1
|
Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther 2024; 9:308. [PMID: 39500878 PMCID: PMC11539257 DOI: 10.1038/s41392-024-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Targeted protein degradation (TPD) represents a revolutionary therapeutic strategy in disease management, providing a stark contrast to traditional therapeutic approaches like small molecule inhibitors that primarily focus on inhibiting protein function. This advanced technology capitalizes on the cell's intrinsic proteolytic systems, including the proteasome and lysosomal pathways, to selectively eliminate disease-causing proteins. TPD not only enhances the efficacy of treatments but also expands the scope of protein degradation applications. Despite its considerable potential, TPD faces challenges related to the properties of the drugs and their rational design. This review thoroughly explores the mechanisms and clinical advancements of TPD, from its initial conceptualization to practical implementation, with a particular focus on proteolysis-targeting chimeras and molecular glues. In addition, the review delves into emerging technologies and methodologies aimed at addressing these challenges and enhancing therapeutic efficacy. We also discuss the significant clinical trials and highlight the promising therapeutic outcomes associated with TPD drugs, illustrating their potential to transform the treatment landscape. Furthermore, the review considers the benefits of combining TPD with other therapies to enhance overall treatment effectiveness and overcome drug resistance. The future directions of TPD applications are also explored, presenting an optimistic perspective on further innovations. By offering a comprehensive overview of the current innovations and the challenges faced, this review assesses the transformative potential of TPD in revolutionizing drug development and disease management, setting the stage for a new era in medical therapy.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Wang C, Ji L, Wang J, Zhang J, Qiu L, Chen S, Ni X. Amifostine loaded lipid-calcium carbonate nanoparticles as an oral drug delivery system for radiation protection. Biomed Pharmacother 2024; 177:117029. [PMID: 38991305 DOI: 10.1016/j.biopha.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Amifostine (AMF) as the first-line radiation protection drug, usually suffered from low compliance and short half-life upon clinical applications. The development of oral drug delivery system (DDS) for AMF is a promising solution. However, the inherent shortages of AMF present significant challenges in the design of suitable oral DDS. Here in this study, we utilized the ability of calcium ions to bind with AMF and prepared AMF loaded calcium carbonate (CC) core, CC/AMF, using phase transferred coprecipitation method. We further modified the CC/AMF using phospholipids to prepare AMF loaded lipid-calcium carbonate (LCC) hybrid nanoparticles (LCC/AMF) via a thin-film dispersion method. LCC/AMF combines the oral advantages of lipid nanoparticles with the drug-loading capabilities of CC, which was shown as uniform nano-sized formulation with decent stability in aqueous solution. With favorable intestinal transport and absorption effects, it effectively enhances the in vivo radiation protection efficacy of AMF through oral administration. More importantly, we further investigated the cellular accumulation profile and intracellular transport mechanism of LCC/AMF using MDCK and Caco-2 cell lines as models. This research not only alters the current administration method of AMF to enhance its convenience and compliance, but also provides insights and guidance for the development of more suitable oral DDS for AMF in the future.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Lihua Ji
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Jiaxing Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| | - Shaoqing Chen
- The Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China.
| | - Xinye Ni
- The Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
3
|
Bannunah A, Cavanagh R, Shubber S, Vllasaliu D, Stolnik S. Difference in Endocytosis Pathways Used by Differentiated Versus Nondifferentiated Epithelial Caco-2 Cells to Internalize Nanosized Particles. Mol Pharm 2024; 21:3603-3612. [PMID: 38864426 PMCID: PMC11220748 DOI: 10.1021/acs.molpharmaceut.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Understanding the internalization of nanosized particles by mucosal epithelial cells is essential in a number of areas including viral entry at mucosal surfaces, nanoplastic pollution, as well as design and development of nanotechnology-type medicines. Here, we report our comparative study on pathways of cellular internalization in epithelial Caco-2 cells cultured in vitro as either a polarized, differentiated cell layer or as nonpolarized, nondifferentiated cells. The study reveals a number of differences in the extent that endocytic processes are used by cells, depending on their differentiation status and the nature of applied nanoparticles. In polarized cells, actin-driven and dynamin-independent macropinocytosis plays a prominent role in the internalization of both positively and negatively charged nanoparticles, contrary to its modest contribution in nonpolarized cells. Clathrin-mediated cellular entry plays a prominent role in the endocytosis of positive nanoparticles and cholesterol inhibition in negative nanoparticles. However, in nonpolarized cells, dynamin-dependent endocytosis is a major pathway in the internalization of both positive and negative nanoparticles. Cholesterol depletion affects both nonpolarized and polarized cells' internalization of positive and negative nanoparticles, which, in addition to the effect of cholesterol-binding inhibitors on the internalization of negative nanoparticles, indicates the importance of membrane cholesterol in endocytosis. The data collectively provide a new contribution to understanding endocytic pathways in epithelial cells, particularly pointing to the importance of the cell differentiation stage and the nature of the cargo.
Collapse
Affiliation(s)
- Azzah Bannunah
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Robert Cavanagh
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Saif Shubber
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Driton Vllasaliu
- School
of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences
& Medicine, King’s College London,
Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K.
| | - Snow Stolnik
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
4
|
Horváth Á, Steib A, Nehr-Majoros A, Kántás B, Király Á, Racskó M, Tóth BI, Szánti-Pintér E, Kudová E, Skoda-Földes R, Helyes Z, Szőke É. Anti-Nociceptive Effects of Sphingomyelinase and Methyl-Beta-Cyclodextrin in the Icilin-Induced Mouse Pain Model. Int J Mol Sci 2024; 25:4637. [PMID: 38731855 PMCID: PMC11083984 DOI: 10.3390/ijms25094637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (Á.H.); (A.S.); (A.N.-M.); (B.K.); (Á.K.); (Z.H.)
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2., H-7624 Pécs, Hungary
| | - Anita Steib
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (Á.H.); (A.S.); (A.N.-M.); (B.K.); (Á.K.); (Z.H.)
| | - Andrea Nehr-Majoros
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (Á.H.); (A.S.); (A.N.-M.); (B.K.); (Á.K.); (Z.H.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Cct. 2., H-1117 Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary
| | - Boglárka Kántás
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (Á.H.); (A.S.); (A.N.-M.); (B.K.); (Á.K.); (Z.H.)
- Department of Obstetrics and Gynaecology, University of Pécs, Édesanyák Str. 17., H-7624 Pécs, Hungary
| | - Ágnes Király
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (Á.H.); (A.S.); (A.N.-M.); (B.K.); (Á.K.); (Z.H.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Cct. 2., H-1117 Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary
| | - Márk Racskó
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei Cct. 98., H-4032 Debrecen, Hungary; (M.R.); (B.I.T.)
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei Cct. 98., H-4032 Debrecen, Hungary; (M.R.); (B.I.T.)
| | - Eszter Szánti-Pintér
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Namesti 2, 166 10 Prague, Czech Republic; (E.S.-P.); (E.K.)
| | - Eva Kudová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Namesti 2, 166 10 Prague, Czech Republic; (E.S.-P.); (E.K.)
| | - Rita Skoda-Földes
- Institute of Chemistry, Department of Organic Chemistry, University of Pannonia, Egyetem Str. 10., H-8200 Veszprém, Hungary;
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (Á.H.); (A.S.); (A.N.-M.); (B.K.); (Á.K.); (Z.H.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Cct. 2., H-1117 Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary
- PharmInVivo Ltd., Szondy György Str. 10., H-7629 Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (Á.H.); (A.S.); (A.N.-M.); (B.K.); (Á.K.); (Z.H.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Cct. 2., H-1117 Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary
| |
Collapse
|
5
|
Ma YH, Zhu Y, Wu H, He Y, Zhang Q, Huang Q, Wang Z, Xing H, Qiu L, Tan W. Domain-Targeted Membrane Partitioning of Specific Proteins with DNA Nanodevices. J Am Chem Soc 2024; 146:7640-7648. [PMID: 38466380 DOI: 10.1021/jacs.3c13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The cell membrane exhibits a remarkable complexity of lipids and proteins that dynamically segregate into distinct domains to coordinate various cellular functions. The ability to manipulate the partitioning of specific membrane proteins without involving genetic modification is essential for decoding various cellular processes but highly challenging. In this work, by conjugating cholesterols or tocopherols at the three bottom vertices of the DNA tetrahedron, we develop two sets of nanodevices for the selective targeting of lipid-order (Lo) and lipid-disorder (Ld) domains on the live cell membrane. By incorporation of protein-recognition ligands, such as aptamers or antibodies, through toehold-mediated strand displacement, these DNA nanodevices enable dynamic translocation of target proteins between these two domains. We first used PTK7 as a protein model and demonstrated, for the first time, that the accumulation of PTK7 to the Lo domains could promote tumor cell migration, while sequestering it in the Ld domains would inhibit the movement of the cells. Next, based on their modular nature, these DNA nanodevices were extended to regulate the process of T cell activation through manipulating the translocation of CD45 between the Lo and the Ld domains. Thus, our work is expected to provide deep insight into the study of membrane structure and molecular interactions within diverse cell signaling processes.
Collapse
Affiliation(s)
- Yong-Hao Ma
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yan Zhu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Wu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yao He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qiuling Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hang Xing
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Ni J, Xie Z, Quan Z, Meng J, Qing H. How brain 'cleaners' fail: Mechanisms and therapeutic value of microglial phagocytosis in Alzheimer's disease. Glia 2024; 72:227-244. [PMID: 37650384 DOI: 10.1002/glia.24465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023]
Abstract
Microglia are the resident phagocytes of the brain, where they primarily function in the clearance of dead cells and the removal of un- or misfolded proteins. The impaired activity of receptors or proteins involved in phagocytosis can result in enhanced inflammation and neurodegeneration. RNA-seq and genome-wide association studies have linked multiple phagocytosis-related genes to neurodegenerative diseases, while the knockout of such genes has been demonstrated to exert protective effects against neurodegeneration in animal models. The failure of microglial phagocytosis influences AD-linked pathologies, including amyloid β accumulation, tau propagation, neuroinflammation, and infection. However, a precise understanding of microglia-mediated phagocytosis in Alzheimer's disease (AD) is still lacking. In this review, we summarize current knowledge of the molecular mechanisms involved in microglial phagocytosis in AD across a wide range of pre-clinical, post-mortem, ex vivo, and clinical studies and review the current limitations regarding the detection of microglia phagocytosis in AD. Finally, we discuss the rationale of targeting microglial phagocytosis as a therapeutic strategy for preventing AD or slowing its progression.
