1
|
Tants JN, Schlundt A. The role of structure in regulatory RNA elements. Biosci Rep 2024; 44:BSR20240139. [PMID: 39364891 PMCID: PMC11499389 DOI: 10.1042/bsr20240139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/05/2024] Open
Abstract
Regulatory RNA elements fulfill functions such as translational regulation, control of transcript levels, and regulation of viral genome replication. Trans-acting factors (i.e., RNA-binding proteins) bind the so-called cis elements and confer functionality to the complex. The specificity during protein-RNA complex (RNP) formation often exploits the structural plasticity of RNA. Functional integrity of cis-trans pairs depends on the availability of properly folded RNA elements, and RNA conformational transitions can cause diseases. Knowledge of RNA structure and the conformational space is needed for understanding complex formation and deducing functional effects. However, structure determination of RNAs under in vivo conditions remains challenging. This review provides an overview of structured eukaryotic and viral RNA cis elements and discusses the effect of RNA structural equilibria on RNP formation. We showcase implications of RNA structural changes for diseases, outline strategies for RNA structure-based drug targeting, and summarize the methodological toolbox for deciphering RNA structures.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- University of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| |
Collapse
|
2
|
Kersten C, Archambault P, Köhler LP. Assessment of Nucleobase Protomeric and Tautomeric States in Nucleic Acid Structures for Interaction Analysis and Structure-Based Ligand Design. J Chem Inf Model 2024; 64:4485-4499. [PMID: 38766733 DOI: 10.1021/acs.jcim.4c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
With increasing interest in RNA as a therapeutic and a potential target, the role of RNA structures has become more important. Even slight changes in nucleobases, such as modifications or protomeric and tautomeric states, can have a large impact on RNA structure and function, while local environments in turn affect protonation and tautomerization. In this work, the application of empirical tools for pKa and tautomer prediction for RNA modifications was elucidated and compared with ab initio quantum mechanics (QM) methods and expanded toward macromolecular RNA structures, where QM is no longer feasible. In this regard, the Protonate3D functionality within the molecular operating environment (MOE) was expanded for nucleobase protomer and tautomer predictions and applied to reported examples of altered protonation states depending on the local environment. Overall, observations of nonstandard protomers and tautomers were well reproduced, including structural C+G:C(A) and A+GG motifs, several mismatches, and protonation of adenosine or cytidine as the general acid in nucleolytic ribozymes. Special cases, such as cobalt hexamine-soaked complexes or the deprotonation of guanosine as the general base in nucleolytic ribozymes, proved to be challenging. The collected set of examples shall serve as a starting point for the development of further RNA protonation prediction tools, while the presented Protonate3D implementation already delivers reasonable protonation predictions for RNA and DNA macromolecules. For cases where higher accuracy is needed, like following catalytic pathways of ribozymes, incorporation of QM-based methods can build upon the Protonate3D-generated starting structures. Likewise, this protonation prediction can be used for structure-based RNA-ligand design approaches.
Collapse
Affiliation(s)
- Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
- Institute for Quantitative and Computational Biosciences, Johannes Gutenberg-University, BioZentrum I, Hanns-Dieter-Hüsch.Weg 15, 55128 Mainz, Germany
| | - Philippe Archambault
- Chemical Computing Group, 910-1010 Sherbrooke W., Montreal, Quebec, Canada H3A 2R7
| | - Luca P Köhler
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
3
|
Klotz KE, Chakrabarti K. RNA Folding, Mutation, and Detection. Methods Mol Biol 2024; 2822:311-334. [PMID: 38907926 DOI: 10.1007/978-1-0716-3918-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The structure of RNA molecules is absolutely critical to their functions in a biological system. RNA structure is dynamic and changes in response to cellular needs. Within the last few decades, there has been an increased interest in studying the structure of RNA molecules and how they change to support the needs of the cell in different conditions. Selective 2'-hydroxyl acylation-based mutational profiling using high-throughput sequencing is a powerful method to predict the secondary structure of RNA molecules both in vivo and in immunopurified samples. Selective 2'-hydroxyl acylation-based mutational profiling using high-throughput sequencing works by adding bulky groups onto accessible "flexible" bases in an RNA molecule that are not involved in any base-pairing or RNA-protein interactions. When the RNA is reverse transcribed into cDNA, the bulky groups are incorporated as base mutations, which can be compared to an unmodified control to identify the locations of flexible bases. The comparison of sequence data between modified and unmodified samples allows the computer software program (developed to generate reactivity profiles) to generate RNA secondary structure models. These models can be compared in a variety of conditions to determine how specific stimuli influence RNA secondary structures.
Collapse
Affiliation(s)
- Kaitlin E Klotz
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Kausik Chakrabarti
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
4
|
Passalacqua LFM, Banco MT, Moon JD, Li X, Jaffrey SR, Ferré-D'Amaré AR. Intricate 3D architecture of a DNA mimic of GFP. Nature 2023; 618:1078-1084. [PMID: 37344591 PMCID: PMC10754392 DOI: 10.1038/s41586-023-06229-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
Numerous studies have shown how RNA molecules can adopt elaborate three-dimensional (3D) architectures1-3. By contrast, whether DNA can self-assemble into complex 3D folds capable of sophisticated biochemistry, independent of protein or RNA partners, has remained mysterious. Lettuce is an in vitro-evolved DNA molecule that binds and activates4 conditional fluorophores derived from GFP. To extend previous structural studies5,6 of fluorogenic RNAs, GFP and other fluorescent proteins7 to DNA, we characterize Lettuce-fluorophore complexes by X-ray crystallography and cryogenic electron microscopy. The results reveal that the 53-nucleotide DNA adopts a four-way junction (4WJ) fold. Instead of the canonical L-shaped or H-shaped structures commonly seen8 in 4WJ RNAs, the four stems of Lettuce form two coaxial stacks that pack co-linearly to form a central G-quadruplex in which the fluorophore binds. This fold is stabilized by stacking, extensive nucleobase hydrogen bonding-including through unusual diagonally stacked bases that bridge successive tiers of the main coaxial stacks of the DNA-and coordination of monovalent and divalent cations. Overall, the structure is more compact than many RNAs of comparable size. Lettuce demonstrates how DNA can form elaborate 3D structures without using RNA-like tertiary interactions and suggests that new principles of nucleic acid organization will be forthcoming from the analysis of complex DNAs.
Collapse
Affiliation(s)
- Luiz F M Passalacqua
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael T Banco
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jared D Moon
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Xing Li
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Samie R Jaffrey
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Adrian R Ferré-D'Amaré
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Jackson RW, Smathers CM, Robart AR. General Strategies for RNA X-ray Crystallography. Molecules 2023; 28:2111. [PMID: 36903357 PMCID: PMC10004510 DOI: 10.3390/molecules28052111] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
An extremely small proportion of the X-ray crystal structures deposited in the Protein Data Bank are of RNA or RNA-protein complexes. This is due to three main obstacles to the successful determination of RNA structure: (1) low yields of pure, properly folded RNA; (2) difficulty creating crystal contacts due to low sequence diversity; and (3) limited methods for phasing. Various approaches have been developed to address these obstacles, such as native RNA purification, engineered crystallization modules, and incorporation of proteins to assist in phasing. In this review, we will discuss these strategies and provide examples of how they are used in practice.
Collapse
Affiliation(s)
| | | | - Aaron R. Robart
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 20506, USA
| |
Collapse
|
6
|
Roberts JM, Beck JD, Pollock TB, Bendixsen DP, Hayden EJ. RNA sequence to structure analysis from comprehensive pairwise mutagenesis of multiple self-cleaving ribozymes. eLife 2023; 12:80360. [PMID: 36655987 PMCID: PMC9901934 DOI: 10.7554/elife.80360] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Self-cleaving ribozymes are RNA molecules that catalyze the cleavage of their own phosphodiester backbones. These ribozymes are found in all domains of life and are also a tool for biotechnical and synthetic biology applications. Self-cleaving ribozymes are also an important model of sequence-to-function relationships for RNA because their small size simplifies synthesis of genetic variants and self-cleaving activity is an accessible readout of the functional consequence of the mutation. Here, we used a high-throughput experimental approach to determine the relative activity for every possible single and double mutant of five self-cleaving ribozymes. From this data, we comprehensively identified non-additive effects between pairs of mutations (epistasis) for all five ribozymes. We analyzed how changes in activity and trends in epistasis map to the ribozyme structures. The variety of structures studied provided opportunities to observe several examples of common structural elements, and the data was collected under identical experimental conditions to enable direct comparison. Heatmap-based visualization of the data revealed patterns indicating structural features of the ribozymes including paired regions, unpaired loops, non-canonical structures, and tertiary structural contacts. The data also revealed signatures of functionally critical nucleotides involved in catalysis. The results demonstrate that the data sets provide structural information similar to chemical or enzymatic probing experiments, but with additional quantitative functional information. The large-scale data sets can be used for models predicting structure and function and for efforts to engineer self-cleaving ribozymes.
