1
|
Biermann S, Knapp M, Wieacker P, Aretz S, Steinke-Lange V. High amount of fertility reducing tumors and procedures, but no evidence for premature ovarian failure in female Lynch syndrome patients. Fam Cancer 2024; 23:473-478. [PMID: 38280980 PMCID: PMC11512894 DOI: 10.1007/s10689-024-00357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/14/2024] [Indexed: 01/29/2024]
Abstract
Lynch syndrome (LS; HNPCC) patients carry heterozygous pathogenic germline variants in mismatch repair (MMR) genes, which have also been shown to play an important role in meiosis. Therefore, it was hypothesized, that LS might be associated with a higher risk for premature ovarian failure (POF) or earlier menopause. Data on medical gynaecological history, cancer diagnoses and therapy were collected from 167 female LS patients and compared to a population-based control cohort. There was no difference between the age of menopause in patients compared to controls and no evidence for a higher risk of POF in LS patients. However, around one third (35%) of the probands have already had premenopausal cancer and mostly cancer-related treatment affecting fertility before the age of 45 years. Therefore, childbearing time might still be limited in these patients, especially due to the premenopausal cancer risk. LS patients should be informed in time about the elevated premenopausal cancer risks and the possible impact on family planning. This is particularly relevant since the average childbearing age has increased during the last decades.
Collapse
Affiliation(s)
- Sabine Biermann
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michael Knapp
- Institut für Medizinische Biometrie, Informatik und Epidemiologie (IMBIE), University of Bonn, Bonn, Germany
| | - Peter Wieacker
- Institut für Humangenetik, Universität Münster, Münster, Germany
| | - Stefan Aretz
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany.
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany.
- European Reference Network for Genetic Tumor Risk Syndromes (ERN Genturis), Nijmegen, Netherlands.
- Institut für Humangenetik Biomedizinisches Zentrum, Venusberg-Campus 1, Bonn, 53127, Germany.
| | - Verena Steinke-Lange
- European Reference Network for Genetic Tumor Risk Syndromes (ERN Genturis), Nijmegen, Netherlands
- MGZ - Medical Genetics Center, Munich, Germany
- Arbeitsgruppe erbliche gastrointestinale Tumore, Medizinische Klinik und Poliklinik IV - Campus Innenstadt, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
2
|
Zainu A, Dupaigne P, Bouchouika S, Cau J, Clément JAJ, Auffret P, Ropars V, Charbonnier JB, de Massy B, Mercier R, Kumar R, Baudat F. FIGNL1-FIRRM is essential for meiotic recombination and prevents DNA damage-independent RAD51 and DMC1 loading. Nat Commun 2024; 15:7015. [PMID: 39147779 PMCID: PMC11327267 DOI: 10.1038/s41467-024-51458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
During meiosis, nucleoprotein filaments of the strand exchange proteins RAD51 and DMC1 are crucial for repairing SPO11-generated DNA double-strand breaks (DSBs) by homologous recombination (HR). A balanced activity of positive and negative RAD51/DMC1 regulators ensures proper recombination. Fidgetin-like 1 (FIGNL1) was previously shown to negatively regulate RAD51 in human cells. However, FIGNL1's role during meiotic recombination in mammals remains unknown. Here, we decipher the meiotic functions of FIGNL1 and FIGNL1 Interacting Regulator of Recombination and Mitosis (FIRRM) using male germline-specific conditional knock-out (cKO) mouse models. Both FIGNL1 and FIRRM are required for completing meiotic prophase in mouse spermatocytes. Despite efficient recruitment of DMC1 on ssDNA at meiotic DSB hotspots, the formation of late recombination intermediates is defective in Firrm cKO and Fignl1 cKO spermatocytes. Moreover, the FIGNL1-FIRRM complex limits RAD51 and DMC1 accumulation on intact chromatin, independently from the formation of SPO11-catalyzed DSBs. Purified human FIGNL1ΔN alters the RAD51/DMC1 nucleoprotein filament structure and inhibits strand invasion in vitro. Thus, this complex might regulate RAD51 and DMC1 association at sites of meiotic DSBs to promote proficient strand invasion and processing of recombination intermediates.
Collapse
Affiliation(s)
- Akbar Zainu
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Pauline Dupaigne
- Genome Integrity and Cancers UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Soumya Bouchouika
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, Univ Montpellier, Montpellier, France
| | - Julien Cau
- Biocampus Montpellier, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie A J Clément
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | - Pauline Auffret
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- Ifremer, IRSI, Service de Bioinformatique (SeBiMER), Plouzané, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Bernard de Massy
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Frédéric Baudat
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
3
|
Condezo YB, Sainz-Urruela R, Gomez-H L, Salas-Lloret D, Felipe-Medina N, Bradley R, Wolff ID, Tanis S, Barbero JL, Sánchez-Martín M, de Rooij D, Hendriks IA, Nielsen ML, Gonzalez-Prieto R, Cohen PE, Pendas AM, Llano E. RNF212B E3 ligase is essential for crossover designation and maturation during male and female meiosis in the mouse. Proc Natl Acad Sci U S A 2024; 121:e2320995121. [PMID: 38865271 PMCID: PMC11194559 DOI: 10.1073/pnas.2320995121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Meiosis, a reductional cell division, relies on precise initiation, maturation, and resolution of crossovers (COs) during prophase I to ensure the accurate segregation of homologous chromosomes during metaphase I. This process is regulated by the interplay of RING-E3 ligases such as RNF212 and HEI10 in mammals. In this study, we functionally characterized a recently identified RING-E3 ligase, RNF212B. RNF212B colocalizes and interacts with RNF212, forming foci along chromosomes from zygonema onward in a synapsis-dependent and DSB-independent manner. These consolidate into larger foci at maturing COs, colocalizing with HEI10, CNTD1, and MLH1 by late pachynema. Genetically, RNF212B foci formation depends on Rnf212 but not on Msh4, Hei10, and Cntd1, while the unloading of RNF212B at the end of pachynema is dependent on Hei10 and Cntd1. Mice lacking RNF212B, or expressing an inactive RNF212B protein, exhibit modest synapsis defects, a reduction in the localization of pro-CO factors (MSH4, TEX11, RPA, MZIP2) and absence of late CO-intermediates (MLH1). This loss of most COs by diakinesis results in mostly univalent chromosomes. Double mutants for Rnf212b and Rnf212 exhibit an identical phenotype to that of Rnf212b single mutants, while double heterozygous demonstrate a dosage-dependent reduction in CO number, indicating a functional interplay between paralogs. SUMOylome analysis of testes from Rnf212b mutants and pull-down analysis of Sumo- and Ubiquitin-tagged HeLa cells, suggest that RNF212B is an E3-ligase with Ubiquitin activity, serving as a crucial factor for CO maturation. Thus, RNF212 and RNF212B play vital, yet overlapping roles, in ensuring CO homeostasis through their distinct E3 ligase activities.