Collapse
Affiliation(s)
- Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jie Meng
- Department of Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
7
|
Badaut J, Ghersi-Egea JF, Thorne RG, Konsman JP. Blood-brain borders: a proposal to address limitations of historical blood-brain barrier terminology. Fluids Barriers CNS 2024; 21:3. [PMID: 38183042 PMCID: PMC10770911 DOI: 10.1186/s12987-023-00478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/11/2023] [Indexed: 01/07/2024] Open
Abstract
Many neuroscientists use the term Blood-Brain Barrier (BBB) to emphasize restrictiveness, often equating or reducing the notion of BBB properties to tight junction molecules physically sealing cerebral endothelial cells, rather than pointing out the complexity of this biological interface with respect to its selectivity and variety of exchange between the general blood circulation and the central nervous tissue. Several authors in the field find it unfortunate that the exquisitely dynamic interfaces between blood and brain continue to be viewed primarily as obstructive barriers to transport. Although the term blood-brain interface is an excellent descriptor that does not convey the idea of a barrier, it is important and preferable for the spreading of an idea beyond specialist communities to try to appeal to well-chosen metaphors. Recent evidence reviewed here indicates that blood-brain interfaces are more than selective semi-permeable membranes in that they display many dynamic processes and complex mechanisms for communication. They are thus more like 'geopolitical borders'. Furthermore, some authors working on blood-brain interface-relevant issues have started to use the word border, for example in border-associated macrophages. Therefore, we suggest adopting the term Blood-Brain Border to better communicate the flexibility of and movement across blood-brain interfaces.
Collapse
Affiliation(s)
- Jerome Badaut
- Brain Molecular Imaging Lab, UMR 5536, CNRS, RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
- Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Jean-François Ghersi-Egea
- FLUID Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR 5292, Lyon-1 University, Bron, France.
| | - Robert G Thorne
- Denali Therapeutics, Inc, 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
- Department of Pharmaceutics, University of Minnesota, 9-177 Weaver-Densford Hall, 308 Harvard St. SE, Minneapolis, MN, 55455, USA.
| | - Jan Pieter Konsman
- UMR 5164, CNRS, ImmunoConcEpT, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
| |
Collapse
|
8
|
Kuche K, Yadav V, Patel M, Chaudhari D, Date T, Jain S. Enhancing anti-cancer potential by delivering synergistic drug combinations via phenylboronic acid modified PLGA nanoparticles through ferroptosis-based therapy. BIOMATERIALS ADVANCES 2024; 156:213700. [PMID: 38042001 DOI: 10.1016/j.bioadv.2023.213700] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/11/2023] [Accepted: 11/09/2023] [Indexed: 12/04/2023]
Abstract
In this study, we investigated the potential of the sorafenib (SOR) and simvastatin (SIM) combination to induce ferroptosis-mediated cancer therapy. To enhance targeted drug delivery, we encapsulated the SOR + SIM combination within 4-carboxy phenylboronic acid (CPBA) modified PLGA nanoparticles (CPBA-PLGA(SOR + SIM)-NPs). The developed CPBA-PLGA(SOR + SIM)-NPs exhibited a spherical shape with a size of 213.1 ± 10.9 nm, a PDI of 0.22 ± 0.03, and a Z-potential of -22.9 ± 3.2 mV. Notably, these nanoparticles displayed faster drug release at acidic pH compared to physiological pH. In cellular experiments, CPBA-PLGA(SOR + SIM)-NPs demonstrated remarkable improvements, leading to a 2.51, 2.69, and 2.61-fold decrease in IC50 compared to SOR alone, and a 7.50, 16.71, and 5.11-fold decrease in IC50 compared to SIM alone in MDA-MB-231, A549, and HeLa cells, respectively. Furthermore, CPBA-PLGA(SOR + SIM)-NPs triggered a reduction in glutathione (GSH) levels, an increase in malondialdehyde (MDA) levels, and mitochondrial membrane depolarization in all three cell lines. Pharmacokinetic evaluation revealed a 2.50- and 2.63-fold increase in AUC0-∞, as well as a 1.53- and 2.46-fold increase in mean residence time (MRT) for SOR and SIM, respectively, compared to the free drug groups. Notably, the CPBA-PLGA(SOR + SIM)-NPs group exhibited significant reduction in tumor volume, approximately 9.17, 2.45, and 1.63-fold lower than the control, SOR + SIM, and PLGA(SOR + SIM)-NPs groups, respectively. Histological examination and biomarker analysis showed no significant differences compared to the control group, suggesting the biocompatibility of the developed particles for in-vivo applications. Altogether, our findings demonstrate that CPBA-PLGA(SOR + SIM)-NPs hold tremendous potential as an efficient drug delivery system for inducing ferroptosis, providing a promising therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Meet Patel
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India.
| |
Collapse
|
9
|
Kuche K, Yadav V, Dharshini M, Ghadi R, Chaudhari D, Date T, Jain S. Synergistic anticancer therapy via ferroptosis using modified bovine serum albumin nanoparticles loaded with sorafenib and simvastatin. Int J Biol Macromol 2023; 253:127254. [PMID: 37813219 DOI: 10.1016/j.ijbiomac.2023.127254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Ferroptosis is a non-apoptotic cell death pathway characterized by the accumulation of lipid-peroxy radicals within the affected cells. Here, we investigate the synergistic capacity of sorafenib (SOR) and simvastatin (SIM) to trigger ferroptosis for cancer therapy. For precise in-vivo delivery, SOR + SIM was ratiometrically loaded in bovine serum albumin nanoparticles (BSA-NPs) modified with 4-carboxy phenylboronic acid (CPBA). The developed CPBA-BSA(SOR + SIM)-NPs revealed size of 175.2 ± 12.8 nm, with PDI of 0.22 ± 0.03 and Z-potential of -29.6 ± 4.8 mV. Significantly, CPBA-BSA(SOR + SIM)-NPs exhibited > 2 and > 5-fold reduction in IC50 values compared to individual SOR and SIM treatments respectively, in all tested cell lines. Moreover, CPBA-BSA(SOR + SIM)-NPs treated cells exhibited decrease in glutathione levels, increase in malonaldehyde levels and depolarization of mitochondrial membrane potential (JC-1 assay). Pharmacokinetic analysis revealed enhanced AUC0-∞ and MRT levels for SOR and SIM when administered as CPBA-BSA(SOR + SIM)-NPs compared to free drugs. Crucially, in in-vivo experiments, CPBA-BSA(SOR + SIM)-NPs led to a significant reduction in tumor volume compared to various control groups. Histological and biomarker analyses underscore their biocompatibility for clinical applications. In conclusion, this study highlights the potential of CPBA-BSA(SOR + SIM)-NPs as a promising strategy for inducing ferroptosis in cancer cells, concurrently improving drug delivery and therapeutic efficacy. This approach opens new avenues in cancer treatment.
Collapse
Affiliation(s)
- Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - M Dharshini
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab 160062, India.
| |
Collapse
|
10
|
Zhou J, Yan GG, Cluckey D, Meade C, Ruth M, Sorm R, Tam AS, Lim S, Petridis C, Lin L, D’Antona AM, Zhong X. Exploring Parametric and Mechanistic Differences between Expi293F TM and ExpiCHO-S TM Cells for Transient Antibody Production Optimization. Antibodies (Basel) 2023; 12:53. [PMID: 37606437 PMCID: PMC10443273 DOI: 10.3390/antib12030053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
Rapidly producing drug-like antibody therapeutics for lead molecule discovery and candidate optimization is typically accomplished by large-scale transient gene expression technologies (TGE) with cultivated mammalian cells. The TGE methodologies have been extensively developed over the past three decades, yet produce significantly lower yields than the stable cell line approach, facing the technical challenge of achieving universal high expression titers for a broad range of antibodies and therapeutics modalities. In this study, we explored various parameters for antibody production in the TGE cell host Expi293FTM and ExpiCHO-STM with the transfection reagents ExpiFectamineTM and polyethylenimine. We discovered that there are significant differences between Expi293FTM and ExpiCHO-STM cells with regards to DNA complex formation time and ratio, complex formation buffers, DNA complex uptake trafficking routes, responses to dimethyl sulfoxide and cell cycle inhibitors, as well as light-chain isotype expression preferences. This investigation mechanistically dissected the TGE processes and provided a new direction for future transient antibody production optimization.
Collapse
|
11
|
Tan Y, Song Q. Research trends and hotspots on the links between caveolin and cancer: bibliometric and visual analysis from 2003 to 2022. Front Pharmacol 2023; 14:1237456. [PMID: 37576808 PMCID: PMC10416243 DOI: 10.3389/fphar.2023.1237456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Extensive studies indicated that caveolin is a key regulator in multiple cellular processes. Recently, growing evidence demonstrated that caveolin is critically involved in tumor progression. Since no relevant bibliometric study has been published, we performed a bibliometric and visual analysis to depict the knowledge framework of research related to the involvement of caveolin in cancer. Methods: Relevant studies published in English during 2003-2022 were obtained from the Web of Science Core Collection database. Three programs (VOSviewer, CiteSpace, and R-bibliometrix) and the website of bibliometrics (http://bibliometric.com/) were applied to construct networks based on the analysis of countries, institutions, authors, journals, references, and keywords. Results: A total of 2,463 documents were extracted and identified. The United States had the greatest number of publications and total citations, and Thomas Jefferson University was the most productive institution. Michael P. Lisanti was the most influential scholar in this research domain. Cell Cycle was the journal with the most publications on this subject. The most local-cited document was the article titled "Caveolin-1 in oncogenic transformation, cancer, and metastasis." A comprehensive analysis has been conducted based on keywords and cited references. Initially, the research frontiers were predominantly "signal transduction", "human breast cancer," "oncogenically transformed cells," "tumor suppressor gene," and "fibroblasts." While in recent years, the research emphasis has shifted to "tumor microenvironment," "epithelial mesenchymal transition," "nanoparticles," and "stem cells." Conclusion: Taken together, our bibliometric analysis shows that caveolin continues to be of interest in cancer research. The hotspots and research frontiers have evolved from the regulation of cancer signaling, to potential targets of cancer therapy and novel techniques. These results can provide a data-based reference for the guidance of future research.
Collapse
Affiliation(s)
- Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qi Song
- Department of Pharmacy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Peng Y, Gao Z, Qiao B, Li D, Pang H, Lai X, Pu Q, Zhang R, Zhao X, Zhao G, Xu D, Wang Y, Ji Y, Pei H, Wu Q. Size-Controlled DNA Tile Self-Assembly Nanostructures Through Caveolae-Mediated Endocytosis for Signal-Amplified Imaging of MicroRNAs in Living Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300614. [PMID: 37189216 PMCID: PMC10375201 DOI: 10.1002/advs.202300614] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/30/2023] [Indexed: 05/17/2023]
Abstract
Signal-amplified imaging of microRNAs (miRNAs) is a promising strategy at the single-cell level because liquid biopsy fails to reflect real-time dynamic miRNA levels. However, the internalization pathways for available conventional vectors predominantly involve endo-lysosomes, showing nonideal cytoplasmic delivery efficiency. In this study, size-controlled 9-tile nanoarrays are designed and constructed by integrating catalytic hairpin assembly (CHA) with DNA tile self-assembly technology to achieve caveolae-mediated endocytosis for the amplified imaging of miRNAs in a complex intracellular environment. Compared with classical CHA, the 9-tile nanoarrays possess high sensitivity and specificity for miRNAs, achieve excellent internalization efficiency by caveolar endocytosis, bypassing lysosomal traps, and exhibit more powerful signal-amplified imaging of intracellular miRNAs. Because of their excellent safety, physiological stability, and highly efficient cytoplasmic delivery, the 9-tile nanoarrays can realize real-time amplified monitoring of miRNAs in various tumor and identical cells of different periods, and imaging effects are consistent with the actual expression levels of miRNAs, ultimately demonstrating their feasibility and capacity. This strategy provides a high-potential delivery pathway for cell imaging and targeted delivery, simultaneously offering a meaningful reference for the application of DNA tile self-assembly technology in relevant fundamental research and medical diagnostics.
