1
|
Wang X, Luo X, Guo J, Yang N, Wan F, Lü Z, Liu W. An effector of Phthorimaea absoluta oral secretions inhibits host plant defense. iScience 2024; 27:110154. [PMID: 39050704 PMCID: PMC11267060 DOI: 10.1016/j.isci.2024.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/20/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Insects have evolved effectors to regulate host defenses for efficient feeding, yet their impact on chewing insects, like the tomato leaf miner (Phthorimaea absoluta), a significant pest, is poorly understood. We used RNAi to target the REPAT38 gene in larvae, monitoring changes at 0.5, 1, 2, and 4 h in leaf stomata, plant hormone concentrations (jasmonic acid (JA), jasmonoyl-L-isoleucine (JA-Ile), salicylic acid (SA), ethylene (ET), and abscisic acid (ABA)), and 12 hormone-responsive genes to explore the molecular mechanism of REPAT38-mediated plant-insect interactions. The results showed that the effector induced stomatal closure at 0.5 h and inhibited the synthesis of JA, ET, and ABA at 1 h. Additionally, seven plant hormone-responsive genes-AOC, MYC2, ACS1A, PAL, PR1, EIL2, and SRK2E-were inhibited at various time points. Our data suggest that REPAT38, as an effector with conserved functions, can weaken tomato host defenses and conducive to insect adaptation to host plants.
Collapse
Affiliation(s)
- Xiaodi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuqing Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, P.R. China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhichuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Ma X, Ai X, Li C, Wang S, Zhang N, Ren J, Wang J, Zhong C, Zhao X, Zhang H, Yu H. A Genome-Wide Analysis of the Jasmonic Acid Biosynthesis Gene Families in Peanut Reveals Their Crucial Roles in Growth and Abiotic Stresses. Int J Mol Sci 2024; 25:7054. [PMID: 39000161 PMCID: PMC11241683 DOI: 10.3390/ijms25137054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Abiotic stress is a limiting factor in peanut production. Peanut is an important oil crop and cash crop in China. Peanut yield is vulnerable to abiotic stress due to its seeds grown underground. Jasmonic acid (JA) is essential for plant growth and defense against adversity stresses. However, the regulation and mechanism of the jasmonic acid biosynthesis pathway on peanut defense against abiotic stresses are still limitedly understood. In this study, a total of 64 genes encoding key enzymes of JA biosynthesis were identified and classified into lipoxygenases (AhLOXs), alleno oxide synthases (AhAOSs), allene oxide cyclases (AhAOCs), and 12-oxo-phytodienoic acid reductases (AhOPRs) according to gene structure, conserved motif, and phylogenetic feature. A cis-regulatory element analysis indicated that some of the genes contained stress responsive and hormone responsive elements. In addition to proteins involved in JA biosynthesis and signaling, they also interacted with proteins involved in lipid biosynthesis and stress response. Sixteen putative Ah-miRNAs were identified from four families targeting 35 key genes of JA biosynthesis. A tissue expression pattern analysis revealed that AhLOX2 was the highest expressed in leaf tissues, and AhLOX32 was the highest expressed in shoot, root, and nodule tissues. AhLOX16, AhOPR1, and AhOPR3 were up-regulated under drought stress. AhLOX16, AhAOS3, AhOPR1, and AhAOC4 had elevated transcript levels in response to cold stress. AhLOX5, AhLOX16, AhAOC3, AhOPR1, and AhOPR3 were up-regulated for expression under salt stress. Our study could provide a reference for the study of the abiotic stress resistance mechanism in peanut.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - He Zhang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110161, China
| | - Haiqiu Yu
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
3
|
Lewandowska M, Zienkiewicz K, Zienkiewicz A, Kelly A, König S, Feussner K, Kunst L, Feussner I. Wounding Triggers Wax Biosynthesis in Arabidopsis Leaves in an Abscisic Acid-Dependent and Jasmonoyl-Isoleucine-Dependent Manner. PLANT & CELL PHYSIOLOGY 2024; 65:928-938. [PMID: 37927069 PMCID: PMC11209552 DOI: 10.1093/pcp/pcad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Wounding caused by insects or abiotic factors such as wind and hail can cause severe stress for plants. Intrigued by the observation that wounding induces expression of genes involved in surface wax synthesis in a jasmonoyl-isoleucine (JA-Ile)-independent manner, the role of wax biosynthesis and respective genes upon wounding was investigated. Wax, a lipid-based barrier, protects plants both from environmental threats and from an uncontrolled loss of water. Its biosynthesis is described to be regulated by abscisic acid (ABA), whereas the main wound signal is the hormone JA-Ile. We show in this study that genes coding for enzymes of surface wax synthesis are induced upon wounding in Arabidopsis thaliana leaves in a JA-Ile-independent but an ABA-dependent manner. Furthermore, the ABA-dependent transcription factor MYB96 is a key regulator of wax biosynthesis upon wounding. On the metabolite level, wound-induced wax accumulation is strongly reduced in JA-Ile-deficient plants, but this induction is only slightly decreased in ABA-reduced plants. To further analyze the ABA-dependent wound response, we conducted wounding experiments in high humidity. They show that high humidity prevents the wound-induced wax accumulation in A. thaliana leaves. Together the data presented in this study show that wound-induced wax accumulation is JA-Ile-dependent on the metabolite level, but the expression of genes coding for enzymes of wax synthesis is regulated by ABA.
Collapse
Affiliation(s)
- Milena Lewandowska
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig Weg 11, Goettingen 37077, Germany
| | - Krzysztof Zienkiewicz
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig Weg 11, Goettingen 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, Goettingen 37077, Germany
| | - Agnieszka Zienkiewicz
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig Weg 11, Goettingen 37077, Germany
| | - Amélie Kelly
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig Weg 11, Goettingen 37077, Germany
| | - Stefanie König
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig Weg 11, Goettingen 37077, Germany
| | - Kirstin Feussner
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig Weg 11, Goettingen 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, Goettingen 37077, Germany
| | - Ljerka Kunst
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ivo Feussner
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig Weg 11, Goettingen 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, Goettingen 37077, Germany
- Department for Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, Goettingen 37077, Germany
| |
Collapse
|
4
|
Kaur D, Schedl A, Lafleur C, Martinez Henao J, van Dam NM, Rivoal J, Bede JC. Arabidopsis Transcriptomics Reveals the Role of Lipoxygenase2 (AtLOX2) in Wound-Induced Responses. Int J Mol Sci 2024; 25:5898. [PMID: 38892085 PMCID: PMC11173247 DOI: 10.3390/ijms25115898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
In wounded Arabidopsis thaliana leaves, four 13S-lipoxygenases (AtLOX2, AtLOX3, AtLOX4, AtLOX6) act in a hierarchical manner to contribute to the jasmonate burst. This leads to defense responses with LOX2 playing an important role in plant resistance against caterpillar herb-ivory. In this study, we sought to characterize the impact of AtLOX2 on wound-induced phytohormonal and transcriptional responses to foliar mechanical damage using wildtype (WT) and lox2 mutant plants. Compared with WT, the lox2 mutant had higher constitutive levels of the phytohormone salicylic acid (SA) and enhanced expression of SA-responsive genes. This suggests that AtLOX2 may be involved in the biosynthesis of jasmonates that are involved in the antagonism of SA biosynthesis. As expected, the jasmonate burst in response to wounding was dampened in lox2 plants. Generally, 1 h after wounding, genes linked to jasmonate biosynthesis, jasmonate signaling attenuation and abscisic acid-responsive genes, which are primarily involved in wound sealing and healing, were differentially regulated between WT and lox2 mutants. Twelve h after wounding, WT plants showed stronger expression of genes associated with plant protection against insect herbivory. This study highlights the dynamic nature of jasmonate-responsive gene expression and the contribution of AtLOX2 to this pathway and plant resistance against insects.
Collapse
Affiliation(s)
- Diljot Kaur
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E., Montréal, QC H1X 2B2, Canada;
| | - Andreas Schedl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 52, 04103 Leipzig, Germany (N.M.v.D.)
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
- German Biomass Research Centre (DBFZ), Torgauer Straße 116, 04347 Leipzig, Germany
| | - Christine Lafleur
- Department of Animal Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | - Julian Martinez Henao
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 52, 04103 Leipzig, Germany (N.M.v.D.)
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyerweg-1, 14979 Großbeeren, Germany
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E., Montréal, QC H1X 2B2, Canada;
| | - Jacqueline C. Bede
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
| |
Collapse
|
5
|
Romero-Contreras YJ, Gonzalez-Serrano F, Formey D, Aragón W, Chacón FI, Torres M, Cevallos MÁ, Dib JR, Rebollar EA, Serrano M. Amphibian skin bacteria display antifungal activity and induce plant defense mechanisms against Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2024; 15:1392637. [PMID: 38654899 PMCID: PMC11035788 DOI: 10.3389/fpls.2024.1392637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Botrytis cinerea is the causal agent of gray mold, which affects a wide variety of plant species. Chemical agents have been used to prevent the disease caused by this pathogenic fungus. However, their toxicity and reduced efficacy have encouraged the development of new biological control alternatives. Recent studies have shown that bacteria isolated from amphibian skin display antifungal activity against plant pathogens. However, the mechanisms by which these bacteria act to reduce the effects of B. cinerea are still unclear. From a diverse collection of amphibian skin bacteria, three proved effective in inhibiting the development of B. cinerea under in vitro conditions. Additionally, the individual application of each bacterium on the model plant Arabidopsis thaliana, Solanum lycopersicum and post-harvest blueberries significantly reduced the disease caused by B. cinerea. To understand the effect of bacteria on the host plant, we analyzed the transcriptomic profile of A. thaliana in the presence of the bacterium C32I and the fungus B. cinerea, revealing transcriptional regulation of defense-related hormonal pathways. Our study shows that bacteria from the amphibian skin can counteract the activity of B. cinerea by regulating the plant transcriptional responses.
Collapse
Affiliation(s)
- Yordan J. Romero-Contreras
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Francisco Gonzalez-Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Wendy Aragón
- Instituto de Biociencias, Universidad Autónoma de Chiapas, Tapachula, Chiapas, Mexico
| | - Florencia Isabel Chacón
- Planta Piloto de Procesos Industriales Microbiológicos (PROIM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
| | - Martha Torres
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Miguel Ángel Cevallos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Julian Rafael Dib
- Planta Piloto de Procesos Industriales Microbiológicos (PROIM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
- Instituto de Microbiología, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
6
|
Mathieu D, Bryson AE, Hamberger B, Singan V, Keymanesh K, Wang M, Barry K, Mondo S, Pangilinan J, Koriabine M, Grigoriev IV, Bonito G, Hamberger B. Multilevel analysis between Physcomitrium patens and Mortierellaceae endophytes explores potential long-standing interaction among land plants and fungi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:304-323. [PMID: 38265362 DOI: 10.1111/tpj.16605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/16/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
The model moss species Physcomitrium patens has long been used for studying divergence of land plants spanning from bryophytes to angiosperms. In addition to its phylogenetic relationships, the limited number of differential tissues, and comparable morphology to the earliest embryophytes provide a system to represent basic plant architecture. Based on plant-fungal interactions today, it is hypothesized these kingdoms have a long-standing relationship, predating plant terrestrialization. Mortierellaceae have origins diverging from other land fungi paralleling bryophyte divergence, are related to arbuscular mycorrhizal fungi but are free-living, observed to interact with plants, and can be found in moss microbiomes globally. Due to their parallel origins, we assess here how two Mortierellaceae species, Linnemannia elongata and Benniella erionia, interact with P. patens in coculture. We also assess how Mollicute-related or Burkholderia-related endobacterial symbionts (MRE or BRE) of these fungi impact plant response. Coculture interactions are investigated through high-throughput phenomics, microscopy, RNA-sequencing, differential expression profiling, gene ontology enrichment, and comparisons among 99 other P. patens transcriptomic studies. Here we present new high-throughput approaches for measuring P. patens growth, identify novel expression of over 800 genes that are not expressed on traditional agar media, identify subtle interactions between P. patens and Mortierellaceae, and observe changes to plant-fungal interactions dependent on whether MRE or BRE are present. Our study provides insights into how plants and fungal partners may have interacted based on their communications observed today as well as identifying L. elongata and B. erionia as modern fungal endophytes with P. patens.