Collapse
Affiliation(s)
- Yazmine B. Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Raquel Sainz-Urruela
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Laura Gomez-H
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
- Department of Totipotency, Max Planck Institute of Biochemistry, 82152Martinsried, Germany
| | - Daniel Salas-Lloret
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Rachel Bradley
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Ian D. Wolff
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Stephanie Tanis
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Jose Luis Barbero
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040Madrid, Spain
| | | | - Dirk de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht3584CM, The Netherlands
| | - Ivo A. Hendriks
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200Copenhagen, Denmark
| | - Michael L. Nielsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200Copenhagen, Denmark
| | - Román Gonzalez-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Andalusian Center for Molecular Biology and Regenerative MedicineCentro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad-Pablo de Olavide, 41092Sevilla, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41012Sevilla, Spain
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Alberto M. Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (onsejo Superior de Investigaciones Científicas-Universidad de Salamanca), 37007Salamanca, Spain
- Departamento de Fisiología, Universidad de Salamanca, 37007Salamanca, Spain
| |
Collapse
|
4
|
Arter M, Keeney S. Divergence and conservation of the meiotic recombination machinery. Nat Rev Genet 2024; 25:309-325. [PMID: 38036793 DOI: 10.1038/s41576-023-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 12/02/2023]
Abstract
Sexually reproducing eukaryotes use recombination between homologous chromosomes to promote chromosome segregation during meiosis. Meiotic recombination is almost universally conserved in its broad strokes, but specific molecular details often differ considerably between taxa, and the proteins that constitute the recombination machinery show substantial sequence variability. The extent of this variation is becoming increasingly clear because of recent increases in genomic resources and advances in protein structure prediction. We discuss the tension between functional conservation and rapid evolutionary change with a focus on the proteins that are required for the formation and repair of meiotic DNA double-strand breaks. We highlight phylogenetic relationships on different time scales and propose that this remarkable evolutionary plasticity is a fundamental property of meiotic recombination that shapes our understanding of molecular mechanisms in reproductive biology.
Collapse
Affiliation(s)
- Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Romeo-Cardeillac C, Trovero MF, Radío S, Smircich P, Rodríguez-Casuriaga R, Geisinger A, Sotelo-Silveira J. Uncovering a multitude of stage-specific splice variants and putative protein isoforms generated along mouse spermatogenesis. BMC Genomics 2024; 25:295. [PMID: 38509455 PMCID: PMC10953240 DOI: 10.1186/s12864-024-10170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Mammalian testis is a highly complex and heterogeneous tissue. This complexity, which mostly derives from spermatogenic cells, is reflected at the transcriptional level, with the largest number of tissue-specific genes and long noncoding RNAs (lncRNAs) compared to other tissues, and one of the highest rates of alternative splicing. Although it is known that adequate alternative-splicing patterns and stage-specific isoforms are critical for successful spermatogenesis, so far only a very limited number of reports have addressed a detailed study of alternative splicing and isoforms along the different spermatogenic stages. RESULTS In the present work, using highly purified stage-specific testicular cell populations, we detected 33,002 transcripts expressed throughout mouse spermatogenesis not annotated so far. These include both splice variants of already annotated genes, and of hitherto unannotated genes. Using conservative criteria, we uncovered 13,471 spermatogenic lncRNAs, which reflects the still incomplete annotation of lncRNAs. A distinctive feature of lncRNAs was their lower number of splice variants compared to protein-coding ones, adding to the conclusion that lncRNAs are, in general, less complex than mRNAs. Besides, we identified 2,794 unannotated transcripts with high coding potential (including some arising from yet unannotated genes), many of which encode unnoticed putative testis-specific proteins. Some of the most interesting coding splice variants were chosen, and validated through RT-PCR. Remarkably, the largest number of stage-specific unannotated transcripts are expressed during early meiotic prophase stages, whose study has been scarcely addressed in former transcriptomic analyses. CONCLUSIONS We detected a high number of yet unannotated genes and alternatively spliced transcripts along mouse spermatogenesis, hence showing that the transcriptomic diversity of the testis is considerably higher than previously reported. This is especially prominent for specific, underrepresented stages such as those of early meiotic prophase, and its unveiling may constitute a step towards the understanding of their key events.
Collapse
Affiliation(s)
- Carlos Romeo-Cardeillac
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - María Fernanda Trovero
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Santiago Radío
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Pablo Smircich
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
| | - Adriana Geisinger
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay.
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), 11,400, Montevideo, Uruguay.
| | - José Sotelo-Silveira
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay.
- Department of Cell and Molecular Biology, Facultad de Ciencias, UdelaR, 11,400, Montevideo, Uruguay.
| |
Collapse
|
6
|
Horan TS, Ascenção CFR, Mellor C, Wang M, Smolka MB, Cohen PE. The DNA helicase FANCJ (BRIP1) functions in double strand break repair processing, but not crossover formation during prophase I of meiosis in male mice. PLoS Genet 2024; 20:e1011175. [PMID: 38377115 PMCID: PMC10906868 DOI: 10.1371/journal.pgen.1011175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Meiotic recombination between homologous chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs). Approximately 10% of these DSBs result in crossovers (COs), sites of physical DNA exchange between homologs that are critical to correct chromosome segregation. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers, the latter representing the defining marks of CO sites. The regulation of CO number and position is poorly understood, but undoubtedly requires the coordinated action of multiple repair pathways. In a previous report, we found gene-trap disruption of the DNA helicase, FANCJ (BRIP1/BACH1), elicited elevated numbers of MLH1 foci and chiasmata. In somatic cells, FANCJ interacts with numerous DNA repair proteins including MLH1, and we hypothesized that FANCJ functions with MLH1 to regulate the major CO pathway. To further elucidate the meiotic function of FANCJ, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, truncation of the N-terminal Helicase domain, and a C-terminal dual-tagged allele. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, none of our Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 in meiosis. Instead, FANCJ co-localizes with BRCA1 and TOPBP1, forming discrete foci along the chromosome cores beginning in early meiotic prophase I and densely localized to unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data indicate a role for FANCJ in early DSB repair, but they rule out a role for FANCJ in MLH1-mediated CO events.