Collapse
Affiliation(s)
- Jessica M Roberts
- Biomolecular Sciences Graduate Programs, Boise State UniversityBoiseUnited States
| | - James D Beck
- Computing PhD Program, Boise State UniversityBoiseUnited States
| | - Tanner B Pollock
- Department of Biological Science, Boise State UniversityBoiseUnited States
| | - Devin P Bendixsen
- Biomolecular Sciences Graduate Programs, Boise State UniversityBoiseUnited States
| | - Eric J Hayden
- Biomolecular Sciences Graduate Programs, Boise State UniversityBoiseUnited States
- Computing PhD Program, Boise State UniversityBoiseUnited States
- Department of Biological Science, Boise State UniversityBoiseUnited States
| |
Collapse
|
7
|
Lönnberg H. Structural modifications as tools in mechanistic studies of the cleavage of RNA phosphodiester linkages. CHEM REC 2022; 22:e202200141. [PMID: 35832010 DOI: 10.1002/tcr.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Indexed: 11/06/2022]
Abstract
The cleavage of RNA phosphodiester bonds by RNase A and hammerhead ribozyme at neutral pH fundamentally differs from the spontaneous reactions of these bonds under the same conditions. While the predominant spontaneous reaction is isomerization of the 3',5'-phosphodiester linkages to their 2',5'-counterparts, this reaction has never been reported to compete with the enzymatic cleavage reaction, not even as a minor side reaction. Comparative kinetic measurements with structurally modified di-nucleoside monophosphates and oligomeric phosphodiesters have played an important role in clarification of mechanistic details of the buffer-independent and buffer-catalyzed reactions. More recently, heavy atom isotope effects and theoretical calculations have refined the picture. The primary aim of all these studies has been to form a solid basis for mechanistic analyses of the action of more complicated catalytic machineries. In other words, to contribute to conception of a plausible unified picture of RNA cleavage by biocatalysts, such as RNAse A, hammerhead ribozyme and DNAzymes. In addition, structurally modified trinucleoside monophosphates as transition state models for Group I and II introns have clarified some features of the action of large ribozymes.
Collapse
Affiliation(s)
- Harri Lönnberg
- Department of Chemistry, University of Turku, FI-20014 University of, Turku
| |
Collapse
|
8
|
Abstract
In recent years, it has become clear that RNA molecules are involved in almost all vital cellular processes and pathogenesis of human disorders. The functional diversity of RNA comes from its structural richness. Although composed of only four nucleotides, RNA molecules present a plethora of secondary and tertiary structures critical for intra and intermolecular contacts with other RNAs and ligands (proteins, small metabolites, etc.). In order to fully understand RNA function it is necessary to define its spatial structure. Crystallography, nuclear magnetic resonance and cryogenic electron microscopy have demonstrated considerable success in determining the structures of biologically important RNA molecules. However, these powerful methods require large amounts of sample. Despite their limitations, chemical synthesis and in vitro transcription are usually employed to obtain milligram quantities of RNA for structural studies, delivering simple and effective methods for large-scale production of homogenous samples. The aim of this paper is to provide an overview of methods for large-scale RNA synthesis with emphasis on chemical synthesis and in vitro transcription. We also present our own results of testing the efficiency of these approaches in order to adapt the material acquisition strategy depending on the desired RNA construct.
Collapse
|
9
|
Fedeles BI, Li D, Singh V. Structural Insights Into Tautomeric Dynamics in Nucleic Acids and in Antiviral Nucleoside Analogs. Front Mol Biosci 2022; 8:823253. [PMID: 35145998 PMCID: PMC8822119 DOI: 10.3389/fmolb.2021.823253] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022] Open
Abstract
DNA (2'-deoxyribonucleic acid) and RNA (ribonucleic acid) play diverse functional roles in biology and disease. Despite being comprised primarily of only four cognate nucleobases, nucleic acids can adopt complex three-dimensional structures, and RNA in particular, can catalyze biochemical reactions to regulate a wide variety of biological processes. Such chemical versatility is due in part to the phenomenon of nucleobase tautomerism, whereby the bases can adopt multiple, yet distinct isomeric forms, known as tautomers. For nucleobases, tautomers refer to structural isomers that differ from one another by the position of protons. By altering the position of protons on nucleobases, many of which play critical roles for hydrogen bonding and base pairing interactions, tautomerism has profound effects on the biochemical processes involving nucleic acids. For example, the transient formation of minor tautomers during replication could generate spontaneous mutations. These mutations could arise from the stabilization of mismatches, in the active site of polymerases, in conformations involving minor tautomers that are indistinguishable from canonical base pairs. In this review, we discuss the evidence for tautomerism in DNA, and its consequences to the fidelity of DNA replication. Also reviewed are RNA systems, such as the riboswitches and self-cleaving ribozymes, in which tautomerism plays a functional role in ligand recognition and catalysis, respectively. We also discuss tautomeric nucleoside analogs that are efficacious as antiviral drug candidates such as molnupiravir for coronaviruses and KP1212 for HIV. The antiviral efficacy of these analogs is due, in part, to their ability to exist in multiple tautomeric forms and induce mutations in the replicating viral genomes. From a technical standpoint, minor tautomers of nucleobases are challenging to identify directly because they are rare and interconvert on a fast, millisecond to nanosecond, time scale. Nevertheless, many approaches including biochemical, structural, computational and spectroscopic methods have been developed to study tautomeric dynamics in RNA and DNA systems, and in antiviral nucleoside analogs. An overview of these methods and their applications is included here.
Collapse
Affiliation(s)
- Bogdan I. Fedeles
- Departments of Chemistry and Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Deyu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Vipender Singh
- Department of Biochemistry and Biophysics, Novartis Institute of Biomedical Research, Cambridge, MA, United States
| |
Collapse
|
10
|
Veenis AJ, Li P, Soudackov AV, Hammes-Schiffer S, Bevilacqua PC. Investigation of the p Ka of the Nucleophilic O2' of the Hairpin Ribozyme. J Phys Chem B 2021; 125:11869-11883. [PMID: 34695361 DOI: 10.1021/acs.jpcb.1c06546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small ribozymes cleave their RNA phosphodiester backbone by catalyzing a transphosphorylation reaction wherein a specific O2' functions as the nucleophile. While deprotonation of this alcohol through its acidification would increase its nucleophilicity, little is known about the pKa of this O2' in small ribozymes, in part because high pKa's are not readily accessible experimentally. Herein, we turn to molecular dynamics to calculate the pKa of the nucleophilic O2' in the hairpin ribozyme and to study interactions within the active site that may impact its value. We estimate the pKa of the nucleophilic O2' in the wild-type hairpin ribozyme to be 18.5 ± 0.8, which is higher than the reference compound, and identify a correlation between proper positioning of the O2' for nucleophilic attack and elevation of its pKa. We find that monovalent ions may play a role in depression of the O2' pKa, while the exocyclic amine appears to be important for organizing the ribozyme active site. Overall, this study suggests that the pKa of the O2' is raised in the ground state and lowers during the course of the reaction owing to positioning and metal ion interactions.