Collapse
Affiliation(s)
- Davis Mathieu
- Genetics and Genome Science Graduate Program, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Abigail E Bryson
- Genetics and Genome Science Graduate Program, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Britta Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Vasanth Singan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Keykhosrow Keymanesh
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Mei Wang
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Stephen Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Jasmyn Pangilinan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Maxim Koriabine
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, 94720, USA
| | - Gregory Bonito
- Genetics and Genome Science Graduate Program, Michigan State University, East Lansing, Michigan, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Björn Hamberger
- Genetics and Genome Science Graduate Program, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Kong CH, Li Z, Li FL, Xia XX, Wang P. Chemically Mediated Plant-Plant Interactions: Allelopathy and Allelobiosis. PLANTS (BASEL, SWITZERLAND) 2024; 13:626. [PMID: 38475470 DOI: 10.3390/plants13050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Plant-plant interactions are a central driver for plant coexistence and community assembly. Chemically mediated plant-plant interactions are represented by allelopathy and allelobiosis. Both allelopathy and allelobiosis are achieved through specialized metabolites (allelochemicals or signaling chemicals) produced and released from neighboring plants. Allelopathy exerts mostly negative effects on the establishment and growth of neighboring plants by allelochemicals, while allelobiosis provides plant neighbor detection and identity recognition mediated by signaling chemicals. Therefore, plants can chemically affect the performance of neighboring plants through the allelopathy and allelobiosis that frequently occur in plant-plant intra-specific and inter-specific interactions. Allelopathy and allelobiosis are two probably inseparable processes that occur together in plant-plant chemical interactions. Here, we comprehensively review allelopathy and allelobiosis in plant-plant interactions, including allelopathy and allelochemicals and their application for sustainable agriculture and forestry, allelobiosis and plant identity recognition, chemically mediated root-soil interactions and plant-soil feedback, and biosynthesis and the molecular mechanisms of allelochemicals and signaling chemicals. Altogether, these efforts provide the recent advancements in the wide field of allelopathy and allelobiosis, and new insights into the chemically mediated plant-plant interactions.
Collapse
Affiliation(s)
- Chui-Hua Kong
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zheng Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Feng-Li Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xin-Xin Xia
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
8
|
Wadhwa N, Kapoor S, Kapoor M. Arabidopsis T-DNA mutants affected in TRDMT1/DNMT2 show differential protein synthesis and compromised stress tolerance. FEBS J 2024; 291:92-113. [PMID: 37584564 DOI: 10.1111/febs.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/18/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023]
Abstract
TRDMT1/DNMT2 belongs to the conserved family of nucleic acid methyltransferases. Unlike the animal systems, studies on TRDMT1/DNMT2 in land plants have been limited. We show that TRDMT1/DNMT2 is strongly conserved in the green lineage. Studies in mosses have previously shown that TRDMT1/DNMT2 plays a crucial role in modulating molecular networks involved in stress perception and signalling and in transcription/stability of specific tRNAs under stress. To gain deeper insight into its biological roles in a flowering plant, we examined more closely the previously reported Arabidopsis SALK_136635C line deficient in TRDMT1/DNMT2 function [Goll MG et al. (2006) Science 311, 395-398]. RNAs derived from Arabidopsis Dnmt2-deficient plants lacked m5 C38 in tRNAAsp . In this study, by transient expression assays we show that Arabidopsis TRDMT1/DNMT2 is distributed in the nucleus, cytoplasm and RNA-processing bodies, suggesting a role for TRDMT1/DNMT2 in RNA metabolic processes possibly by shuttling between cellular compartments. Bright-field and high-resolution SEM and qPCR analysis reveal roles of TRDMT1/DNMT2 in proper growth and developmental progression. Quantitative proteome analysis by LC-MS/MS coupled with qPCR shows AtTRDMT1/AtDNMT2 function to be crucial for protein synthesis and cellular homeostasis via housekeeping roles and proteins with poly-Asp stretches and RNA pol II activity on selected genes are affected in attrdmt1/atdnmt2. This shift in metabolic pathways primes the mutant plants to become increasingly sensitive to oxidative and osmotic stress. Taken together, our study sheds light on the mechanistic role of TRDMT1/DNMT2 in a flowering plant.
Collapse
Affiliation(s)
- Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Sanjay Kapoor
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Meenu Kapoor
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
9
|
Wang M, Fan X, Ding F. Jasmonate: A Hormone of Primary Importance for Temperature Stress Response in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:4080. [PMID: 38140409 PMCID: PMC10748343 DOI: 10.3390/plants12244080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Temperature is a critical environmental factor that plays a vital role in plant growth and development. Temperatures below or above the optimum ranges lead to cold or heat stress, respectively. Temperature stress retards plant growth and development, and it reduces crop yields. Jasmonates (JAs) are a class of oxylipin phytohormones that play various roles in growth, development, and stress response. In recent years, studies have demonstrated that cold and heat stress affect JA biosynthesis and signaling, and JA plays an important role in the response to temperature stress. Recent studies have provided a large body of information elucidating the mechanisms underlying JA-mediated temperature stress response. In the present review, we present recent advances in understanding the role of JA in the response to cold and heat stress, and how JA interacts with other phytohormones during this process.
Collapse
Affiliation(s)
- Meiling Wang
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | | | - Fei Ding
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| |
Collapse
|
10
|
Vӧlz R, Kim KT, Alazem M, Harris W, Hwang S, Lee YH. Lyso-phosphatidylethanolamine triggers immunity against necrotrophs by promoting JA-signaling and ROS-homeostasis. PLANT MOLECULAR BIOLOGY 2023; 113:237-247. [PMID: 38085407 PMCID: PMC10721665 DOI: 10.1007/s11103-023-01385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/06/2023] [Indexed: 12/17/2023]
Abstract
Modulation of the plant defense response by bioactive molecules is of increasing interest. However, despite plant cell lipids being one of the major cellular components, their role in plant immunity remains elusive. We found that the exogenous application of the cell-membrane localized phospholipid lyso-phosphatidylethanolamine (LPE) reprograms the plant transcript profile in favor of defense-associated genes thereby priming the plant immune system. Exogenous LPE application to different Arabidopsis accessions increases resistance against the necrotrophic pathogens, Botrytis cinerea and Cochliobolus heterostrophus. We found that the immunity-promoting effect of LPE is repealed in the jasmonic acid (JA) receptor mutant coi1, but multiplied in the JA-hypersensitive mutant feronia (fer-4). The JA-signaling repressor JAZ1 is degraded following LPE administration, suggesting that JA-signaling is promoted by LPE. Following LPE-treatment, reactive oxygen species (ROS) accumulation is affected in coi1 and fer-4. Moreover, FER signaling inhibitors of the RALF family are strongly expressed after LPE application, and RALF23 is internalized in stress granules, suggesting the LPE-mediated repression of FER-signaling by promoting RALF function. The in-situ increase of LPE-abundance in the LPE-catabolic mutants lpeat1 and lpeat2 elevates plant resistance to B. cinerea, in contrast to the endogenous LPE-deficient mutant pla2-alpha. We show that LPE increases plant resistance against necrotrophs by promoting JA-signaling and ROS-homeostasis, thereby paving the way for the LPE-targeted genomic engineering of crops to raise their ability to resist biotic threats.
Collapse
Affiliation(s)
- Ronny Vӧlz
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon, 57922, Korea
| | - Mazen Alazem
- Donald Danforth Plant Science Center, St Louis, Missouri, USA
| | - William Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | | | - Yong-Hwan Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea.
- Center for Fungal Genetic Resources, Seoul National University, Seoul, 08826, Korea.
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea.
- Center for Plant Microbiome Research, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
11
|
Xu Z, Cheng J, Wang T, Huang Q, Liu P, Zhang M, Zhang P, He L. Novel Jasmonic Acid-Coumarin Pathway in the Eggplant That Inhibits Vitellogenin Gene Expression To Prevent Mite Reproduction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13979-13987. [PMID: 37698370 DOI: 10.1021/acs.jafc.3c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Plants activate direct and indirect defense mechanisms in response to perceived herbivore invasion, which results in negative consequences for herbivores. Tetranychus cinnabarinus is a polyphagous generalist herbivore that inflicts substantial agricultural and horticultural damage. Our study revealed that mite feeding significantly increased jasmonic acid (JA) in the eggplant. The damage inflicted by the mites decreased considerably following the artificial application of JA, thereby indicating that JA initiated the defense response of the eggplant against mites. The transcriptomic and metabolomic analyses demonstrated the activation of the JA-coumarin pathway in response to mite feeding. This pathway protects the eggplant by suppressing the reproductive capacity and population size of the mites. The JA and coumarin treatments suppressed the vitellogenin gene (TcVg6) expression level. Additionally, RNA interference with TcVg6 significantly reduced the egg production and hatching rate of mites. In conclusion, the JA-coumarin pathway in the eggplant decreases the egg-hatching rate of mites through suppression of TcVg6.
Collapse
Affiliation(s)
- Zhifeng Xu
- College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, People's Republic of China
| | - Jinhui Cheng
- College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, People's Republic of China
| | - Tongyang Wang
- College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, People's Republic of China
| | - Qianqian Huang
- College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, People's Republic of China
| | - Peilin Liu
- College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, People's Republic of China
| | - Mengyu Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, People's Republic of China
| | - Ping Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, People's Republic of China
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
12
|
Lewandowska M, Zienkiewicz A, Feussner K, König S, Kunst L, Feussner I. Wound-induced triacylglycerol biosynthesis is jasmonoy-l-isoleucin and abscisic acid independent. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:509-517. [PMID: 36800436 DOI: 10.1111/plb.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/14/2023] [Indexed: 05/17/2023]
Abstract
Triacylglycerol (TAG) plays a significant role during plant stress - it maintains lipid homeostasis. Upon wounding plants accumulate TAG, likely as a storage form of fatty acids (FAs) that originate from damaged membranes. This study asked if this process depends on the two phytohormones jasmonoyl-isoleucine (JA-Ile) and abscisic acid (ABA), which are involved in wound signalling. To analyse regulation of wound-induced TAG accumulation, we used mutants deficient in JA-Ile, with reduced ABA and the myb96 mutant, which is deficient in an ABA-dependent transcription factor. The expression of genes involved in TAG biosynthesis, and TAG content after wounding were analysed via LC-MS and GC-FID, plastidial lipid content in all mentioned mutant lines was also determined. The localization of newly synthesized TAG was investigated using lipid droplet staining. TAG accumulation upon wounding was confirmed as well as the fact that the newly synthesized TAG are mostly composed of polyunsaturated fatty acids. Nevertheless, all tested mutant lines were able to accumulate TAG similar to the WT. We observed differences in reduction of plastidial lipids - in WT plants this was higher than in mutant lines. Newly synthesized TAGs were stored in lipid droplets at and around the wounded area. Our results show that TAG accumulation upon wounding is not dependent on JA-Ile or ABA. The newly synthesized TAG species are composed of unsaturated fatty acids of membrane origin, and most likely serves as a transient energy store.
Collapse
Affiliation(s)
- M Lewandowska
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - A Zienkiewicz
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - K Feussner
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - S König
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - L Kunst
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - I Feussner
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- Department for Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| |
Collapse
|
13
|
Macioszek VK, Jęcz T, Ciereszko I, Kononowicz AK. Jasmonic Acid as a Mediator in Plant Response to Necrotrophic Fungi. Cells 2023; 12:1027. [PMID: 37048100 PMCID: PMC10093439 DOI: 10.3390/cells12071027] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Jasmonic acid (JA) and its derivatives, all named jasmonates, are the simplest phytohormones which regulate multifarious plant physiological processes including development, growth and defense responses to various abiotic and biotic stress factors. Moreover, jasmonate plays an important mediator's role during plant interactions with necrotrophic oomycetes and fungi. Over the last 20 years of research on physiology and genetics of plant JA-dependent responses to pathogens and herbivorous insects, beginning from the discovery of the JA co-receptor CORONATINE INSENSITIVE1 (COI1), research has speeded up in gathering new knowledge on the complexity of plant innate immunity signaling. It has been observed that biosynthesis and accumulation of jasmonates are induced specifically in plants resistant to necrotrophic fungi (and also hemibiotrophs) such as mostly investigated model ones, i.e., Botrytis cinerea, Alternaria brassicicola or Sclerotinia sclerotiorum. However, it has to be emphasized that the activation of JA-dependent responses takes place also during susceptible interactions of plants with necrotrophic fungi. Nevertheless, many steps of JA function and signaling in plant resistance and susceptibility to necrotrophs still remain obscure. The purpose of this review is to highlight and summarize the main findings on selected steps of JA biosynthesis, perception and regulation in the context of plant defense responses to necrotrophic fungal pathogens.