Collapse
Affiliation(s)
- Tegan S. Horan
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
| | - Carolline F. R. Ascenção
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Christopher Mellor
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Marcus B. Smolka
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
7
|
Chan Y, Tang X, Cai D, Liu Y, Li D, Su J, Neng G, Yin Y, Geng Z, Zhu S, Zhang J, Jiang L, Zhu B. The relationship of maternal polymorphisms of genes related to meiosis and DNA damage repair with fetal chromosomal stability. J Perinat Med 2023; 51:1082-1096. [PMID: 37486214 DOI: 10.1515/jpm-2022-0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/24/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVES To evaluate the association between maternal polymorphisms of NANOS3 rs2016163, HELQ rs4693089, PRIM1 rs2277339, TLK1 rs10183486, ERCC6 rs2228526, EXO1 rs1635501, DMC1 rs5757133, and MSH5 rs2075789 and fetal chromosomal abnormality. METHODS This retrospective case-control study included 571 women with fetal chromosome abnormalities (330 pregnant women diagnosed with fetal aneuploidy, 241 with fetal de novo structural chromosome pregnancy) and 811 healthy pregnant women between January 2018 and April 2022. All the above polymorphisms were tested using SNaPshot. RESULTS All the eight polymorphisms were analyzed for genotypes, alleles, under dominant and recessive genetic models. Significant distribution differences of TLK1 rs10183486 in fetal chromosome structural abnormality were found between the case group and control subjects who were <35 years of age [Genotype: p=0.029; Dominant: OR (95 %CI)=0.46 (0.25-0.82), p=0.01 and allele: OR (95 %CI)=0.47 (0.27-0.82), p=0.01 respectively], while no difference was found in the recessive model [OR (95 %CI)=2.49 (0.31-20.40), p=0.39]. In advanced age subgroups for fetal aneuploidy, significant differences were found in genotypes analysis of PRIM1 rs2277339 (p=0.008), allele analysis of TLK1 rs10183486 [OR (95 %CI)=0.62 (0.42-0.91), p=0.02]. For the fetal chromosome structural abnormality population, HELQ rs4693089 revealed a significant distribution difference (p=0.01) but not in the allele, dominant and recessive genetic models analysis (p>0.05 individually). CONCLUSIONS For older women, maternal PRIM1 rs2277339 and TLK1 rs10183486 polymorphisms may be associated with fetal aneuploidy, while HELQ rs4693089 may be associated with fetal chromosome structural abnormality. Also, carriers of T allele of TLK1 rs10183486 have a lower risk of fetal chromosome structural abnormality in younger women.
Collapse
Affiliation(s)
- Ying Chan
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| | - Xinhua Tang
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, P.R. China
| | - Dongling Cai
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, P.R. China
| | - Yize Liu
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, P.R. China
| | - Dongmei Li
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| | - Jie Su
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| | - Guowei Neng
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| | - Yifei Yin
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| | - Zibiao Geng
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| | - Shu Zhu
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
| | - Jinman Zhang
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, P.R. China
| | - Lihong Jiang
- Department of Cardiothoracic Surgery, First People's Hospital of Yunnan Province, 157, Jinbi Road, Kunming, 650032, China
| | - Baosheng Zhu
- Department of Medical Genetics, NHC Key Laboratory of Periconception Health Birth in Western China, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, The First People's Hospital of Yunnan Province, Kunming, P.R. China
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, P.R. China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, P.R. China
| |
Collapse
|
8
|
Horan TS, Ascenção CFR, Mellor CA, Wang M, Smolka MB, Cohen PE. The DNA helicase FANCJ (BRIP1) functions in Double Strand Break repair processing, but not crossover formation during Prophase I of meiosis in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561296. [PMID: 37873301 PMCID: PMC10592954 DOI: 10.1101/2023.10.06.561296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
During meiotic prophase I, recombination between homologous parental chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs), each of which must be repaired with absolute fidelity to ensure genome stability of the germline. One outcome of these DSB events is the formation of Crossovers (COs), the sites of physical DNA exchange between homologs that are critical to ensure the correct segregation of parental chromosomes. However, COs account for only a small (~10%) proportion of all DSB repair events; the remaining 90% are repaired as non-crossovers (NCOs), most by synthesis dependent strand annealing. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers. The number and positioning of COs is exquisitely controlled via mechanisms that remain poorly understood, but which undoubtedly require the coordinated action of multiple repair pathways downstream of the initiating DSB. In a previous report we found evidence suggesting that the DNA helicase and Fanconi Anemia repair protein, FANCJ (BRIP1/BACH1), functions to regulate meiotic recombination in mouse. A gene-trap disruption of Fancj showed an elevated number of MLH1 foci and COs. FANCJ is known to interact with numerous DNA repair proteins in somatic cell repair contexts, including MLH1, BLM, BRCA1, and TOPBP1, and we hypothesized that FANCJ regulates CO formation through a direct interaction with MLH1 to suppress the major CO pathway. To further elucidate the function of FANCJ in meiosis, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, a mutant line lacking the MLH1 interaction site and the N-terminal region of the Helicase domain, and a C-terminal 6xHIS-HA dual-tagged allele of Fancj. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, while Fanconi-like phenotypes are observed within the somatic cell lineages of the full deletion Fancj line, none of the Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I of meiosis. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 during late prophase I. Instead, FANCJ forms discrete foci along the chromosome cores beginning in early meiotic prophase I, occasionally co-localizing with MSH4, and then becomes densely localized on unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Strikingly, this localization strongly overlaps with BRCA1 and TOPBP1. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data suggest a role for FANCJ in early DSB repair events, and possibly in the formation of NCOs, but they rule out a role for FANCJ in MLH1-mediated CO events. Thus, the role of FANCJ in meiotic cells involves different pathways and different interactors to those described in somatic cell lineages.
Collapse
Affiliation(s)
- Tegan S Horan
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Carolline F R Ascenção
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | | | - Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Marcus B Smolka
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
9
|
Tsui V, Lyu R, Novakovic S, Stringer JM, Dunleavy JE, Granger E, Semple T, Leichter A, Martelotto LG, Merriner DJ, Liu R, McNeill L, Zerafa N, Hoffmann ER, O’Bryan MK, Hutt K, Deans AJ, Heierhorst J, McCarthy DJ, Crismani W. Fancm has dual roles in the limiting of meiotic crossovers and germ cell maintenance in mammals. CELL GENOMICS 2023; 3:100349. [PMID: 37601968 PMCID: PMC10435384 DOI: 10.1016/j.xgen.2023.100349] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 08/22/2023]
Abstract
Meiotic crossovers are required for accurate chromosome segregation and producing new allelic combinations. Meiotic crossover numbers are tightly regulated within a narrow range, despite an excess of initiating DNA double-strand breaks. Here, we reveal the tumor suppressor FANCM as a meiotic anti-crossover factor in mammals. We use unique large-scale crossover analyses with both single-gamete sequencing and pedigree-based bulk-sequencing datasets to identify a genome-wide increase in crossover frequencies in Fancm-deficient mice. Gametogenesis is heavily perturbed in Fancm loss-of-function mice, which is consistent with the reproductive defects reported in humans with biallelic FANCM mutations. A portion of the gametogenesis defects can be attributed to the cGAS-STING pathway after birth. Despite the gametogenesis phenotypes in Fancm mutants, both sexes are capable of producing offspring. We propose that the anti-crossover function and role in gametogenesis of Fancm are separable and will inform diagnostic pathways for human genomic instability disorders.
