imaging. PLNPs offered renewable long-lasting near-infrared (NIR) emitting without in situ radiation, favoring deep tissue penetration imaging without background interference. PLNPs were conjugated with 4-carboxyphenyl boronic acid (CPBA) to yield PLNPs-CPBA, which specifically recognized metastatic breast cancer cells (MBA-MD-231 cells) and enabled receptor-mediated endocytosis for specific cancer cell labeling. The PLNPs-CPBA-labeled cancer cells enabled sensitive imaging performance and high viability without influencing the migration and invasiveness of cancer cells for long-term tracking. PLNPs-CPBA were further encapsulated inside alginate to generate PL-gel for sustained PLNPs-CPBA release and tumor cell labeling, and the PL-gel showed enhanced renewable persistent luminescence compared to the PLNPs-CPBA suspension. The metastasis in the mouse breast cancer model was continuously tracked by persistent luminescence imaging, showing that PL-gel achieved noninvasive and highly selective imaging of tumor metastasis without background interference. Our PL-gel could be rationally designed to specifically target other types of cancer cells and thus provide a powerful and generic platform for the study of tumor metastasis.
Collapse
Affiliation(s)
- Huaixin Zhao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Chunxia Liu
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Luxi Dong
- State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin 300350 , P. R. China
| | - Feng Li
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Chi Yao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| |
Collapse
|
10
|
Abstract
Regenerative medicine with the use of stem cells has appeared as a potential therapeutic alternative for many disease states. Despite initial enthusiasm, there has been relatively slow transition to clinical trials. In large part, numerous questions remain regarding the viability, biology and efficacy of transplanted stem cells in the living subject. The critical issues highlighted the importance of developing tools to assess these questions. Advances in molecular biology and imaging have allowed the successful non-invasive monitoring of transplanted stem cells in the living subject. Over the years these methodologies have been updated to assess not only the viability but also the biology of transplanted stem cells. In this review, different imaging strategies to study the viability and biology of transplanted stem cells are presented. Use of these strategies will be critical as the different regenerative therapies are being tested for clinical use.
Collapse
Affiliation(s)
- Fakhar Abbas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph C. Wu
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
- Department of Medicine (Cardiology), Stanford University, Stanford, CA, USA
| | - Sanjiv Sam Gambhir
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
- Department of Bio-Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
11
|
Gholizadeh-Ghaleh Aziz S, Pashaiasl M, Khodadadi K, Ocheje O. Application of nanomaterials in three-dimensional stem cell culture. J Cell Biochem 2019; 120:18550-18558. [PMID: 31364198 DOI: 10.1002/jcb.29133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/02/2019] [Accepted: 03/15/2019] [Indexed: 11/10/2022]
Abstract
Petri dish cultured cells have for long provided scientists an aperture to understanding cell's behavior both in normal and disease states as well as in vitro and in vivo. But recent advances have brought to light how the architecture and composite nature of the immediate environment within which the cell is proliferated can profoundly influence its phenotypic features and functions, thus making obvious, limitations of the conventional two-dimensional cell culture despite it cost effectiveness. Fortunately, the transition to three-dimensional (3D) cell culture has occurred concurrently with expanded knowledge of nanoscience and materials, thereby lending significant impetus for innovative research. This review is focused on the application of nanoparticles in 3D stem cell breeding, recent trends and developments in medical sciences for improved drug delivery, and treatment approaches to some human diseases. We also reviewed prevailing challenges and concerns of nanotoxicity as it continues to impede and delay clinical applications as well the ongoing concerted and multidisciplinary efforts to overcome them.
Collapse
Affiliation(s)
| | - Maryam Pashaiasl
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran.,Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khodadad Khodadadi
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran.,Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Onuche Ocheje
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Huang L, Li Z, Zhang C, Kong L, Wang B, Huang S, Sharma V, Ma H, Yuan Q, Liu Y, Shen G, Wu K, Li L. Sacrificial oxidation of a self-metal source for the rapid growth of metal oxides on quantum dots towards improving photostability. Chem Sci 2019; 10:6683-6688. [PMID: 31367322 PMCID: PMC6625490 DOI: 10.1039/c9sc01233h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/28/2019] [Indexed: 11/21/2022] Open
Abstract
Growth of metal oxide layers on quantum dots (QDs) has been regarded as a good way to improve the photostability of QDs. However, direct growth of metal oxides on individual QD remains a great challenge. Here we report a novel approach to rapidly anchor metal oxides on QD surfaces through a sacrificial oxidation of a self-metal source strategy. As typical core/shell QDs, CdSe/CdS or aluminum doped CdSe/CdS (CdSe/CdS:Al) QDs were chosen and treated with peroxide (benzoyl peroxide). Self-metal sources (cadmium or/and aluminum) can be easily sacrificially oxidized, leading to the quick growth of cadmium oxide (CdO) or aluminum/cadmium hybrid oxides (Al2O3/CdO) on the surface of individual QD for improved photostability. Compared with CdO, Al2O3 possesses excellent barrier properties against moisture and oxygen. Therefore, CdSe/CdS QDs with the protection of an Al2O3/CdO hybrid layer show much superior photostability. Under strong illumination with blue light, the QDs coated with the Al2O3/CdO hybrid layer retained 100% of the original photoluminescence intensity after 70 h, while that of the untreated CdSe/CdS:Al, the treated CdSe/CdS and the CdSe/CdS QDs dropped to 65%, 45%, and 5%, respectively. Furthermore, we demonstrate that this method can be extended to other metal-doped QD systems, even including some inactive metals difficult to be oxidized spontaneously in an ambient atmosphere, which provides a new way to stabilize QDs for diverse optoelectronic applications.
Collapse
Affiliation(s)
- Lu Huang
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China .
- School of Agriculture and Biology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Zhichun Li
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China .
| | - Congyang Zhang
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China .
| | - Long Kong
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China .
| | - Bo Wang
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China .
| | - Shouqiang Huang
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China .
| | - Vaishali Sharma
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China .
| | - Houyu Ma
- School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Qingchen Yuan
- School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Yue Liu
- School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Guoqing Shen
- School of Agriculture and Biology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Kaifeng Wu
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116021 , China
| | - Liang Li
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China .