Collapse
Affiliation(s)
- Violetta Katarzyna Macioszek
- Laboratory of Plant Physiology, Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Tomasz Jęcz
- Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Iwona Ciereszko
- Laboratory of Plant Physiology, Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Andrzej Kiejstut Kononowicz
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
14
|
Li T, Feng M, Chi Y, Shi X, Sun Z, Wu Z, Li A, Shi W. Defensive Resistance of Cowpea Vigna unguiculata Control Megalurothrips usitatus Mediated by Jasmonic Acid or Insect Damage. PLANTS (BASEL, SWITZERLAND) 2023; 12:942. [PMID: 36840292 PMCID: PMC9967092 DOI: 10.3390/plants12040942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Vigna unguiculata is a vital vegetable crop in Southeast Asia, and Megalurothrips usitatus can cause huge damage to this crop. Enhancing the resistance of V. unguiculata against M. usitatus is a promising way to protect this crop; however, there is limited information regarding the mechanism underlying the resistance of V. unguiculata against M. usitatus. Here, a behavior assay was performed to explore the resistance of V. unguiculata against M. usitatus after insect damage or treatment by jasmonic acid (JA). Furthermore, transcriptome and metabonomics analysis was used to detect the putative mechanism underlying the resistance of V. unguiculata against M. usitatus. The pre-treatment of Vigna unguiculata with JA or infestation with Megalurothrips usitatus alleviated the damage resulting from the pest insect. We further identified differentially expressed genes and different metabolites involved in flavonoid biosynthesis and alpha-linolenic acid metabolism. Genes of chalcone reductase and shikimate O-hydroxycinnamoyltransferase involved in flavonoid biosynthesis, as well as lipoxygenase and acyl-CoA oxidase involved in alpha-linolenic acid metabolism, were upregulated in plants after herbivory or JA supplementation. The upregulation of these genes contributed to the high accumulation of metabolites involved in flavonoid biosynthesis and the alpha-linolenic acid metabolism pathway. These transcriptional and metabolite changes are potentially responsible for plant defense and a putative regulatory model is thus proposed to illustrate the cowpea defense mechanism against insect attack. Our study provides candidate targets for the breeding of varieties with resistance to insect herbivory by molecular technology.
Collapse
Affiliation(s)
- Tao Li
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mingyue Feng
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuanming Chi
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xing Shi
- Plant Protection Station of Guangxi Zhuang Autonomous Region, Nanning 530007, China
| | - Zilin Sun
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhen Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Aomei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wangpeng Shi
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Pseudophosphorylation of Arabidopsis jasmonate biosynthesis enzyme lipoxygenase 2 via mutation of Ser 600 inhibits enzyme activity. J Biol Chem 2023; 299:102898. [PMID: 36639029 PMCID: PMC9947334 DOI: 10.1016/j.jbc.2023.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Jasmonates are oxylipin phytohormones critical for plant resistance against necrotrophic pathogens and chewing herbivores. An early step in their biosynthesis is catalyzed by non-heme iron lipoxygenases (LOX; EC 1.13.11.12). In Arabidopsis thaliana, phosphorylation of Ser600 of AtLOX2 was previously reported, but whether phosphorylation regulates AtLOX2 activity is unclear. Here, we characterize the kinetic properties of recombinant WT AtLOX2 (AtLOX2WT). AtLOX2WT displays positive cooperativity with α-linolenic acid (α-LeA, jasmonate precursor), linoleic acid (LA), and arachidonic acid (AA) as substrates. Enzyme velocity with endogenous substrates α-LeA and LA increased with pH. For α-LeA, this increase was accompanied by a decrease in substrate affinity at alkaline pH; thus, the catalytic efficiency for α-LeA was not affected over the pH range tested. Analysis of Ser600 phosphovariants demonstrated that pseudophosphorylation inhibits enzyme activity. AtLOX2 activity was not detected in phosphomimics Atlox2S600D and Atlox2S600M when α-LeA or AA were used as substrates. In contrast, phosphonull mutant Atlox2S600A exhibited strong activity with all three substrates, α-LeA, LA, and AA. Structural comparison between the AtLOX2 AlphaFold model and a complex between 8R-LOX and a 20C polyunsaturated fatty acid suggests a close proximity between AtLOX2 Ser600 and the carboxylic acid head group of the polyunsaturated fatty acid. This analysis indicates that Ser600 is located at a critical position within the AtLOX2 structure and highlights how Ser600 phosphorylation could affect AtLOX2 catalytic activity. Overall, we propose that AtLOX2 Ser600 phosphorylation represents a key mechanism for the regulation of AtLOX2 activity and, thus, the jasmonate biosynthesis pathway and plant resistance.
Collapse
|
16
|
Xue R, Li Q, Guo R, Yan H, Ju X, Liao L, Zeng R, Song Y, Wang J. Rice Defense Responses Orchestrated by Oral Bacteria of the Rice Striped Stem Borer, Chilo suppressalis. RICE (NEW YORK, N.Y.) 2023; 16:1. [PMID: 36622503 PMCID: PMC9829949 DOI: 10.1186/s12284-022-00617-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Plant defenses in response to chewing insects are generally regulated by jasmonic acid (JA) signaling pathway, whereas salicylic acid (SA) signaling is mainly involved in plant defense against biotrophic pathogens and piercing-sucking insects. Previous studies showed that both JA- and SA-related defenses in rice plants were triggered by the infestation of the rice striped stem borer (SSB, Chilo suppressalis), a destructive pest causing severe damage to rice production. Herbivore-associated microbes play an important role in modulating plant-insect interaction, and thus we speculate that the SSB symbiotic microbes acting as a hidden player may cause this anomalous result. The antibiotics (AB) treatment significantly depressed the performance of field-collected SSB larvae on rice plants, and reduced the quantities of bacteria around the wounds of rice stems compared to non-AB treatment. In response to mechanical wounding and oral secretions (OS) collected from non-AB treated larvae, rice plants exhibited lower levels of JA-regulated defenses, but higher levels of SA-regulated defenses compared to the treatment of OS from AB-treated larvae determined by using a combination of biochemical and molecular methods. Among seven culturable bacteria isolated from the OS of SSB larvae, Enterobacter and Acinetobacter contributed to the suppression of JA signaling-related defenses in rice plants, and axenic larvae reinoculated with these two strains displayed better performance on rice plants. Our findings demonstrate that SSB larvae exploit oral secreted bacteria to interfere with plant anti-herbivore defense and avoid fully activating the JA-regulated antiherbivore defenses of rice plants.
Collapse
Affiliation(s)
- Rongrong Xue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Qing Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Ruiqing Guo
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Hui Yan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Xueyang Ju
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Lu Liao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jie Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
17
|
Decsi K, Kutasy B, Hegedűs G, Alföldi ZP, Kálmán N, Nagy Á, Virág E. Natural immunity stimulation using ELICE16INDURES® plant conditioner in field culture of soybean. Heliyon 2023; 9:e12907. [PMID: 36691550 PMCID: PMC9860300 DOI: 10.1016/j.heliyon.2023.e12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Recently, climate change has had an increasing impact on the world. Innate defense mechanisms operating in plants - such as PAMP-triggered Immunity (PTI) - help to reduce the adverse effects caused by various abiotic and biotic stressors. In this study, the effects of ELICE16INDURES® plant conditioner for organic farming, developed by the Research Institute for Medicinal Plants and Herbs Ltd. Budakalász Hungary, were studied in a soybean population in Northern Hungary. The active compounds and ingredients of this product were selected in such a way as to facilitate the triggering of general plant immunity without the presence and harmful effects of pathogens, thereby strengthening the healthy plant population and preparing it for possible stress effects. In practice, treatments of this agent were applied at two different time points and two concentrations. The conditioning effect was well demonstrated by using agro-drone and ENDVI determination in the soybean field. The genetic background of healthier plants was investigated by NGS sequencing, and by the expression levels of genes encoding enzymes involved in the catalysis of metabolic pathways regulating PTI. The genome-wide transcriptional profiling resulted in 13 contigs related to PAMP-triggered immunity and activated as a result of the treatments. Further analyses showed 16 additional PTI-related contigs whose gene expression changed positively as a result of the treatments. The gene expression values of genes encoded in these contigs were determined by in silico mRNA quantification and validated by RT-qPCR. Both - relatively low and high treatments - showed an increase in gene expression of key genes involving AOC, IFS, MAPK4, MEKK, and GST. Transcriptomic results indicated that the biosyntheses of jasmonic acid (JA), salicylic acid (SA), phenylpropanoid, flavonoid, phytoalexin, and cellular detoxification processes were triggered in the appropriate molecular steps and suggested that plant immune reactions may be activated also artificially, and innate immunity can be enhanced with proper plant biostimulants.
Collapse
Affiliation(s)
- Kincső Decsi
- Department of Plant Physiology and Plant Ecology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary
| | - Barbara Kutasy
- Department of Plant Physiology and Plant Ecology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary
| | - Géza Hegedűs
- EduCoMat Ltd., Keszthely, Hungary
- Department of Information Technology and Its Applications, Faculty of Information Technology, University of Pannonia, Zalaegerszeg, Hungary
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
| | - Zoltán Péter Alföldi
- Department of Environmental Biology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary
| | - Nikoletta Kálmán
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Ágnes Nagy
- Research Institute for Medicinal Plants and Herbs Ltd., Budakalász, Hungary
| | - Eszter Virág
- EduCoMat Ltd., Keszthely, Hungary
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
- Research Institute for Medicinal Plants and Herbs Ltd., Budakalász, Hungary
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
18
|
Ruberti C, Feitosa-Araujo E, Xu Z, Wagner S, Grenzi M, Darwish E, Lichtenauer S, Fuchs P, Parmagnani AS, Balcerowicz D, Schoenaers S, de la Torre C, Mekkaoui K, Nunes-Nesi A, Wirtz M, Vissenberg K, Van Aken O, Hause B, Costa A, Schwarzländer M. MCU proteins dominate in vivo mitochondrial Ca2+ uptake in Arabidopsis roots. THE PLANT CELL 2022; 34:4428-4452. [PMID: 35938694 PMCID: PMC9614509 DOI: 10.1093/plcell/koac242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Ca2+ signaling is central to plant development and acclimation. While Ca2+-responsive proteins have been investigated intensely in plants, only a few Ca2+-permeable channels have been identified, and our understanding of how intracellular Ca2+ fluxes is facilitated remains limited. Arabidopsis thaliana homologs of the mammalian channel-forming mitochondrial calcium uniporter (MCU) protein showed Ca2+ transport activity in vitro. Yet, the evolutionary complexity of MCU proteins, as well as reports about alternative systems and unperturbed mitochondrial Ca2+ uptake in knockout lines of MCU genes, leave critical questions about the in vivo functions of the MCU protein family in plants unanswered. Here, we demonstrate that MCU proteins mediate mitochondrial Ca2+ transport in planta and that this mechanism is the major route for fast Ca2+ uptake. Guided by the subcellular localization, expression, and conservation of MCU proteins, we generated an mcu triple knockout line. Using Ca2+ imaging in living root tips and the stimulation of Ca2+ transients of different amplitudes, we demonstrated that mitochondrial Ca2+ uptake became limiting in the triple mutant. The drastic cell physiological phenotype of impaired subcellular Ca2+ transport coincided with deregulated jasmonic acid-related signaling and thigmomorphogenesis. Our findings establish MCUs as a major mitochondrial Ca2+ entry route in planta and link mitochondrial Ca2+ transport with phytohormone signaling.
Collapse
Affiliation(s)
| | - Elias Feitosa-Araujo
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, D-48143, Germany
| | - Zhaolong Xu
- Department of Biosciences, University of Milano, Milan, I-20133, Italy
- Jiangsu Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | | | - Matteo Grenzi
- Department of Biosciences, University of Milano, Milan, I-20133, Italy
| | - Essam Darwish
- Department of Biology, Lund University, Lund, 22362, Sweden
- Agricultural Botany Department, Faculty of Agriculture, Plant Physiology Section, Cairo University, Giza, 12613, Egypt
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, D-48143, Germany
| | | | | | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
| | - Carolina de la Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, D-68167, Germany
| | - Khansa Mekkaoui
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), D-06120, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Markus Wirtz
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, Heidelberg, D-69120, Germany
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
- Department of Agriculture, Plant Biochemistry and Biotechnology Lab, Hellenic Mediterranean University, Heraklion, 71410, Greece
| | | | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), D-06120, Germany
| | - Alex Costa
- Authors for correspondence: (A.C); (M.S.)
| | | |
Collapse
|
19
|
Orf I, Tenenboim H, Omranian N, Nikoloski Z, Fernie AR, Lisec J, Brotman Y, Bromke MA. Transcriptomic and Metabolomic Analysis of a Pseudomonas-Resistant versus a Susceptible Arabidopsis Accession. Int J Mol Sci 2022; 23:ijms232012087. [PMID: 36292941 PMCID: PMC9603445 DOI: 10.3390/ijms232012087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022] Open
Abstract
Accessions of one plant species may show significantly different levels of susceptibility to stresses. The Arabidopsis thaliana accessions Col-0 and C24 differ significantly in their resistance to the pathogen Pseudomonas syringae pv. tomato (Pst). To help unravel the underlying mechanisms contributing to this naturally occurring variance in resistance to Pst, we analyzed changes in transcripts and compounds from primary and secondary metabolism of Col-0 and C24 at different time points after infection with Pst. Our results show that the differences in the resistance of Col-0 and C24 mainly involve mechanisms of salicylic-acid-dependent systemic acquired resistance, while responses of jasmonic-acid-dependent mechanisms are shared between the two accessions. In addition, arginine metabolism and differential activity of the biosynthesis pathways of aliphatic glucosinolates and indole glucosinolates may also contribute to the resistance. Thus, this study highlights the difference in the defense response strategies utilized by different genotypes.