Collapse
Affiliation(s)
- Vanessa Tsui
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| | - Ruqian Lyu
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Stevan Novakovic
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jessica M. Stringer
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Jessica E.M. Dunleavy
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Elissah Granger
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Tim Semple
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - Anna Leichter
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - Luciano G. Martelotto
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - D. Jo Merriner
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Ruijie Liu
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Lucy McNeill
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Nadeen Zerafa
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Eva R. Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Moira K. O’Bryan
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Karla Hutt
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Andrew J. Deans
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Genome Stability Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jörg Heierhorst
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Molecular Genetics Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Davis J. McCarthy
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Wayne Crismani
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Ozturk S. Genetic variants underlying spermatogenic arrests in men with non-obstructive azoospermia. Cell Cycle 2023; 22:1021-1061. [PMID: 36740861 PMCID: PMC10081088 DOI: 10.1080/15384101.2023.2171544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Spermatogenic arrest is a severe form of non-obstructive azoospermia (NOA), which occurs in 10-15% of infertile men. Interruption in spermatogenic progression at premeiotic, meiotic, or postmeiotic stage can lead to arrest in men with NOA. Recent studies have intensively focused on defining genetic variants underlying these spermatogenic arrests by making genome/exome sequencing. A number of variants were discovered in the genes involving in mitosis, meiosis, germline differentiation and other basic cellular events. Herein, defined variants in NOA cases with spermatogenic arrests and created knockout mouse models for the related genes are comprehensively reviewed. Also, importance of gene panel-based screening for NOA cases was discussed. Screening common variants in these infertile men with spermatogenic arrests may contribute to elucidating the molecular background and designing novel treatment strategies.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
11
|
Sun L, Lv Z, Chen X, Wang C, Lv P, Yan L, Tian S, Xie X, Yao X, Liu J, Wang Z, Luo H, Cui S, Liu J. SRSF1 regulates primordial follicle formation and number determination during meiotic prophase I. BMC Biol 2023; 21:49. [PMID: 36882745 PMCID: PMC9993595 DOI: 10.1186/s12915-023-01549-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Ovarian folliculogenesis is a tightly regulated process leading to the formation of functional oocytes and involving successive quality control mechanisms that monitor chromosomal DNA integrity and meiotic recombination. A number of factors and mechanisms have been suggested to be involved in folliculogenesis and associated with premature ovarian insufficiency, including abnormal alternative splicing (AS) of pre-mRNAs. Serine/arginine-rich splicing factor 1 (SRSF1; previously SF2/ASF) is a pivotal posttranscriptional regulator of gene expression in various biological processes. However, the physiological roles and mechanism of SRSF1 action in mouse early-stage oocytes remain elusive. Here, we show that SRSF1 is essential for primordial follicle formation and number determination during meiotic prophase I. RESULTS The conditional knockout (cKO) of Srsf1 in mouse oocytes impairs primordial follicle formation and leads to primary ovarian insufficiency (POI). Oocyte-specific genes that regulate primordial follicle formation (e.g., Lhx8, Nobox, Sohlh1, Sohlh2, Figla, Kit, Jag1, and Rac1) are suppressed in newborn Stra8-GFPCre Srsf1Fl/Fl mouse ovaries. However, meiotic defects are the leading cause of abnormal primordial follicle formation. Immunofluorescence analyses suggest that failed synapsis and an inability to undergo recombination result in fewer homologous DNA crossovers (COs) in the Srsf1 cKO mouse ovaries. Moreover, SRSF1 directly binds and regulates the expression of the POI-related genes Six6os1 and Msh5 via AS to implement the meiotic prophase I program. CONCLUSIONS Altogether, our data reveal the critical role of an SRSF1-mediated posttranscriptional regulatory mechanism in the mouse oocyte meiotic prophase I program, providing a framework to elucidate the molecular mechanisms of the posttranscriptional network underlying primordial follicle formation.
Collapse
Affiliation(s)
- Longjie Sun
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zheng Lv
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chaofan Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Pengbo Lv
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lu Yan
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuang Tian
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Xie
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaohong Yao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingjing Liu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhao Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Haoshu Luo
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jiali Liu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Huang Y, Roig I. Genetic control of meiosis surveillance mechanisms in mammals. Front Cell Dev Biol 2023; 11:1127440. [PMID: 36910159 PMCID: PMC9996228 DOI: 10.3389/fcell.2023.1127440] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Meiosis is a specialized cell division that generates haploid gametes and is critical for successful sexual reproduction. During the extended meiotic prophase I, homologous chromosomes progressively pair, synapse and desynapse. These chromosomal dynamics are tightly integrated with meiotic recombination (MR), during which programmed DNA double-strand breaks (DSBs) are formed and subsequently repaired. Consequently, parental chromosome arms reciprocally exchange, ultimately ensuring accurate homolog segregation and genetic diversity in the offspring. Surveillance mechanisms carefully monitor the MR and homologous chromosome synapsis during meiotic prophase I to avoid producing aberrant chromosomes and defective gametes. Errors in these critical processes would lead to aneuploidy and/or genetic instability. Studies of mutation in mouse models, coupled with advances in genomic technologies, lead us to more clearly understand how meiosis is controlled and how meiotic errors are linked to mammalian infertility. Here, we review the genetic regulations of these major meiotic events in mice and highlight our current understanding of their surveillance mechanisms. Furthermore, we summarize meiotic prophase genes, the mutations that activate the surveillance system leading to meiotic prophase arrest in mouse models, and their corresponding genetic variants identified in human infertile patients. Finally, we discuss their value for the diagnosis of causes of meiosis-based infertility in humans.