Collapse
Affiliation(s)
| | - Pengfei Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | | |
Collapse
|
11
|
Peng H, Latifi B, Müller S, Lupták A, Chen IA. Self-cleaving ribozymes: substrate specificity and synthetic biology applications. RSC Chem Biol 2021; 2:1370-1383. [PMID: 34704043 PMCID: PMC8495972 DOI: 10.1039/d0cb00207k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Various self-cleaving ribozymes appearing in nature catalyze the sequence-specific intramolecular cleavage of RNA and can be engineered to catalyze cleavage of appropriate substrates in an intermolecular fashion, thus acting as true catalysts. The mechanisms of the small, self-cleaving ribozymes have been extensively studied and reviewed previously. Self-cleaving ribozymes can possess high catalytic activity and high substrate specificity; however, substrate specificity is also engineerable within the constraints of the ribozyme structure. While these ribozymes share a common fundamental catalytic mechanism, each ribozyme family has a unique overall architecture and active site organization, indicating that several distinct structures yield this chemical activity. The multitude of catalytic structures, combined with some flexibility in substrate specificity within each family, suggests that such catalytic RNAs, taken together, could access a wide variety of substrates. Here, we give an overview of 10 classes of self-cleaving ribozymes and capture what is understood about their substrate specificity and synthetic applications. Evolution of these ribozymes in an RNA world might be characterized by the emergence of a new ribozyme family followed by rapid adaptation or diversification for specific substrates. Self-cleaving ribozymes have become important tools of synthetic biology. Here we summarize the substrate specificity and applications of the main classes of these ribozymes.![]()
Collapse
Affiliation(s)
- Huan Peng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles CA 90095 USA
| | - Brandon Latifi
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Sabine Müller
- Institute for Biochemistry, University Greifswald 17487 Greifswald Germany
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles CA 90095 USA
| |
Collapse
|
12
|
Weinberg CE, Olzog VJ, Eckert I, Weinberg Z. Identification of over 200-fold more hairpin ribozymes than previously known in diverse circular RNAs. Nucleic Acids Res 2021; 49:6375-6388. [PMID: 34096583 PMCID: PMC8216279 DOI: 10.1093/nar/gkab454] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
Self-cleaving ribozymes are catalytic RNAs that cut themselves at a specific inter-nucleotide linkage. They serve as a model of RNA catalysis, and as an important tool in biotechnology. For most of the nine known structural classes of self-cleaving ribozymes, at least hundreds of examples are known, and some are present in multiple domains of life. By contrast, only four unique examples of the hairpin ribozyme class are known, despite its discovery in 1986. We bioinformatically predicted 941 unique hairpin ribozymes of a different permuted form from the four previously known hairpin ribozymes, and experimentally confirmed several diverse predictions. These results profoundly expand the number of natural hairpin ribozymes, enabling biochemical analysis based on natural sequences, and suggest that a distinct permuted form is more biologically relevant. Moreover, all novel hairpins were discovered in metatranscriptomes. They apparently reside in RNA molecules that vary both in size—from 381 to 5170 nucleotides—and in protein content. The RNA molecules likely replicate as circular single-stranded RNAs, and potentially provide a dramatic increase in diversity of such RNAs. Moreover, these organisms have eluded previous attempts to isolate RNA viruses from metatranscriptomes—suggesting a significant untapped universe of viruses or other organisms hidden within metatranscriptome sequences.
Collapse
Affiliation(s)
- Christina E Weinberg
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - V Janett Olzog
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Iris Eckert
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| |
Collapse
|
13
|
Structure of a bacterial OapB protein with its OLE RNA target gives insights into the architecture of the OLE ribonucleoprotein complex. Proc Natl Acad Sci U S A 2021; 118:2020393118. [PMID: 33619097 PMCID: PMC7936274 DOI: 10.1073/pnas.2020393118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial noncoding RNAs (ncRNAs) play key roles in many biological processes including gene regulation, RNA processing and modification, and protein synthesis and translocation. OLE RNAs, found in many Gram-positive species, are one of the largest highly structured ncRNA classes whose biochemical functions remain unknown. In Bacillus halodurans, OLE RNAs interact with at least two proteins, OapA and OapB, which are required to assemble a functional OLE ribonucleoprotein (RNP) complex contributing to cellular responses to certain environmental stresses. We established X-ray structural models that reveal the sequence elements and tertiary structural features of OLE RNA that are critical for its specific recognition by OapB, which will aid future exploration of the biological and biochemical functions of the unusual OLE RNP complex. The OLE (ornate, large, and extremophilic) RNA class is one of the most complex and well-conserved bacterial noncoding RNAs known to exist. This RNA is known to be important for bacterial responses to stress caused by short-chain alcohols, cold, and elevated Mg2+ concentrations. These biological functions have been shown to require the formation of a ribonucleoprotein (RNP) complex including at least two protein partners: OLE-associated protein A (OapA) and OLE-associated protein B (OapB). OapB directly binds OLE RNA with high-affinity and specificity and is believed to assist in assembling the functional OLE RNP complex. To provide the atomic details of OapB–OLE RNA interaction and to potentially reveal previously uncharacterized protein–RNA interfaces, we determined the structure of OapB from Bacillus halodurans alone and in complex with an OLE RNA fragment at resolutions of 1.0 Å and 2.0 Å, respectively. The structure of OapB exhibits a K-shaped overall architecture wherein its conserved KOW motif and additional unique structural elements of OapB form a bipartite RNA-binding surface that docks to the P13 hairpin and P12.2 helix of OLE RNA. These high-resolution structures elucidate the molecular contacts used by OapB to form a stable RNP complex and explain the high conservation of sequences and structural features at the OapB–OLE RNA-binding interface. These findings provide insight into the role of OapB in the assembly and biological function of OLE RNP complex and can guide the exploration of additional possible OLE RNA-binding interactions present in OapB.
Collapse
|
14
|
Micura R, Höbartner C. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem Soc Rev 2020; 49:7331-7353. [PMID: 32944725 DOI: 10.1039/d0cs00617c] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review aims at juxtaposing common versus distinct structural and functional strategies that are applied by aptamers, riboswitches, and ribozymes/DNAzymes. Focusing on recently discovered systems, we begin our analysis with small-molecule binding aptamers, with emphasis on in vitro-selected fluorogenic RNA aptamers and their different modes of ligand binding and fluorescence activation. Fundamental insights are much needed to advance RNA imaging probes for detection of exo- and endogenous RNA and for RNA process tracking. Secondly, we discuss the latest gene expression-regulating mRNA riboswitches that respond to the alarmone ppGpp, to PRPP, to NAD+, to adenosine and cytidine diphosphates, and to precursors of thiamine biosynthesis (HMP-PP), and we outline new subclasses of SAM and tetrahydrofolate-binding RNA regulators. Many riboswitches bind protein enzyme cofactors that, in principle, can catalyse a chemical reaction. For RNA, however, only one system (glmS ribozyme) has been identified in Nature thus far that utilizes a small molecule - glucosamine-6-phosphate - to participate directly in reaction catalysis (phosphodiester cleavage). We wonder why that is the case and what is to be done to reveal such likely existing cellular activities that could be more diverse than currently imagined. Thirdly, this brings us to the four latest small nucleolytic ribozymes termed twister, twister-sister, pistol, and hatchet as well as to in vitro selected DNA and RNA enzymes that promote new chemistry, mainly by exploiting their ability for RNA labelling and nucleoside modification recognition. Enormous progress in understanding the strategies of nucleic acids catalysts has been made by providing thorough structural fundaments (e.g. first structure of a DNAzyme, structures of ribozyme transition state mimics) in combination with functional assays and atomic mutagenesis.
Collapse
Affiliation(s)
- Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck CMBI, Leopold-Franzens University Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
15
|
Kumar N, Marx D. Deciphering the Self-Cleavage Reaction Mechanism of Hairpin Ribozyme. J Phys Chem B 2020; 124:4906-4918. [PMID: 32453954 DOI: 10.1021/acs.jpcb.0c03768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hairpin ribozyme catalyzes the reversible self-cleavage of phosphodiester bonds which plays prominent roles in key biological processes involving RNAs. Despite impressive advances on ribozymatic self-cleavage, critical aspects of its molecular reaction mechanism remain controversially debated. Here, we generate and analyze the multidimensional free energy landscape that underlies the reaction using extensive QM/MM metadynamics simulations to investigate in detail the full self-cleavage mechanism. This allows us to answer several pertinent yet controversial questions concerning activation of the 2'-OH group, the mechanistic role of water molecules present in the active site, and the full reaction pathway including the structures of transition states and intermediates. Importantly, we find that a sufficiently unrestricted reaction subspace must be mapped using accelerated sampling methods in order to compute the underlying free energy landscape. It is shown that lower-dimensional sampling where the bond formation and cleavage steps are coupled does not allow the system to sufficiently explore the landscape. On the basis of a three-dimensional free energy surface spanned by flexible generalized coordinates, we find that 2'-OH is indirectly activated by adjacent G8 nucleobase in conjunction with stabilizing H-bonding involving water. This allows the proton of the 2'-OH group to directly migrate toward the 5'-leaving group via a nonbridging oxygen of the phosphodiester link. At variance with similar enzymatic processes where water wires connected to protonable side chains of the protein matrix act as transient proton shuttles, no such de/reprotonation events of water molecules are found to be involved in this ribozymatic transesterification. Overall, our results support an acid-catalyzed reaction mechanism where A38 nucleobase directly acts as an acid whereas G8, in stark contrast, participates only indirectly via stabilizing the nascent nucleophile for subsequent attack. Moreover, we conclude that self-cleavage of hairpin ribozyme follows an AN + DN two-step associative pathway where the rate-determining step is the cleavage of the phosphodiester bond. These results provide a major advancement in our understanding of the unique catalytic mechanism of hairpin ribozyme which will fruitfully impact on the design of synthetic ribozymes.