Collapse
Affiliation(s)
- Yanan Peng
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Zhijun Gao
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Bin Qiao
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of EducationResearch Unit of Island Emergency MedicineChinese Academy of Medical Sciences (No. 2019RU013)Hainan Medical UniversityHaikou571199P. R. China
| | - Dongxia Li
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Huajie Pang
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Xiangde Lai
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Qiumei Pu
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Rui Zhang
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Xuan Zhao
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Guangyuan Zhao
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Dan Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of PharmacyHainan Medical UniversityHaikou571199P. R. China
| | - Yuanyuan Wang
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of EducationResearch Unit of Island Emergency MedicineChinese Academy of Medical Sciences (No. 2019RU013)Hainan Medical UniversityHaikou571199P. R. China
| | - Yuxiang Ji
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Hua Pei
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Qiang Wu
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of EducationResearch Unit of Island Emergency MedicineChinese Academy of Medical Sciences (No. 2019RU013)Hainan Medical UniversityHaikou571199P. R. China
| |
Collapse
|
13
|
Reorganization of the outer layer of a model of the plasma membrane induced by a neuroprotective aminosterol. Colloids Surf B Biointerfaces 2023; 222:113115. [PMID: 36603410 DOI: 10.1016/j.colsurfb.2022.113115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Trodusquemine is an amphipathic aminosterol that has recently shown therapeutic benefit in neurodegenerative diseases altering the binding of misfolded proteins to the cell membrane. To unravel the underlying mechanism, we studied the interactions between Trodusquemine (TRO) and lipid monolayers simulating the outer layer of the plasma membrane. We selected two different compositions of dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM), cholesterol (Chol) and monosialotetrahexosylganglioside (GM1) lipid mixture mimicking either a lipid-raft containing membrane (Ld+So phases) or a single-phase disordered membrane (Ld phase). Surface pressure-area isotherms and surface compressional modulus-area combined with Brewster Angle Microscopy (BAM) provided the thermodynamic and morphological information on the lipid monolayer in the presence of increasing amounts of TRO in the monolayer. Experiments revealed that TRO forms stable spreading monolayers at the buffer-air interface where it undergoes multiple reversible phase transitions to bi- and tri-layers at the interface. When TRO was spread at the interface with the lipid mixtures, we found that it distributes in the lipid monolayer for both the selected lipid compositions, but a maximum TRO uptake in the rafts-containing monolayer was observed for a Lipid/TRO molar ratio equal to 3:2. Statistical analysis of BAM images revealed that TRO induces a decrease in the size of the condensed domains, an increase in their number and in the thickness mismatch between the Ld and So phase. Experiments and MD simulations converge to indicate that TRO adsorbs preferentially at the border of the So domains. Removal of GM1 from the lipid Ld+So mixture resulted in an even greater TRO-mediated reduction of the size of the So domains suggesting that the presence of GM1 hinders the localization of TRO at the So domains boundaries. Taken together these observations suggest that Trodusquemine influences the organization of lipid rafts within the neuronal membrane in a dose-dependent manner whereas it evenly distributes in disordered expanded phases of the membrane model.
Collapse
|
14
|
Pacheco J, Bohórquez-Hernández A, Méndez-Acevedo KM, Sampieri A, Vaca L. Roles of Cholesterol and PtdIns(4,5)P 2 in the Regulation of STIM1-Orai1 Channel Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:305-326. [PMID: 36988886 DOI: 10.1007/978-3-031-21547-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Calcium is one of the most prominent second messengers. It is involved in a wide range of functions at the single-cell level but also in modulating regulatory mechanisms in the entire organism. One process mediating calcium signaling involves hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) by the phospholipase-C (PLC). Thus, calcium and PtdIns(4,5)P2 are intimately intertwined two second-messenger cascades that often depend on each other. Another relevant lipid associated with calcium signaling is cholesterol. Both PtdIns(4,5)P2 and cholesterol play key roles in the formation and maintenance of specialized signaling nanodomains known as lipid rafts. Lipid rafts are particularly important in calcium signaling by concentrating and localizing calcium channels such as the Orai1 channel. Depletion of internal calcium stores is initiated by the production of inositol-1,4,5-trisphosphate (IP3). Calcium depletion from the ER induces the oligomerization of STIM1, which binds Orai1 and initiates calcium influx into the cell. In the present review, we analyzed the complex interactions between cholesterol, PtdIns(4,5)P2, and the complex formed by the Orai1 channel and the signaling molecule STIM1. We explore some of the complex mechanisms governing calcium homeostasis and phospholipid metabolism, as well as the interaction between these two apparently independent signaling cascades.
Collapse
Affiliation(s)
- Jonathan Pacheco
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kevin M Méndez-Acevedo
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- ZHK, German Center for Cardiovascular Research, Partner Site, Berlin, Germany
| | - Alicia Sampieri
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México.
| |
Collapse
|
15
|
Hasanzadeh A, Hamblin MR, Kiani J, Noori H, Hardie JM, Karimi M, Shafiee H. Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? NANO TODAY 2022; 47:101665. [PMID: 37034382 PMCID: PMC10081506 DOI: 10.1016/j.nantod.2022.101665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gene therapy enables the introduction of nucleic acids like DNA and RNA into host cells, and is expected to revolutionize the treatment of a wide range of diseases. This growth has been further accelerated by the discovery of CRISPR/Cas technology, which allows accurate genomic editing in a broad range of cells and organisms in vitro and in vivo. Despite many advances in gene delivery and the development of various viral and non-viral gene delivery vectors, the lack of highly efficient non-viral systems with low cellular toxicity remains a challenge. The application of cutting-edge technologies such as artificial intelligence (AI) has great potential to find new paradigms to solve this issue. Herein, we review AI and its major subfields including machine learning (ML), neural networks (NNs), expert systems, deep learning (DL), computer vision and robotics. We discuss the potential of AI-based models and algorithms in the design of targeted gene delivery vehicles capable of crossing extracellular and intracellular barriers by viral mimicry strategies. We finally discuss the role of AI in improving the function of CRISPR/Cas systems, developing novel nanobots, and mRNA vaccine carriers.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Joseph M. Hardie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 141556559, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 1584743311, Iran
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| |
Collapse
|
16
|
Horváth Á, Erostyák J, Szőke É. Effect of Lipid Raft Disruptors on Cell Membrane Fluidity Studied by Fluorescence Spectroscopy. Int J Mol Sci 2022; 23:ijms232213729. [PMID: 36430205 PMCID: PMC9697551 DOI: 10.3390/ijms232213729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Lipid rafts are specialized microdomains in cell membranes, rich in cholesterol and sphingolipids, and play an integrative role in several physiological and pathophysiological processes. The integrity of rafts can be disrupted via their cholesterol content-with methyl-β-cyclodextrin (MCD) or with our own carboxamido-steroid compound (C1)-or via their sphingolipid content-with sphingomyelinase (SMase) or with myriocin (Myr). We previously proved by the fluorescent spectroscopy method with LAURDAN that treatment with lipid raft disruptors led to a change in cell membrane polarity. In this study, we focused on the alteration of parameters describing membrane fluidity, such as generalized polarization (GP), characteristic time of the GP values change-Center of Gravity (τCoG)-and rotational mobility (τrot) of LAURDAN molecules. Myr caused a blue shift of the LAURDAN spectrum (higher GP value), while other agents lowered GP values (red shift). MCD decreased the CoG values, while other compounds increased it, so MCD lowered membrane stiffness. In the case of τrot, only Myr lowered the rotation of LAURDAN, while the other compounds increased the speed of τrot, which indicated a more disordered membrane structure. Overall, MCD appeared to increase the fluidity of the membranes, while treatment with the other compounds resulted in decreased fluidity and increased stiffness of the membranes.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, H-7624 Pécs, Hungary
- Correspondence:
| | - János Erostyák
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Ifjúság Str. 20, H-7624 Pécs, Hungary
- Department of Experimental Physics, Faculty of Sciences, University of Pécs, Ifjúság Str. 6, H-7624 Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary
| |
Collapse
|
17
|
Krasnobaev VD, Galimzyanov TR, Akimov SA, Batishchev OV. Lysolipids regulate raft size distribution. Front Mol Biosci 2022; 9:1021321. [PMID: 36275621 PMCID: PMC9581197 DOI: 10.3389/fmolb.2022.1021321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The lipid matrix of cellular membranes, directly and indirectly, regulates many vital functions of the cell. The diversity of lipids in membranes leads to the formation of ordered domains called rafts, which play a crucial role in signal transduction, protein sorting and other cellular processes. Rafts are believed to impact the development of different neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, Huntington’s ones, amyotrophic lateral sclerosis, some types of cancer, etc. These diseases correlate with the change in the membrane lipid composition resulting from an oxidative stress, age-related processes, dysfunction of proteins, and many others. In particular, a lot of studies report a significant rise in the level of lysolipids. Physicochemical properties of rafts are determined by membrane composition, in particular, by the content of lysolipids. Lysolipids may thus regulate raft-involving processes. However, the exact mechanism of such regulation is unknown. Although studying rafts in vivo still seems to be rather complicated, liquid-ordered domains are well observed in model systems. In the present study, we used atomic force microscopy (AFM) to examine how lysophospholipids influence the liquid-ordered domains in model ternary membranes. We demonstrated that even a small amount of lysolipids in a membrane significantly impacts domain size depending on the saturation of the lysolipid hydrocarbon tails and the amount of cholesterol. The mixture with the bigger relative fraction of cholesterol was more susceptible to the action of lysolipids. This data helped us to generalize our previous theoretical model of the domain size regulation by lipids with particular molecular shape expanding it to the case of lysolipids and dioleoylglycerol.