| |
Collapse
|
13
|
Liu X, Yang Z, Sun J, Ma T, Hua F, Shen Z. A brief review of cytotoxicity of nanoparticles on mesenchymal stem cells in regenerative medicine. Int J Nanomedicine 2019; 14:3875-3892. [PMID: 31213807 PMCID: PMC6539172 DOI: 10.2147/ijn.s205574] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/21/2019] [Indexed: 12/30/2022] Open
Abstract
Multipotent mesenchymal stem cells have shown great promise for application in regenerative medicine owing to their particular therapeutic effects, such as significant self-renewability, low immunogenicity, and ability to differentiate into a variety of specialized cells. However, there remain certain complicated and unavoidable problems that limit their further development and application. One of the challenges is to noninvasively monitor the delivery and biodistribution of transplanted stem cells during treatment without relying on behavioral endpoints or tissue histology, and it is important to explore the potential mechanisms to clarify how stem cells work in vivo. To solve these problems, various nanoparticles (NPs) and their corresponding imaging methods have been developed recently and have made great progress. In this review, we mainly discuss NPs used to label stem cells and their toxic effects on the latter, the imaging techniques to detect such NPs, and the current existing challenges in this field.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Ziying Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Jiacheng Sun
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Teng Ma
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Fei Hua
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
14
|
Soares IMV, Fernandes GVDO, Larissa Cordeiro C, Leite YKPDC, Bezerra DDO, Carvalho MAMD, Carvalho CMRS. The influence of Aloe vera with mesenchymal stem cells from dental pulp on bone regeneration: characterization and treatment of non-critical defects of the tibia in rats. J Appl Oral Sci 2019; 27:e20180103. [PMID: 30994771 PMCID: PMC6459225 DOI: 10.1590/1678-7757-2018-0103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate the inflammatory effect and bone formation in sterile surgical failures after implantation of a collagen sponge with mesenchymal stem cells from human dental pulp (hDPSCs) and Aloe vera. MATERIAL AND METHODS Rattus norvegicus (n=75) were divided into five experimental groups according to treatment: G1) control (blood clot); G2) Hemospon®; G3) Hemospon® in a culture medium enriched with 8% Aloe vera; G4) Hemospon® in a culture medium containing hDPSCs and G5) Hemospon® in a culture medium enriched with 8% Aloe vera and hDPSCs. On days 7, 15 and 30, the animals were euthanized, and the tibia was dissected for histological, immunohistochemistry and immunofluorescence analyses. The results were analyzed using nonparametric Kruskal-Wallis test and Dunn's post-test. RESULTS On days 7 and 15, the groups with Aloe vera had less average acute inflammatory infiltrate compared to the control group and the group with Hemospon® (p<0.05). No statistically significant difference was found between the groups regarding bone formation at the three experimental points in time. Osteopontin expression corroborated the intensity of bone formation. Fluorescence microscopy revealed positive labeling with Q-Tracker® in hDPSCs before transplantation and tissue repair. CONCLUSION The results suggest that the combination of Hemospon®, Aloe vera and hDPSCs is a form of clinical treatment for the repair of non-critical bone defects that reduces the inflammatory cascade's effects.
Collapse
|
15
|
Yadav AN, Singh AK, Srivastava S, Kumar M, Gupta BK, Singh K. Ultrafast charge carrier dynamics in CdSe/V 2O 5 core/shell quantum dots. Phys Chem Chem Phys 2019; 21:6265-6273. [PMID: 30834922 DOI: 10.1039/c9cp00031c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ultrafast transient absorption (TA) spectroscopy has been carried out to study the charge carrier dynamics of CdSe core and CdSe/V2O5 core/shell quantum dots (QDs). A significant redshift accompanied by broadening in the first excitonic peak was observed in the UV-Vis absorption spectra of the core/shell QDs as the shell thickness increases. This interesting observation is related to a quasi-type-II alignment characterized by the spatial separation of an electron into the core/shell and a hole into the core. The observed optical excitonic spectra have further been used to study the energetics of CdSe and charge separated states with the concept of Marcus theory and confirmed that electron transfer takes place in the Marcus inverted region (). Moreover, the growth kinetics of the CdSe core and CdSe/V2O5 core/shell QDs, studied with TA spectroscopy, exhibits slow electron cooling in core/shell QDs because of the de-coupling of the electronic wave functions with their hole counterpart. These exciting properties reveal a new paradigm shift from CdSe QDs to CdSe/V2O5 core/shell QDs for highly suitable applications in photovoltaics (PV) and optoelectronic devices.
Collapse
Affiliation(s)
- Amar Nath Yadav
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | | | | | | | | | | |
Collapse
|
16
|
Onoshima D, Yukawa H, Baba Y. Nanobiodevices for Cancer Diagnostics and Stem Cell Therapeutics. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Das B, Pal P, Dadhich P, Dutta J, Dhara S. In Vivo Cell Tracking, Reactive Oxygen Species Scavenging, and Antioxidative Gene Down Regulation by Long-Term Exposure of Biomass-Derived Carbon Dots. ACS Biomater Sci Eng 2018; 5:346-356. [PMID: 33405855 DOI: 10.1021/acsbiomaterials.8b01101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Biomass derived carbon dots (CD) have been observed to be excellent bioimaging probes due to their nontoxic, stable fluorescence, lesser bleachability, and excellent bioconjugation properties. In the current study, green chili extract derived CD synthesis via microwave irradiation is reported. The time dependent top down degradation of carbonaceous materials to CD are monitored via electron microscopy and correlated with fluorescence intensity. Further, the CD were explored for long-term cell tracking and cell therapy monitoring in a rodent model to study wound healing kinetics. The cells were monitorable up to 21 days (until the entire wound healed). CD were observed to scavenge reactive oxygen species (ROS) in vitro and in vivo and provided control over ROS scavenging enzyme gene expressions via down regulation. Further, it was observed to remodel the wound healing kinetics via altering granulation tissue distribution and formation of microvessels to establish the capability of CD to enhance wound healing.
Collapse
Affiliation(s)
- Bodhisatwa Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Pallabi Pal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Prabhash Dadhich
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Joy Dutta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
18
|
Yukawa H, Baba Y. In Vivo Imaging Technology of Transplanted Stem Cells Using Quantum Dots for Regenerative Medicine. ANAL SCI 2018; 34:525-532. [PMID: 29743422 DOI: 10.2116/analsci.17r005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Quantum dots (QDs) have excellent fluorescence properties in comparison to traditional fluorescence probes. Thus, the optical application of QDs is rapidly expanding to each field of analytical chemistry. In this review paper, we reviewed the application of QDs to regenerative medicine, especially stem cell transplantation therapy. The labeling of stem cells using QDs composed of semiconductor materials in combination with a chemical substance, poly-cationic liposome and cell penetrating peptide is reported. In addition, the influence of QD labeling on the pluripotency of stem cells is also reported. Finally, the in vivo imaging of transplanted stem cells in mice by QDs emitting fluorescence in the near-infrared region, which can be detected by in vivo fluorescence imaging systems such as IVIS and SAI-1000, is described. The future prospects for stem cell imaging technology by QDs are also discussed.