Collapse
Affiliation(s)
- Narendra Kumar
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
16
|
Light-controlled twister ribozyme with single-molecule detection resolves RNA function in time and space. Proc Natl Acad Sci U S A 2020; 117:12080-12086. [PMID: 32430319 DOI: 10.1073/pnas.2003425117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Small ribozymes such as Oryza sativa twister spontaneously cleave their own RNA when the ribozyme folds into its active conformation. The coupling between twister folding and self-cleavage has been difficult to study, however, because the active ribozyme rapidly converts to product. Here, we describe the synthesis of a photocaged nucleotide that releases guanosine within microseconds upon photosolvolysis with blue light. Application of this tool to O. sativa twister achieved the spatial (75 µm) and temporal (≤30 ms) control required to resolve folding and self-cleavage events when combined with single-molecule fluorescence detection of the ribozyme folding pathway. Real-time observation of single ribozymes after photo-deprotection showed that the precleaved folded state is unstable and quickly unfolds if the RNA does not react. Kinetic analysis showed that Mg2+ and Mn2+ ions increase ribozyme efficiency by making transitions to the high energy active conformation more probable, rather than by stabilizing the folded ground state or the cleaved product. This tool for light-controlled single RNA folding should offer precise and rapid control of other nucleic acid systems.
Collapse
|
17
|
Walton T, DasGupta S, Duzdevich D, Oh SS, Szostak JW. In vitro selection of ribozyme ligases that use prebiotically plausible 2-aminoimidazole-activated substrates. Proc Natl Acad Sci U S A 2020; 117:5741-5748. [PMID: 32123094 PMCID: PMC7084097 DOI: 10.1073/pnas.1914367117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothesized central role of RNA in the origin of life suggests that RNA propagation predated the advent of complex protein enzymes. A critical step of RNA replication is the template-directed synthesis of a complementary strand. Two experimental approaches have been extensively explored in the pursuit of demonstrating protein-free RNA synthesis: template-directed nonenzymatic RNA polymerization using intrinsically reactive monomers and ribozyme-catalyzed polymerization using more stable substrates such as biological 5'-triphosphates. Despite significant progress in both approaches in recent years, the assembly and copying of functional RNA sequences under prebiotic conditions remains a challenge. Here, we explore an alternative approach to RNA-templated RNA copying that combines ribozyme catalysis with RNA substrates activated with a prebiotically plausible leaving group, 2-aminoimidazole (2AI). We applied in vitro selection to identify ligase ribozymes that catalyze phosphodiester bond formation between a template-bound primer and a phosphor-imidazolide-activated oligomer. Sequencing revealed the progressive enrichment of 10 abundant sequences from a random sequence pool. Ligase activity was detected in all 10 RNA sequences; all required activation of the ligator with 2AI and generated a 3'-5' phosphodiester bond. We propose that ribozyme catalysis of phosphodiester bond formation using intrinsically reactive RNA substrates, such as imidazolides, could have been an evolutionary step connecting purely nonenzymatic to ribozyme-catalyzed RNA template copying during the origin of life.
Collapse
Affiliation(s)
- Travis Walton
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Saurja DasGupta
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Daniel Duzdevich
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Gyeongbuk, South Korea
| | - Jack W Szostak
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114;
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
18
|
Rosenbach H, Victor J, Borggräfe J, Biehl R, Steger G, Etzkorn M, Span I. Expanding crystallization tools for nucleic acid complexes using U1A protein variants. J Struct Biol 2020; 210:107480. [PMID: 32070773 DOI: 10.1016/j.jsb.2020.107480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 11/24/2022]
Abstract
The major bottlenecks in structure elucidation of nucleic acids are crystallization and phasing. Co-crystallization with proteins is a straight forward approach to overcome these challenges. The human RNA-binding protein U1A has previously been established as crystallization module, however, the absence of UV-active residues and the predetermined architecture in the asymmetric unit constitute clear limitations of the U1A system. Here, we report three crystal structures of tryptophan-containing U1A variants, which expand the crystallization toolbox for nucleic acids. Analysis of the structures complemented by SAXS, NMR spectroscopy, and optical spectroscopy allow for insights into the potential of the U1A variants to serve as crystallization modules for nucleic acids. In addition, we report a fast and efficient protocol for crystallization of RNA by soaking and present a fluorescence-based approach for detecting RNA-binding in crystallo. Our results provide a new tool set for the crystallization of RNA and RNA:DNA complexes.
Collapse
Affiliation(s)
- Hannah Rosenbach
- Institut für Physikalische Biologie, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany.
| | - Julian Victor
- Institut für Physikalische Biologie, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany.
| | - Jan Borggräfe
- Institut für Physikalische Biologie, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany.
| | - Ralf Biehl
- Jülich Centre for Neutron Science (JCNS-1/ICS-1), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany.
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany.
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany.
| | - Ingrid Span
- Institut für Physikalische Biologie, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
19
|
Maurel MC, Leclerc F, Hervé G. Ribozyme Chemistry: To Be or Not To Be under High Pressure. Chem Rev 2019; 120:4898-4918. [DOI: 10.1021/acs.chemrev.9b00457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Sorbonne Université, Muséum National d’Histoire Naturelle, EPHE, F-75005 Paris, France
| | - Fabrice Leclerc
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Guy Hervé
- Laboratoire BIOSIPE, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Campus Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
20
|
Catalytic RNA, ribozyme, and its applications in synthetic biology. Biotechnol Adv 2019; 37:107452. [DOI: 10.1016/j.biotechadv.2019.107452] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022]
|
21
|
Kumar N, Marx D. How do ribozymes accommodate additional water molecules upon hydrostatic compression deep into the kilobar pressure regime? Biophys Chem 2019; 252:106192. [DOI: 10.1016/j.bpc.2019.106192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
|
22
|
Abstract
The nucleolytic ribozymes carry out site-specific RNA cleavage reactions by nucleophilic attack of the 2'-oxygen atom on the adjacent phosphorus with an acceleration of a million-fold or greater. A major part of this arises from concerted general acid-base catalysis. Recent identification of new ribozymes has expanded the group to a total of nine and this provides a new opportunity to identify sub-groupings according to the nature of the general base and acid. These include nucleobases, hydrated metal ions, and 2'-hydroxyl groups. Evolution has selected a number of different combinations of these elements that lead to efficient catalysis. These differences provide a new mechanistic basis for classifying these ribozymes.
Collapse
Affiliation(s)
- David M.J. Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, UK
- School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
23
|
Demongeot J, Norris V. Emergence of a "Cyclosome" in a Primitive Network Capable of Building "Infinite" Proteins. Life (Basel) 2019; 9:E51. [PMID: 31216720 PMCID: PMC6617141 DOI: 10.3390/life9020051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/08/2019] [Accepted: 06/13/2019] [Indexed: 01/02/2023] Open
Abstract
We argue for the existence of an RNA sequence, called the AL (for ALpha) sequence, which may have played a role at the origin of life; this role entailed the AL sequence helping generate the first peptide assemblies via a primitive network. These peptide assemblies included "infinite" proteins. The AL sequence was constructed on an economy principle as the smallest RNA ring having one representative of each codon's synonymy class and capable of adopting a non-functional but nevertheless evolutionarily stable hairpin form that resisted denaturation due to environmental changes in pH, hydration, temperature, etc. Long subsequences from the AL ring resemble sequences from tRNAs and 5S rRNAs of numerous species like the proteobacterium, Rhodobacter sphaeroides. Pentameric subsequences from the AL are present more frequently than expected in current genomes, in particular, in genes encoding some of the proteins associated with ribosomes like tRNA synthetases. Such relics may help explain the existence of universal sequences like exon/intron frontier regions, Shine-Dalgarno sequence (present in bacterial and archaeal mRNAs), CRISPR and mitochondrial loop sequences.