Collapse
Affiliation(s)
- Vladimir D. Krasnobaev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Timur R. Galimzyanov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Oleg V. Batishchev,
| |
Collapse
|
18
|
Arai T, Sato T, Matsubara T. Effective Cell Transfection in An Ultrasonically Levitated Droplet for Sustainable Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203576. [PMID: 36026571 PMCID: PMC9596829 DOI: 10.1002/advs.202203576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The levitation methodology, which enables us to operate a contactless reaction without a container, is likely to be a revolutionary technology in the fields of chemistry and biology to reduce the plastic waste in life science laboratories. Here, the authors show that plasmid DNA can be effectively transfected into animal cells in a floating droplet of culture medium levitated using ultrasonic standing waves. The data indicate that there is no significant damage to the plasmid and cells during the levitating transfection time, and the transgene expression efficiency and cellular uptake in the droplet are significantly higher than those in the conventional tube, with and without shaking. These results suggest the consolidation of the endocytic uptake pathway into macropinocytosis, indicating that ultrasonic levitation induced a change in cell characteristics. This study suggests that transfection methodology using ultrasonic levitation has the potential to advance the current experimental procedures in the field of cell engineering, in addition to presenting a revolutionary containerless reactor for sustainable technology.
Collapse
Affiliation(s)
- Takahiro Arai
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223–8522Japan
| | - Toshinori Sato
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223–8522Japan
| | - Teruhiko Matsubara
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223–8522Japan
| |
Collapse
|
19
|
Lee S, Jung Park M, Joo Lee H, Kil Joo J, Soo Suh D, Un Choi K, Hyung Kim K, Chul Kim S. Decreased expression of caveolin-1 have relevance to promoted senescence in preeclamptic placenta. Pregnancy Hypertens 2022; 30:59-67. [PMID: 36007380 DOI: 10.1016/j.preghy.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVES To assess the association between altered expression of caveolin-1 and p53/p21, as indicatives of cellular senescence, in preeclamptic placenta. STUDY DESIGN Placental tissues and serum were collected from rats (Sham and reduced uterine perfusion pressure group) at 18.5 days post coitum and humans (normotensive pregnant and preeclampsia groups). The concentration and expression of caveolin-1 were measured in the collected tissues, and the correlation between p53 and p21 expression was evaluation. MAIN OUTCOME MEASURES Placental mRNA expression and serum concentration of caveolin-1 were measured using qRT-PCR and ELISA, respectively. Altered expressions of caveolin-1 and p53/p21 were revealed and quantified by immunohistochemistry. The association between these changes was investigated using correlation analysis. RESULTS Placental mRNA expressions and serum concentrations of caveolin-1 were significantly decreased in reduced uterine perfusion pressure and preeclampsia groups. The expressions of caveolin-1 and p53/ p21 were significantly altered in placenta complicated with preeclampsia. Correlation analysis revealed a significant inverse association between changes in caveolin-1 and p53/p21. Subsequently, these results were obtained by investigating the preeclampsia onset time. CONCLUSION These results revealed that the expression of caveolin-1 profoundly decreases in the placenta and serum of preeclampsia. These factors contribute to the mechanism of accelerated cellular senescence in placenta, which is one of the various etiologies of preeclampsia.
Collapse
Affiliation(s)
- Sul Lee
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Republic of Korea; Biomedical Research Institute Pusan National University Hospital, Republic of Korea
| | - Min Jung Park
- The Korea Institute for Public Sperm Bank, Republic of Korea
| | - Hyun Joo Lee
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Republic of Korea; Biomedical Research Institute Pusan National University Hospital, Republic of Korea
| | - Jong Kil Joo
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Republic of Korea; Biomedical Research Institute Pusan National University Hospital, Republic of Korea
| | - Dong Soo Suh
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Republic of Korea; Biomedical Research Institute Pusan National University Hospital, Republic of Korea
| | - Kyung Un Choi
- Biomedical Research Institute Pusan National University Hospital, Republic of Korea; Department of Pathology, Pusan National University School of Medicine, Republic of Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Republic of Korea; Biomedical Research Institute Pusan National University Hospital, Republic of Korea
| | - Seung Chul Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Republic of Korea; Biomedical Research Institute Pusan National University Hospital, Republic of Korea.
| |
Collapse
|
20
|
Popov LD. Deciphering the relationship between caveolae-mediated intracellular transport and signalling events. Cell Signal 2022; 97:110399. [PMID: 35820545 DOI: 10.1016/j.cellsig.2022.110399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
The caveolae-mediated transport across polarized epithelial cell barriers has been largely deciphered in the last decades and is considered the second essential intracellular transfer mechanism, after the clathrin-dependent endocytosis. The basic cell biology knowledge was supplemented recently, with the molecular mechanisms beyond caveolae generation implying the key contribution of the lipid-binding proteins (the structural protein Caveolin and the adapter protein Cavin), along with the bulb coat stabilizing molecules PACSIN-2 and Eps15 homology domain protein-2. The current attention is focused also on caveolae architecture (such as the bulb coat, the neck, the membrane funnel inside the bulb, and the associated receptors), and their specific tasks during the intracellular transport of various cargoes. Here, we resume the present understanding of the assembly, detachment, and internalization of caveolae from the plasma membrane lipid raft domains, and give an updated view on transcytosis and endocytosis, the two itineraries of cargoes transport via caveolae. The review adds novel data on the signalling molecules regulating caveolae intracellular routes and on the transport dysregulation in diseases. The therapeutic possibilities offered by exploitation of Caveolin-1 expression and caveolae trafficking, and the urgent issues to be uncovered conclude the review.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
21
|
Mao S, Ren J, Xu Y, Lin J, Pan C, Meng Y, Xu N. Studies in the antiviral molecular mechanisms of 25-hydroxycholesterol: Disturbing cholesterol homeostasis and post-translational modification of proteins. Eur J Pharmacol 2022; 926:175033. [PMID: 35598845 PMCID: PMC9119167 DOI: 10.1016/j.ejphar.2022.175033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
Efficient antiviral drug discovery has been a pressing issue of global public health concern since the outbreak of coronavirus disease 2019. In recent years, numerous in vitro and in vivo studies have shown that 25-hydroxycholesterol (25HC), a reactive oxysterol catalyzed by cholesterol-25-hydroxylase, exerts broad-spectrum antiviral activity with high efficiency and low toxicity. 25HC restricts viral internalization and disturbs the maturity of viral proteins using multiple mechanisms. First, 25HC reduces lipid rafts and cholesterol in the cytomembrane by inhibiting sterol-regulatory element binding proteins-2, stimulating liver X receptor, and activating Acyl-coenzyme A: cholesterol acyl-transferase. Second, 25HC impairs endosomal pathways by restricting the function of oxysterol-binding protein or Niemann-pick protein C1, causing the virus to fail to release nucleic acid. Third, 25HC disturbs the prenylation of viral proteins by suppressing the sterol-regulatory element binding protein pathway and glycosylation by increasing the sensitivity of glycans to endoglycosidase. This paper reviews previous studies on the antiviral activity of 25HC in order to fully understand its role in innate immunity and how it may contribute to the development of urgently needed broad-spectrum antiviral drugs.
Collapse
|
22
|
Tang Y, Yu Z, Lu X, Fan Q, Huang W. Overcoming Vascular Barriers to Improve the Theranostic Outcomes of Nanomedicines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103148. [PMID: 35246962 PMCID: PMC9069202 DOI: 10.1002/advs.202103148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/16/2022] [Indexed: 05/04/2023]
Abstract
Nanotheranostics aims to utilize nanomaterials to prevent, diagnose, and treat diseases to improve the quality of patients' lives. Blood vessels are responsible to deliver nutrients and oxygen to the whole body, eliminate waste, and provide access for patrolling immune cells for healthy tissues. Meanwhile, they can also nourish disease tissues, spread disease factors or cells into other healthy tissues, and deliver nanotheranostic agents to cover all the regions of a disease tissue. Thus, blood vessels are the first and the most important barrier for highly efficient nanotheranostics. Here, the structure and function of blood vessels are explored and how these characteristics affect nanotheranostics is discussed. Moreover, new mechanisms and related strategies about overcoming vascular obstacles for improved nanotheranostic outcomes are critically summarized, and their merits and demerits of each strategy are analyzed. Moreover, the present challenges to completely exhibit the potential of overcoming vascular barriers to improve the theranostic outcomes of nanomedicines in life science are also discussed. Finally, the future perspective is further discussed.
Collapse
Affiliation(s)
- Yufu Tang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
| | - Zhongzheng Yu
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingapore637459Singapore
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi'an710072China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi'an710072China
| |
Collapse
|
23
|
Ginini L, Billan S, Fridman E, Gil Z. Insight into Extracellular Vesicle-Cell Communication: From Cell Recognition to Intracellular Fate. Cells 2022; 11:1375. [PMID: 35563681 PMCID: PMC9101098 DOI: 10.3390/cells11091375] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Extracellular vesicles (EVs) are heterogamous lipid bilayer-enclosed membranous structures secreted by cells. They are comprised of apoptotic bodies, microvesicles, and exosomes, and carry a range of nucleic acids and proteins that are necessary for cell-to-cell communication via interaction on the cells surface. They initiate intracellular signaling pathways or the transference of cargo molecules, which elicit pleiotropic responses in recipient cells in physiological processes, as well as pathological processes, such as cancer. It is therefore important to understand the molecular means by which EVs are taken up into cells. Accordingly, this review summarizes the underlying mechanisms involved in EV targeting and uptake. The primary method of entry by EVs appears to be endocytosis, where clathrin-mediated, caveolae-dependent, macropinocytotic, phagocytotic, and lipid raft-mediated uptake have been variously described as being prevalent. EV uptake mechanisms may depend on proteins and lipids found on the surfaces of both vesicles and target cells. As EVs have been shown to contribute to cancer growth and progression, further exploration and targeting of the gateways utilized by EVs to internalize into tumor cells may assist in the prevention or deceleration of cancer pathogenesis.