Collapse
Affiliation(s)
- Yan Huang
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
13
|
Palmer N, Talib SZA, Goh CMF, Biswas K, Sharan SK, Kaldis P. Identification PMS1 and PMS2 as potential meiotic substrates of CDK2 activity. PLoS One 2023; 18:e0283590. [PMID: 36952545 PMCID: PMC10035876 DOI: 10.1371/journal.pone.0283590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/11/2023] [Indexed: 03/25/2023] Open
Abstract
Cyclin dependent-kinase 2 (CDK2) plays important functions during the mitotic cell cycle and also facilitates several key events during germ cell development. The majority of CDK2's known meiotic functions occur during prophase of the first meiotic division. Here, CDK2 is involved in the regulation of meiotic transcription, the pairing of homologous chromosomes, and the maturation of meiotic crossover sites. Despite that some of the CDK2 substrates are known, few of them display functions in meiosis. Here, we investigate potential meiotic CDK2 substrates using in silico and in vitro approaches. We find that CDK2 phosphorylates PMS2 at Thr337, PMS1 at Thr331, and MLH1 in vitro. Phosphorylation of PMS2 affects its interaction with MLH1 to some degree. In testis extracts from mice lacking Cdk2, there are changes in expression of PMS2, MSH2, and HEI10, which may be reflective of the loss of CDK2 phosphorylation. Our work has uncovered a few CDK2 substrates with meiotic functions, which will have to be verified in vivo. A better understanding of the CDK2 substrates will help us to gain deeper insight into the functions of this universal kinase.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - S Zakiah A Talib
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
- Department Biologie II, Biozentrum der LMU München, Zell- und Entwicklungsbiologie, Planegg-Martinsried, Germany
| | - Christine M F Goh
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States of America
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States of America
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| |
Collapse
|
14
|
Long X, Charlesworth D, Qi J, Wu R, Chen M, Wang Z, Xu L, Fu H, Zhang X, Chen X, He L, Zheng L, Huang Z, Zhou Q. Independent Evolution of Sex Chromosomes and Male Pregnancy-Related Genes in Two Seahorse Species. Mol Biol Evol 2022; 40:6964685. [PMID: 36578180 PMCID: PMC9851323 DOI: 10.1093/molbev/msac279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Unlike birds and mammals, many teleosts have homomorphic sex chromosomes, and changes in the chromosome carrying the sex-determining locus, termed "turnovers", are common. Recent turnovers allow studies of several interesting questions. One question is whether the new sex-determining regions evolve to become completely non-recombining, and if so, how and why. Another is whether (as predicted) evolutionary changes that benefit one sex accumulate in the newly sex-linked region. To study these questions, we analyzed the genome sequences of two seahorse species of the Syngnathidae, a fish group in which many species evolved a unique structure, the male brood pouch. We find that both seahorse species have XY sex chromosome systems, but their sex chromosome pairs are not homologs, implying that at least one turnover event has occurred. The Y-linked regions occupy 63.9% and 95.1% of the entire sex chromosome of the two species and do not exhibit extensive sequence divergence with their X-linked homologs. We find evidence for occasional recombination between the extant sex chromosomes that may account for their homomorphism. We argue that these Y-linked regions did not evolve by recombination suppression after the turnover, but by the ancestral nature of the low crossover rates in these chromosome regions. With such an ancestral crossover landscape, a turnover can instantly create an extensive Y-linked region. Finally, we test for adaptive evolution of male pouch-related genes after they became Y-linked in the seahorse.
Collapse
Affiliation(s)
- Xin Long
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China,Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou 311100, China
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3LF, UK
| | - Jianfei Qi
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Ruiqiong Wu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Meiling Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Zongji Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Luohao Xu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Honggao Fu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xueping Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinxin Chen
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Libin He
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | | | | | - Qi Zhou
- Corresponding authors: E-mails: ; ;
| |
Collapse
|
15
|
PRC1-mediated epigenetic programming is required to generate the ovarian reserve. Nat Commun 2022; 13:4510. [PMID: 35948547 PMCID: PMC9365831 DOI: 10.1038/s41467-022-31759-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
The ovarian reserve defines the female reproductive lifespan, which in humans spans decades due to robust maintenance of meiotic arrest in oocytes residing in primordial follicles. Epigenetic reprogramming, including DNA demethylation, accompanies meiotic entry, but the chromatin changes that underpin the generation and preservation of ovarian reserves are poorly defined. We report that the Polycomb Repressive Complex 1 (PRC1) establishes repressive chromatin states in perinatal mouse oocytes that directly suppress the gene expression program of meiotic prophase-I and thereby enable the transition to dictyate arrest. PRC1 dysfuction causes depletion of the ovarian reserve and leads to premature ovarian failure. Our study demonstrates a fundamental role for PRC1-mediated gene silencing in female reproductive lifespan, and reveals a critical window of epigenetic programming required to establish ovarian reserve. In humans, the ovarian reserve is maintained over decades by meiotic arrest of oocytes. Here the authors show that Polycomb Repressive Complex 1 (PRC1)-mediated epigenetic programming is essential for formation of ovarian reserve and thus female reproductive lifespan.
Collapse
|
16
|
Gong C, Abbas T, Muhammad Z, Zhou J, Khan R, Ma H, Zhang H, Shi Q, Shi B. A Homozygous Loss-of-Function Mutation in MSH5 Abolishes MutSγ Axial Loading and Causes Meiotic Arrest in NOA-Affected Individuals. Int J Mol Sci 2022; 23:6522. [PMID: 35742973 PMCID: PMC9224491 DOI: 10.3390/ijms23126522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Non-obstructive azoospermia (NOA), characterized by spermatogenesis failure and the absence of sperm in ejaculation, is the most severe form of male infertility. However, the etiology and pathology between meiosis-associated monogenic alterations and human NOA remain largely unknown. A homozygous MSH5 mutation (c.1126del) was identified from two idiopathic NOA patients in the consanguineous family. This mutation led to the degradation of MSH5 mRNA and abolished chromosome axial localization of MutSγ in spermatocytes from the affected males. Chromosomal spreading analysis of the patient's meiotic prophase I revealed that the meiosis progression was arrested at a zygotene-like stage with extensive failure of homologous synapsis and DSB repair. Therefore, our study demonstrates that the MSH5 c.1126del could cause meiotic recombination failure and lead to human infertility, improving the genetic diagnosis of NOA clinically. Furthermore, the study of human spermatocytes elucidates the meiosis defects caused by MSH5 variant, and reveals a conserved and indispensable role of MutSγ in human synapsis and meiotic recombination, which have not previously been well-described.
Collapse
Affiliation(s)
- Chenjia Gong
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tanveer Abbas
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zubair Muhammad
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jianteng Zhou
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ranjha Khan
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hui Ma
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Huan Zhang
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qinghua Shi
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Baolu Shi
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China; (C.G.) (T.A.); (Z.M.); (J.Z.); (R.K.); (H.M.); (H.Z.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei 230027, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
17
|
Rzeszutek I, Swart EC, Pabian-Jewuła S, Russo A, Nowacki M. Early developmental, meiosis-specific proteins - Spo11, Msh4-1, and Msh5 - Affect subsequent genome reorganization in Paramecium tetraurelia. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119239. [PMID: 35181406 DOI: 10.1016/j.bbamcr.2022.119239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Developmental DNA elimination in Paramecium tetraurelia occurs through a trans-nuclear comparison of the genomes of two distinct types of nuclei: the germline micronucleus (MIC) and the somatic macronucleus (MAC). During sexual reproduction, which starts with meiosis of the germline nuclei, MIC-limited sequences including Internal Eliminated Sequences (IESs) and transposons are eliminated from the developing MAC in a process guided by noncoding RNAs (scnRNAs and iesRNAs). However, our current understanding of this mechanism is still very limited. Therefore, studying both genetic and epigenetic aspects of these processes is a crucial step to understand this phenomenon in more detail. Here, we describe the involvement of homologs of classical meiotic proteins, Spo11, Msh4-1, and Msh5 in this phenomenon. Based on our analyses, we propose that proper functioning of Spo11, Msh4-1, and Msh5 during Paramecium sexual reproduction are necessary for genome reorganization and viable progeny. Also, we show that double-strand breaks (DSBs) in DNA induced during meiosis by Spo11 are crucial for proper IESs excision. In summary, our investigations show that early sexual reproduction processes may significantly influence later somatic genome integrity.