Collapse
Affiliation(s)
- Isabel Orf
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Hezi Tenenboim
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Nooshin Omranian
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Jan Lisec
- Department of Analytical Chemistry, Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Correspondence: (Y.B.); (M.A.B.)
| | - Mariusz A. Bromke
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, ul. Chałubińskiego 10, 50-367 Wrocław, Poland
- Correspondence: (Y.B.); (M.A.B.)
| |
Collapse
|
20
|
Gao X, Dang X, Yan F, Li Y, Xu J, Tian S, Li Y, Huang K, Lin W, Lin D, Wang Z, Wang A. ANGUSTIFOLIA negatively regulates resistance to Sclerotinia sclerotiorum via modulation of PTI and JA signalling pathways in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2022; 23:1091-1106. [PMID: 35426480 PMCID: PMC9276947 DOI: 10.1111/mpp.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Sclerotinia sclerotiorum is a devastating pathogen that infects a broad range of host plants. The mechanism underlying plant defence against fungal invasion is still not well characterized. Here, we report that ANGUSTIFOLIA (AN), a CtBP family member, plays a role in the defence against S. sclerotiorum attack. Arabidopsis an mutants exhibited stronger resistance to S. sclerotiorum at the early stage of infection than wild-type plants. Accordingly, an mutants exhibited stronger activation of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses, including mitogen-activated protein kinase activation, reactive oxygen species accumulation, callose deposition, and the expression of PTI-responsive genes, upon treatment with PAMPs/microbe-associated molecular patterns. Moreover, Arabidopsis lines overexpressing AN were more susceptible to S. sclerotiorum and showed defective PTI responses. Our luminometry, bimolecular fluorescence complementation, coimmunoprecipitation, and in vitro pull-down assays indicate that AN interacts with allene oxide cyclases (AOC), essential enzymes involved in jasmonic acid (JA) biosynthesis, negatively regulating JA biosynthesis in response to S. sclerotiorum infection. This work reveals AN is a negative regulator of the AOC-mediated JA signalling pathway and PTI activation.
Collapse
Affiliation(s)
- Xiuqin Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xie Dang
- Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fengting Yan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuhua Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jing Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shifu Tian
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yaling Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Kun Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wenwei Lin
- Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Deshu Lin
- Haixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Marine and Agricultural Biotechnology CenterInstitute of OceanographyMinjiang UniversityFuzhouChina
| | - Airong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
21
|
Bacillus subtilis biofilm matrix components target seed oil bodies to promote growth and anti-fungal resistance in melon. Nat Microbiol 2022; 7:1001-1015. [PMID: 35668112 PMCID: PMC9246715 DOI: 10.1038/s41564-022-01134-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Beneficial microorganisms are used to stimulate the germination of seeds; however, their growth-promoting mechanisms remain largely unexplored. Bacillus subtilis is commonly found in association with different plant organs, providing protection against pathogens or stimulating plant growth. We report that application of B. subtilis to melon seeds results in genetic and physiological responses in seeds that alter the metabolic and developmental status in 5-d and 1-month-old plants upon germination. We analysed mutants in different components of the extracellular matrix of B. subtilis biofilms in interaction with seeds and found cooperation in bacterial colonization of seed storage tissues and growth promotion. Combining confocal microscopy with fluorogenic probes, we found that two specific components of the extracellular matrix, amyloid protein TasA and fengycin, differentially increased the concentrations of reactive oxygen species inside seeds. Further, using electron and fluorescence microscopy and metabolomics, we showed that both TasA and fengycin targeted the oil bodies in the seed endosperm, resulting in specific changes in lipid metabolism and accumulation of glutathione-related molecules. In turn, this results in two different plant growth developmental programmes: TasA and fengycin stimulate the development of radicles, and fengycin alone stimulate the growth of adult plants and resistance in the phylloplane to the fungus Botrytis cinerea. Understanding mechanisms of bacterial growth promotion will enable the design of bespoke growth promotion strains. Mechanisms of growth promotion of Bacillus subtilis on melon seeds are identified using a combination of multi-omics and microscopy.
Collapse
|
22
|
Guzha A, McGee R, Scholz P, Hartken D, Lüdke D, Bauer K, Wenig M, Zienkiewicz K, Herrfurth C, Feussner I, Vlot AC, Wiermer M, Haughn G, Ischebeck T. Cell wall-localized BETA-XYLOSIDASE4 contributes to immunity of Arabidopsis against Botrytis cinerea. PLANT PHYSIOLOGY 2022; 189:1794-1813. [PMID: 35485198 PMCID: PMC9237713 DOI: 10.1093/plphys/kiac165] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 05/15/2023]
Abstract
Plant cell walls constitute physical barriers that restrict access of microbial pathogens to the contents of plant cells. The primary cell wall of multicellular plants predominantly consists of cellulose, hemicellulose, and pectin, and its composition can change upon stress. BETA-XYLOSIDASE4 (BXL4) belongs to a seven-member gene family in Arabidopsis (Arabidopsis thaliana), one of which encodes a protein (BXL1) involved in cell wall remodeling. We assayed the influence of BXL4 on plant immunity and investigated the subcellular localization and enzymatic activity of BXL4, making use of mutant and overexpression lines. BXL4 localized to the apoplast and was induced upon infection with the necrotrophic fungal pathogen Botrytis cinerea in a jasmonoyl isoleucine-dependent manner. The bxl4 mutants showed a reduced resistance to B. cinerea, while resistance was increased in conditional overexpression lines. Ectopic expression of BXL4 in Arabidopsis seed coat epidermal cells rescued a bxl1 mutant phenotype, suggesting that, like BXL1, BXL4 has both xylosidase and arabinosidase activity. We conclude that BXL4 is a xylosidase/arabinosidase that is secreted to the apoplast and its expression is upregulated under pathogen attack, contributing to immunity against B. cinerea, possibly by removal of arabinose and xylose side-chains of polysaccharides in the primary cell wall.
Collapse
Affiliation(s)
| | - Robert McGee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
| | - Denise Hartken
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen Germany
| | | | - Kornelia Bauer
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
- UMK Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| | - A Corina Vlot
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen Germany
- Freie Universität Berlin, Institute of Biology, Dahlem Centre of Plant Sciences, Biochemistry of Plant-Microbe Interactions, Königin-Luise-Str. 12-16, 14195 Berlin, Germany
| | - George Haughn
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | |
Collapse
|
23
|
Pyo Y, Moon H, Nugroho ABD, Yang SW, Jung IL, Kim DH. Transcriptome analysis revealed that jasmonic acid biosynthesis/signaling is involved in plant response to Strontium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113552. [PMID: 35483146 DOI: 10.1016/j.ecoenv.2022.113552] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Strontium (Sr) has become an increasing global threat for both environment and human health due to its radioactive isotope, Sr-90 which can be found in the nuclear-contaminated soils and water. Although excessive Sr has been known to be toxic to plant growth and development, the molecular mechanisms underlying plant response to Sr stress, especially on the transcription level, remains largely unknown. To date, there is no published genome-wide transcriptome data available for the plant responses to Sr toxicity. Therefore, we aimed to gain insight on the molecular events occurring in plants in Sr toxicity condition by comparing the genome-wide gene expression profiles between control and Sr-treated plants using RNA-seq analysis. A total of 842 differentially expressed genes (DEGs) were identified in response to Sr stress compared to the control. Based on the analysis of DEGs using Gene Ontology (GO), DEGs were significantly enriched in the GO terms of response to salicylic acid (SA), response to jasmonic acid (JA), and defense response to bacterium. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that DEGs were mainly involved in metabolic processes including phenylpropanoid biosynthesis and alpha-linolenic acid metabolism, which is known as a precursor of JA biosynthesis. Furthermore, MapMan analysis revealed that a number of genes related to the biotic stress such as pathogenesis-related protein (PR) genes were highly up-regulated under Sr stress. Taken together, this study revealed that JA biosynthesis and/or signaling might be associated with plant response to Sr stress, and play important roles to maintain proper growth and development under Sr stress.
Collapse
Affiliation(s)
- Youngjae Pyo
- Department of Radiation Biology, Korea Atomic Energy Research Institute, Daejeon 34057, South Korea
| | - Heewon Moon
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | | | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Il Lae Jung
- Department of Radiation Biology, Korea Atomic Energy Research Institute, Daejeon 34057, South Korea; Department of Radiation Science and Technology, University of Science and Technology (UST), Daejeon 34113, South Korea.
| | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, South Korea; Research Center for Plant Plasticity, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
24
|
Mall M, Shanker K, Samad A, Kalra A, Sundaresan V, Shukla AK. Stress responsiveness of vindoline accumulation in Catharanthus roseus leaves is mediated through co-expression of allene oxide cyclase with pathway genes. PROTOPLASMA 2022; 259:755-773. [PMID: 34459997 DOI: 10.1007/s00709-021-01701-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Vindoline is an important alkaloid produced in Catharanthus roseus leaves. It is the more important monomer of the scarce and costly anticancer bisindole alkaloids, vincristine, and vinblastine, as unlike catharanthine (the other monomer), its biosynthesis is restricted to the leaves. Here, biotic (bacterial endophyte, phytoplasma, virus) and abiotic (temperature, salinity, SA, MeJa) factors were studied for their effect on vindoline accumulation in C. roseus. Variations in vindoline pathway-related gene expression were reflected in changes in vindoline content. Since allene oxide cyclase (CrAOC) is involved in jasmonate biosynthesis and MeJa modulates many vindoline pathway genes, the correlation between CrAOC expression and vindoline content was studied. It was taken up for full-length cloning, tissue-specific expression profiling, in silico analyses, and upstream genomic region analysis for cis-regulatory elements. Co-expression analysis of CrAOC with vindoline metabolism-related genes under the influence of aforementioned abiotic/biotic factors indicated its stronger direct correlation with the tabersonine-to-vindoline genes (t16h, omt, t3o, t3r, nmt, d4h, dat) as compared to the pre-tabersonine genes (tdc, str, sgd). Its expression was inversely related to that of downstream-acting peroxidase (prx) (except under temperature stress). Direct/positive relationship of CrAOC expression with vindoline content established it as a key gene modulating vindoline accumulation in C. roseus.
Collapse
Affiliation(s)
- Maneesha Mall
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India
| | - Karuna Shanker
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India
| | - Abdul Samad
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India
| | - Alok Kalra
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India
| | - Velusamy Sundaresan
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, Karnataka, India
| | - Ashutosh K Shukla
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India.
| |
Collapse
|
25
|
Rahman J, Baldwin IT, Gase K. California TRV-based VIGS vectors mediate gene silencing at elevated temperatures but with greater growth stunting. BMC PLANT BIOLOGY 2021; 21:553. [PMID: 34809584 PMCID: PMC8607596 DOI: 10.1186/s12870-021-03324-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Tobacco rattle virus (TRV) based virus-induced gene silencing (VIGS), a widely used functional genomics tool, requires growth temperatures typically lower than those of the plant's native environment. Enabling VIGS under native conditions in the field according to applicable safety regulations could be a revolutionary advance for ecological research. RESULTS Here, we report the development of an enhanced thermal tolerant VIGS vector system based on a TRV California isolate. cDNA clones representing the whole viral genome were sequenced and used to construct separate binary plant transformation vectors for functional elements of RNA1 (6765 nt) and RNA2 (3682 nt). VIGS of target genes was induced by transient transformation of the host plant with both vectors or by treating the host plant with sap from already VIGS induced plants. In Nicotiana attenuata the silencing efficiency of the PDS (phytoene desaturase) gene was 90% at 28 °C and 78% at 30 °C. Silencing at these temperatures was more prominent and durable than silencing induced by the widely used TRV PpK20-based pBINTRA6/pTV00 system, but was associated with a viral phenotype. Differences in the suppressor protein and RNA dependent RNA polymerase sequences between the TRV California isolate and PpK20 may be the reason for their different thermal tolerance. CONCLUSIONS The new TRV California-based VIGS vectors induce gene silencing in Nicotiana attenuata at higher temperatures than the existing pBINTRA6/pTV00 vector system, but cause greater growth defects. The new vector system opens up an avenue to study genes functions in planta under field conditions.