Collapse
Affiliation(s)
- Lana Ginini
- Rappaport Family Institute for Research in the Medical Sciences, Technion–Israel Institute of Technology, Haifa 31096, Israel; (L.G.); (E.F.)
| | - Salem Billan
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel;
- Medical Oncology and Radiation Therapy Program, Oncology Section, Rambam Health Care Campus, HaAliya HaShniya Street 8, Haifa 3109601, Israel
| | - Eran Fridman
- Rappaport Family Institute for Research in the Medical Sciences, Technion–Israel Institute of Technology, Haifa 31096, Israel; (L.G.); (E.F.)
| | - Ziv Gil
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel;
| |
Collapse
|
24
|
Mills JA, Liu F, Jarrett TR, Fletcher NL, Thurecht KJ. Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomater Sci 2022; 10:3029-3053. [PMID: 35419582 DOI: 10.1039/d2bm00181k] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For decades, nanomedicines have been reported as a potential means to overcome the limitations of conventional drug delivery systems by reducing side effects, toxicity and the non-ideal pharmacokinetic behaviour typically exhibited by small molecule drugs. However, upon administration many nanoparticles prompt induction of host inflammatory responses due to recognition and uptake by macrophages, eliminating up to 95% of the administered dose. While significant advances in nanoparticle engineering and consequent therapeutic efficacy have been made, it is becoming clear that nanoparticle recognition by the mononuclear phagocyte system (MPS) poses an impassable junction in the current framework of nanoparticle development. Hence, this has negative consequences on the clinical translation of nanotechnology with respect to therapeutic efficacy, systemic toxicity and economic benefit. In order to improve the translation of nanomedicines from bench-to-bedside, there is a requirement to either modify nanomedicines in terms of how they interact with intrinsic processes in the body, or modulate the body to be more accommodating for nanomedicine treatments. Here we provide an overview of the current standard for design elements of nanoparticles, as well as factors to consider when producing nanomedicines that have minimal MPS-nanoparticle interactions; we explore this landscape across the cellular to tissue and organ levels. Further, rather than designing materials to suit the body, a growing research niche involves modulating biological responses to administered nanomaterials. We here discuss how developing strategic methods of MPS 'pre-conditioning' with small molecule or biological drugs, as well as implementing strategic dosing regimens, such as 'decoy' nanoparticles, is essential to increasing nanoparticle therapeutic efficacy. By adopting such a perspective, we hope to highlight the increasing trends in research dedicated to improving nanomedicine translation, and subsequently making a positive clinical impact.
Collapse
Affiliation(s)
- Jessica A Mills
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
| | - Feifei Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| | - Thomas R Jarrett
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| |
Collapse
|
25
|
CD44-Targeted Carriers: The Role of Molecular Weight of Hyaluronic Acid in the Uptake of Hyaluronic Acid-Based Nanoparticles. Pharmaceuticals (Basel) 2022; 15:ph15010103. [PMID: 35056160 PMCID: PMC8781203 DOI: 10.3390/ph15010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
Nanotechnology offers advanced biomedical tools for diagnosis and drug delivery, stressing the value of investigating the mechanisms by which nanocarriers interact with the biological environment. Herein, the cellular response to CD44-targeted nanoparticles (NPs) was investigated. CD44, the main hyaluronic acid (HA) receptor, is widely exploited as a target for therapeutic purposes. HA NPs were produced by microfluidic platform starting from HA with different molecular weights (Mw, 280, 540, 820 kDa) by polyelectrolyte complexation with chitosan (CS). Thanks to microfluidic technology, HA/CS NPs with the same physical features were produced, and only the effects of HA Mw on CD44-overexpressing cells (human mesenchymal stem cells, hMSCs) were studied. This work provides evidence of the HA/CS NPs biocompatibility regardless the HA Mw and reveals the effect of low Mw HA in improving the cell proliferation. Special attention was paid to the endocytic mechanisms used by HA/CS NPs to enter hMSCs. The results show the notable role of CD44 and the pronounced effect of HA Mw in the NPs’ internalization. HA/CS NPs uptake occurs via different endocytic pathways simultaneously, and most notably, NPs with 280 kDa HA were internalized by clathrin-mediated endocytosis. Instead, NPs with 820 kDa HA revealed a greater contribution of caveolae and cytoskeleton components.
Collapse
|
26
|
Arai T, Aiki Y, Sato T. Accelerated transgene expression of pDNA/polysaccharide complexes by solid-phase reverse transfection and analysis of the cell transfection mechanism. Polym J 2022. [DOI: 10.1038/s41428-021-00603-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Hansen FC, Nadeem A, Browning KL, Campana M, Schmidtchen A, van der Plas MJA. Differential Internalization of Thrombin-Derived Host Defense Peptides into Monocytes and Macrophages. J Innate Immun 2021; 14:418-432. [PMID: 34937021 PMCID: PMC9485985 DOI: 10.1159/000520831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
Proteolytic cleavage of thrombin generates C-terminal host defense peptides exerting multiple immunomodulatory effects in response to bacterial stimuli. Previously, we reported that thrombin-derived C-terminal peptides (TCPs) are internalized in monocytes and macrophages in a time- and temperature-dependent manner. In this study, we investigated which endocytosis pathways are responsible for the internalization of TCPs. Using confocal microscopy and flow cytometry, we show that both clathrin-dependent and clathrin-independent pathways are involved in the internalization of the prototypic TCP GKY25 in RAW264.7 and human monocyte-derived M1 macrophages, whereas the uptake of GKY25 in monocytic THP-1 cells is mainly dynamin-dependent. Internalized GKY25 was transported to endosomes and finally lysosomes, where it remained detectable for up to 10 h. Comparison of GKY25 uptake with that of the natural occurring TCPs HVF18 and FYT21 indicates that the pathway of TCP endocytosis is not only cell type-dependent but also depends on the length and composition of the peptide as well as the presence of LPS and bacteria. Finally, using neutron reflectometry, we show that the observed differences between HVF18 and the other 2 TCPs may be explained partially by differences in membrane insertion. Taken together, we show that TCPs are differentially internalized into monocytes and macrophages.
Collapse
Affiliation(s)
- Finja C Hansen
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Aftab Nadeem
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Kathryn L Browning
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Mario Campana
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, United Kingdom
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Dermatology, Skåne University Hospital, Lund, Sweden.,Copenhagen Wound Healing Center, Bispebjerg Hospital, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mariena J A van der Plas
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Teng C, Li B, Lin C, Xing X, Huang F, Yang Y, Li Y, Azevedo HS, He W. Targeted delivery of baicalein-p53 complex to smooth muscle cells reverses pulmonary hypertension. J Control Release 2021; 341:591-604. [PMID: 34896449 DOI: 10.1016/j.jconrel.2021.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is an uncommon and deadly cardiopulmonary disease. PAH stems essentially from pulmonary artery (PA) remodeling induced predominantly by over-proliferation of PA smooth muscle cells (PASMCs) and inflammation. However, effective treatments are still missing in the clinic because the available drugs consisting of vasodilators are aimed to attenuate PAH symptoms rather than inhibit the remodeling process. Here, we aimed to specifically co-deliver apoptotic executor gene p53 and anti-inflammatory baicalein to PASMCs to alleviate PAH. The targeted co-delivery system was prepared through a carrier-free approach, which was prepared by loading the conjugate, NLS (nuclear localization signal) peptide-p53 gene, onto the baicalein pure crystals, followed by coating with glucuronic acid (GA) for targeting the glucose transport-1 (GLUT-1). The co-delivery system developed has a 200-nm diameter with a rod shape and a drug-loading capacity of 62% (w/w). The prepared system was shown to target PASMCs in vitro and enabled effective gene transfection, efficient apoptosis, and inflammation suppression. In vivo, via targeting the axis lung-PAs-PASMCs, the co-delivery reversed monocrotaline-induced PAH by reducing pulmonary artery pressure, downregulating the proinflammatory cytokine TNF-α, and inhibiting remodeling of both PAs and right ventricular. The potent efficacy may closely correlate with the activation of the signaling axis Bax/Bcl-2/Cas-3. Overall, our results indicate that the co-delivery system holds a significant potential to target the axis of lung-PAs-PASMCs and treat PAH.
Collapse
Affiliation(s)
- Chao Teng
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Bingbing Li
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Chenshi Lin
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xuyang Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feifei Huang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Helena S Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
29
|
Kubczak M, Michlewska S, Bryszewska M, Aigner A, Ionov M. Nanoparticles for local delivery of siRNA in lung therapy. Adv Drug Deliv Rev 2021; 179:114038. [PMID: 34742826 DOI: 10.1016/j.addr.2021.114038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
An overview of the application of natural and synthetic, non-viral vectors for oligonucleotide delivery into the lung is presented in this review, with a special focus on lung cancer. Due to the specificity of the respiratory tract, its structure and natural barriers, the administration of drugs (especially those based on nucleic acids) is a particular challenge. Among widely tested non-viral drug and oligonucleotides carriers, synthetic polymers seem to be most promising. Unique properties of these nanoparticles allow for essentially unlimited possibilities regarding their design and modification. This gives hope that optimal nanoparticles with ideal nucleic acid carrier properties for lung cancer therapy will eventually emanate.
Collapse
|
30
|
Quilty F, Freeley M, Gargan S, Gilmer J, Long A. Deoxycholic acid induces proinflammatory cytokine production by model oesophageal cells via lipid rafts. J Steroid Biochem Mol Biol 2021; 214:105987. [PMID: 34438042 DOI: 10.1016/j.jsbmb.2021.105987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/28/2022]
Abstract
The bile acid component of gastric refluxate has been implicated in inflammation of the oesophagus including conditions such as gastro-oesophageal reflux disease (GORD) and Barrett's Oesophagus (BO). Here we demonstrate that the hydrophobic bile acid, deoxycholic acid (DCA), stimulated the production of IL-6 and IL-8 mRNA and protein in Het-1A, a model of normal oesophageal cells. DCA-induced production of IL-6 and IL-8 was attenuated by pharmacologic inhibition of the Protein Kinase C (PKC), MAP kinase, tyrosine kinase pathways, by the cholesterol sequestering agent, methyl-beta-cyclodextrin (MCD) and by the hydrophilic bile acid, ursodeoxycholic acid (UDCA). The cholesterol-interacting agent, nystatin, which binds cholesterol without removing it from the membrane, synergized with DCA to induce IL-6 and IL-8. This was inhibited by the tyrosine kinase inhibitor genistein. DCA stimulated the phosphorylation of lipid raft component Src tyrosine kinase (Src). while knockdown of caveolin-1 expression using siRNA resulted in a decreased level of IL-8 production in response to DCA. Taken together, these results demonstrate that DCA stimulates IL-6 and IL-8 production in oesophageal cells via lipid raft-associated signaling. Inhibition of this process using cyclodextrins represents a novel therapeutic approach to the treatment of inflammatory diseases of the oesophagus including GORD and BO.
Collapse
Affiliation(s)
- Francis Quilty
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin 2, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Michael Freeley
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Siobhan Gargan
- Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - John Gilmer
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin 2, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Aideen Long
- Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
31
|
Du X, Hou Y, Huang J, Pang Y, Ruan C, Wu W, Xu C, Zhang H, Yin L, He W. Cytosolic delivery of the immunological adjuvant Poly I:C and cytotoxic drug crystals via a carrier-free strategy significantly amplifies immune response. Acta Pharm Sin B 2021; 11:3272-3285. [PMID: 34729315 PMCID: PMC8546930 DOI: 10.1016/j.apsb.2021.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Co-delivery of chemotherapeutics and immunostimulant or chemoimmunotherapy is an emerging strategy in cancer therapy. The precise control of the targeting and release of agents is critical in this methodology. This article proposes the asynchronous release of the chemotherapeutic agents and immunostimulants to realize the synergistic effect between chemotherapy and immunotherapy. To obtain a proof-of-concept, a co-delivery system was prepared via a drug-delivering-drug (DDD) strategy for cytosolic co-delivery of Poly I:C, a synthetic dsRNA analog to activate RIG-I signaling, and PTX, a commonly used chemotherapeutics, in which pure PTX nanorods were sequentially coated with Poly I:C and mannuronic acid via stimulating the RIG-I signaling axis. The co-delivery system with a diameter of 200 nm enables profound immunogenicity of cancer cells, exhibiting increased secretion of cytokines and chemokines, pronounced immune response in vivo, and significant inhibition of tumor growth. Also, we found that intracellularly sustained release of cytotoxic agents could elicit the immunogenicity of cancer cells. Overall, the intracellular asynchronous release of chemotherapeutics and immunomodulators is a promising strategy to promote the immunogenicity of cancer cells and augment the antitumor immune response.