Collapse
Affiliation(s)
- Jacques Demongeot
- Faculty of Medicine, Université Grenoble Alpes, AGEIS EA 7407 Tools for e-Gnosis Medical, 38700 La Tronche, France.
| | - Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, Université de Rouen, 76821 Mont-Saint-Aignan CEDEX, France.
| |
Collapse
|
24
|
Kumar N, Marx D. Mechanistic role of nucleobases in self-cleavage catalysis of hairpin ribozyme at ambient versus high-pressure conditions. Phys Chem Chem Phys 2019; 20:20886-20898. [PMID: 30067263 DOI: 10.1039/c8cp03142h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribozymes catalyze the site-specific self-cleavage of intramolecular phosphodiester bonds. Initially thought to act as metalloenzymes, they are now known to be functional even in the absence of divalent metal ions and specific nucleobases directly participate in the self-cleavage reaction. Here, we use extensive replica exchange molecular dynamics simulations to probe the precise mechanistic role of nucleobases by simulating precatalytic reactant and active precursor states of a hairpin ribozyme along its reaction path at ambient as well as high-pressure conditions. The results provide novel key insights into the self-cleavage of ribozymes. We find that deprotonation of the hydroxyl group is crucial and might be the penultimate step to the self-cleavage. The G8 nucleobase is found to stabilize the activated precursor into inline arrangement for facile nucleophilic attack of the scissile phosphate only after deprotonation of the hydroxyl group. The protonated A38 nucleobase, in contrast, mainly acts a proton donor to the O5'-oxygen leaving group that eventually leads to the self-cleavage. Indeed, systematic high-pressure simulations of catalytically relevant states confirm these findings and, moreover, provide support to the role of ribozymes as piezophilic biocatalysts with regard to their relevance in early life under extreme conditions in the realm of RNA world hypothesis.
Collapse
Affiliation(s)
- Narendra Kumar
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | | |
Collapse
|
25
|
Abstract
Self-cleaving ribozymes are RNAs that catalyze position-specific cleavage of their phosphodiester backbone. The cleavage site of the newly discovered hatchet ribozyme is located at the very 5′ end of its consensus secondary structure motif. Here we report on the 2.1-Å crystal structure of the hatchet ribozyme in the product state, which defines its intricate tertiary fold and identifies key residues lining the catalytic pocket. This in turn has allowed us to propose a model of the precatalytic state structure and a role in catalysis for a conserved guanine. This study therefore provides a structure-based platform toward an improved understanding of the catalytic mechanism of hatchet ribozymes. Small self-cleaving ribozymes catalyze site-specific cleavage of their own phosphodiester backbone with implications for viral genome replication, pre-mRNA processing, and alternative splicing. We report on the 2.1-Å crystal structure of the hatchet ribozyme product, which adopts a compact pseudosymmetric dimeric scaffold, with each monomer stabilized by long-range interactions involving highly conserved nucleotides brought into close proximity of the scissile phosphate. Strikingly, the catalytic pocket contains a cavity capable of accommodating both the modeled scissile phosphate and its flanking 5′ nucleoside. The resulting modeled precatalytic conformation incorporates a splayed-apart alignment at the scissile phosphate, thereby providing structure-based insights into the in-line cleavage mechanism. We identify a guanine lining the catalytic pocket positioned to contribute to cleavage chemistry. The functional relevance of structure-based insights into hatchet ribozyme catalysis is strongly supported by cleavage assays monitoring the impact of selected nucleobase and atom-specific mutations on ribozyme activity.
Collapse
|
26
|
Abstract
Recent advances in RNA engineering during the last two decades have supported the development of RNA-based therapeutics targeting a variety of human diseases. The broad scope of these emerging drugs clearly demonstrates the versatility of RNA. Ribozymes have been seen as promising candidates in this area. However, efficient intracellular application of ribozymes remains challenging, and other strategies appear to have outperformed ribozymes as molecular drugs. Nevertheless, trans-cleaving ribozymes have been applied for specific cleavage of target mRNAs in order to inhibit undesired gene expression. Furthermore, ribozymes have been engineered to allow site-directed RNA sequence alterations, enabling the correction of genetic misinformation at the RNA level. This chapter provides an overview of ribozyme-based strategies, highlighting the promises and pitfalls for potential therapeutic applications.
Collapse
Affiliation(s)
- Darko Balke
- University of Greifswald, Institute of Biochemistry Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Sabine Müller
- University of Greifswald, Institute of Biochemistry Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
27
|
Smolkin B, Khononov A, Pieńko T, Shavit M, Belakhov V, Trylska J, Baasov T. Towards Catalytic Antibiotics: Redesign of Aminoglycosides To Catalytically Disable Bacterial Ribosomes. Chembiochem 2018; 20:247-259. [DOI: 10.1002/cbic.201800549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/20/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Boris Smolkin
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory; Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Alina Khononov
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory; Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Tomasz Pieńko
- Centre of New Technologies; University of Warsaw; Banacha 2c 02-097 Warsaw Poland
- Department of Drug Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Banacha 1a 02-097 Warsaw Poland
| | - Michal Shavit
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory; Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Valery Belakhov
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory; Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Joanna Trylska
- Centre of New Technologies; University of Warsaw; Banacha 2c 02-097 Warsaw Poland
| | - Timor Baasov
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory; Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| |
Collapse
|
28
|
Nomura Y, Roston D, Montemayor EJ, Cui Q, Butcher SE. Structural and mechanistic basis for preferential deadenylation of U6 snRNA by Usb1. Nucleic Acids Res 2018; 46:11488-11501. [PMID: 30215753 PMCID: PMC6265477 DOI: 10.1093/nar/gky812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 01/08/2023] Open
Abstract
Post-transcriptional modification of snRNA is central to spliceosome function. Usb1 is an exoribonuclease that shortens the oligo-uridine tail of U6 snRNA, resulting in a terminal 2',3' cyclic phosphate group in most eukaryotes, including humans. Loss of function mutations in human Usb1 cause the rare disorder poikiloderma with neutropenia (PN), and result in U6 snRNAs with elongated 3' ends that are aberrantly adenylated. Here, we show that human Usb1 removes 3' adenosines with 20-fold greater efficiency than uridines, which explains the presence of adenylated U6 snRNAs in cells lacking Usb1. We determined three high-resolution co-crystal structures of Usb1: wild-type Usb1 bound to the substrate analog adenosine 5'-monophosphate, and an inactive mutant bound to RNAs with a 3' terminal adenosine and uridine. These structures, along with QM/MM MD simulations of the catalytic mechanism, illuminate the molecular basis for preferential deadenylation of U6 snRNA. The extent of Usb1 processing is influenced by the secondary structure of U6 snRNA.
Collapse
Affiliation(s)
- Yuichiro Nomura
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Daniel Roston
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Eric J Montemayor
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Qiang Cui
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
29
|
Fluorogenic RNA Aptamers: A Nano-platform for Fabrication of Simple and Combinatorial Logic Gates. NANOMATERIALS 2018; 8:nano8120984. [PMID: 30486495 PMCID: PMC6315349 DOI: 10.3390/nano8120984] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
RNA aptamers that bind non-fluorescent dyes and activate their fluorescence are highly sensitive, nonperturbing, and convenient probes in the field of synthetic biology. These RNA molecules, referred to as light-up aptamers, operate as molecular nanoswitches that alter folding and fluorescence function in response to ligand binding, which is important in biosensing and molecular computing. Herein, we demonstrate a conceptually new generation of smart RNA nano-devices based on malachite green (MG)-binding RNA aptamer, which fluorescence output controlled by addition of short DNA oligonucleotides inputs. Four types of RNA switches possessing AND, OR, NAND, and NOR Boolean logic functions were created in modular form, allowing MG dye binding affinity to be changed by altering 3D conformation of the RNA aptamer. It is essential to develop higher-level logic circuits for the production of multi-task nanodevices for data processing, typically requiring combinatorial logic gates. Therefore, we further designed and synthetized higher-level half adder logic circuit by “in parallel” integration of two logic gates XOR and AND within a single RNA nanoparticle. The design utilizes fluorescence emissions from two different RNA aptamers: MG-binding RNA aptamer (AND gate) and Broccoli RNA aptamer that binds DFHBI dye (XOR gate). All computationally designed RNA devices were synthesized and experimentally tested in vitro. The ability to design smart nanodevices based on RNA binding aptamers offers a new route to engineer “label-free” ligand-sensing regulatory circuits, nucleic acid detection systems, and gene control elements.