Collapse
Affiliation(s)
- Hiroshi Yukawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University.,ImPACT Research Center for Advanced Nanobiodevices, Nagoya University
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University.,ImPACT Research Center for Advanced Nanobiodevices, Nagoya University.,Institute of Innovation for Future Society, Nagoya University.,Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
19
|
Chen Z, Yuan H, Liang H, Lu C, Liu X. Synthesis of a cationic poly(p-phenylenevinylene) derivative for lysosome-specific and long-term imaging. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Bae Y, Jung MK, Mun JY, Mallick S, Song SJ, Kim DM, Ko KS, Han J, Choi JS. DQAsomes Nanoparticles Promote Osteogenic Differentiation of Human Adipose-derived Mesenchymal Stem Cells. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yoonhee Bae
- Department of Physiology; College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University; Busan 614-735 Korea
| | - Min Kyo Jung
- Department of Convergence Medicine; University of Ulsan College of Medicine & Asan Institute for Life Sciences, Asan Medical Center; Seoul South Korea
| | - Ji Young Mun
- Department of Biomedical Laboratory Science; College of Health Science, Eulji University; Seongnam 461-713 Korea
| | - Sudipta Mallick
- Department of Biochemistry; College of Natural Sciences, Chungnam National University; Daejeon 305-764 Korea
| | - Su Jeong Song
- Department of Biochemistry; College of Natural Sciences, Chungnam National University; Daejeon 305-764 Korea
| | - Dong Min Kim
- Department of Biochemistry; College of Natural Sciences, Chungnam National University; Daejeon 305-764 Korea
| | - Kyung Soo Ko
- Department of Internal Medicine; Sanggye Paik Hospital, Cardiovascular and Metabolic Disease Center, Inje University; Seoul 139-707 Korea
| | - Jin Han
- Department of Physiology; College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University; Busan 614-735 Korea
| | - Joon Sig Choi
- Department of Biochemistry; College of Natural Sciences, Chungnam National University; Daejeon 305-764 Korea
| |
Collapse
|
21
|
Meng Z, Guo L, Li Q. Peptide-Coated Semiconductor Polymer Dots for Stem Cells Labeling and Tracking. Chemistry 2017; 23:6836-6844. [PMID: 28370830 DOI: 10.1002/chem.201700002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/13/2017] [Indexed: 01/02/2023]
Abstract
Stem cell therapy is rapidly moving toward translation to clinical application. To elucidate the therapeutic effect, a robust method that allows tracking of the stem cells over an extended period of time is required. Herein, semiconducting polymer dots (Pdots) are demonstrated for their use in bright labeling and tracking of human mesenchymal stem cells (MSCs) in vitro and in vivo. The Pdots coated with a cell-penetrating peptide (R8) showed remarkable endocytic uptake efficiency that was 15 times higher than that of carboxyl Pdots and more than 200 times than that of bare Pdots. The Pdot-labeled MSCs can be traced for 15 generations in vitro and tracked over 2 weeks in vivo after subcutaneous transplantation. The labeled MSCs administered through the tail vein were preferentially accumulated in the lung; this was distinctive from the distribution of free Pdots, which were primarily distributed in the liver. Based on the properties of bright labeling, excellent tracking capability, and great biocompatibility, the Pdots will be valuable in the applications of stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Zihui Meng
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, P.R. China
| | - Lei Guo
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, P.R. China
| | - Qiong Li
- Shandong Province Key Laboratory of Detection Technology for, Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong, 276000, P.R. China
| |
Collapse
|
22
|
Effects of extraction solvents on photoluminescent properties of eysenhardtia polystachia and their potential usage as biomarker. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:42-52. [DOI: 10.1016/j.msec.2016.11.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/13/2016] [Accepted: 11/13/2016] [Indexed: 11/19/2022]
|
23
|
Saulite L, Dapkute D, Pleiko K, Popena I, Steponkiene S, Rotomskis R, Riekstina U. Nano-engineered skin mesenchymal stem cells: potential vehicles for tumour-targeted quantum-dot delivery. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1218-1230. [PMID: 28685122 PMCID: PMC5480321 DOI: 10.3762/bjnano.8.123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/10/2017] [Indexed: 05/20/2023]
Abstract
Nanotechnology-based drug design offers new possibilities for the use of nanoparticles in imaging and targeted therapy of tumours. Due to their tumour-homing ability, nano-engineered mesenchymal stem cells (MSCs) could be utilized as vectors to deliver diagnostic and therapeutic nanoparticles into a tumour. In the present study, uptake and functional effects of carboxyl-coated quantum dots QD655 were studied in human skin MSCs. The effect of QD on MSCs was examined using a cell viability assay, Ki67 expression analysis, and tri-lineage differentiation assay. The optimal conditions for QD uptake in MSCs were determined using flow cytometry. The QD uptake route in MSCs was examined via fluorescence imaging using endocytosis inhibitors for the micropinocytosis, phagocytosis, lipid-raft, clathrin- and caveolin-dependent endocytosis pathways. These data showed that QDs were efficiently accumulated in the cytoplasm of MSCs after incubation for 6 h. The main uptake route of QDs in skin MSCs was clathrin-mediated endocytosis. QDs were mainly localized in early endosomes after 6 h as well as in late endosomes and lysosomes after 24 h. QDs in concentrations ranging from 0.5 to 64 nM had no effect on cell viability and proliferation. The expression of MSC markers, CD73 and CD90, and hematopoietic markers, CD34 and CD45, as well as the ability to differentiate into adipocytes, chondrocytes, and osteocytes, were not altered in the presence of QDs. We observed a decrease in the QD signal from labelled MSCs over time that could partly reflect QD excretion. Altogether, these data suggest that QD-labelled MSCs could be used for targeted drug delivery studies.
Collapse
Affiliation(s)
- Liga Saulite
- Faculty of Medicine, University of Latvia, Raina blvd. 19, LV-1586, Riga, Latvia
| | - Dominyka Dapkute
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio Street 3b, LT-08406 Vilnius, Lithuania
- Life Science Center, Vilnius University, Sauletekio al. 7, LT-10257, Vilnius, Lithuania
| | - Karlis Pleiko
- Faculty of Medicine, University of Latvia, Raina blvd. 19, LV-1586, Riga, Latvia
| | - Ineta Popena
- Faculty of Medicine, University of Latvia, Raina blvd. 19, LV-1586, Riga, Latvia
| | - Simona Steponkiene
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio Street 3b, LT-08406 Vilnius, Lithuania
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio Street 3b, LT-08406 Vilnius, Lithuania
- Laser research center, Vilnius University, Sauletekio al. 9, corp. 3, LT-10222, Vilnius, Lithuania
| | - Una Riekstina
- Faculty of Medicine, University of Latvia, Raina blvd. 19, LV-1586, Riga, Latvia
| |
Collapse
|
24
|
Huang Z, Yang L, Zhang X, Ruan B, Hu X, Deng X, Cai Q, Yang X. Synthesis and Fluorescent Property of Biodegradable Polyphosphazene Targeting Long-Term in Vivo Tracking. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Zhaohui Huang
- State Key
Laboratory of Organic-Inorganic Composites, Beijing Laboratory of
Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lika Yang
- State Key
Laboratory of Organic-Inorganic Composites, Beijing Laboratory of
Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xuehui Zhang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Bingyuan Ruan
- State Key
Laboratory of Organic-Inorganic Composites, Beijing Laboratory of
Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory
of Sports Injury, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Qing Cai
- State Key
Laboratory of Organic-Inorganic Composites, Beijing Laboratory of
Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaoping Yang
- State Key
Laboratory of Organic-Inorganic Composites, Beijing Laboratory of
Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
25
|
Wang L, Wang P, Weir MD, Reynolds MA, Zhao L, Xu HHK. Hydrogel fibers encapsulating human stem cells in an injectable calcium phosphate scaffold for bone tissue engineering. ACTA ACUST UNITED AC 2016; 11:065008. [PMID: 27811389 DOI: 10.1088/1748-6041/11/6/065008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs), human embryonic stem cells (hESCs) and human umbilical cord mesenchymal stem cells (hUCMSCs) are exciting cell sources for use in regenerative medicine. There have been no reports on long hydrogel fibers encapsulating stem cells inside an injectable calcium phosphate cement (CPC) scaffold for bone tissue engineering. The objectives of this study were: (1) to develop a novel injectable CPC construct containing hydrogel fibers encapsulating cells for bone engineering, and (2) to investigate and compare cell viability, proliferation and osteogenic differentiation of hiPSC-MSCs, hESC-MSCs and hUCMSCs in injectable CPC. The pastes encapsulating the stem cells were fully injectable under a small injection force, and the injection did not harm the cells, compared with non-injected cells (p > 0.1). The mechanical properties of the stem cell-CPC construct were much better than those of previous injectable polymers and hydrogels for cell delivery. The hiPSC-MSCs, hESC-MSCs and hUCMSCs in hydrogel fibers in CPC had excellent proliferation and osteogenic differentiation. All three cell types yielded high alkaline phosphatase, runt-related transcription factor, collagen I and osteocalcin expression (mean ± SD; n = 6). Cell-synthesized minerals increased substantially with time (p < 0.05), with no significant difference among the three types of cells (p > 0.1). Mineralization by hiPSC-MSCs, hESC-MSCs and hUCMSCs in CPC at 14 d was 13-fold that at 1 d. In conclusion, all three types of cells (hiPSC-MSCs, hESC-MSCs and hUCMSCs) in a CPC scaffold showed high potential for bone tissue engineering, and the novel injectable CPC construct with cell-encapsulating hydrogel fibers is promising for enhancing bone regeneration in dental, craniofacial and orthopedic applications.