Collapse
Affiliation(s)
- Xiaoqing Du
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuqi Hou
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jia Huang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Pang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chenlu Ruan
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Hongwei Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy–Boston, MCPHS University, Boston, MA 02115, USA
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Corresponding author.
| |
Collapse
|
32
|
Villalva MD, Agarwal V, Ulanova M, Sachdev PS, Braidy N. Quantum dots as a theranostic approach in Alzheimer's disease: a systematic review. Nanomedicine (Lond) 2021; 16:1595-1611. [PMID: 34180261 DOI: 10.2217/nnm-2021-0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Quantum dots (QDs) are nanoparticles that have an emerging application as theranostic agents in several neurodegenerative diseases. The advantage of QDs as nanomedicine is due to their unique optical properties that provide high sensitivity, stability and selectivity at a nanoscale range. Objective: To offer renewed insight into current QD research and elucidate its promising application in Alzheimer's disease (AD) diagnosis and therapy. Methods: A comprehensive literature search was conducted in PubMed and Google Scholar databases that included the following search terms: 'quantum dots', 'blood-brain barrier', 'cytotoxicity', 'toxicity' and 'Alzheimer's disease'; PRISMA guidelines were adhered to. Results: Thirty-four publications were selected to evaluate the ability of QDs to cross the blood-brain barrier, potential toxicity and current AD diagnostic and therapeutic applications. Conclusion: QD's unique optical properties and versatility to conjugate to various biomolecules, while maintaining a nanoscale size, render them a promising theranostic tool in AD.
Collapse
Affiliation(s)
- Maria D Villalva
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Marina Ulanova
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia.,Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| |
Collapse
|
33
|
Desale K, Kuche K, Jain S. Cell-penetrating peptides (CPPs): an overview of applications for improving the potential of nanotherapeutics. Biomater Sci 2021; 9:1153-1188. [PMID: 33355322 DOI: 10.1039/d0bm01755h] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the field of nanotherapeutics, gaining cellular entry into the cytoplasm of the target cell continues to be an ultimate challenge. There are many physicochemical factors such as charge, size and molecular weight of the molecules and delivery vehicles, which restrict their cellular entry. Hence, to dodge such situations, a class of short peptides called cell-penetrating peptides (CPPs) was brought into use. CPPs can effectively interact with the cell membrane and can assist in achieving the desired intracellular entry. Such strategy is majorly employed in the field of cancer therapy and diagnosis, but now it is also used for other purposes such as evaluation of atherosclerotic plaques, determination of thrombin levels and HIV therapy. Thus, the current review expounds on each of these mentioned aspects. Further, the review briefly summarizes the basic know-how of CPPs, their utility as therapeutic molecules, their use in cancer therapy, tumor imaging and their assistance to nanocarriers in improving their membrane penetrability. The review also discusses the challenges faced with CPPs pertaining to their stability and also mentions the strategies to overcome them. Thus, in a nutshell, this review will assist in understanding how CPPs can present novel possibilities for resolving the conventional issues faced with the present-day nanotherapeutics.
Collapse
Affiliation(s)
- Kalyani Desale
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| |
Collapse
|
34
|
Chen JJ, Fan Y, Boehning D. Regulation of Dynamic Protein S-Acylation. Front Mol Biosci 2021; 8:656440. [PMID: 33981723 PMCID: PMC8107437 DOI: 10.3389/fmolb.2021.656440] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Protein S-acylation is the reversible addition of fatty acids to the cysteine residues of target proteins. It regulates multiple aspects of protein function, including the localization to membranes, intracellular trafficking, protein interactions, protein stability, and protein conformation. This process is regulated by palmitoyl acyltransferases that have the conserved amino acid sequence DHHC at their active site. Although they have conserved catalytic cores, DHHC enzymes vary in their protein substrate selection, lipid substrate preference, and regulatory mechanisms. Alterations in DHHC enzyme function are associated with many human diseases, including cancers and neurological conditions. The removal of fatty acids from acylated cysteine residues is catalyzed by acyl protein thioesterases. Notably, S-acylation is now known to be a highly dynamic process, and plays crucial roles in signaling transduction in various cell types. In this review, we will explore the recent findings on protein S-acylation, the enzymatic regulation of this process, and discuss examples of dynamic S-acylation.
Collapse
|
35
|
Mayberry CL, Bond AC, Wilczek MP, Mehmood K, Maginnis MS. Sending mixed signals: polyomavirus entry and trafficking. Curr Opin Virol 2021; 47:95-105. [PMID: 33690104 DOI: 10.1016/j.coviro.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/31/2022]
Abstract
Polyomaviruses are mostly non-pathogenic, yet some can cause human disease especially under conditions of immunosuppression, including JC, BK, and Merkel cell polyomaviruses. Direct interactions between viruses and the host early during infection dictate the outcome of disease, many of which remain enigmatic. However, significant work in recent years has contributed to our understanding of how this virus family establishes an infection, largely due to advances made for animal polyomaviruses murine and SV40. Here we summarize the major findings that have contributed to our understanding of polyomavirus entry, trafficking, disassembly, signaling, and immune evasion during the infectious process and highlight major unknowns in these processes that are open areas of study.
Collapse
Affiliation(s)
- Colleen L Mayberry
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, USA
| | - Avery Cs Bond
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, USA
| | - Michael P Wilczek
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, USA
| | - Kashif Mehmood
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, USA
| | - Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, USA; Graduate School in Biomedical Sciences and Engineering, The University of Maine, Orono, ME, USA.
| |
Collapse
|
36
|
Sorice M, Misasi R, Riitano G, Manganelli V, Martellucci S, Longo A, Garofalo T, Mattei V. Targeting Lipid Rafts as a Strategy Against Coronavirus. Front Cell Dev Biol 2021; 8:618296. [PMID: 33614627 PMCID: PMC7890255 DOI: 10.3389/fcell.2020.618296] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid rafts are functional membrane microdomains containing sphingolipids, including gangliosides, and cholesterol. These regions are characterized by highly ordered and tightly packed lipid molecules. Several studies revealed that lipid rafts are involved in life cycle of different viruses, including coronaviruses. Among these recently emerged the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The main receptor for SARS-CoV-2 is represented by the angiotensin-converting enzyme-2 (ACE-2), although it also binds to sialic acids linked to host cell surface gangliosides. A new type of ganglioside-binding domain within the N-terminal portion of the SARS-CoV-2 spike protein was identified. Lipid rafts provide a suitable platform able to concentrate ACE-2 receptor on host cell membranes where they may interact with the spike protein on viral envelope. This review is focused on selective targeting lipid rafts components as a strategy against coronavirus. Indeed, cholesterol-binding agents, including statins or methyl-β-cyclodextrin (MβCD), can affect cholesterol, causing disruption of lipid rafts, consequently impairing coronavirus adhesion and binding. Moreover, these compounds can block downstream key molecules in virus infectivity, reducing the levels of proinflammatory molecules [tumor necrosis factor alpha (TNF-α), interleukin (IL)-6], and/or affecting the autophagic process involved in both viral replication and clearance. Furthermore, cyclodextrins can assemble into complexes with various drugs to form host-guest inclusions and may be used as pharmaceutical excipients of antiviral compounds, such as lopinavir and remdesivir, by improving bioavailability and solubility. In conclusion, the role of lipid rafts-affecting drugs in the process of coronavirus entry into the host cells prompts to introduce a new potential task in the pharmacological approach against coronavirus.
Collapse
Affiliation(s)
- Maurizio Sorice
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | | | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Agostina Longo
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| |
Collapse
|
37
|
Alajbegovic A, Holmberg J, Daoud F, Rippe C, Kalliokoski G, Ekman M, Daudi S, Ragnarsson S, Swärd K, Albinsson S. MRTFA overexpression promotes conversion of human coronary artery smooth muscle cells into lipid-laden foam cells. Vascul Pharmacol 2021; 138:106837. [PMID: 33516965 DOI: 10.1016/j.vph.2021.106837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Smooth muscle cells contribute significantly to lipid-laden foam cells in atherosclerotic plaques. However, the underlying mechanisms transforming smooth muscle cells into foam cells are poorly understood. The purpose of this study was to gain insight into the molecular mechanisms regulating smooth muscle foam cell formation. APPROACH AND RESULTS Using human coronary artery smooth muscle cells we found that the transcriptional co-activator MRTFA promotes lipid accumulation via several mechanisms, including direct transcriptional control of LDL receptor, enhanced fluid-phase pinocytosis and reduced lipid efflux. Inhibition of MRTF activity with CCG1423 and CCG203971 significantly reduced lipid accumulation. Furthermore, we demonstrate enhanced MRTFA expression in vascular remodeling of human vessels. CONCLUSIONS This study demonstrates a novel role for MRTFA as an important regulator of lipid homeostasis in vascular smooth muscle cells. Thus, MRTFA could potentially be a new therapeutic target for inhibition of vascular lipid accumulation.
Collapse
Affiliation(s)
- Azra Alajbegovic
- Department of Experimental Medical Science, Lund University, Sweden.
| | - Johan Holmberg
- Department of Experimental Medical Science, Lund University, Sweden
| | - Fatima Daoud
- Department of Experimental Medical Science, Lund University, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund University, Sweden
| | | | - Mari Ekman
- Department of Experimental Medical Science, Lund University, Sweden
| | - Sébastien Daudi
- Department of Clinical Science, Lund University, Lund, Sweden
| | | | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Sweden
| | | |
Collapse
|
38
|
Abstract
Cellular senescence is a feature of most somatic cells. It is characterized by an irreversible cell cycle arrest and by the ability to secrete a plethora of mediators of inflammation and growth factors, which can alter the senescent cell's microenvironment. Senescent cells accumulate in tissues over time and contribute to both aging and the development of age-associated diseases. Senescent cells have antagonistic pleiotropic roles in cancer. Given the inability of senescent cells to proliferate, cellular senescence is a powerful tumor suppressor mechanism in young individuals. However, accumulation of senescent stromal cells during aging can fuel cancer cell growth in virtue of their capacity to release factors that stimulate cell proliferation. Caveolin-1 is a structural protein component of caveolae, invaginations of the plasma membrane involved in a variety of cellular processes, including signal transduction. Mounting evidence over the last 10-15 years has demonstrated a central role of caveolin-1 in the development of a senescent phenotype and the regulation of both the anti-tumorigenic and pro-tumorigenic properties of cellular senescence. In this review, we discuss the cellular mechanisms and functions of caveolin-1 in the context of cellular senescence and their relevance to the biology of cancer.