Collapse
Affiliation(s)
- Iwona Rzeszutek
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland; Institute of Biology and Biotechnology, Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Estienne C Swart
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tuebingen, Germany
| | - Sylwia Pabian-Jewuła
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Centre of Postgraduate Medical Education, Department of Clinical Cytology, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Antonietta Russo
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Medical Biochemistry and Molecular Biology Department, UKS, Saarland Medical Center, Kirrberger Str. 100, 66421 Homburg, Germany
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland.
| |
Collapse
|
18
|
Shang Y, Huang J, Li W, Zhang Y, Zhou X, Shao Q, Tan T, Yin S, Zhang L, Wang S. MEIOK21 regulates oocyte quantity and quality via modulating meiotic recombination. FASEB J 2022; 36:e22357. [PMID: 35593531 DOI: 10.1096/fj.202101950r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/22/2022] [Accepted: 05/09/2022] [Indexed: 11/11/2022]
Abstract
The reproductive life span of females is largely determined by the number and quality of oocytes. Previously, we identified MEIOK21 as a meiotic recombination regulator required for male fertility. Here, we characterize the important roles of MEIOK21 in regulating female meiosis and oocyte number and quality. MEIOK21 localizes at recombination sites as a component of recombination bridges in oogenesis like in spermatogenesis. Meiok21-/- female mice show subfertility. Consistently, the size of the primordial follicle pool in Meiok21-/- females is only ~40% of wild-type females because a great number of oocytes with defects in meiotic recombination and/or synapsis are eliminated. Furthermore, the numbers of primordial and growing follicles show a more marked decrease in an age-dependent manner compared with wild-type females. Further analysis shows Meiok21-/- oocytes also have reduced rates of germinal vesicle breakdown and the first polar body extrusion when cultured in vitro, indicating poor oocyte quality. Additionally, Meiok21-/- oocytes have more chromosomes bearing a single distally localized crossover (chiasmata), suggesting a possible defect in crossover maturation. Taken together, our findings indicate critical roles for MEIOK21 in ensuring the number and quality of oocytes in the follicles.
Collapse
Affiliation(s)
- Yongliang Shang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Ju Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Weidong Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Yanan Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Xu Zhou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Qiqi Shao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Taicong Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Advanced Medical Research Institute, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| |
Collapse
|
19
|
Al-Soodani AT, Wu X, Kelp NC, Brown AJ, Roberts SA, Her C. hMSH5 Regulates NHEJ and Averts Excessive Nucleotide Alterations at Repair Joints. Genes (Basel) 2022; 13:genes13040673. [PMID: 35456479 PMCID: PMC9026759 DOI: 10.3390/genes13040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
Inappropriate repair of DNA double-strand breaks (DSBs) leads to genomic instability, cell death, or malignant transformation. Cells minimize these detrimental effects by selectively activating suitable DSB repair pathways in accordance with their underlying cellular context. Here, we report that hMSH5 down-regulates NHEJ and restricts the extent of DSB end processing before rejoining, thereby reducing “excessive” deletions and insertions at repair joints. RNAi-mediated knockdown of hMSH5 led to large nucleotide deletions and longer insertions at the repair joints, while at the same time reducing the average length of microhomology (MH) at repair joints. Conversely, hMSH5 overexpression reduced end-joining activity and increased RPA foci formation (i.e., more stable ssDNA at DSB ends). Furthermore, silencing of hMSH5 delayed 53BP1 chromatin spreading, leading to increased end resection at DSB ends.
Collapse
|
20
|
Li P, Ji Z, Zhi E, Zhang Y, Han S, Zhao L, Tian R, Chen H, Huang Y, Zhang J, Chen H, Zhao F, Zhou Z, Li Z, Yao C. Novel bi-allelic MSH4 variants causes meiotic arrest and non-obstructive azoospermia. Reprod Biol Endocrinol 2022; 20:21. [PMID: 35090489 PMCID: PMC8796546 DOI: 10.1186/s12958-022-00900-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-obstructive azoospermia (NOA) is one of the most severe type in male infertility, and the genetic causes of NOA with meiotic arrest remain elusive. METHODS Four Chinese families with NOA participated in the study. We performed whole-exome sequencing (WES) for the four NOA-affected patients in four pedigrees. The candidate causative gene was further verified by Sanger sequencing. Hematoxylin and eosin staining (H&E) and immunohistochemistry (IHC) were carried out to evaluate the stage of spermatogenesis arrested in the patients with NOA. RESULTS We identified two novel homozygous frameshift mutations of MSH4 and two novel compound heterozygous variants in MSH4 in four pedigrees with NOA. Homozygous loss of function (LoF) variants in MSH4 was identified in the NOA-affected patient (P9359) in a consanguineous Chinese family (NM_002440.4: c.805_812del: p.V269Qfs*15) and one patient with NOA (P21504) in another Chinese family (NM_002440.4: c.2220_2223del:p.K741Rfs*2). Also, compound heterozygous variants in MSH4 were identified in two NOA-affected siblings (P9517 and P9517B) (NM_002440.4: c.G1950A: p.W650X and c.2179delG: p.D727Mfs*11), and the patient with NOA (P9540) (NM_002440.4: c.G244A: p.G82S and c.670delT: p.L224Cfs*3). Histological analysis demonstrated lack of spermatozoa in seminiferous tubules of all patients and IHC showed the spermatogenesis arrested at the meiotic prophase I stage. Consistent with the autosomal recessive mode of inheritance, all of these mutations were inherited from heterozygous parental carriers. CONCLUSIONS We identified that six novel mutations in MSH4 responsible for meiotic arrest and NOA. And these results provide researchers with a new insight to understand the genetic etiology of NOA and to identify new loci for genetic counselling of NOA.