Collapse
Affiliation(s)
- Lin Wang
- VIP Integrated Department, Stomatological Hospital of Jilin University, Changchun, Jilin 130011, People's Republic of China. Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
26
|
Ma Y, Ji Y, You M, Wang S, Dong Y, Jin G, Lin M, Wang Q, Li A, Zhang X, Xu F. Labeling and long-term tracking of bone marrow mesenchymal stem cells in vitro using NaYF4:Yb(3+),Er(3+) upconversion nanoparticles. Acta Biomater 2016; 42:199-208. [PMID: 27435964 DOI: 10.1016/j.actbio.2016.07.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/25/2016] [Accepted: 07/15/2016] [Indexed: 01/14/2023]
Abstract
UNLABELLED Mesenchymal stem cells (MSCs) hold great promise as cell therapy candidate in clinics. However, the underlying mechanisms remain elusive due to the lack of effective cell tracking approaches during therapeutic processes. In this study, we successfully synthesized and utilized NaYF4:Yb(3+),Er(3+) upconversion nanoparticles (UCNPs) to label and track rabbit bone marrow mesenchymal stem cells (rBMSCs) during the osteogenic differentiation in vitro. To improve their biocompatibility and cellular uptake, we modified the UCNPs with negatively-charged poly(acrylic acid) and positively-charged poly(allylamine hydrochloride) in turns (i.e., PAH-PAA-UCNPs). The effect of cellular uptake of UCNPs on the osteogenic differentiation of rBMSCs was systematically evaluated, and no significant difference was found between rBMSCs labeled with UCNPs (concentration range of 0-50μg/mL) and UCNPs-free rBMSCs in terms of cell viability, ALP activity, osteogenic protein expressions and production of mineralized nodules. Moreover, the PAH-PAA-UCNPs at a concentration of 50μg/mL exhibited the highest biocompatibility and stability, which could well track rBMSCs during the osteogenesis process. These results would provide a positive reference for the application of these lanthanide-doped UCNPs as fluorescent nanoprobes for stem cell tracking to further understand the mechanism of stem cell fate in tissue engineering and stem cell therapy. STATEMENT OF SIGNIFICANCE Upconversion nanoparticles (UCNPs) have attracted increasing attention as alternative probes for tracking various types of cells including stem cells. The reported fluorapatite-based UCNPs with the needle-like morphology showed a little poor performance on stem cell tracking, which was possibly attributed to the low upconversion efficiency and cell labeling efficiency potentially due to nanomaterial composition, crystal structure and shape. Here, we synthesized the positively-charged NaYF4:Yb(3+),Er(3+) UCNPs with hexagonal phase and sphere-like morphology to enhance their upconversion efficiency, biocompatibility and cellular uptake, leading to a successful tracking of rBMSCs in osteogenesis process without impairing cell viability and differentiation capacity. This study provided a necessary reference for the application of UCNPs in stem cell tracking to better understand the mechanism of stem cell fate in tissue engineering, stem cell therapy, etc.
Collapse
Affiliation(s)
- Yufei Ma
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Ji
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shurui Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuqing Dong
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guorui Jin
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Qiong Wang
- Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, PR China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
27
|
Wang L, Zhang C, Li C, Weir MD, Wang P, Reynolds MA, Zhao L, Xu HHK. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1125-36. [PMID: 27612810 DOI: 10.1016/j.msec.2016.08.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/29/2016] [Accepted: 08/07/2016] [Indexed: 12/21/2022]
Abstract
Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p<0.05), with no significant difference among hDPSCs, BM-hiPSC-MSCs and hBMSCs (p>0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14d was 14-fold that at 1d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications.
Collapse
Affiliation(s)
- Lin Wang
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130011,China; Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Chi Zhang
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chunyan Li
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130011,China
| | - Michael D Weir
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ping Wang
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Mark A Reynolds
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Liang Zhao
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Hockin H K Xu
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore County, MD 21250, USA
| |
Collapse
|
28
|
Quantum dot nanoparticle for optimization of breast cancer diagnostics and therapy in a clinical setting. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1581-92. [DOI: 10.1016/j.nano.2016.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 01/30/2023]
|
29
|
Gao M, Chen J, Lin G, Li S, Wang L, Qin A, Zhao Z, Ren L, Wang Y, Tang BZ. Long-Term Tracking of the Osteogenic Differentiation of Mouse BMSCs by Aggregation-Induced Emission Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17878-17884. [PMID: 27400339 DOI: 10.1021/acsami.6b05471] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have shown great potential for bone repair due to their strong proliferation ability and osteogenic capacity. To evaluate and improve the stem cell-based therapy, long-term tracking of stem cell differentiation into bone-forming osteoblasts is required. However, conventional fluorescent trackers such as fluorescent proteins, quantum dots, and fluorophores with aggregation-caused quenching (ACQ) characteristics have intrinsic limitations of possible interference with stem cell differentiation, heavy metal cytotoxicity, and self-quenching at a high labeling intensity. Herein, we developed aggregation-induced emission nanoparticles decorated with the Tat peptide (AIE-Tat NPs) for long-term tracking of the osteogenic differentiation of mouse BMSCs without interference of cell viability and differentiation ability. Compared with the ability of the commercial Qtracker 655 for tracking of only 6 passages of mouse BMSCs, AIE-Tat NPs have shown a much superior performance in long-term tracking for over 12 passages. Moreover, long-term tracking of the osteogenic differentiation process of mouse BMSCs was successfully conducted on the biocompatible hydroxyapatite scaffold, which is widely used in bone tissue engineering. Thus, AIE-Tat NPs have promising applications in tracking stem cell fate for bone repair.