Collapse
|
39
|
Abstract
Since the initial reports implicating caveolin-1 (CAV1) in neoplasia, the scientific community has made tremendous strides towards understanding how CAV1-dependent signaling and caveolae assembly modulate solid tumor growth. Once a solid neoplastic tumor reaches a certain size, it will increasingly rely on its stroma to meet the metabolic demands of the rapidly proliferating cancer cells, a limitation typically but not exclusively addressed via the formation of new blood vessels. Landmark studies using xenograft tumor models have highlighted the importance of stromal CAV1 during neoplastic blood vessel growth from preexisting vasculature, a process called angiogenesis, and helped identify endothelium-specific signaling events regulated by CAV1, such as vascular endothelial growth factor (VEGF) receptors as well as the endothelial nitric oxide (NO) synthase (eNOS) systems. This chapter provides a glimpse into the signaling events modulated by CAV1 and its scaffolding domain (CSD) during endothelial-specific aspects of neoplastic growth, such as vascular permeability, angiogenesis, and mechanotransduction.
Collapse
Affiliation(s)
- Pascal Bernatchez
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia (UBC), 2176 Health Sciences mall, room 217, Vancouver, BC, V6T 1Z3, Canada. .,Centre for Heart & Lung Innovation, St. Paul's Hospital, Vancouver, Canada.
| |
Collapse
|
40
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
41
|
Yu H, Li Y, Li L, Huang J, Wang X, Tang R, Jiang Z, Lv L, Chen F, Yu C, Yuan K. Functional reciprocity of proteins involved in mitosis and endocytosis. FEBS J 2020; 288:5850-5866. [PMID: 33300206 DOI: 10.1111/febs.15664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
Mitosis and endocytosis are two fundamental cellular processes essential for maintaining a eukaryotic life. Mitosis partitions duplicated chromatin enveloped in the nuclear membrane into two new cells, whereas endocytosis takes in extracellular substances through membrane invagination. These two processes are spatiotemporally separated and seemingly unrelated. However, recent studies have uncovered that endocytic proteins have moonlighting functions in mitosis, and mitotic complexes manifest additional roles in endocytosis. In this review, we summarize important proteins or protein complexes that participate in both processes, compare their mechanism of action, and discuss the rationale behind this multifunctionality. We also speculate on the possible origin of the functional reciprocity from an evolutionary perspective.
Collapse
Affiliation(s)
- Haibin Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yinshuang Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Li Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | | | - Xujuan Wang
- The High School Attached to Hunan Normal University, Changsha, China
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhenghui Jiang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhong Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,The Biobank of Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
42
|
Wang HY, Bharti D, Levental I. Membrane Heterogeneity Beyond the Plasma Membrane. Front Cell Dev Biol 2020; 8:580814. [PMID: 33330457 PMCID: PMC7710808 DOI: 10.3389/fcell.2020.580814] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/02/2020] [Indexed: 01/21/2023] Open
Abstract
The structure and organization of cellular membranes have received intense interest, particularly in investigations of the raft hypothesis. The vast majority of these investigations have focused on the plasma membrane of mammalian cells, yielding significant progress in understanding membrane heterogeneity in terms of lipid composition, molecular structure, dynamic regulation, and functional relevance. In contrast, investigations on lipid organization in other membrane systems have been comparatively scarce, despite the likely relevance of membrane domains in these contexts. In this review, we summarize recent observations on lipid organization in organellar membranes, including endoplasmic reticulum, Golgi, endo-lysosomes, lipid droplets, and secreted membranes like lung surfactant, milk fat globule membranes, and viral membranes. Across these non-plasma membrane systems, it seems that the biophysical principles underlying lipid self-organization contribute to lateral domains.
Collapse
Affiliation(s)
- Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| | - Deepti Bharti
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
- National Institute of Technology, Rourkela, India
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
43
|
Dudãu M, Codrici E, Tanase C, Gherghiceanu M, Enciu AM, Hinescu ME. Caveolae as Potential Hijackable Gates in Cell Communication. Front Cell Dev Biol 2020; 8:581732. [PMID: 33195223 PMCID: PMC7652756 DOI: 10.3389/fcell.2020.581732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Caveolae are membrane microdomains described in many cell types involved in endocytocis, transcytosis, cell signaling, mechanotransduction, and aging. They are found at the interface with the extracellular environment and are structured by caveolin and cavin proteins. Caveolae and caveolins mediate transduction of chemical messages via signaling pathways, as well as non-chemical messages, such as stretching or shear stress. Various pathogens or signals can hijack these gates, leading to infectious, oncogenic and even caveolin-related diseases named caveolinopathies. By contrast, preclinical and clinical research have fallen behind in their attempts to hijack caveolae and caveolins for therapeutic purposes. Caveolae involvement in human disease is not yet fully explored or understood and, of all their scaffold proteins, only caveolin-1 is being considered in clinical trials as a possible biomarker of disease. This review briefly summarizes current knowledge about caveolae cell signaling and raises the hypothesis whether these microdomains could serve as hijackable “gatekeepers” or “gateways” in cell communication. Furthermore, because cell signaling is one of the most dynamic domains in translating data from basic to clinical research, we pay special attention to translation of caveolae, caveolin, and cavin research into clinical practice.
Collapse
Affiliation(s)
- Maria Dudãu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Clinical Biochemistry Department, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail E Hinescu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
44
|
Zhang W, Teske N, Samadi M, Sarem M, Shastri VP. Unraveling the role of β1 integrin isoforms in cRGD-mediated uptake of nanoparticles bearing hydrophilized alkyne moieties in epithelial and endothelial cells. Acta Biomater 2020; 116:344-355. [PMID: 32871280 DOI: 10.1016/j.actbio.2020.08.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
The uptake and trafficking of NPs is impacted by several attributes such as size, shape, surface charge and importantly by surface ligands that can interact with the cell plasma membrane. We envision that NPs which can be readily modified in aqueous environments will be key to engineering patient-specific nanotherapeutics. Towards such systems that can be functionalized "on demand" in aqueous environments, an α-ω epoxy ester monomer that bears an alkyne group at the end of an oligoethylene glycol moiety was designed and synthesized. Copolymerization of this monomer with ε-caprolactone yielded polymers that present hydrophilized alkyne groups along the backbone. This enabled the direct modification of the surface of NPs, as suspensions in aqueous phase, with cell interaction peptides such cyclic-arginine-glycine-aspartic acid (cRGD) using the "click reaction". Uptake of cRGD modified NPs (cRGD-NPs) in human endothelial and tumor epithelial cells revealed that cRGD surprisingly diminished uptake in both tumor epithelial and microvascular endothelial cells by 40-50 percent in comparison to unmodified particles. Probing the mechanism of uptake revealed that the expression pattern of two isoforms of β1 integrin impacted the uptake of cRGD-NPs differently. While the expression of high molecular weight 140 kDa form of the β1 integrin enhanced NP uptake, the expression of low molecular 120 kDa form had an inhibitory effect. Furthermore, although, the expression of β3 integrin was enhanced in endothelial cells and breast cancer epithelial cells, no correlation between β3 integrin and NP uptake was observed. Additionally, in presence of clathrin and caveolae pathway inhibitors the uptake of cRGD-NPS was in general diminished with a 25-75% decrease in presence of Filipin, a caveolae inhibitor; suggesting a role for lipid rafts in the β1 integrin-mediated uptake of cRGD-NP NPs. In sum, the polymer system described can be readily adapted to engineer other targeting peptide-based nanotherapeutics, especially for the delivery across difficult penetrate biological barriers such as the blood brain barrier. The main findings of this study have significant implication for the development of integrin targeted nanotherapeutics for anti-tumor therapy.
Collapse
Affiliation(s)
- Weihai Zhang
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Nele Teske
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Mariam Samadi
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Melika Sarem
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
45
|
Mayberry CL, Maginnis MS. Taking the Scenic Route: Polyomaviruses Utilize Multiple Pathways to Reach the Same Destination. Viruses 2020; 12:v12101168. [PMID: 33076363 PMCID: PMC7602598 DOI: 10.3390/v12101168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
Members of the Polyomaviridae family differ in their host range, pathogenesis, and disease severity. To date, some of the most studied polyomaviruses include human JC, BK, and Merkel cell polyomavirus and non-human subspecies murine and simian virus 40 (SV40) polyomavirus. Although dichotomies in host range and pathogenesis exist, overlapping features of the infectious cycle illuminate the similarities within this virus family. Of particular interest to human health, JC, BK, and Merkel cell polyomavirus have all been linked to critical, often fatal, illnesses, emphasizing the importance of understanding the underlying viral infections that result in the onset of these diseases. As there are significant overlaps in the capacity of polyomaviruses to cause disease in their respective hosts, recent advancements in characterizing the infectious life cycle of non-human murine and SV40 polyomaviruses are key to understanding diseases caused by their human counterparts. This review focuses on the molecular mechanisms by which different polyomaviruses hijack cellular processes to attach to host cells, internalize, traffic within the cytoplasm, and disassemble within the endoplasmic reticulum (ER), prior to delivery to the nucleus for viral replication. Unraveling the fundamental processes that facilitate polyomavirus infection provides deeper insight into the conserved mechanisms of the infectious process shared within this virus family, while also highlighting critical unique viral features.
Collapse
Affiliation(s)
- Colleen L. Mayberry
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA;
| | - Melissa S. Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA;
- Graduate School in Biomedical Sciences and Engineering, The University of Maine, Orono, ME 04469, USA
- Correspondence:
| |
Collapse
|
46
|
Hemion C, Li J, Kohler C, Scholl HPN, Meyer P, Killer HE, Neutzner A. Clearance of neurotoxic peptides and proteins by meningothelial cells. Exp Cell Res 2020; 396:112322. [PMID: 33068559 DOI: 10.1016/j.yexcr.2020.112322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
Meningothelial cells (MECs) are the cellular component of the meninges that provide physical protection to the central nervous system (CNS). Their main function is the formation of a barrier enclosing the brain including the cerebrospinal fluid (CSF). Further, MECs are involved in maintaining CSF homeostasis by clearing CSF from bacteria and apoptotic cells. Furthermore, secretion of pro- and anti-inflammatory cytokines and chemokines involves MECs in immunological processes in the CNS. We demonstrated that meningothelial Ben-Men-1 cells ingest neurotoxic peptides amyloid-β (Aβ1-40) and protein α-synuclein up to about 10-fold more efficiently compared to neuronal-like SH-SY5Y cells. Aβ1-40 and α-synuclein are mainly taken up via macropinocytosis. Caveolar endocytosis in addition contributes to α-synuclein ingestion. Upon uptake, both are trafficked towards lysosomal degradation. While production of reactive oxygen species (ROS) following exposure to Aβ25-35 and α-synuclein was similar between Ben-Men-1 and SH-SY5Y cells, mitochondrial function in Ben-Men-1 was significantly more robust to Aβ25-35 treatment compared to neuronal-like SHSY5Y cells. Similarly, Ben-Men-1 were significantly less susceptible to Aβ25-35-induced cell death than neuronal-like cells. Furthermore, co-culture with Ben-Men-1 offered significant protection to neuronal-like cells against Aβ25-35-induced apoptosis. This study reveals for the first time the function of MECs as scavengers of neurotoxic Aβ and α-synuclein, thereby connecting these cells to neuroprotective processes and suggesting a new mechanism and pathway for clearing neurotoxic substances from the CSF.