Collapse
Affiliation(s)
- Jamilur Rahman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
- Present address: Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| |
Collapse
|
26
|
Nazim M, Ali M, Shahzad K, Ahmad F, Nawaz F, Amin M, Anjum S, Nasif O, Ali Alharbi S, Fahad S, Danish S, Datta R. Kaolin and Jasmonic acid improved cotton productivity under water stress conditions. Saudi J Biol Sci 2021; 28:6606-6614. [PMID: 34764776 PMCID: PMC8568989 DOI: 10.1016/j.sjbs.2021.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 11/22/2022] Open
Abstract
Drought is one of the most emerging threat that causes a severe reduction in cotton plant growth and development. Being cotton is a major cash crop has great threat to prevailing drought events in Pakistan. A field experiment was conducted in Kharif season 2018 at Research Area of MNS-University of Agriculture, Multan, Pakistan to assess the role of foliar applied kaolin and jasmonic acid on vegetative growth, gas exchange and reproductive traits of cotton under normal irrigated and artificial water deficit conditions. The experiment was laid -out in a factorial randomized complete block design with split - split plot arrangement. Main plots were allocated for irrigation levels, sub-plots for two -cotton genotypes viz. NIAB - 878 and SLH - 19 while sub - sub plots for treatments of kaolin and Jasmonic acid. Water deficit stress was created by skipping irrigation at flowering for 21 days. Foliar sprays of Kaolin (5%, w/v) and Jasmonic acid (100 μM) were applied alone or in combination at 60 days after planntinon both to normal irrigated and water-stresse skip irrigation while irrigation water alone was sprayed in control plots. Both cotton genotypes responded variably to normal irrigated and skip conditions. Skipping irrigation for up to 21 days at flowering caused a significant decrease in leaf relative water content, SPAD values, net photosynthetic rate and seed cotton yield in both the genotypes. Seed cotton yield showed an overall decline of 24.7% in skip over Normal irrigated crop. The genotype NIAB - 878 produced maximum seed cotton yield of 3.304 Mg ha-1 in normal that dropped to 2.579 Mg ha-1 in skip, thus showing an average decline of 21.9 %. Similarly, SLH - 19 produced 2.537 Mg ha-1 seed cotton under normal that dropped to 1.822 Mg ha-1 in skip, showing an average decline of 28.2%. The Application of Kaolin and JA Jasmonic acid, either applied individually or in combination, improved vegetative and reproductive development of both cotton varieties in normal and skip regimes. However, combined kaolin and Jasmonic Acid application proved to be more beneficial in terms of seed cotton production and other parameters studied.
Collapse
Affiliation(s)
- Muhammad Nazim
- Department of Agronomy, MNS-University of Agriculture, Multan 66000, Pakistan
| | - Muqarrab Ali
- Department of Agronomy, MNS-University of Agriculture, Multan 66000, Pakistan
| | - Khurram Shahzad
- Department of Soil Science, Faculty of Agriculture, Lasbella University of Agriculture, Water and Marine Sciences, Uthal, Balochistan 90150, Pakistan
| | - Fiaz Ahmad
- Plant Physiology/ Chemistry Section, Central Cotton Research Institute, Multan 66000, Pakistan
| | - Fahim Nawaz
- Department of Agronomy, MNS-University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Amin
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Shazia Anjum
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Omaima Nasif
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, P.O. Box-2925, Riyadh 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, Haripur 22620, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic
| |
Collapse
|
27
|
Sun Z, Zang Y, Zhou L, Song Y, Chen D, Zhang Q, Liu C, Yi Y, Zhu B, Fu D, Zhu H, Qu G. A tomato receptor-like cytoplasmic kinase, SlZRK1, acts as a negative regulator in wound-induced jasmonic acid accumulation and insect resistance. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7285-7300. [PMID: 34309647 DOI: 10.1093/jxb/erab350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Jasmonates accumulate rapidly and act as key regulators in response to mechanical wounding, but few studies have linked receptor-like cytoplasmic kinases (RLCKs) to wound-induced jasmonic acid (JA) signaling cascades. Here, we identified a novel wounding-induced RLCK-XII-2 subfamily member (SlZRK1) in tomato (Solanum lycopersicum) that was closely related to Arabidopsis HOPZ-ETI-DEFICIENT 1 (ZED1)-related kinases 1 based on phylogenetic analysis. SlZRK1 was targeted to the plasma membrane of tobacco mesophyll protoplasts as determined by transient co-expression with the plasma membrane marker mCherry-H+-ATPase. Catalytic residue sequence analysis and an in vitro kinase assay indicated that SlZRK1 may act as a pseudokinase. To further analyse the function of SlZRK1, we developed two stable knock-out mutants by CRISPR/Cas9. Loss of SlZRK1 significantly altered the expression of genes involved in JA biosynthesis, salicylic acid biosynthesis, and ethylene response. Furthermore, after mechanical wounding treatment, slzrk1 mutants increased transcription of early wound-inducible genes involved in JA biosynthesis and signaling. In addition, JA accumulation after wounding and plant resistance to herbivorous insects also were enhanced. Our findings expand plant regulatory networks in the wound-induced JA production by adding RLCKs as a new component in the wound signal transduction pathway.
Collapse
Affiliation(s)
- Zongyan Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yudi Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Leilei Zhou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanping Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Di Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiaoli Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chengxia Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuetong Yi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Daqi Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Singh A. Expression dynamics indicate the role of Jasmonic acid biosynthesis pathway in regulating macronutrient (N, P and K +) deficiency tolerance in rice (Oryza sativa L.). PLANT CELL REPORTS 2021; 40:1495-1512. [PMID: 34089089 DOI: 10.1007/s00299-021-02721-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 05/25/2023]
Abstract
Expression pattern indicates that JA biosynthesis pathway via regulating JA levels might control root system architecture to improve nutrient use efficiency (NUE) and N, P, K+ deficiency tolerance in rice. Deficiencies of macronutrients (N, P and K+) and consequent excessive use of fertilizers have dramatically reduced soil fertility. It calls for development of nutrient use efficient plants. Plants combat nutrient deficiencies by altering their root system architecture (RSA) to enhance the acquisition of nutrients from the soil. Amongst various phytohormones, Jasmonic acid (JA) is known to regulate plant root growth and modulate RSA. Therefore, to understand the role of JA in macronutrient deficiency in rice, expression pattern of JA biosynthesis genes was analyzed under N, P and K+ deficiencies. Several members belonging to different families of JA biosynthesis genes (PLA1, LOX, AOS, AOC, OPR, ACX and JAR1) showed differential expression exclusively in one nutrient deficiency or in multiple nutrient deficiencies. Expression analysis during developmental stages showed that several genes expressed significantly in vegetative tissues, particularly in root. In addition, JA biosynthesis genes were found to have significant expression under the treatment of different phytohormones, including Auxin, cytokinin, gibberellic acid (GA), abscisic acid (ABA), JA and abiotic stresses, such as drought, salinity and cold. Analysis of promoters of these genes revealed various cis-regulatory elements associated with hormone response, plant development and abiotic stresses. These findings suggest that JA biosynthesis pathway by regulating the level of JA might control the RSA thus, it may help rice plant in combating macronutrient deficiency.
Collapse
Affiliation(s)
- Amarjeet Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
29
|
He Y, Liu C, Zhu L, Fu M, Sun Y, Zeng H. Jasmonic Acid Plays a Pivotal Role in Pollen Development and Fertility Regulation in Different Types of P(T)GMS Rice Lines. Int J Mol Sci 2021; 22:ijms22157926. [PMID: 34360691 PMCID: PMC8348444 DOI: 10.3390/ijms22157926] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 01/21/2023] Open
Abstract
Two-line hybrid rice systems represent a new technical approach to utilizing the advantages of rice hybrids. However, the mechanism underlying the male sterile-line fertility transition in rice remains unclear. Peiai 64S (PA64S) is a photoperiod- and thermo-sensitive genic male sterile (PTGMS) line in which male sterility manifests at an average temperature above 23.5 °C under long-day (LD) conditions. Nongken 58S (NK58S) is a LD-sensitive genic male sterile (PGMS) rice that is sterile under LD conditions (above 13.75 h-day). In contrast, D52S is a short-day (SD)-PGMS line that manifests male sterility under SD conditions (below 13.5 h-day). In this study, we obtained fertile and sterile plants from all three lines and performed transcriptome analyses on the anthers of the plants. Gene ontology (GO) analysis suggested that the differentially expressed genes identified were significantly enriched in common terms involved in the response to jasmonic acid (JA) and in JA biosynthesis. On the basis of the biochemical and molecular validation of dynamic, tissue-specific changes in JA, indole-3-acetic acid (IAA) levels, gibberellin (GA) levels, and JA biosynthetic enzyme activities and expression, we proposed that JA could play a pivotal role in viable pollen production through its initial upregulation, constant fluctuation and leaf-spikelet signaling under certain fertility-inducing conditions. Furthermore, we also sprayed methyl jasmonate (MEJA) and salicylhydroxamic acid (SHAM) on the plants, thereby achieving fertility reversal in the PGMS lines NK58S and D52S, with 12.91–63.53% pollen fertility changes. Through qPCR and enzyme activity analyses, we identified two key enzymes—allene oxide synthase (AOS) and allene oxide cyclase (AOC)—that were produced and upregulated by 20–500-fold in PGMS in response to spraying; the activities of these enzymes reversed pollen fertility by influencing the JA biosynthetic pathway. These results provide a new understanding of hormone interactions and networks in male-sterile rice based on the role of JA that will help us to better understand the potential regulatory mechanisms of fertility development in rice in the future.
Collapse
|
30
|
Zhang C, Chen J, Huang W, Song X, Niu J. Transcriptomics and Metabolomics Reveal Purine and Phenylpropanoid Metabolism Response to Drought Stress in Dendrobium sinense, an Endemic Orchid Species in Hainan Island. Front Genet 2021; 12:692702. [PMID: 34276795 PMCID: PMC8283770 DOI: 10.3389/fgene.2021.692702] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 11/23/2022] Open
Abstract
Drought stress is a bottleneck factor for plant growth and development, especially in epiphytic orchids that absorb moisture mainly from the air. Recent studies have suggested that there are complex transcriptional regulatory networks related to drought stress in Dendrobium sinense. In this study, the transcription and metabolite alterations involved in drought stress response in D. sinense were investigated through RNA-seq and metabolomics. A total of 856 metabolites were identified from stressed and control samples, with 391 metabolites showing significant differences. With PacBio and Illumina RNA sequencing, 72,969 genes were obtained with a mean length of 2,486 bp, and 622 differentially expressed genes (DEGs) were identified. Correlation analysis showed 7 differential genes, and 39 differential metabolites were involved in interaction networks. The network analysis of differential genes and metabolites suggested that the pathways of purine metabolism and phenylpropanoid biosynthesis may play an important role in drought response in D. sinense. These results provide new insights and reference data for culturally important medicinal plants and the protection of endangered orchids.
Collapse
Affiliation(s)
- Cuili Zhang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Jinhui Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China.,Engineering Research Center of Rare and Precious Tree Species in Hainan Province, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Weixia Huang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Xiqiang Song
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Jun Niu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| |
Collapse
|
31
|
Melo BP, Lourenço-Tessutti IT, Fraga OT, Pinheiro LB, de Jesus Lins CB, Morgante CV, Engler JA, Reis PAB, Grossi-de-Sá MF, Fontes EPB. Contrasting roles of GmNAC065 and GmNAC085 in natural senescence, plant development, multiple stresses and cell death responses. Sci Rep 2021; 11:11178. [PMID: 34045652 PMCID: PMC8160357 DOI: 10.1038/s41598-021-90767-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 01/16/2023] Open
Abstract
NACs are plant-specific transcription factors involved in controlling plant development, stress responses, and senescence. As senescence-associated genes (SAGs), NACs integrate age- and stress-dependent pathways that converge to programmed cell death (PCD). In Arabidopsis, NAC-SAGs belong to well-characterized regulatory networks, poorly understood in soybean. Here, we interrogated the soybean genome and provided a comprehensive analysis of senescence-associated Glycine max (Gm) NACs. To functionally examine GmNAC-SAGs, we selected GmNAC065, a putative ortholog of Arabidopsis ANAC083/VNI2 SAG, and the cell death-promoting GmNAC085, an ANAC072 SAG putative ortholog, for analyses. Expression analysis of GmNAC065 and GmNAC085 in soybean demonstrated (i) these cell death-promoting GmNACs display contrasting expression changes during age- and stress-induced senescence; (ii) they are co-expressed with functionally different gene sets involved in stress and PCD, and (iii) are differentially induced by PCD inducers. Furthermore, we demonstrated GmNAC065 expression delays senescence in Arabidopsis, a phenotype associated with enhanced oxidative performance under multiple stresses, higher chlorophyll, carotenoid and sugar contents, and lower stress-induced PCD compared to wild-type. In contrast, GmNAC085 accelerated stress-induced senescence, causing enhanced chlorophyll loss, ROS accumulation and cell death, decreased antioxidative system expression and activity. Accordingly, GmNAC065 and GmNAC085 targeted functionally contrasting sets of downstream AtSAGs, further indicating that GmNAC85 and GmNAC065 regulators function inversely in developmental and environmental PCD.