Collapse
Affiliation(s)
- Meng Gao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
| | - Junjian Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology , Guangzhou 510640, China
| | - Gengwei Lin
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
| | - Shiwu Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology , Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
| | - Li Ren
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology , Guangzhou 510640, China
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology , Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
- Department of Chemistry, The Hong Kong University of Science & Technology , Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Hong Kong, China
| |
Collapse
|
30
|
Liu S, Tay LM, Anggara R, Chuah YJ, Kang Y. Long-Term Tracking Mesenchymal Stem Cell Differentiation with Photostable Fluorescent Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11925-33. [PMID: 27124820 DOI: 10.1021/acsami.5b12371] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mesenchymal stem cells (MSCs) have proved to be a promising and abundant cell source for tissue and organ repair in regenerative medicine. However, the cell fate, distribution and migration of these transplanted cells are still unclear due to the limited tracking methods. It is desirable to develop a biocompatible and photostable probe to label the MSCs for long-term tracking without affecting the cell proliferation and potency. Herein we apply a recently developed nanoprobe system, in which di(thiophene-2-yl)-diketopyrrolopyrrole (DPP) is covalently linked in the middle of polycaprolactone (PCL) forming the PCL-DPP-PCL polymer complex. Although the PCL-DPP-PCL nanoparticles uptaken by the MSCs did not affect the cell viability, it was interesting that they exhibited different effects on the multilineage potency of the MSCs in the subsequent differentiation in vitro. Specifically, we found that the PCL-DPP-PCL labeling was unfavorable to the MSC osteogenic differentiation, whereas the labeled MSCs exhibited the same adipogenic and chondrogenic differentiations compared to the unlabeled controls as verified by gene expressions and histological staining. Furthermore, the PCL-DPP-PCL nanoparticles remained strong fluorescence intensity even after 4 weeks of differentiation. This study indicated that PCL-DPP-PCL nanoparticles could be used for long-term cell tracing in MSC differentiation into adipogenic and chondrogenic lineages.
Collapse
Affiliation(s)
- Shiying Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459, Singapore
| | - Li Min Tay
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459, Singapore
- Nanyang Institute of Technology in Health & Medicine, Interdisciplinary Graduate School, Nanyang Technological University , Singapore
| | - Raditya Anggara
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459, Singapore
| | - Yon Jin Chuah
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459, Singapore
| | - Yuejun Kang
- Faculty of Materials and Energy, Institute for Clean Energy and Advanced Materials, Southwest University , 2 Tiansheng Road, Beibei, Chongqing 400715, China
| |
Collapse
|
31
|
Lépinoux-Chambaud C, Barreau K, Eyer J. The Neurofilament-Derived Peptide NFL-TBS.40-63 Targets Neural Stem Cells and Affects Their Properties. Stem Cells Transl Med 2016; 5:901-13. [PMID: 27177578 DOI: 10.5966/sctm.2015-0221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/23/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED Targeting neural stem cells (NSCs) in the adult brain represents a promising approach for developing new regenerative strategies, because these cells can proliferate, self-renew, and differentiate into new neurons, astrocytes, and oligodendrocytes. Previous work showed that the NFL-TBS.40-63 peptide, corresponding to the sequence of a tubulin-binding site on neurofilaments, can target glioblastoma cells, where it disrupts their microtubules and inhibits their proliferation. We show that this peptide targets NSCs in vitro and in vivo when injected into the cerebrospinal fluid. Although neurosphere formation was not altered by the peptide, the NSC self-renewal capacity and proliferation were reduced and were associated with increased adhesion and differentiation. These results indicate that the NFL-TBS.40-63 peptide represents a new molecular tool to target NSCs to develop new strategies for regenerative medicine and the treatment of brain tumors. SIGNIFICANCE In the present study, the NFL-TBS.40-63 peptide targeted neural stem cells in vitro when isolated from the subventricular zone and in vivo when injected into the cerebrospinal fluid present in the lateral ventricle. The in vitro formation of neurospheres was not altered by the peptide; however, at a high concentration of the peptide, the neural stem cell (NSC) self-renewal capacity and proliferation were reduced and associated with increased adhesion and differentiation. These results indicate that the NFL-TBS.40-63 peptide represents a new molecular tool to target NSCs to develop new strategies for regenerative medicine and the treatment of brain tumors.
Collapse
Affiliation(s)
- Claire Lépinoux-Chambaud
- Laboratoire Neurobiologie et Transgenese, Université Nantes, Angers, Le Mans, Unité Propre de Recherche de l'Enseignement Supérieur EA-3143, Institut de Biologie en Santé, L'Université d'Angers, Centre Hospitalier Universitaire, Angers, France
| | - Kristell Barreau
- Laboratoire Neurobiologie et Transgenese, Université Nantes, Angers, Le Mans, Unité Propre de Recherche de l'Enseignement Supérieur EA-3143, Institut de Biologie en Santé, L'Université d'Angers, Centre Hospitalier Universitaire, Angers, France
| | - Joël Eyer
- Laboratoire Neurobiologie et Transgenese, Université Nantes, Angers, Le Mans, Unité Propre de Recherche de l'Enseignement Supérieur EA-3143, Institut de Biologie en Santé, L'Université d'Angers, Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
32
|
Oh E, Liu R, Nel A, Gemill KB, Bilal M, Cohen Y, Medintz IL. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. NATURE NANOTECHNOLOGY 2016; 11:479-86. [PMID: 26925827 DOI: 10.1038/nnano.2015.338] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/16/2015] [Indexed: 04/14/2023]
Abstract
Understanding the relationships between the physicochemical properties of engineered nanomaterials and their toxicity is critical for environmental and health risk analysis. However, this task is confounded by material diversity, heterogeneity of published data and limited sampling within individual studies. Here, we present an approach for analysing and extracting pertinent knowledge from published studies focusing on the cellular toxicity of cadmium-containing semiconductor quantum dots. From 307 publications, we obtain 1,741 cell viability-related data samples, each with 24 qualitative and quantitative attributes describing the material properties and experimental conditions. Using random forest regression models to analyse the data, we show that toxicity is closely correlated with quantum dot surface properties (including shell, ligand and surface modifications), diameter, assay type and exposure time. Our approach of integrating quantitative and categorical data provides a roadmap for interrogating the wide-ranging toxicity data in the literature and suggests that meta-analysis can help develop methods for predicting the toxicity of engineered nanomaterials.
Collapse
Affiliation(s)
- Eunkeu Oh
- Optical Sciences Division, Code 5611, US Naval Research Laboratory, Washington, Washington DC 20375, USA
- Sotera Defense Solutions, Columbia, Maryland 21046, USA
| | - Rong Liu
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Andre Nel
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, California 90095, USA
| | - Kelly Boeneman Gemill
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| | - Muhammad Bilal
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Yoram Cohen
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095-1592, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| |
Collapse
|
33
|
Li J, Lee WY, Wu T, Xu J, Zhang K, Li G, Xia J, Bian L. Multifunctional Quantum Dot Nanoparticles for Effective Differentiation and Long-Term Tracking of Human Mesenchymal Stem Cells In Vitro and In Vivo. Adv Healthc Mater 2016; 5:1049-57. [PMID: 26919348 DOI: 10.1002/adhm.201500879] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/18/2015] [Indexed: 12/22/2022]
Abstract
Human mesenchymal stem cells (hMSCs) hold great potential for regenerative medicine. Efficient induction of hMSC differentiation and better understanding of hMSCs behaviors in vitro and in vivo are essential to the clinical translation of stem cell therapy. Here a quantum dots (QDs)-based multifunctional nanoparticle (RGD-β-CD-QDs) is developed for effective enhancing differentiation and long-term tracking of hMSCs in vitro and in vivo. The RGD-β-CD-QDs are modified with β-cyclodextrin (β-CD) and Cys-Lys-Lys-Arg-Gly-Asp (CKKRGD) peptide on the surface. The β-CD can harbor hydrophobic osteogenic small molecule dexamethasone (Dex) and the RGD peptide not only facilitates the complexation of siRNA and delivers siRNA into hMSCs but also leads to cellular uptake of nanoparticles by RGD receptor. Co-delivery of Dex and siRNA by RGD-β-CD-QDs nanocarrier significantly expedites and enhances the osteogenesis differentiation of hMSCs in vitro and in vivo by combined effect of small molecule and RNAi. Furthermore, the RGD-β-CD-QDs can be labeled with hMSCs for a long-term tracking (3 weeks) in vivo to observe the behaviors of implanted hMSCs in animal level. These findings demonstrate that the RGD-β-CD-QDs nanocarrier provides a powerful tool to simultaneously enhance differentiation and long-term tracking of hMSCs in vitro and in vivo for regenerative medicine.