Collapse
Affiliation(s)
- Peng Li
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhiyong Ji
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211116, China
| | - Erlei Zhi
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yuxiang Zhang
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Sha Han
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Liangyu Zhao
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ruhui Tian
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Huixing Chen
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yuhua Huang
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jing Zhang
- The Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510620, China
| | - Huirong Chen
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fujun Zhao
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhi Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Zheng Li
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Chencheng Yao
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
21
|
Vanni VS, Campo G, Cioffi R, Papaleo E, Salonia A, Viganò P, Lambertini M, Candiani M, Meirow D, Orvieto R. The neglected members of the family: non-BRCA mutations in the Fanconi anemia/BRCA pathway and reproduction. Hum Reprod Update 2022; 28:296-311. [PMID: 35043201 DOI: 10.1093/humupd/dmab045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND BReast CAncer (BRCA) genes are extensively studied in the context of fertility and reproductive aging. BRCA proteins are part of the DNA repair Fanconi anemia (FA)/BRCA pathway, in which more than 20 proteins are implicated. According to which gene is mutated and which interactions are lost owing to the mutation, carriers and patients with monoallelic or biallelic FA/BRCA mutations exhibit very different phenotypes, from overt FA to cancer predisposition or no pathological implications. The effect of the so far neglected non-BRCA FA mutations on fertility also deserves consideration. OBJECTIVE AND RATIONALE As improved treatments allow a longer life expectancy in patients with biallelic FA mutations and overt FA, infertility is emerging as a predominant feature. We thus reviewed the mechanisms for such a manifestation, as well as whether they also occur in monoallelic carriers of FA non-BRCA mutations. SEARCH METHODS Electronic databases PUBMED, EMBASE and CENTRAL were searched using the following term: 'fanconi' OR 'FANC' OR 'AND' 'fertility' OR 'pregnancy' OR 'ovarian reserve' OR 'spermatogenesis' OR 'hypogonadism'. All pertinent reports in the English-language literature were retrieved until May 2021 and the reference lists were systematically searched in order to identify any potential additional studies. OUTCOMES Biallelic FA mutations causing overt FA disease are associated with premature ovarian insufficiency (POI) occurring in the fourth decade in women and with primary non-obstructive azoospermia (NOA) in men. Hypogonadism in FA patients seems mainly associated with a defect in primordial germ cell proliferation in fetal life. In recent small, exploratory whole-exome sequencing studies, biallelic clinically occult mutations in the FA complementation group A (Fanca) and M (Fancm) genes were found in otherwise healthy patients with isolated NOA or POI, and also monoallelic carrier status for a loss-of-function mutation in Fanca has been implicated as a possible cause for POI. In those patients with known monoallelic FA mutations undergoing pre-implantation genetic testing, poor assisted reproduction outcomes are reported. However, the mechanisms underlying the repeated failures and the high miscarriage rates observed are not fully known. WIDER IMPLICATIONS The so far 'neglected' members of the FA/BRCA family will likely emerge as a relevant focus of investigation in the genetics of reproduction. Several (rather than a single) non-BRCA genes might be implicated. State-of-the-art methods, such as whole-genome/exome sequencing, and further exploratory studies are required to understand the prevalence and mechanisms for occult FA mutations in infertility and recurrent miscarriage.
Collapse
Affiliation(s)
- Valeria Stella Vanni
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Raffaella Cioffi
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enrico Papaleo
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Salonia
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Viganò
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Lambertini
- Department of Medical Oncology, U.O.C Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Massimo Candiani
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dror Meirow
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Raoul Orvieto
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
22
|
Mutations of MSH5 in nonobstructive azoospermia (NOA) and rescued via in vivo gene editing. Signal Transduct Target Ther 2022; 7:1. [PMID: 34980881 PMCID: PMC8724278 DOI: 10.1038/s41392-021-00710-4] [Citation(s) in RCA: 194] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/20/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
|
23
|
Wyrwoll MJ, van Walree ES, Hamer G, Rotte N, Motazacker MM, Meijers-Heijboer H, Alders M, Meißner A, Kaminsky E, Wöste M, Krallmann C, Kliesch S, Hunt TJ, Clark AT, Silber S, Stallmeyer B, Friedrich C, van Pelt AMM, Mathijssen IB, Tüttelmann F. Bi-allelic variants in DNA mismatch repair proteins MutS Homolog MSH4 and MSH5 cause infertility in both sexes. Hum Reprod 2021; 37:178-189. [PMID: 34755185 DOI: 10.1093/humrep/deab230] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Do bi-allelic variants in the genes encoding the MSH4/MSH5 heterodimer cause male infertility? SUMMARY ANSWER We detected biallelic, (likely) pathogenic variants in MSH5 (4 men) and MSH4 (3 men) in six azoospermic men, demonstrating that genetic variants in these genes are a relevant cause of male infertility. WHAT IS KNOWN ALREADY MSH4 and MSH5 form a heterodimer, which is required for prophase of meiosis I. One variant in MSH5 and two variants in MSH4 have been described as causal for premature ovarian insufficiency (POI) in a total of five women, resulting in infertility. Recently, pathogenic variants in MSH4 have been reported in infertile men. So far, no pathogenic variants in MSH5 had been described in males. STUDY DESIGN, SIZE, DURATION We utilized exome data from 1305 men included in the Male Reproductive Genomics (MERGE) study, including 90 males with meiotic arrest (MeiA). Independently, exome sequencing was performed in a man with MeiA from a large consanguineous family. PARTICIPANTS/MATERIALS, SETTING, METHODS Assuming an autosomal-recessive mode of inheritance, we screened the exome data for rare, biallelic coding variants in MSH4 and MSH5. If possible, segregation analysis in the patients' families was performed. The functional consequences of identified loss-of-function (LoF) variants in MSH5 were studied using heterologous expression of the MSH5 protein in HEK293T cells. The point of arrest during meiosis was determined by γH2AX staining. MAIN RESULTS AND THE ROLE OF CHANCE We report for the first time (likely) pathogenic, homozygous variants in MSH5 causing infertility in 2 out of 90 men with MeiA and overall in 4 out of 902 azoospermic men. Additionally, we detected biallelic variants in MSH4 in two men with MeiA and in the sister of one proband with POI. γH2AX staining revealed an arrest in early prophase of meiosis I in individuals with pathogenic MSH4 or MSH5 variants. Heterologous in vitro expression of the detected LoF variants in MSH5 showed that the variant p.(Ala620GlnTer9) resulted in MSH5 protein truncation and the variant p.(Ser26GlnfsTer42) resulted in a complete loss of MSH5. LARGE SCALE DATA All variants have been submitted to ClinVar (SCV001468891-SCV001468896 and SCV001591030) and can also be accessed in the Male Fertility Gene Atlas (MFGA). LIMITATIONS, REASONS FOR CAUTION By selecting for variants in MSH4 and MSH5, we were able to determine the cause of infertility in six men and one woman, leaving most of the examined individuals without a causal diagnosis. WIDER IMPLICATIONS OF THE FINDINGS Our findings have diagnostic value by increasing the number of genes associated with non-obstructive azoospermia with high clinical validity. The analysis of such genes has prognostic consequences for assessing whether men with azoospermia would benefit from a testicular biopsy. We also provide further evidence that MeiA in men and POI in women share the same genetic causes. STUDY FUNDING/COMPETING INTEREST(S) This study was carried out within the frame of the German Research Foundation sponsored Clinical Research Unit 'Male Germ Cells: from Genes to Function' (DFG, CRU326), and supported by institutional funding of the Research Institute Amsterdam Reproduction and Development and funds from the LucaBella Foundation. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- M J Wyrwoll
- Institute of Reproductive Genetics, University of Münster, Münster, Germany.,Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - E S van Walree
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - G Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Research Institute Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - N Rotte
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - M M Motazacker
- Laboratory of Genome Diagnostics, Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H Meijers-Heijboer
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M Alders
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A Meißner
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - E Kaminsky
- Praxis für Humangenetik, Hamburg, Germany
| | - M Wöste
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - C Krallmann
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - S Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - T J Hunt
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, USA
| | - A T Clark
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, USA
| | - S Silber
- Infertility Center of St Louis, St Luke's Hospital, St Louis, MO, USA
| | - B Stallmeyer
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - C Friedrich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - A M M van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Research Institute Amsterdam Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - I B Mathijssen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - F Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| |
Collapse
|
24
|
Nandanan KG, Salim S, Pankajam AV, Shinohara M, Lin G, Chakraborty P, Farnaz A, Steinmetz LM, Shinohara A, Nishant KT. Regulation of Msh4-Msh5 association with meiotic chromosomes in budding yeast. Genetics 2021; 219:6317832. [PMID: 34849874 DOI: 10.1093/genetics/iyab102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
In the baker's yeast Saccharomyces cerevisiae, most of the meiotic crossovers are generated through a pathway involving the highly conserved mismatch repair related Msh4-Msh5 complex. To understand the role of Msh4-Msh5 in meiotic crossing over, we determined its genome wide in vivo binding sites in meiotic cells. We show that Msh5 specifically associates with DSB hotspots, chromosome axes, and centromeres on chromosomes. A basal level of Msh5 association with these chromosomal features is observed even in the absence of DSB formation (spo11Δ mutant) at the early stages of meiosis. But efficient binding to DSB hotspots and chromosome axes requires DSB formation and resection and is enhanced by double Holliday junction structures. Msh5 binding is also correlated to DSB frequency and enhanced on small chromosomes with higher DSB and crossover density. The axis protein Red1 is required for Msh5 association with the chromosome axes and DSB hotspots but not centromeres. Although binding sites of Msh5 and other pro-crossover factors like Zip3 show extensive overlap, Msh5 associates with centromeres independent of Zip3. These results on Msh5 localization in wild type and meiotic mutants have implications for how Msh4-Msh5 works with other pro-crossover factors to ensure crossover formation.