Collapse
Affiliation(s)
- Bruno Paes Melo
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Brazil.
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil.
- Pole Sophia Agrobiotech, Institute Nacional de la Recherche Agronomique, INRAE, Sophia Antipolis, France.
- National Institute in Science and Technology in Plant-Pest Interactions, NCTIPP, Bioagro, Viçosa, Brazil.
| | - Isabela Tristan Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil
- Pole Sophia Agrobiotech, Institute Nacional de la Recherche Agronomique, INRAE, Sophia Antipolis, France
- National Institute in Science and Technology, INCT Plant Stress-Biotech, CENARGEN, Brasília, Brazil
| | - Otto Teixeira Fraga
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Brazil
- National Institute in Science and Technology in Plant-Pest Interactions, NCTIPP, Bioagro, Viçosa, Brazil
| | - Luanna Bezerra Pinheiro
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília, Brasília, Brazil
- National Institute in Science and Technology, INCT Plant Stress-Biotech, CENARGEN, Brasília, Brazil
| | - Camila Barrozo de Jesus Lins
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil
- National Institute in Science and Technology, INCT Plant Stress-Biotech, CENARGEN, Brasília, Brazil
| | - Carolina Vianna Morgante
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil
- National Institute in Science and Technology, INCT Plant Stress-Biotech, CENARGEN, Brasília, Brazil
| | - Janice Almeida Engler
- Pole Sophia Agrobiotech, Institute Nacional de la Recherche Agronomique, INRAE, Sophia Antipolis, France
| | - Pedro Augusto Braga Reis
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Brazil
- National Institute in Science and Technology in Plant-Pest Interactions, NCTIPP, Bioagro, Viçosa, Brazil
| | - Maria Fátima Grossi-de-Sá
- Embrapa Genetic Resources and Biotechnology, CENARGEN, Brasília, Brazil
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília, Brasília, Brazil
- National Institute in Science and Technology, INCT Plant Stress-Biotech, CENARGEN, Brasília, Brazil
| | - Elizabeth Pacheco Batista Fontes
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Brazil.
- National Institute in Science and Technology in Plant-Pest Interactions, NCTIPP, Bioagro, Viçosa, Brazil.
| |
Collapse
|
32
|
Su Y, Huang Y, Dong X, Wang R, Tang M, Cai J, Chen J, Zhang X, Nie G. Exogenous Methyl Jasmonate Improves Heat Tolerance of Perennial Ryegrass Through Alteration of Osmotic Adjustment, Antioxidant Defense, and Expression of Jasmonic Acid-Responsive Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:664519. [PMID: 34025701 PMCID: PMC8137847 DOI: 10.3389/fpls.2021.664519] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/24/2021] [Indexed: 05/14/2023]
Abstract
Perennial ryegrass (Lolium perenne L.) is an important cool-season grass species that is widely cultivated in temperate regions worldwide but usually sensitive to heat stress. Jasmonates (JAs) may have a positive effect on plant tolerance under heat stress. In this study, results showed that exogenous methyl jasmonic acid (MeJA) could significantly improve heat tolerance of perennial ryegrass through alteration of osmotic adjustment, antioxidant defense, and the expression of JA-responsive genes. MeJA-induced heat tolerance was involved in the maintenance of better relative water content (RWC), the decline of chlorophyll (Chl) loss for photosynthetic maintenance, as well as maintained lower electrolyte leakage (EL) and malondialdehyde (MDA) content under heat condition, so as to avoid further damage to plants. Besides, results also indicated that exogenous MeJA treatment could increase the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), thus enhancing the scavenging ability of reactive oxygen species, alleviating the oxidative damage caused by heat stress. Heat stress and exogenous MeJA upregulated transcript levels of related genes (LpLOX2, LpAOC, LpOPR3, and LpJMT) in JA biosynthetic pathway, which also could enhance the accumulation of JA and MeJA content. Furthermore, some NAC transcription factors and heat shock proteins may play a positive role in enhancing resistance of perennial ryegrass with heat stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinquan Zhang
- Department of Forage Science, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Gang Nie
- Department of Forage Science, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
33
|
Kolupaev YE, Yastreb TO. Jasmonate Signaling and Plant Adaptation to Abiotic Stressors (Review). APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821010117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Xue X, Geng T, Liu H, Yang W, Zhong W, Zhang Z, Zhu C, Chu Z. Foliar Application of Silicon Enhances Resistance Against Phytophthora infestans Through the ET/JA- and NPR1- Dependent Signaling Pathways in Potato. FRONTIERS IN PLANT SCIENCE 2021; 12:609870. [PMID: 33584769 PMCID: PMC7876464 DOI: 10.3389/fpls.2021.609870] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/08/2021] [Indexed: 05/25/2023]
Abstract
Late blight (LB), caused by the oomycete pathogen Phytophthora infestans, is a devastating disease of potato that is necessary to control by regularly treatment with fungicides. Silicon (Si) has been used to enhance plant resistance against a broad range of bacterial and fungal pathogens; however, the enhanced LB resistance and the molecular mechanisms involving the plant hormone pathways remain unclear. In this study, Si treatment of potato plants was found to enhance LB resistance in both detached leaves and living plants accompanied by induction of reactive oxygen species (ROS) production and pathogenesis-related genes expression. Regarding the hormone pathways involved in Si-mediated LB resistance, we found a rapidly increased content of ethylene (ET) 15 min after spraying with Si. Increased jasmonic acid (JA) and JA-Ile and decreased salicylic acid (SA) were identified in plants at 1 day after spraying with Si and an additional 1 day after P. infestans EC1 infection. Furthermore, pretreatment with Me-JA enhanced resistance to EC1, while pretreatment with DIECA, an inhibitor of JA synthesis, enhanced the susceptibility and attenuated the Si-mediated resistance to LB. Consistent with these hormonal alterations, Si-mediated LB resistance was significantly attenuated in StETR1-, StEIN2-, StAOS-, StOPR3-, StNPR1-, and StHSP90-repressed plants but not in StCOI1- and StSID2-repressed plants using virus-induced gene silencing (VIGS). The Si-mediated accumulation of JA/JA-Ile was significantly attenuated in StETR1-, StEIN2-, StOPR3- and StHSP90-VIGS plants but not in StCOI1-, StSID2- and StNPR1-VIGS plants. Overall, we reveal that Si can be used as a putative alternative to fungicides to control LB, and conclude that Si-mediated LB resistance is dependent on the ET/JA-signaling pathways in a StHSP90- and StNPR1-dependent manner.
Collapse
Affiliation(s)
- Xiaojing Xue
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Tiantian Geng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Wei Yang
- Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, China
| | - Weiran Zhong
- Institute of Characteristics Crops, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Zhiliang Zhang
- Institute of Characteristics Crops, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
35
|
Ngin P, Cho K, Han O. Immobilization of Soybean Lipoxygenase on Nanoporous Rice Husk Silica by Adsorption: Retention of Enzyme Function and Catalytic Potential. Molecules 2021; 26:E291. [PMID: 33430075 PMCID: PMC7827180 DOI: 10.3390/molecules26020291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 02/02/2023] Open
Abstract
Soybean lipoxygenase was immobilized on nanoporous rice husk silica particles by adsorption, and enzymatic parameters of the immobilized protein, including the efficiency of substrate binding and catalysis, kinetic and operational stability, and the kinetics of thermal inactivation, were investigated. The maximal adsorption efficiency of soybean lipoxygenase to the silica particles was 50%. The desorption kinetics of soybean lipoxygenase from the silica particles indicate that the silica-immobilized enzyme is more stable in an anionic buffer (sodium phosphate, pH 7.2) than in a cationic buffer (Tris-HCl, pH 7.2). The specific activity of immobilized lipoxygenase was 73% of the specific activity of soluble soybean lipoxygenase at a high concentration of substrate. The catalytic efficiency (kcat/Km) and the Michaelis-Menten constant (Km) of immobilized lipoxygenase were 21% and 49% of kcat/Km and Km of soluble soybean lipoxygenase, respectively, at a low concentration of substrate. The immobilized soybean lipoxygenase was relatively stable, as the enzyme specific activity was >90% of the initial activity after four assay cycles. The thermal stability of the immobilized lipoxygenase was higher than the thermal stability of soluble lipoxygenase, demonstrating 70% and 45% of its optimal specific activity, respectively, after incubation for 30 min at 45 °C. These results demonstrate that adsorption on nanoporous rice husk silica is a simple and rapid method for protein immobilization, and that adsorption may be a useful and facile method for the immobilization of many biologically important proteins of interest.
Collapse
Affiliation(s)
| | | | - Oksoo Han
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea; (P.N.); (K.C.)
| |
Collapse
|
36
|
Chen YJ, Yang XX, Li WC, Zhao SQ. Knockdown of the DUF647 family member RUS4 impairs stamen development and pollen maturation in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110645. [PMID: 33218621 DOI: 10.1016/j.plantsci.2020.110645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
ROOT UV-B SENSITIVE4 (RUS4) encodes a Domain of Unknown Function647 (DUF647) protein, whose function is poorly understood. We have previously shown the artificial microRNA knockdown Arabidopsis RUS4 plants, referred to as amiR-RUS4, have severely reduced male fertility with a defect in anther dehiscence. Here, we show that amiR-RUS4 plants are also defective in pollen maturation and germination. Promoter-reporter analysis shows that RUS4 is highly expressed in tapetal layer, developing microspores, mature and germinating pollen, strongly suggesting its role in the process of pollen maturation. As the translational RUS4-GFP fusion protein has been localized to the chloroplasts where the first step of jasmonic acid (JA) biosynthesis takes place, leading to the hypothesis that RUS4 may be involved in JA-mediated stamen development. We show that expression of several JA metabolic genes increased markedly in flower buds of the amiR-RUS4 plants compared to that of the wild-type. We further show that transcript abundance of a clade of the JA-responsive MYB transcript factor genes, especially MYB108, reduced significantly in stamens of amiR-RUS4 plants relative to the wild-type; these MYB transcript factors have been shown to be required for JA-mediated stamen and pollen maturation. Our data suggest that RUS4 may play a role in coordinating anther dehiscence and pollen maturation by affecting the expression of JA-related genes.
Collapse
Affiliation(s)
- Ya-Jie Chen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Xiao-Xue Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Wen-Chao Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Shu-Qing Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
37
|
Sun T, Cen G, You C, Lou W, Wang Z, Su W, Wang W, Li D, Que Y, Su Y. ScAOC1, an allene oxide cyclase gene, confers defense response to biotic and abiotic stresses in sugarcane. PLANT CELL REPORTS 2020; 39:1785-1801. [PMID: 33001313 DOI: 10.1007/s00299-020-02606-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE An allene oxide cyclase gene which is involved in defense against biotic and abiotic stresses was cloned and characterized in sugarcane. Allene oxide cyclase (AOC), a key enzyme in jasmonate acid (JA) biosynthesis, affects the stereoisomerism and biological activity of JA molecules, and plays an important role in plant stress resistance. In this study, four SsAOC alleles (SsAOC1-SsAOC4), which shared similar gene structure and were located on Chr1A, Chr1B, Chr1C, and Chr1D, respectively, were mined from sugarcane wild species Saccharum spontaneum, and a homologous gene ScAOC1 (GenBank Accession Number: MK674849) was cloned from sugarcane hybrid variety Yacheng05-179 inoculated with Sporisorium scitamineum for 48 h. ScAOC1 and SsAOC1-SsAOC4 were alkaline, unstable, hydrophilic, and non-secretory proteins, which possess the same set of conserved motifs and were clustered into one group in the phylogenetic analysis. ScAOC1 was expressed in all sugarcane tissues, but with different levels. After infection by S. scitamineum, the transcripts of ScAOC1 were increased significantly both in the smut-susceptible (ROC22) and resistant (Yacheng05-179) varieties, but its transcripts were more accumulated and lasted for a longer period in the smut-resistant variety than in the smut-susceptible one. ScAOC1 was down-regulated under MeJA and NaCl treatments, but up-regulated under SA, ABA, PEG, and cold stresses. Transiently overexpressing ScAOC1 gene into Nicotiana benthamiana leaves regulated the responses of N. benthamiana to two pathogens Ralstonia solanacearum and Fusarium solani var. coeruleum. Furthermore, prokaryotic expression analysis showed overexpression of ScAOC1 in Escherichia coli BL21 could enhance its tolerance to NaCl, mannitol, and cold stimuli. These results indicated that ScAOC1 may play an active role in response to biotic and abiotic stresses in sugarcane.