Collapse
|
30
|
White NA, Sumita M, Marquez VE, Hoogstraten CG. Coupling between conformational dynamics and catalytic function at the active site of the lead-dependent ribozyme. RNA (NEW YORK, N.Y.) 2018; 24:1542-1554. [PMID: 30111534 PMCID: PMC6191710 DOI: 10.1261/rna.067579.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
In common with other self-cleaving RNAs, the lead-dependent ribozyme (leadzyme) undergoes dynamic fluctuations to a chemically activated conformation. We explored the connection between conformational dynamics and self-cleavage function in the leadzyme using a combination of NMR spin-relaxation analysis of ribose groups and conformational restriction via chemical modification. The functional studies were performed with a North-methanocarbacytidine modification that prevents fluctuations to C2'-endo conformations while maintaining an intact 2'-hydroxyl nucleophile. Spin-relaxation data demonstrate that the active-site Cyt-6 undergoes conformational exchange attributed to sampling of a minor C2'-endo state with an exchange lifetime on the order of microseconds to tens of microseconds. A conformationally restricted species in which the fluctuations to the minor species are interrupted shows a drastic decrease in self-cleavage activity. Taken together, these data indicate that dynamic sampling of a minor species at the active site of this ribozyme, and likely of related naturally occurring motifs, is strongly coupled to catalytic function. The combination of NMR dynamics analysis with functional probing via conformational restriction is a general methodology for dissecting dynamics-function relationships in RNA.
Collapse
Affiliation(s)
- Neil A White
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Minako Sumita
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Victor E Marquez
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
31
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
32
|
Abstract
The emergence of functional cooperation between the three main classes of biomolecules - nucleic acids, peptides and lipids - defines life at the molecular level. However, how such mutually interdependent molecular systems emerged from prebiotic chemistry remains a mystery. A key hypothesis, formulated by Crick, Orgel and Woese over 40 year ago, posits that early life must have been simpler. Specifically, it proposed that an early primordial biology lacked proteins and DNA but instead relied on RNA as the key biopolymer responsible not just for genetic information storage and propagation, but also for catalysis, i.e. metabolism. Indeed, there is compelling evidence for such an 'RNA world', notably in the structure of the ribosome as a likely molecular fossil from that time. Nevertheless, one might justifiably ask whether RNA alone would be up to the task. From a purely chemical perspective, RNA is a molecule of rather uniform composition with all four bases comprising organic heterocycles of similar size and comparable polarity and pK a values. Thus, RNA molecules cover a much narrower range of steric, electronic and physicochemical properties than, e.g. the 20 amino acid side-chains of proteins. Herein we will examine the functional potential of RNA (and other nucleic acids) with respect to self-replication, catalysis and assembly into simple protocellular entities.
Collapse
|
33
|
Mikkola S, Lönnberg T, Lönnberg H. Phosphodiester models for cleavage of nucleic acids. Beilstein J Org Chem 2018; 14:803-837. [PMID: 29719577 PMCID: PMC5905247 DOI: 10.3762/bjoc.14.68] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids that store and transfer biological information are polymeric diesters of phosphoric acid. Cleavage of the phosphodiester linkages by protein enzymes, nucleases, is one of the underlying biological processes. The remarkable catalytic efficiency of nucleases, together with the ability of ribonucleic acids to serve sometimes as nucleases, has made the cleavage of phosphodiesters a subject of intensive mechanistic studies. In addition to studies of nucleases by pH-rate dependency, X-ray crystallography, amino acid/nucleotide substitution and computational approaches, experimental and theoretical studies with small molecular model compounds still play a role. With small molecules, the importance of various elementary processes, such as proton transfer and metal ion binding, for stabilization of transition states may be elucidated and systematic variation of the basicity of the entering or departing nucleophile enables determination of the position of the transition state on the reaction coordinate. Such data is important on analyzing enzyme mechanisms based on synergistic participation of several catalytic entities. Many nucleases are metalloenzymes and small molecular models offer an excellent tool to construct models for their catalytic centers. The present review tends to be an up to date summary of what has been achieved by mechanistic studies with small molecular phosphodiesters.
Collapse
Affiliation(s)
- Satu Mikkola
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Harri Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
34
|
Cepeda-Plaza M, McGhee CE, Lu Y. Evidence of a General Acid-Base Catalysis Mechanism in the 8-17 DNAzyme. Biochemistry 2018; 57:1517-1522. [PMID: 29389111 PMCID: PMC5879137 DOI: 10.1021/acs.biochem.7b01096] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
DNAzymes are catalytic DNA molecules that can perform a variety of reactions. Although advances have been made in obtaining DNAzymes via in vitro selection and many of them have been developed into sensors and imaging agents for metal ions, bacteria, and other molecules, the structural features responsible for these enzymatic reactions are still not well understood. Previous studies of the 8-17 DNAzyme have suggested conserved guanines close to the phosphodiester transfer site may play a role in the catalytic reaction. To identify the specific guanine and functional group of the guanine responsible for the reaction, we herein report the effects of replacing G1.1 and G14 (G; p Ka,N1 = 9.4) with analogues with a different p Ka at the N1 position, such as inosine (G14I; p Ka,N1 = 8.7), 2,6-diaminopurine (G14diAP; p Ka,N1 = 5.6), and 2-aminopurine (G14AP; p Ka,N1 = 3.8) on pH-dependent reaction rates. A comparison of the pH dependence of the reaction rates of these DNAzymes demonstrated that G14 in the bulge loop next to the cleavage site, is involved in proton transfer at the catalytic site. In contrast, we did not find any evidence of G1.1 being involved in acid-base catalysis. These results support general acid-base catalysis as a feasible strategy used in DNA catalysis, as in RNA and protein enzymes.
Collapse
Affiliation(s)
- Marjorie Cepeda-Plaza
- Department of Chemical Sciences, School of Exact Sciences, Universidad Andres Bello, República 275, Santiago, Chile
| | - Claire E. McGhee
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801
| |
Collapse
|
35
|
Balke D, Becker A, Müller S. In vitro repair of a defective EGFP transcript and translation into a functional protein. Org Biomol Chem 2018; 14:6729-37. [PMID: 27314882 DOI: 10.1039/c6ob01043a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Twin ribozymes mediate the exchange of a short patch of RNA against an exogenous oligonucleotide within a suitable RNA substrate. Thus, twin ribozymes are promising tools for RNA repair, i.e. for the treatment of genetic disorders at the mRNA level. A number of twin ribozyme-mediated RNA fragment exchange reactions have been successfully demonstrated using short model substrates. Herein we show for the first time a twin ribozyme-mediated in vitro repair of a full-length transcript and translation into a functional protein. The system is based on the repair of a designed mutant EGFP mRNA containing the four-base deletion ΔACTC (190-193). Upon twin ribozyme-mediated replacement of a patch of 15 nucleotides with an externally added repair oligonucleotide (19 mer) the wild type sequence of the EGFP transcript could be restored with 32% yield. This is the first time that such a high twin ribozyme-mediated repair yield, so far observed only for short model substrates, has been obtained for a full-length mRNA. Translation of the repaired EGFP-ΔACTC mRNA produces functional EGFP, as detected by the restored fluorescence.