Collapse
Affiliation(s)
- Jinming Li
- Department of Mechanical and Automation Engineering; The Chinese University of Hong Kong; Hong Kong
| | - Wayne Yukwai Lee
- Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong
| | - Tianyi Wu
- Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong
| | - Jianbin Xu
- Department of Mechanical and Automation Engineering; The Chinese University of Hong Kong; Hong Kong
| | - Kunyu Zhang
- Department of Mechanical and Automation Engineering; The Chinese University of Hong Kong; Hong Kong
| | - Gang Li
- Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong
| | - Jiang Xia
- Department of Chemistry; The Chinese University of Hong Kong; Shatin Hong Kong SAR China
| | - Liming Bian
- Department of Mechanical and Automation Engineering; The Chinese University of Hong Kong; Hong Kong
- Shenzhen Research Institute; The Chinese University of Hong Kong; Hong Kong
- China Orthopedic Regenerative Medicine Group (CORMed); Hong Kong China
| |
Collapse
|
34
|
Xu J, Li J, Lin S, Wu T, Huang H, Zhang K, Sun Y, Yeung KWK, Li G, Bian L. Nanocarrier‐Mediated Codelivery of Small Molecular Drugs and siRNA to Enhance Chondrogenic Differentiation and Suppress Hypertrophy of Human Mesenchymal Stem Cells. ADVANCED FUNCTIONAL MATERIALS 2016; 26:2463-2472. [DOI: 10.1002/adfm.201504070] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Cartilage loss is a leading cause of disability among adults, and effective therapy remains elusive. Human mesenchymal stem cells (hMSCs), which have demonstrated self‐renewal and multipotential differentiation, are a promising cell source for cartilage repair. However, the hypertrophic differentiation of the chondrogenically induced MSCs and resulting tissue calcification hinders the clinical translation of MSCs for cartilage repair. Here, a multifunctional nanocarrier based on quantum dots (QDs) is developed to enhance chondrogenic differentiation and suppress hypertrophy of hMSCs simultaneously. Briefly, the QDs are modified with β‐cyclodextrin (β‐CD) and RGD peptide. The resulting nanocarrier is capable of carrying hydrophobic small molecules such as kartogenin in the hydrophobic pockets of conjugated β‐CD to induce chondrogenic differentiation of hMSCs. Meanwhile, via electrostatic interaction the conjugated RGD peptides bind the cargo siRNA targeting Runx2, which is a key regulator of hMSC hypertrophy. Furthermore, due to the excellent photostability of QDs, hMSCs labeled with the nanocarrier can be tracked for up to 14 d after implantation in nude mice. Overall, this work demonstrates the potential of our nanocarrier for inducing and maintaining the chondrogenic phenotype and tracking hMSCs in vivo.
Collapse
Affiliation(s)
- Jianbin Xu
- Division of Biomedical Engineering Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Shatin, New Territories 999077 Hong Kong P. R. China
| | - Jinming Li
- Division of Biomedical Engineering Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Shatin, New Territories 999077 Hong Kong P. R. China
| | - Sien Lin
- Department of Orthopaedics and Traumatology Faculty of Medicine The Chinese University of Hong Kong Shatin, New Territories 999077 Hong Kong P. R. China
| | - Tianyi Wu
- Department of Orthopaedics and Traumatology Faculty of Medicine The Chinese University of Hong Kong Shatin, New Territories 999077 Hong Kong P. R. China
| | - Heqin Huang
- Division of Biomedical Engineering Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Shatin, New Territories 999077 Hong Kong P. R. China
| | - Kunyu Zhang
- Division of Biomedical Engineering Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Shatin, New Territories 999077 Hong Kong P. R. China
| | - Yuxin Sun
- Department of Orthopaedics and Traumatology Faculty of Medicine The Chinese University of Hong Kong Shatin, New Territories 999077 Hong Kong P. R. China
| | - Kelvin W. K. Yeung
- Department of Orthopaedics and Traumatology The University of Hong Kong Hong Kong P.R. China 999077
| | - Gang Li
- Department of Orthopaedics and Traumatology Faculty of Medicine The Chinese University of Hong Kong Shatin, New Territories 999077 Hong Kong P. R. China
| | - Liming Bian
- Division of Biomedical Engineering Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Shatin, New Territories 999077 Hong Kong P. R. China
- Shun Hing Institute of Advanced Engineering The Chinese University of Hong Kong Hong Kong P.R.China 999077
- Shenzhen Research Institute The Chinese University of Hong Kong Hong Kong P.R.China 999077
- China Orthopedic Regenerative Medicine Group (CORMed) Hong Kong P.R.China 999077
| |
Collapse
|
35
|
Wu SQ, Chi CW, Yang CX, Yan XP. Penetrating Peptide-Bioconjugated Persistent Nanophosphors for Long-Term Tracking of Adipose-Derived Stem Cells with Superior Signal-to-Noise Ratio. Anal Chem 2016; 88:4114-21. [DOI: 10.1021/acs.analchem.6b00449] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shu-Qi Wu
- College
of Chemistry, Research Center for Analytical Sciences, State Key Laboratory
of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular
Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Chong-Wei Chi
- Key
Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute
of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Cheng-Xiong Yang
- College
of Chemistry, Research Center for Analytical Sciences, State Key Laboratory
of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular
Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Xiu-Ping Yan
- College
of Chemistry, Research Center for Analytical Sciences, State Key Laboratory
of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular
Recognition and Biosensing, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
36
|
Characterization of basic amino acids-conjugated PAMAM dendrimers as gene carriers for human adipose-derived mesenchymal stem cells. Int J Pharm 2016; 501:75-86. [DOI: 10.1016/j.ijpharm.2016.01.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/19/2016] [Accepted: 01/24/2016] [Indexed: 01/27/2023]
|
37
|
Tracking and Increasing Viability of Topically Injected Fibroblasts Suspended in Hyaluronic Acid Filler. J Craniofac Surg 2016; 27:521-5. [PMID: 26854786 DOI: 10.1097/scs.0000000000002518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A new injectable tissue-engineered soft tissue consisting of a mixture of hyaluronic acid (HA) filler and cultured human fibroblasts have been developed by the authors. To establish this method as a standard treatment, a further study was required to determine whether the injected fibroblasts could stay at the injected place or move to other sites. In addition, effective strategies were needed to increase viability of the injected fibroblasts. The purpose of this study was to track the injected fibroblasts and to determine the effect of adding prostaglandin E1 (PGE1) or vitamin C on the viability of fibroblasts.Human fibroblasts labeled with fluorescence dye were suspended in HA filler and injected into 4 sites on the back of nude mice. The injected bioimplants consisted of one of the 4 followings: HA filler without cells (HA group), fibroblasts suspended in HA filler (HA + FB group), PGE1-supplemented fibroblasts in HA filler (HA + FB + PGE1 group), and vitamin C-supplemented fibroblasts in HA filler (HA + FB + VC group). At 4 weeks after injection, locations and intensities of the fluorescence signals were evaluated using a live imaging system.The fluorescence signals of the fibroblast-containing groups were visible only at the injected sites without dispersing to other sites. The HA +FB + PGE1 group showed a significantly higher fluorescence signal than the HA + FB and the HA + FB +VC groups (P < 0.05, each). There was no statistical difference between the HA + FB and HA + FB +VC groups (P = 0.69).The results of the current study collectively suggest that injected fibroblasts suspended in HA filler stay at the injected place without moving to other sites. In addition, PGE1 treatment may increase the remaining rhodamine B isothiocynanate dye at the injected site of the human dermal fibroblasts.