Collapse
Affiliation(s)
- Charles Hemion
- Department of Biomedicine, Ocular Pharmacology and Physiology, Hebelstr. 20, 4031, Basel, Switzerland.
| | - Jia Li
- Department of Biomedicine, Ocular Pharmacology and Physiology, Hebelstr. 20, 4031, Basel, Switzerland; Department of Ophthalmology, 2nd Hospital of Jilin University, 218 Ziqiang St, Changchun, China.
| | - Corina Kohler
- Department of Biomedicine, Ocular Pharmacology and Physiology, Hebelstr. 20, 4031, Basel, Switzerland.
| | - Hendrik P N Scholl
- Department of Biomedicine, Ocular Pharmacology and Physiology, Hebelstr. 20, 4031, Basel, Switzerland; Department of Ophthalmology, University of Basel, Mittlere Str. 91, 4031, Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Str. 91, 4031, Basel, Switzerland.
| | - Peter Meyer
- Department of Biomedicine, Ocular Pharmacology and Physiology, Hebelstr. 20, 4031, Basel, Switzerland; Department of Ophthalmology, University of Basel, Mittlere Str. 91, 4031, Basel, Switzerland.
| | - Hanspeter E Killer
- Department of Biomedicine, Ocular Pharmacology and Physiology, Hebelstr. 20, 4031, Basel, Switzerland; Department of Ophthalmology, Kantonsspital Aarau, Herzogstrasse 15, 5001, Aarau, Switzerland.
| | - Albert Neutzner
- Department of Biomedicine, Ocular Pharmacology and Physiology, Hebelstr. 20, 4031, Basel, Switzerland; Department of Ophthalmology, University of Basel, Mittlere Str. 91, 4031, Basel, Switzerland.
| |
Collapse
|
47
|
Musalli AH, Talukdar PD, Roy P, Kumar P, Wong TW. Folate-induced nanostructural changes of oligochitosan nanoparticles and their fate of cellular internalization by melanoma. Carbohydr Polym 2020; 244:116488. [PMID: 32536388 DOI: 10.1016/j.carbpol.2020.116488] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/25/2020] [Accepted: 05/17/2020] [Indexed: 01/13/2023]
Abstract
This study examined the effects of folate environment of oligochitosan nanoparticles on their cellular internalization profiles in human melanoma cells. The conjugates and nanoparticles of oligochitosan-folate, oligochitosan-carboxymethyl-5-fluorouracil, and oligochitosan-folate-carboxymethyl-5-fluorouracil were synthesized by carbodiimide chemistry and prepared by nanospray drying technique respectively. The cellular internalization profiles of oligochitosan-folate nanoparticles against the human malignant melanoma cell line (SKMEL-28) were evaluated using confocal scanning electron microscopy technique through fluorescence labelling and endocytic inhibition, as a function of nanoparticulate folate content, size, polydispersity index, zeta potential, shape, surface roughness and folate population density. The cytotoxicity and cell cycle arrest characteristics of oligochitosan-folate-carboxymethyl-5-fluorouracil nanoparticles, prepared with an optimal folate content that promoted cellular internalization, were evaluated against the oligochitosan-folate and oligochitosan-carboxymethyl-5-fluorouracil conjugate nanoparticles. The oligochitosan-folate conjugate nanoparticles were endocytosed by melanoma cells via caveolae- and lipid raft-mediated endocytic pathways following them binding to the cell surface folate receptor. Nanoparticles that were larger and with higher folic acid contents and zeta potentials exhibited a higher degree of cellular internalization. Excessive conjugation of nanoparticles with folate resulted in a high nanoparticulate density of folate which hindered nanoparticles-cell interaction via folate receptor binding and reduced cellular internalization of nanoparticles. Conjugating oligochitosan with 20 %w/w folate was favorable for cellular uptake as supported by in silico models. Conjugating of oligochitosan nanoparticles with carboxymethyl-5-fluorouracil and 20 %w/w of folate promoted nanoparticles-folate receptor binding, cellular internalization and cancer cell death via cell cycle arrest at S phase at a lower drug dose than oligochitosan-carboxymethyl-5-fluorouracil conjugate nanoparticles and neat carboxymethyl-5-fluorouracil.
Collapse
Affiliation(s)
- Abdul Hadi Musalli
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, Puncak Alam, 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, 42300, Selangor, Malaysia
| | - Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Partha Roy
- Department of Pharmaceutical Technology, Adamas University, Kolkata, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, Puncak Alam, 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, 42300, Selangor, Malaysia; Sino-Malaysia Molecular Oncology and and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, 136, Jiangyang Middle Road, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
48
|
Aghaaminiha M, Ghanadian SA, Ahmadi E, Farnoud AM. A machine learning approach to estimation of phase diagrams for three-component lipid mixtures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183350. [PMID: 32407774 DOI: 10.1016/j.bbamem.2020.183350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022]
Abstract
The plasma membrane of eukaryotic cells is commonly believed to contain ordered lipid domains. The interest in understanding the origin of such domains has led to extensive studies on the phase behavior of mixed lipid systems. Three-component phase diagrams, composed of a high melting temperature (Tm) lipid, cholesterol, and a low Tm lipid have been valuable in studying lipid phase behavior. However, developing phase diagrams over the entire composition space and with precise tie-lines requires significant experimental effort. In this study, a machine learning approach was used to predict the Tm of lipids and generate phase diagrams from lipid mixtures. First, artificial neural network (ANN) was used for the prediction of Tm. The network was trained using available Tm data and was able to generate Tm values that closely matched literature results for its testing dataset. This model was then used to predict the Tm for lipids that have not yet been experimentally tested. Then, random forests (RF) and support vector machines (SVM) were trained and tested for their ability to predict a test three-component phase diagram. The model from the RF algorithm was able to generate a diagram that closely matched published results. This model was then used to generate phase diagrams for lipid mixtures at various temperatures and various degrees of unsaturation. This machine learning approach to the generation of lipid phase diagrams has the potential to save significant time and resources in studies of lipid phase behavior.
Collapse
Affiliation(s)
- Mohammadreza Aghaaminiha
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, OH 45701, USA
| | - Sara Akbar Ghanadian
- Department of Industrial and Systems Engineering, Russ College of Engineering and Technology, Ohio University, Athens, OH 45701, USA
| | - Ehsan Ahmadi
- Department of Business, School of Business and Leadership, Our Lady of the Lake University, San Antonio, TX 78207, USA.
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
49
|
Li H, Pinilla-Macua I, Ouyang Y, Sadovsky E, Kajiwara K, Sorkin A, Sadovsky Y. Internalization of trophoblastic small extracellular vesicles and detection of their miRNA cargo in P-bodies. J Extracell Vesicles 2020; 9:1812261. [PMID: 32944196 PMCID: PMC7480505 DOI: 10.1080/20013078.2020.1812261] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pregnancy is a unique situation, in which placenta-derived small extracellular vesicles (sEVs) may communicate with maternal and foetal tissues. While relevant to homoeostatic and pathological functions, the mechanisms underlying sEV entry and cargo handling in target cells remain largely unknown. Using fluorescently or luminescently labelled sEVs, derived from primary human placental trophoblasts or from a placental cell line, we interrogated the endocytic pathways used by these sEVs to enter relevant target cells, including the neighbouring primary placental fibroblasts and human uterine microvascular endothelial cells. We found that trophoblastic sEVs can enter target cells, where they retain biological activity. Importantly, using a broad series of pharmacological inhibitors and siRNA-dependent silencing approaches, we showed that trophoblastic sEVs enter target cells using macropinocytosis and clathrin-mediated endocytosis pathways, but not caveolin-dependent endocytosis. Tracking their intracellular course, we localized the sEVs to early endosomes, late endosomes, and lysosomes. Finally, we used coimmunoprecipitation to demonstrate the association of the sEV microRNA (miRNA) with the P-body proteins AGO2 and GW182. Together, our data systematically detail endocytic pathways used by placental sEVs to enter relevant fibroblastic and endothelial target cells, and provide support for “endocytic escape” of sEV miRNA to P-bodies, a key site for cytoplasmic RNA regulation.
Collapse
Affiliation(s)
- Hui Li
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Reproductive Department of Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Itziar Pinilla-Macua
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yingshi Ouyang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kazuhiro Kajiwara
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
50
|
Block MR, Brunner M, Ziegelmeyer T, Lallemand D, Pezet M, Chevalier G, Rondé P, Gauthier-Rouviere C, Wehrle-Haller B, Bouvard D. The mechano-sensitive response of β1 integrin promotes SRC-positive late endosome recycling and activation of Yes-associated protein. J Biol Chem 2020; 295:13474-13487. [PMID: 32690605 DOI: 10.1074/jbc.ra120.013503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/02/2020] [Indexed: 11/06/2022] Open
Abstract
Yes-associated protein (YAP) signaling has emerged as a crucial pathway in several normal and pathological processes. Although the main upstream effectors that regulate its activity have been extensively studied, the role of the endosomal system has been far less characterized. Here, we identified the late endosomal/lysosomal adaptor MAPK and mTOR activator (LAMTOR) complex as an important regulator of YAP signaling in a preosteoblast cell line. We found that p18/LAMTOR1-mediated peripheral positioning of late endosomes allows delivery of SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) to the plasma membrane and promotes activation of an SRC-dependent signaling cascade that controls YAP nuclear shuttling. Moreover, β1 integrin engagement and mechano-sensitive cues, such as external stiffness and related cell contractility, controlled LAMTOR targeting to the cell periphery and thereby late endosome recycling and had a major impact on YAP signaling. Our findings identify the late endosome recycling pathway as a key mechanism that controls YAP activity and explains YAP mechano-sensitivity.
Collapse
Affiliation(s)
- Marc R Block
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Molly Brunner
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Théo Ziegelmeyer
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | | | - Mylène Pezet
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Genevieve Chevalier
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Philippe Rondé
- Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Université de Strasbourg, Strasbourg, France
| | - Cécile Gauthier-Rouviere
- Montpellier Cell Biology Research Center (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Daniel Bouvard
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France.
| |
Collapse
|