Collapse
Affiliation(s)
- Darko Balke
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Biochemie, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany.
| | - Aileen Becker
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Biochemie, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany.
| | - Sabine Müller
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Biochemie, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany.
| |
Collapse
|
36
|
Studying Parasite Gene Function and Interaction Through Ribozymes and Riboswitches Design Mechanism. Synth Biol (Oxf) 2018. [DOI: 10.1007/978-981-10-8693-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
37
|
Frankel EA, Bevilacqua PC. Complexity in pH-Dependent Ribozyme Kinetics: Dark pK a Shifts and Wavy Rate-pH Profiles. Biochemistry 2017; 57:483-488. [PMID: 29271644 DOI: 10.1021/acs.biochem.7b00784] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Charged bases occur in RNA enzymes, or ribozymes, where they play key roles in catalysis. Cationic bases donate protons and perform electrostatic catalysis, while anionic bases accept protons. We previously published simulations of rate-pH profiles for ribozymes in terms of species plots for the general acid and general base that have been useful for understanding how ribozymes respond to pH. In that study, we did not consider interaction between the general acid and general base or interaction with other species on the RNA. Since that report, diverse small ribozyme classes have been discovered, many of which have charged nucleobases or metal ions in the active site that can either directly interact and participate in catalysis or indirectly interact as "influencers". Herein, we simulate experimental rate-pH profiles in terms of species plots in which reverse protonated charged nucleobases interact. These analyses uncover two surprising features of pH-dependent enzyme kinetics. (1) Cooperativity between the general acid and general base enhances population of the functional forms of a ribozyme and manifests itself as hidden or "dark" pKa shifts, real pKa shifts that accelerate the reaction but are not readily observed by standard experimental approaches, and (2) influencers favorably shift the pKas of proton-transferring nucleobases and manifest themselves as "wavy" rate-pH profiles. We identify parallels with the protein enzyme literature, including reverse protonation and wavelike behavior, while pointing out that RNA is more prone to reverse protonation. The complexities uncovered, which arise from simple pairwise interactions, should aid deconvolution of complex rate-pH profiles for RNA and protein enzymes and suggest veiled catalytic devices for promoting catalysis that can be tested by experiment and calculation.
Collapse
Affiliation(s)
- Erica A Frankel
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Center for RNA Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Center for RNA Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
38
|
Abstract
In addition to storage of genetic information, DNA can also catalyze various reactions. RNA-cleaving DNAzymes are the catalytic DNAs discovered the earliest, and they can cleave RNAs in a sequence-specific manner. Owing to their great potential in medical therapeutics, virus control, and gene silencing for disease treatments, RNA-cleaving DNAzymes have been extensively studied; however, the mechanistic understandings of their substrate recognition and catalysis remain elusive. Here, we report three catalytic form 8-17 DNAzyme crystal structures. 8-17 DNAzyme adopts a V-shape fold, and the Pb2+ cofactor is bound at the pre-organized pocket. The structures with Pb2+ and the modification at the cleavage site captured the pre-catalytic state of the RNA cleavage reaction, illustrating the unexpected Pb2+-accelerated catalysis, intrinsic tertiary interactions, and molecular kink at the active site. Our studies reveal that DNA is capable of forming a compacted structure and that the functionality-limited bio-polymer can have a novel solution for a functional need in catalysis.
Collapse
|
39
|
Ren A, Micura R, Patel DJ. Structure-based mechanistic insights into catalysis by small self-cleaving ribozymes. Curr Opin Chem Biol 2017; 41:71-83. [PMID: 29107885 PMCID: PMC7955703 DOI: 10.1016/j.cbpa.2017.09.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 01/01/2023]
Abstract
Small self-cleaving ribozymes are widely distributed in nature and are essential for rolling-circle-based replication of satellite and pathogenic RNAs. Earlier structure-function studies on the hammerhead, hairpin, glmS, hepatitis delta virus and Varkud satellite ribozymes have provided insights into their overall architecture, their catalytic active site organization, and the role of nearby nucleobases and hydrated divalent cations in facilitating general acid-base and electrostatic-mediated catalysis. This review focuses on recent structure-function research on active site alignments and catalytic mechanisms of the Rzb hammerhead ribozyme, as well as newly-identified pistol, twister and twister-sister ribozymes. In contrast to an agreed upon mechanistic understanding of self-cleavage by Rzb hammerhead and pistol ribozymes, there exists a divergence of views as to the cleavage site alignments and catalytic mechanisms adopted by twister and twister-sister ribozymes. One approach to resolving this conundrum would be to extend the structural studies from currently available pre-catalytic conformations to their transition state mimic vanadate counterparts for both ribozymes.
Collapse
Affiliation(s)
- Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ronald Micura
- Institute of Organic Chemistry, Leopold Franzens University, Innsbruck A6020, Austria
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
40
|
Mlýnský V, Kührová P, Jurečka P, Šponer J, Otyepka M, Banáš P. Mapping the Chemical Space of the RNA Cleavage and Its Implications for Ribozyme Catalysis. J Phys Chem B 2017; 121:10828-10840. [DOI: 10.1021/acs.jpcb.7b09129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vojtěch Mlýnský
- Regional Centre
of Advanced Technologies and Materials, Department of Physical Chemistry,
Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), via
Bonomea 265, 34136 Trieste, Italy
| | - Petra Kührová
- Regional Centre
of Advanced Technologies and Materials, Department of Physical Chemistry,
Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petr Jurečka
- Regional Centre
of Advanced Technologies and Materials, Department of Physical Chemistry,
Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Regional Centre
of Advanced Technologies and Materials, Department of Physical Chemistry,
Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre
of Advanced Technologies and Materials, Department of Physical Chemistry,
Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre
of Advanced Technologies and Materials, Department of Physical Chemistry,
Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
41
|
Daher M, Widom JR, Tay W, Walter NG. Soft Interactions with Model Crowders and Non-canonical Interactions with Cellular Proteins Stabilize RNA Folding. J Mol Biol 2017; 430:509-523. [PMID: 29128594 DOI: 10.1016/j.jmb.2017.10.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/22/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Living cells contain diverse biopolymers, creating a heterogeneous crowding environment, the impact of which on RNA folding is poorly understood. Here, we have used single-molecule fluorescence resonance energy transfer to monitor tertiary structure formation of the hairpin ribozyme as a model to probe the effects of polyethylene glycol and yeast cell extract as crowding agents. As expected, polyethylene glycol stabilizes the docked, catalytically active state of the ribozyme, in part through excluded volume effects; unexpectedly, we found evidence that it additionally displays soft, non-specific interactions with the ribozyme. Yeast extract has a profound effect on folding at protein concentrations 1000-fold lower than found intracellularly, suggesting the dominance of specific interactions over volume exclusion. Gel shift assays and affinity pull-down followed by mass spectrometry identified numerous non-canonical RNA-binding proteins that stabilize ribozyme folding; the apparent chaperoning activity of these ubiquitous proteins significantly compensates for the low-counterion environment of the cell.
Collapse
Affiliation(s)
- May Daher
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Julia R Widom
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Wendy Tay
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
42
|
White NA, Hoogstraten CG. Thermodynamics and kinetics of RNA tertiary structure formation in the junctionless hairpin ribozyme. Biophys Chem 2017; 228:62-68. [PMID: 28710920 PMCID: PMC5572644 DOI: 10.1016/j.bpc.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/24/2017] [Accepted: 07/02/2017] [Indexed: 11/15/2022]
Abstract
The hairpin ribozyme consists of two RNA internal loops that interact to form the catalytically active structure. This docking transition is a rare example of intermolecular formation of RNA tertiary structure without coupling to helix annealing. We have used temperature-dependent surface plasmon resonance (SPR) to characterize the thermodynamics and kinetics of RNA tertiary structure formation for the junctionless form of the ribozyme, in which loops A and B reside on separate molecules. We find docking to be strongly enthalpy-driven and to be accompanied by substantial activation barriers for association and dissociation, consistent with the structural reorganization of both internal loops upon complex formation. Comparisons with the parallel analysis of a ribozyme variant carrying a 2'-O-methyl modification at the self-cleavage site and with published data in other systems reveal a surprising diversity of thermodynamic signatures, emphasizing the delicate balance of contributions to the free energy of formation of RNA tertiary structure.
Collapse
Affiliation(s)
- Neil A White
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 302D, Michigan State University, East Lansing, MI 48824, USA
| | - Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 302D, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
43
|
Balke D, Hieronymus R, Müller S. Challenges and Perspectives in Nucleic Acid Enzyme Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 170:21-35. [DOI: 10.1007/10_2017_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
DasGupta S, Suslov NB, Piccirilli JA. Structural Basis for Substrate Helix Remodeling and Cleavage Loop Activation in the Varkud Satellite Ribozyme. J Am Chem Soc 2017; 139:9591-9597. [PMID: 28625058 PMCID: PMC5929484 DOI: 10.1021/jacs.7b03655] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Varkud satellite (VS) ribozyme catalyzes site-specific RNA cleavage and ligation reactions. Recognition of the substrate involves a kissing loop interaction between the substrate and the catalytic domain of the ribozyme, resulting in a rearrangement of the substrate helix register into a so-called "shifted" conformation that is critical for substrate binding and activation. We report a 3.3 Å crystal structure of the complete ribozyme that reveals the active, shifted conformation of the substrate, docked into the catalytic domain of the ribozyme. Comparison to previous NMR structures of isolated, inactive substrates provides a physical description of substrate remodeling, and implicates roles for tertiary interactions in catalytic activation of the cleavage loop. Similarities to the hairpin ribozyme cleavage loop activation suggest general strategies to enhance fidelity in RNA folding and ribozyme cleavage.