Collapse
|
38
|
Zhou J, Hua B, Shao L, Feng H, Yu G. Host–guest interaction enhanced aggregation-induced emission and its application in cell imaging. Chem Commun (Camb) 2016; 52:5749-52. [DOI: 10.1039/c6cc01860b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A host–guest inclusion complex based on a monofunctionalized pillar[5]arene and a tetraphenylethene derivative was prepared, resulting in an enhanced emission from the tetraphenylethene-based guest, which was applied in cell imaging.
Collapse
Affiliation(s)
- Jiong Zhou
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Bin Hua
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Li Shao
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Hao Feng
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Guocan Yu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
39
|
Wang X, He H, Wang Y, Wang J, Sun X, Xu H, Nau WM, Zhang X, Huang F. Active tumor-targeting luminescent gold clusters with efficient urinary excretion. Chem Commun (Camb) 2016; 52:9232-5. [DOI: 10.1039/c6cc03814j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Novel active tumor targeting fluorescent gold nanoclusters are synthesized through a facile method.
Collapse
Affiliation(s)
- Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao 266580
- China
- Centre for Bioengineering and Biotechnology
| | - Hua He
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao 266580
- China
- Centre for Bioengineering and Biotechnology
| | - Yanan Wang
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Junying Wang
- Institute of Radiation Medicine and Tianjin Key Laboratory of Molecular Nuclear Medicine
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Tianjin 300192
- China
| | - Xing Sun
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao 266580
- China
- Centre for Bioengineering and Biotechnology
| | - Werner M. Nau
- Department of Life Sciences and Chemistry
- Jacobs University Bremen
- 28759 Bremen
- Germany
| | - Xiaodong Zhang
- Institute of Radiation Medicine and Tianjin Key Laboratory of Molecular Nuclear Medicine
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Tianjin 300192
- China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao 266580
- China
- Centre for Bioengineering and Biotechnology
| |
Collapse
|
40
|
Stem Cell Tracking with Nanoparticles for Regenerative Medicine Purposes: An Overview. Stem Cells Int 2015; 2016:7920358. [PMID: 26839568 PMCID: PMC4709786 DOI: 10.1155/2016/7920358] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/07/2015] [Accepted: 10/11/2015] [Indexed: 02/07/2023] Open
Abstract
Accurate and noninvasive stem cell tracking is one of the most important needs in regenerative medicine to determine both stem cell destinations and final differentiation fates, thus allowing a more detailed picture of the mechanisms involved in these therapies.
Given the great importance and advances in the field of nanotechnology for stem cell imaging, currently, several nanoparticles have become standardized products and have been undergoing fast commercialization. This review has been intended to summarize the current use of different engineered nanoparticles in stem cell tracking for regenerative medicine purposes, in particular by detailing their main features and exploring their biosafety aspects, the first step for clinical application. Moreover, this review has summarized the advantages and applications of stem cell tracking with nanoparticles in experimental and preclinical studies and investigated present limitations for their employment in the clinical setting.
Collapse
|
41
|
Onoshima D, Yukawa H, Baba Y. Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Adv Drug Deliv Rev 2015; 95:2-14. [PMID: 26344675 DOI: 10.1016/j.addr.2015.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/31/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022]
Abstract
A field of recent diagnostics and therapeutics has been advanced with quantum dots (QDs). QDs have developed into new formats of biomolecular sensing to push the limits of detection in biology and medicine. QDs can be also utilized as bio-probes or labels for biological imaging of living cells and tissues. More recently, QDs has been demonstrated to construct a multifunctional nanoplatform, where the QDs serve not only as an imaging agent, but also a nanoscaffold for diagnostic and therapeutic modalities. This review highlights the promising applications of multi-functionalized QDs as advanced nanosensors for diagnosing cancer and as innovative fluorescence probes for in vitro or in vivo stem cell imaging in regenerative medicine.
Collapse
|
42
|
Zhang T, Wang Y, Kong L, Xue Y, Tang M. Threshold Dose of Three Types of Quantum Dots (QDs) Induces Oxidative Stress Triggers DNA Damage and Apoptosis in Mouse Fibroblast L929 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:13435-54. [PMID: 26516873 PMCID: PMC4627041 DOI: 10.3390/ijerph121013435] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022]
Abstract
Although it has been reported that fluorescent quantum dots (QDs) have obvious acute toxic effects in vitro, their toxic effects at low doses or threshold doses are still unknown. Therefore, we evaluated the biological histocompatibility and in vitro toxicity of three types of QDs at threshold doses. Also, we compared the toxic effects of QDs with different raw chemical compositions and sizes. The results showed that low concentrations of QDs (≤7 μg/mL) had no obvious effect on cell viability and cell membrane damage, oxidative damage, cell apoptosis or DNA damage. However, QD exposure led to a significant cytotoxicity at higher doses (≥14 μg/mL) and induced abnormal cellular morphology. In addition, when comparing the three types of QDs, 2.2 nm CdTe QDs exposure showed a significantly increased proportion of apoptotic cells and significant DNA damage, suggesting that size and composition contribute to the toxic effects of QDs. Based on these discussions, it was concluded that the concentration (7 μg/mL) may serve as a threshold level for these three types of QDs only in L929 fibroblasts, whereas high concentrations (above 14 μg/mL) may be toxic, resulting in inhibition of proliferation, induction of apoptosis and DNA damage in L929 fibroblasts.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| | - Yiqing Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China.