Collapse
Affiliation(s)
- Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Guangli Cen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Wenyue Lou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zhoutao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Wenju Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Damei Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
38
|
Xu CJ, Zhao ML, Chen MS, Xu ZF. Silencing of the Ortholog of DEFECTIVE IN ANTHER DEHISCENCE 1 Gene in the Woody Perennial Jatropha curcas Alters Flower and Fruit Development. Int J Mol Sci 2020; 21:ijms21238923. [PMID: 33255510 PMCID: PMC7727821 DOI: 10.3390/ijms21238923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 01/12/2023] Open
Abstract
DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1), a phospholipase A1, utilizes galactolipids (18:3) to generate α-linolenic acid (ALA) in the initial step of jasmonic acid (JA) biosynthesis in Arabidopsis thaliana. In this study, we isolated the JcDAD1 gene, an ortholog of Arabidopsis DAD1 in Jatropha curcas, and found that it is mainly expressed in the stems, roots, and male flowers of Jatropha. JcDAD1-RNAi transgenic plants with low endogenous jasmonate levels in inflorescences exhibited more and larger flowers, as well as a few abortive female flowers, although anther and pollen development were normal. In addition, fruit number was increased and the seed size, weight, and oil contents were reduced in the transgenic Jatropha plants. These results indicate that JcDAD1 regulates the development of flowers and fruits through the JA biosynthesis pathway, but does not alter androecium development in Jatropha. These findings strengthen our understanding of the roles of JA and DAD1 in the regulation of floral development in woody perennial plants.
Collapse
Affiliation(s)
- Chuan-Jia Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (C.-J.X.); (M.-L.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei-Li Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (C.-J.X.); (M.-L.Z.)
| | - Mao-Sheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (C.-J.X.); (M.-L.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Correspondence: (M.-S.C.); (Z.-F.X.)
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (C.-J.X.); (M.-L.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Correspondence: (M.-S.C.); (Z.-F.X.)
| |
Collapse
|
39
|
Völz R, Park JY, Kim S, Park SY, Harris W, Chung H, Lee YH. The rice/maize pathogen Cochliobolus spp. infect and reproduce on Arabidopsis revealing differences in defensive phytohormone function between monocots and dicots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:412-429. [PMID: 32168401 DOI: 10.1111/tpj.14743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
The fungal genus Cochliobolus describes necrotrophic pathogens that give rise to significant losses on rice, wheat, and maize. Revealing plant mechanisms of non-host resistance (NHR) against Cochliobolus will help to uncover strategies that can be exploited in engineered cereals. Therefore, we developed a heterogeneous pathosystem and studied the ability of Cochliobolus to infect dicotyledons. We report here that C. miyabeanus and C. heterostrophus infect Arabidopsis accessions and produce functional conidia, thereby demonstrating the ability to accept Brassica spp. as host plants. Some ecotypes exhibited a high susceptibility, whereas others hindered the necrotrophic disease progression of the Cochliobolus strains. Natural variation in NHR among the tested Arabidopsis accessions can advance the identification of genetic loci that prime the plant's defence repertoire. We found that applied phytotoxin-containing conidial fluid extracts of C. miyabeanus caused necrotic lesions on rice leaves but provoked only minor irritations on Arabidopsis. This result implies that C. miyabeanus phytotoxins are insufficiently adapted to promote dicot colonization, which corresponds to a retarded infection progression. Previous studies on rice demonstrated that ethylene (ET) promotes C. miyabeanus infection, whereas salicylic acid (SA) and jasmonic acid (JA) exert a minor function. However, in Arabidopsis, we revealed that the genetic disruption of the ET and JA signalling pathways compromises basal resistance against Cochliobolus, whereas SA biosynthesis mutants showed a reduced susceptibility. Our results refer to the synergistic action of ET/JA and indicate distinct defence systems between Arabidopsis and rice to confine Cochliobolus propagation. Moreover, this heterogeneous pathosystem may help to reveal mechanisms of NHR and associated defensive genes against Cochliobolus infection.
Collapse
Affiliation(s)
- Ronny Völz
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
| | - Ju-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- R&D Institute, YUHAN Inc., Yongin, 17084, Korea
| | - Soonok Kim
- Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Korea
| | - Sook-Young Park
- Department of Plant Medicine, Suncheon National University, Suncheon, 57922, Korea
| | - William Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Hyunjung Chung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Yong-Hwan Lee
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
40
|
Yang S, Shi Y, Zou L, Huang J, Shen L, Wang Y, Guan D, He S. Pepper CaMLO6 Negatively Regulates Ralstonia solanacearum Resistance and Positively Regulates High Temperature and High Humidity Responses. PLANT & CELL PHYSIOLOGY 2020; 61:1223-1238. [PMID: 32343804 DOI: 10.1093/pcp/pcaa052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Plant mildew-resistance locus O (MLO) proteins influence susceptibility to powdery mildew. However, their roles in plant responses to other pathogens and heat stress remain unclear. Here, we showed that CaMLO6, a pepper (Capsicum annuum) member of MLO clade V, is a protein targeted to plasma membrane and probably endoplasmic reticulum. The transcript expression level of CaMLO6 was upregulated in the roots and leaves of pepper plants challenged with high temperature and high humidity (HTHH) and was upregulated in leaves but downregulated in roots of plants infected with the bacterial pathogen Ralstonia solanacearum. CaMLO6 was also directly upregulated by CaWRKY40 upon HTHH but downregulated by CaWRKY40 upon R. solanacearum infection. Virus-induced gene silencing of CaMLO6 significantly decreased pepper HTHH tolerance and R. solanacearum susceptibility. Moreover, CaMLO6 overexpression enhanced the susceptibility of Nicotiana benthamiana and pepper plants to R. solanacearum and their tolerance to HTHH, effects that were associated with the expression of immunity- and thermotolerance-associated marker genes, respectively. These results suggest that CaMLO6 acts as a positive regulator in response to HTHH but a negative regulator in response to R. solanacearum. Moreover, CaMLO6 is transcriptionally affected by R. solanacearum and HTHH; these transcriptional responses are at least partially regulated by CaWRKY40.
Collapse
Affiliation(s)
- Sheng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuanyuan Shi
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Longyun Zou
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jinfeng Huang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lei Shen
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuzhu Wang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Deyi Guan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shuilin He
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
41
|
Shkryl Y, Veremeichik G, Silantieva S, Bulgakov V. Differential expression of calcium-dependent protein kinase genes (CDPK1–14) in Rubia cordifolia callus cultures transformed with the rolB and rolC genes. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.plgene.2019.100215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Qi J, Zhao X, Li Z. iTRAQ-Based Quantitative Proteomic Analysis of the Arabidopsis Mutant opr3-1 in Response to Exogenous MeJA. Int J Mol Sci 2020; 21:ijms21020571. [PMID: 31963133 PMCID: PMC7013738 DOI: 10.3390/ijms21020571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 02/08/2023] Open
Abstract
Jasmonates (JAs) regulate the defense of biotic and abiotic stresses, growth, development, and many other important biological processes in plants. The comprehensive proteomic profiling of plants under JAs treatment provides insights into the regulation mechanism of JAs. Isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis was performed on the Arabidopsis wild type (Ws) and JA synthesis deficiency mutant opr3-1. The effects of exogenous MeJA treatment on the proteome of opr3-1, which lacks endogenous JAs, were investigated. A total of 3683 proteins were identified and 126 proteins were differentially regulated between different genotypes and treatment groups. The functional classification of these differentially regulated proteins showed that they were involved in metabolic processes, responses to abiotic stress or biotic stress, the defense against pathogens and wounds, photosynthesis, protein synthesis, and developmental processes. Exogenous MeJA treatment induced the up-regulation of a large number of defense-related proteins and photosynthesis-related proteins, it also induced the down-regulation of many ribosomal proteins in opr3-1. These results were further verified by a quantitative real-time PCR (qRT-PCR) analysis of 15 selected genes. Our research provides the basis for further understanding the molecular mechanism of JAs’ regulation of plant defense, photosynthesis, protein synthesis, and development.
Collapse
|
43
|
Rasool B, Karpinska B, Pascual J, Kangasjärvi S, Foyer CH. Catalase, glutathione, and protein phosphatase 2A-dependent organellar redox signalling regulate aphid fecundity under moderate and high irradiance. PLANT, CELL & ENVIRONMENT 2020; 43:209-222. [PMID: 31702837 DOI: 10.1111/pce.13669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 05/29/2023]
Abstract
Redox processes regulate plant/insect responses, but the precise roles of environmental triggers and specific molecular components remain poorly defined. Aphid fecundity and plant responses were therefore measured in Arabidopsis thaliana mutants deficient in either catalase 2 (cat2), different protein phosphatase 2A (PP2A) subunits or glutathione (cad2, pad2, and clt1) under either moderate (250 μmol m-2 s-1 ) or high (800 μmol m-2 s-1 ) light. Aphid fecundity was decreased in pp2a-b'γ, cat2 and the cat2 pp2a-b'γ double mutants relative to the wild type under moderate irradiance. High light decreased aphid numbers in all genotypes except for cat2. Aphid fecundity was similar in the cat2 and glutathione-, phytoalexin-, and glucosinolate-deficient cat2cad2 double mutants under both irradiances. Aphid-induced increases in transcripts encoding the abscisic acid-related ARABIDOPSIS ZINC-FINGER PROTEIN 1 transcription factor were observed only under moderate light. Conversely, aphid induced increases in transcripts encoding the jasmonate-synthesis enzyme ALLENE OXIDE CYCLASE 3 was observed in all genotypes only under high light. Aphid-induced increases in REDOX RESPONSIVE TRANSCRIPTION FACTOR 1 mRNAs were observed in all genotypes except pp2a-b'ζ1-1 under both irradiances. Aphid fecundity is therefore regulated by cellular redox signalling that is mediated, at least in part, through PP2A-dependent mitochondria to nucleus signalling pathways.
Collapse
Affiliation(s)
- Brwa Rasool
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
- Technical College of Applied Science, Sulaimani Polytechnic University, 46001, Sulaymaniyah, Iraq
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Jesús Pascual
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20500, Turku, Finland
| | - Saijaliisa Kangasjärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20500, Turku, Finland
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| |
Collapse
|
44
|
Heitz T, Smirnova E, Marquis V, Poirier L. Metabolic Control within the Jasmonate Biochemical Pathway. PLANT & CELL PHYSIOLOGY 2019; 60:2621-2628. [PMID: 31504918 DOI: 10.1093/pcp/pcz172] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Regulation of defense and developmental responses by jasmonates (JAs) has been intensively investigated at genetic and transcriptional levels. Plasticity in the jasmonic acid (JA) metabolic pathway as a means to control signal output has received less attention. Although the amplitude of JA responses generally follows the accumulation dynamics of the active hormone jasmonoyl-isoleucine (JA-Ile), emerging evidence has identified cases where this relationship is distorted and that we discuss in this review. JA-Ile is turned over in Arabidopsis by two inducible, intertwined catabolic pathways; one is oxidative and mediated by cytochrome P450 enzymes of the subfamily 94 (CYP94), and the other proceeds via deconjugation by amidohydrolases. Their genetic inactivation has profound effects on JAs homeostasis, including strong JA-Ile overaccumulation, but this correlates with enhanced defense and tolerance to microbial or insect attacks only in the absence of overinduction of negative signaling regulators. By contrast, the impairment of JA oxidation in the jasmonic acid oxidase 2 (jao2) mutant turns on constitutive defense responses without elevating JA-Ile levels in naive leaves and enhances resistance to subsequent biotic stress. This latter and other recent cases of JA signaling are associated with JA-Ile catabolites accumulation rather than more abundant hormone, reflecting increased metabolic flux through the pathway. Therefore, manipulating upstream and downstream JA-Ile homeostatic steps reveals distinct metabolic nodes controlling defense signaling output.