Collapse
Affiliation(s)
- Saurja DasGupta
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Nikolai B. Suslov
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Joseph A. Piccirilli
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
45
|
Lilley DMJ. How RNA acts as a nuclease: some mechanistic comparisons in the nucleolytic ribozymes. Biochem Soc Trans 2017; 45:683-691. [PMID: 28620029 DOI: 10.1042/bst20160158] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 02/11/2024]
Abstract
Recent structural and mechanistic studies have shed considerable light on the catalytic mechanisms of nucleolytic ribozymes. The discovery of several new ribozymes in this class has now allowed comparisons to be made, and the beginnings of mechanistic groupings to emerge.
Collapse
Affiliation(s)
- David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, U.K.
| |
Collapse
|
46
|
Structural and Biochemical Properties of Novel Self-Cleaving Ribozymes. Molecules 2017; 22:molecules22040678. [PMID: 28441772 PMCID: PMC6154101 DOI: 10.3390/molecules22040678] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 01/20/2023] Open
Abstract
Fourteen well-defined ribozyme classes have been identified to date, among which nine are site-specific self-cleaving ribozymes. Very recently, small self-cleaving ribozymes have attracted renewed interest in their structure, biochemistry, and biological function since the discovery, during the last three years, of four novel ribozymes, termed twister, twister sister, pistol, and hatchet. In this review, we mainly address the structure, biochemistry, and catalytic mechanism of the novel ribozymes. They are characterized by distinct active site architectures and divergent, but similar, biochemical properties. The cleavage activities of the ribozymes are highly dependent upon divalent cations, pH, and base-specific mutations, which can cause changes in the nucleotide arrangement and/or electrostatic potential around the cleavage site. It is most likely that a guanine and adenine in close proximity of the cleavage site are involved in general acid-base catalysis. In addition, metal ions appear to play a structural rather than catalytic role although some of their crystal structures have shown a direct metal ion coordination to a non-bridging phosphate oxygen at the cleavage site. Collectively, the structural and biochemical data of the four newest ribozymes could contribute to advance our mechanistic understanding of how self-cleaving ribozymes accomplish their efficient site-specific RNA cleavages.
Collapse
|
47
|
Abstract
Twister RNAs represent a recently discovered class of natural ribozymes that promote rapid cleaving of RNA backbones. Although an abundance of theoretical, biochemical, and structural data exist for several members of the twister class, disagreements about the architecture and mechanism of its active site have emerged. Historically, such storms regarding mechanistic details typically occur soon after each new self-cleaving ribozyme class is reported, but paths forward exist to quickly reach calmer conditions.
Collapse
Affiliation(s)
- Ronald R. Breaker
- Department
of Molecular, Cellular and Developmental Biology, ‡Department of Molecular
Biophysics and Biochemistry, §Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
48
|
Dagenais P, Girard N, Bonneau E, Legault P. Insights into RNA structure and dynamics from recent NMR and X-ray studies of the Neurospora Varkud satellite ribozyme. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28382748 PMCID: PMC5573960 DOI: 10.1002/wrna.1421] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/21/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
Despite the large number of noncoding RNAs and their importance in several biological processes, our understanding of RNA structure and dynamics at atomic resolution is still very limited. Like many other RNAs, the Neurospora Varkud satellite (VS) ribozyme performs its functions through dynamic exchange of multiple conformational states. More specifically, the VS ribozyme recognizes and cleaves its stem-loop substrate via a mechanism that involves several structural transitions within its stem-loop substrate. The recent publications of high-resolution structures of the VS ribozyme, obtained by NMR spectroscopy and X-ray crystallography, offer an opportunity to integrate the data and closely examine the structural and dynamic properties of this model RNA system. Notably, these investigations provide a valuable example of the divide-and-conquer strategy for structural and dynamic characterization of a large RNA, based on NMR structures of several individual subdomains. The success of this divide-and-conquer approach reflects the modularity of RNA architecture and the great care taken in identifying the independently-folding modules. Together with previous biochemical and biophysical characterizations, the recent NMR and X-ray studies provide a coherent picture into how the VS ribozyme recognizes its stem-loop substrate. Such in-depth characterization of this RNA enzyme will serve as a model for future structural and engineering studies of dynamic RNAs and may be particularly useful in planning divide-and-conquer investigations. WIREs RNA 2017, 8:e1421. doi: 10.1002/wrna.1421 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Pierre Dagenais
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
| | - Nicolas Girard
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
| | - Eric Bonneau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
| | - Pascale Legault
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
49
|
Schuabb C, Kumar N, Pataraia S, Marx D, Winter R. Pressure modulates the self-cleavage step of the hairpin ribozyme. Nat Commun 2017; 8:14661. [PMID: 28358002 PMCID: PMC5379106 DOI: 10.1038/ncomms14661] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 01/20/2017] [Indexed: 01/01/2023] Open
Abstract
The ability of certain RNAs, denoted as ribozymes, to not only store genetic information but also catalyse chemical reactions gave support to the RNA world hypothesis as a putative step in the development of early life on Earth. This, however, might have evolved under extreme environmental conditions, including the deep sea with pressures in the kbar regime. Here we study pressure-induced effects on the self-cleavage of hairpin ribozyme by following structural changes in real-time. Our results suggest that compression of the ribozyme leads to an accelerated transesterification reaction, being the self-cleavage step, although the overall process is retarded in the high-pressure regime. The results reveal that favourable interactions between the reaction site and neighbouring nucleobases are strengthened under pressure, resulting therefore in an accelerated self-cleavage step upon compression. These results suggest that properly engineered ribozymes may also act as piezophilic biocatalysts in addition to their hitherto known properties.
Collapse
Affiliation(s)
- Caroline Schuabb
- Physikalische Chemie I-Biophysikalische Chemie, Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Narendra Kumar
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum 44780, Germany
| | - Salome Pataraia
- Physikalische Chemie I-Biophysikalische Chemie, Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum 44780, Germany
| | - Roland Winter
- Physikalische Chemie I-Biophysikalische Chemie, Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| |
Collapse
|
50
|
Gebetsberger J, Micura R. Unwinding the twister ribozyme: from structure to mechanism. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27863022 PMCID: PMC5408937 DOI: 10.1002/wrna.1402] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/12/2016] [Accepted: 10/10/2016] [Indexed: 11/12/2022]
Abstract
The twister ribozyme motif has been identified by bioinformatic means very recently. Currently, four crystal structures with ordered active sites together with a series of chemical and biochemical data provide insights into how this RNA accomplishes its efficient self‐cleavage. Of particular interest for a mechanistic proposal are structural distinctions observed in the active sites that concern the conformation of the U‐A cleavage site dinucleotide (in‐line alignment of the attacking 2′‐O nucleophile to the to‐be‐cleaved P—O5′ bond versus suboptimal alignments) as well as the presence/absence of Mg2+ ions at the scissile phosphate. All structures support the notion that an active site guanine and the conserved adenine at the cleavage site are important contributors to cleavage chemistry, likely being involved in general acid base catalysis. Evidence for innersphere coordination of a Mg2+ ion to the pro‐S nonbridging oxygen of the scissile phosphate stems from two of the four crystal structures. Together with the finding of thio/rescue effects for phosphorothioate substrates, this suggests the participation of divalent ions in the overall catalytic strategy employed by twister ribozymes. In this context, it is notable that twister retains wild‐type activity when the phylogenetically conserved stem P1 is deleted, able to cleave a single nucleotide only. WIREs RNA 2017, 8:e1402. doi: 10.1002/wrna.1402 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jennifer Gebetsberger
- Institute of Organic Chemistry, Leopold-Franzens University and Center of Molecular Biosciences Innsbruck CMBI, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Leopold-Franzens University and Center of Molecular Biosciences Innsbruck CMBI, Innsbruck, Austria
| |
Collapse
|