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| |
Collapse
|
43
|
Li Z, Yao W, Kong L, Zhao Y, Li L. General Method for the Synthesis of Ultrastable Core/Shell Quantum Dots by Aluminum Doping. J Am Chem Soc 2015; 137:12430-3. [PMID: 26389704 DOI: 10.1021/jacs.5b05462] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Semiconductor quantum dots (QDs) have attracted extensive attention in various applications because of their unique optical and electronic properties. However, long-term photostability remains a challenge for their practical application. Here, we present a simple method to enhance the photostability of QDs against oxidation by doping aluminum into the shell of core/shell QDs. We demonstrate that Al in the coating shell can be oxidized to Al2O3, which can serve as a self-passivation layer on the surface of the core/shell QDs and effectively stop further photodegradation during long-term light irradiation. The prepared CdSe/CdS:Al QDs survived 24 h without significant degradation when they were subjected to intense illumination under LED light (450 nm, 0.35 W/cm(2)), whereas conventional CdSe/CdS QDs were bleached within 3 h.
Collapse
Affiliation(s)
- Zhichun Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Long Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Liang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
44
|
Lost signature: progress and failures in in vivo tracking of implanted stem cells. Appl Microbiol Biotechnol 2015; 99:9907-22. [DOI: 10.1007/s00253-015-6965-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023]
|
45
|
Xiang J, Cai X, Lou X, Feng G, Min X, Luo W, He B, Goh CC, Ng LG, Zhou J, Zhao Z, Liu B, Tang BZ. Biocompatible Green and Red Fluorescent Organic Dots with Remarkably Large Two-Photon Action Cross Sections for Targeted Cellular Imaging and Real-Time Intravital Blood Vascular Visualization. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14965-14974. [PMID: 26094687 DOI: 10.1021/acsami.5b03766] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fluorescent organic dots are emerging as promising bioimaging reagents because of their high brightness, good photostability, excellent biocompatibility, and facile surface functionalization. Organic dots with large two-photon absorption (TPA) cross sections are highly desired for two-photon fluorescence microscopy. In this work, we report two biocompatible and photostable organic dots fabricated by encapsulating tetraphenylethene derivatives within DSPE-PEG matrix. The two organic dots show absorption maxima at 425 and 483 nm and emit green and red fluorescence at 560 and 645 nm, with high fluorescence quantum yields of 64% and 22%, respectively. Both organic dots exhibit excellent TPA property in the range of 800-960 nm, affording upon excitation at 820 nm remarkably large TPA cross sections of 1.2×10(6) and 2.5×10(6) GM on the basis of dot concentration. The bare fluorophores and their organic dots are biocompatible and have been used to stain living cells for one- and two-photon fluorescence bioimagings. The cRGD-modified organic dots can selectively target integrin αvβ3 overexpressing breast cancer cells for targeted imaging. The organic dots are also applied for real-time two-photon fluorescence in vivo visualization of the blood vasculature of mouse ear, providing the spatiotemporal information about the whole blood vascular network. These results demonstrate that the present fluorescent organic dots are promising candidates for living cell and tissue imaging.
Collapse
Affiliation(s)
- Jiayun Xiang
- †College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiaolei Cai
- §Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585
| | - Xiaoding Lou
- ∥School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangxue Feng
- §Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585
| | - Xuehong Min
- ∥School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenwen Luo
- ‡State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Bairong He
- ‡State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Chi Ching Goh
- ⊥Singapore Immunology Network (SIgN), A*STAR (Agency for Science Technology and Research), Biopolis 138648, Singapore
| | - Lai Guan Ng
- ⊥Singapore Immunology Network (SIgN), A*STAR (Agency for Science Technology and Research), Biopolis 138648, Singapore
| | - Jian Zhou
- †College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Zujin Zhao
- †College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
- ‡State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Bin Liu
- §Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585
| | - Ben Zhong Tang
- ‡State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
46
|
Son B, Kim HD, Kim M, Kim JA, Lee J, Shin H, Hwang NS, Park TH. Physical Stimuli-Induced Chondrogenic Differentiation of Mesenchymal Stem Cells Using Magnetic Nanoparticles. Adv Healthc Mater 2015; 4:1339-47. [PMID: 25846518 DOI: 10.1002/adhm.201400835] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/09/2015] [Indexed: 01/14/2023]
Abstract
Chondrogenic commitments of mesenchymal stem cells (MSCs) require 3D cellular organization. Furthermore, recent progresses in bioreactor technology have contributed to the development of various biophysical stimulation platforms for efficient cartilage tissue formation. Here, an approach is reported to drive 3D cellular organization and enhance chondrogenic commitment of bone-marrow-derived human mesenchymal stem cells (BM-hMSCs) via magnetic nanoparticle (MNP)-mediated physical stimuli. MNPs isolated from Magnetospirillum sp. AMB-1 are endocytosed by the BM-hMSCs in a highly efficient manner. MNPs-incorporated BM-hMSCs are pelleted and then subjected to static magnetic field and/or magnet-derived shear stress. Magnetic-based stimuli enhance level of sulfated glycosaminoglycan (sGAG) and collagen synthesis, and facilitate the chondrogenic differentiation of BM-hMSCs. In addition, both static magnetic field and magnet-derived shear stress applied for the chondrogenic differentiation of BM-hMSCs do not show increament of hypertrophic differentiation. This MNP-mediated physical stimulation platform demonstrates a promising strategy for efficient cartilage tissue engineering.
Collapse
Affiliation(s)
- Boram Son
- School of Chemical and Biological Engineering; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-742 Republic of Korea
| | - Hwan D. Kim
- School of Chemical and Biological Engineering; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-742 Republic of Korea
| | - Minsoo Kim
- School of Chemical and Biological Engineering; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-742 Republic of Korea
| | - Jeong Ah Kim
- School of Chemical and Biological Engineering; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-742 Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering; Hanyang University; Haengdang-dong 17 Seongdong-gu Seoul 133-791 Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team; Hanyang University; Seoul 133-791 Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering; Hanyang University; Haengdang-dong 17 Seongdong-gu Seoul 133-791 Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team; Hanyang University; Seoul 133-791 Republic of Korea
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-742 Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-742 Republic of Korea
- Advanced Institutes of Convergence Technology; 145 Gwanggyo-ro Yeongtong-gu Suwon 443-270 Republic of Korea
| |
Collapse
|
47
|
Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 2015; 44:4792-4834. [DOI: 10.1039/c4cs00532e] [Citation(s) in RCA: 564] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Colourful cells and tissues: semiconductor quantum dots and their versatile applications in multiplexed bioimaging research.
Collapse
Affiliation(s)
- K. David Wegner
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| | - Niko Hildebrandt
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| |
Collapse
|
48
|
Borovaya MN, Burlaka OM, Yemets AI, Blume YB. Biosynthesis of Quantum Dots and Their Potential Applications in Biology and Biomedicine. SPRINGER PROCEEDINGS IN PHYSICS 2015. [DOI: 10.1007/978-3-319-18543-9_24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Ye Q, Chen S, Zhu D, Lu X, Lu Q. Preparation of aggregation-induced emission dots for long-term two-photon cell imaging. J Mater Chem B 2015; 3:3091-3097. [DOI: 10.1039/c5tb00207a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A high-performance two-photon probe with long-term cellular imaging capability was synthesized from an amphiphilic aggregation-induced emission molecule derived from tetraphenylethylene fluorogen.
Collapse
Affiliation(s)
- Qiang Ye
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Shuangshuang Chen
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Dandan Zhu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xuemin Lu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
50
|
Moudgil R, Dick AJ. Regenerative Cell Imaging in Cardiac Repair. Can J Cardiol 2014; 30:1323-34. [DOI: 10.1016/j.cjca.2014.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 01/03/2023] Open
|