Collapse
Affiliation(s)
- Thierry Heitz
- Centre National de la Recherche Scientifique (IBMP-CNRS), Institut de Biologie Mol�culaire des Plantes, Universit� de Strasbourg, 12 rue du General Zimmer, 67000 Strasbourg, France
| | - Ekaterina Smirnova
- Centre National de la Recherche Scientifique (IBMP-CNRS), Institut de Biologie Mol�culaire des Plantes, Universit� de Strasbourg, 12 rue du General Zimmer, 67000 Strasbourg, France
| | - Valentin Marquis
- Centre National de la Recherche Scientifique (IBMP-CNRS), Institut de Biologie Mol�culaire des Plantes, Universit� de Strasbourg, 12 rue du General Zimmer, 67000 Strasbourg, France
| | - Laure Poirier
- Centre National de la Recherche Scientifique (IBMP-CNRS), Institut de Biologie Mol�culaire des Plantes, Universit� de Strasbourg, 12 rue du General Zimmer, 67000 Strasbourg, France
| |
Collapse
|
45
|
Neupane S, Purintun JM, Mathew FM, Varenhorst AJ, Nepal MP. Molecular Basis of Soybean Resistance to Soybean Aphids and Soybean Cyst Nematodes. PLANTS 2019; 8:plants8100374. [PMID: 31561499 PMCID: PMC6843664 DOI: 10.3390/plants8100374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/25/2023]
Abstract
Soybean aphid (SBA; Aphis glycines Matsumura) and soybean cyst nematode (SCN; Heterodera glycines Ichninohe) are major pests of the soybean (Glycine max [L.] Merr.). Substantial progress has been made in identifying the genetic basis of limiting these pests in both model and non-model plant systems. Classical linkage mapping and genome-wide association studies (GWAS) have identified major and minor quantitative trait loci (QTLs) in soybean. Studies on interactions of SBA and SCN effectors with host proteins have identified molecular cues in various signaling pathways, including those involved in plant disease resistance and phytohormone regulations. In this paper, we review the molecular basis of soybean resistance to SBA and SCN, and we provide a synthesis of recent studies of soybean QTLs/genes that could mitigate the effects of virulent SBA and SCN populations. We also review relevant studies of aphid–nematode interactions, particularly in the soybean–SBA–SCN system.
Collapse
Affiliation(s)
- Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Jordan M Purintun
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Febina M Mathew
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Adam J Varenhorst
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
46
|
Vï Lz R, Kim SK, Mi J, Mariappan KG, Siodmak A, Al-Babili S, Hirt H. A Chimeric IDD4 Repressor Constitutively Induces Immunity in Arabidopsis via the Modulation of Salicylic Acid and Jasmonic Acid Homeostasis. PLANT & CELL PHYSIOLOGY 2019; 60:1536-1555. [PMID: 30989238 DOI: 10.1093/pcp/pcz057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
INDETERMINATE DOMAIN (IDD)/BIRD proteins belong to a highly conserved plant-specific group of transcription factors with dedicated functions in plant physiology and development. Here, we took advantage of the chimeric repressor gene-silencing technology (CRES-T, SRDX) to widen our view on the role of IDD4/IMPERIAL EAGLE and IDD family members in plant immunity. The hypomorphic idd4SRDX lines are compromised in growth and show a robust autoimmune phenotype. Hormonal measurements revealed the concomitant accumulation of salicylic acid and jasmonic acid suggesting that IDDs are involved in regulating the metabolism of these biotic stress hormones. The analysis of immunity-pathways showed enhanced activation of immune MAP kinase-signaling pathways, the accumulation of hydrogen peroxide and spontaneous programmed cell death. The transcriptome of nonelicited idd4SRDX lines can be aligned to approximately 40% of differentially expressed genes (DEGs) in flg22-treated wild-type plants. The pattern of DEGs implies IDDs as pivotal repressors of flg22-dependent gene induction. Infection experiments showed the increased resistance of idd4SRDX lines to Pseudomonas syringae and Botrytis cinerea implying a function of IDDs in defense adaptation to hemibiotrophs and necrotrophs. Genome-wide IDD4 DNA-binding studies (DAP-SEQ) combined with DEG analysis of idd4SRDX lines identified IDD4-regulated functional gene clusters that contribute to plant growth and development. In summary, we discovered that the expression of idd4SRDX activates a wide range of defense-related traits opening up the possibility to apply idd4SRDX as a powerful tool to stimulate innate immunity in engineered crops.
Collapse
Affiliation(s)
- Ronny Vï Lz
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Plant Immunity Research Center, Seoul National University, Seoul, Korea
| | - Soon-Kap Kim
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jianing Mi
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kiruthiga G Mariappan
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Anna Siodmak
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Universit� Paris-Sud, Universit� Evry, Universit� Paris-Saclay, B�timent 630, Orsay, France
- Max Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Bouchnak I, Brugière S, Moyet L, Le Gall S, Salvi D, Kuntz M, Tardif M, Rolland N. Unraveling Hidden Components of the Chloroplast Envelope Proteome: Opportunities and Limits of Better MS Sensitivity. Mol Cell Proteomics 2019; 18:1285-1306. [PMID: 30962257 PMCID: PMC6601204 DOI: 10.1074/mcp.ra118.000988] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/03/2019] [Indexed: 12/31/2022] Open
Abstract
The chloroplast is a major plant cell organelle that fulfills essential metabolic and biosynthetic functions. Located at the interface between the chloroplast and other cell compartments, the chloroplast envelope system is a strategic barrier controlling the exchange of ions, metabolites and proteins, thus regulating essential metabolic functions (synthesis of hormones precursors, amino acids, pigments, sugars, vitamins, lipids, nucleotides etc.) of the plant cell. However, unraveling the contents of the chloroplast envelope proteome remains a difficult challenge; many proteins constituting this functional double membrane system remain to be identified. Indeed, the envelope contains only 1% of the chloroplast proteins (i.e. 0.4% of the whole cell proteome). In other words, most envelope proteins are so rare at the cell, chloroplast, or even envelope level, that they remained undetectable using targeted MS studies. Cross-contamination of chloroplast subcompartments by each other and by other cell compartments during cell fractionation, impedes accurate localization of many envelope proteins. The aim of the present study was to take advantage of technologically improved MS sensitivity to better define the proteome of the chloroplast envelope (differentiate genuine envelope proteins from contaminants). This MS-based analysis relied on an enrichment factor that was calculated for each protein identified in purified envelope fractions as compared with the value obtained for the same protein in crude cell extracts. Using this approach, a total of 1269 proteins were detected in purified envelope fractions, of which, 462 could be assigned an envelope localization by combining MS-based spectral count analyses with manual annotation using data from the literature and prediction tools. Many of such proteins being previously unknown envelope components, these data constitute a new resource of significant value to the broader plant science community aiming to define principles and molecular mechanisms controlling fundamental aspects of plastid biogenesis and functions.
Collapse
Affiliation(s)
- Imen Bouchnak
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Sabine Brugière
- §University Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | - Lucas Moyet
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Sophie Le Gall
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Daniel Salvi
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Marcel Kuntz
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Marianne Tardif
- §University Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | - Norbert Rolland
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France;.
| |
Collapse
|
48
|
Liu H, Senthilkumar R, Ma G, Zou Q, Zhu K, Shen X, Tian D, Hua MS, Oelmüller R, Yeh KW. Piriformospora indica-induced phytohormone changes and root colonization strategies are highly host-specific. PLANT SIGNALING & BEHAVIOR 2019; 14:1632688. [PMID: 31230564 PMCID: PMC6768275 DOI: 10.1080/15592324.2019.1632688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 05/19/2023]
Abstract
Piriformospora indica, an endophytic fungus of Sebacinales, has a wide host range and promotes the performance of mono- and eudicot plants. Here, we compare the interaction of P. indica with the roots of seven host plants (Anthurium andraeanum, Arabidopsis thaliana, Brassica campestris, Lycopersicon esculentum, Oncidium orchid, Oryza sativa, and Zea mays). Microscopical analyses showed that the colonization time and the mode of hyphal invasion into the roots differ in the symbiotic interactions. Substantial differences between the species were also observed for the levels and accumulation of jasmonate (JA) and gibberellin (GA) and the transcript levels for genes involved in their syntheses. No obvious correlation could be detected between the endogenous JA and/or GA levels and the time point of root colonization in a given plant species. Our results suggest that root colonization strategies and changes in the two phytohormone levels are highly host-specific.
Collapse
Affiliation(s)
- Huichun Liu
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rajendran Senthilkumar
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Academia Sinica-Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Guangying Ma
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingcheng Zou
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kaiyuan Zhu
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaolan Shen
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Danqing Tian
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Moda Sang Hua
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ralf Oelmüller
- Matthias-Schleiden Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Kai Wun Yeh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
49
|
Chatterjee P, Kanagendran A, Samaddar S, Pazouki L, Sa TM, Niinemets Ü. Inoculation of Brevibacterium linens RS16 in Oryza sativa genotypes enhanced salinity resistance: Impacts on photosynthetic traits and foliar volatile emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:721-732. [PMID: 30031330 PMCID: PMC6354898 DOI: 10.1016/j.scitotenv.2018.07.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/14/2018] [Accepted: 07/14/2018] [Indexed: 05/05/2023]
Abstract
The emission of volatiles in response to salt stress in rice cultivars has not been studied much to date. Studies addressing the regulation of stress induced volatile emission by halotolerant plant growth promoting bacteria containing ACC (1-aminocyclopropane-1-carboxylate) deaminase are also limited. The objective of the present study was to investigate the salt alleviation potential of bacteria by regulating photosynthetic characteristics and volatile emissions in rice cultivars, and to compare the effects of the bacteria inoculation and salt responses between two rice genotypes. The interactive effects of soil salinity (0, 50, and 100 mM NaCl) and inoculation with Brevibacterium linens RS16 on ACC accumulation, ACC oxidase activity, carbon assimilation and stress volatile emissions after stress application were studied in the moderately salt resistant (FL478) and the salt-sensitive (IR29) rice (Oryza sativa L.) cultivars. It was observed that salt stress reduced foliage photosynthetic rate, but induced foliage ACC accumulation, foliage ACC oxidase activity, and the emissions of all the major classes of volatile organic compounds (VOCs) including the lipoxygenase pathway volatiles, light-weight oxygenated volatiles, long-chained saturated aldehydes, benzenoids, geranylgeranyl diphosphate pathway products, and mono- and sesquiterpenes. All these characteristics scaled up quantitatively with increasing salt stress. The effects of salt stress were more pronounced in the salt-sensitive genotype IR29 compared to the moderately salt resistant FL478 genotype. However, the bacterial inoculation significantly enhanced photosynthesis, and decreased ACC accumulation and the ACC oxidase activity, and VOC emissions both in control and salt-treated plants. Taken together, these results suggested that the ACC deaminase-containing Brevibacterium linens RS16 reduces the temporal regulation of VOC emissions and increases the plant physiological activity by reducing the availability of ethylene precursor ACC and the ACC oxidase activity under salt stress.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Sandipan Samaddar
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Tong-Min Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.
| |
Collapse
|
50
|
Le TB, Han CS, Cho K, Han O. Covalent immobilization of oxylipin biosynthetic enzymes on nanoporous rice husk silica for production of cis(+)-12-oxophytodienoic acid. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2018; 46:1523-1529. [PMID: 28889752 DOI: 10.1080/21691401.2017.1375939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Soybean lipoxygenase, recombinant rice allene oxide synthase-1 and rice allene oxide cyclase were covalently immobilized on nanoporous rice husk silica using two types of linkers: glutardialdehyde and polyethylene glycol. The immobilization efficiency achieved using glutardialdehyde-linked rice husk silica was higher than that achieved using polyethylene glycol-linked rice husk silica (50-92% and 25-50%, respectively). Immobilization on both types of matrices significantly decreased the specific activities of the immobilized enzymes. Solid-phase reaction yields of the enzymes were determined relative to the yields observed for the solution-phase reactions. Yields of the solid-phase reactions catalyzed by immobilized soybean lipoxygenase, rice allene oxide synthase-1, and rice allene oxide cyclase ranged from 50% to 230% and were dependent on both the enzymes and linkers used. Production of cis(+)-12-oxophytodienoic acid from α-linolenic acid by consecutive reactions using all three enzymes in a co-immobilization system resulted in 83.6% and 65.1% yields on glutardialdehyde-linked and epichlorohydrin-polyethylene glycol-linked rice husk silica, respectively. Our results suggest that immobilization of biosynthetic enzymes of the octadecanoid pathway on rice husk silica may be an efficient method for the in vitro production of oxylipins. Additionally, enzyme immobilizations on rice husk silica matrices may be more broadly applicable for producing physiologically important compounds in other biosynthetic pathways.
Collapse
Affiliation(s)
- Thu Bao Le
- a Department of Molecular Biotechnology and Kumho Life Science Laboratory , College of Agriculture and Life Sciences, Chonnam National University , Gwangju , South Korea
| | - Chong Soo Han
- b Nano Bio Research Center , Jangseong , Jeollanamdo , South Korea
| | - Kyoungwon Cho
- a Department of Molecular Biotechnology and Kumho Life Science Laboratory , College of Agriculture and Life Sciences, Chonnam National University , Gwangju , South Korea
| | - Oksoo Han
- a Department of Molecular Biotechnology and Kumho Life Science Laboratory , College of Agriculture and Life Sciences, Chonnam National University , Gwangju , South Korea
| |
Collapse
|