Collapse
Affiliation(s)
- Krishnaprasad G Nandanan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695016, India
| | - Sagar Salim
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695016, India
| | - Ajith V Pankajam
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695016, India
| | - Miki Shinohara
- Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Gen Lin
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Parijat Chakraborty
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695016, India
| | - Amamah Farnaz
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695016, India
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.,Department of Genetics, Stanford University, Stanford, CA 94305, USA.,Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Koodali T Nishant
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695016, India.,Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| |
Collapse
|
25
|
Lu J, Pan C, Fan W, Liu W, Zhao H, Li D, Wang S, Hu L, He B, Qian K, Qin R, Ruan J, Lin Q, Lü S, Cui P. A Chromosome-level Assembly of A Wild Castor Genome Provides New Insights into the Adaptive Evolution in A Tropical Desert. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 20:42-59. [PMID: 34339842 PMCID: PMC9510866 DOI: 10.1016/j.gpb.2021.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 02/01/2023]
Abstract
Wild castor grows in the high-altitude tropical desert of the African Plateau, a region known for high ultraviolet radiation, strong light, and extremely dry condition. To investigate the potential genetic basis of adaptation to both highland and tropical deserts, we generated a chromosome-level genome sequence assembly of the wild castor accession WT05, with a genome size of 316 Mb, a scaffold N50 of 31.93 Mb, and a contig N50 of 8.96 Mb, respectively. Compared with cultivated castor and other Euphorbiaceae species, the wild castor exhibits positive selection and gene family expansion for genes involved in DNA repair, photosynthesis, and abiotic stress responses. Genetic variations associated with positive selection were identified in several key genes, such as LIG1, DDB2, and RECG1, involved in nucleotide excision repair. Moreover, a study of genomic diversity among wild and cultivated accessions revealed genomic regions containing selection signatures associated with the adaptation to extreme environments. The identification of the genes and alleles with selection signatures provides insights into the genetic mechanisms underlying the adaptation of wild castor to the high-altitude tropical desert and would facilitate direct improvement of modern castor varieties.
Collapse
Affiliation(s)
- Jianjun Lu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Pan
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Wei Fan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wanfei Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 434200, China
| | - Donghai Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lianlian Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kun Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Rui Qin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiang Lin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 434200, China.
| | - Peng Cui
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
26
|
Yang Q, Mumusoglu S, Qin Y, Sun Y, Hsueh AJ. A kaleidoscopic view of ovarian genes associated with premature ovarian insufficiency and senescence. FASEB J 2021; 35:e21753. [PMID: 34233068 DOI: 10.1096/fj.202100756r] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022]
Abstract
Ovarian infertility and subfertility presenting with premature ovarian insufficiency (POI) and diminished ovarian reserve are major issues facing the developed world due to the trend of delaying childbirth. Ovarian senescence and POI represent a continuum of physiological/pathophysiological changes in ovarian follicle functions. Based on advances in whole exome sequencing, evaluation of gene copy variants, together with family-based and genome-wide association studies, we discussed genes responsible for POI and ovarian senescence. We used a gene-centric approach to sort out literature deposited in the Ovarian Kaleidoscope database (http://okdb.appliedbioinfo.net) by sub-categorizing candidate genes as ligand-receptor signaling, meiosis and DNA repair, transcriptional factors, RNA metabolism, enzymes, and others. We discussed individual gene mutations found in POI patients and verification of gene functions in gene-deleted model organisms. Decreased expression of some of the POI genes could be responsible for ovarian senescence, especially those essential for DNA repair, meiosis and mitochondrial functions. We propose to set up a candidate gene panel for targeted sequencing in POI patients together with studies on mitochondria-associated genes in middle-aged subfertile patients.
Collapse
Affiliation(s)
- Qingling Yang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sezcan Mumusoglu
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Obstetrics and Gynecology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingpu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Aaron J Hsueh
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
27
|
Velkova M, Silva N, Dello Stritto MR, Schleiffer A, Barraud P, Hartl M, Jantsch V. Caenorhabditis elegans RMI2 functional homolog-2 (RMIF-2) and RMI1 (RMH-1) have both overlapping and distinct meiotic functions within the BTR complex. PLoS Genet 2021; 17:e1009663. [PMID: 34252074 PMCID: PMC8318279 DOI: 10.1371/journal.pgen.1009663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/28/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Homologous recombination is a high-fidelity repair pathway for DNA double-strand breaks employed during both mitotic and meiotic cell divisions. Such repair can lead to genetic exchange, originating from crossover (CO) generation. In mitosis, COs are suppressed to prevent sister chromatid exchange. Here, the BTR complex, consisting of the Bloom helicase (HIM-6 in worms), topoisomerase 3 (TOP-3), and the RMI1 (RMH-1 and RMH-2) and RMI2 scaffolding proteins, is essential for dismantling joint DNA molecules to form non-crossovers (NCOs) via decatenation. In contrast, in meiosis COs are essential for accurate chromosome segregation and the BTR complex plays distinct roles in CO and NCO generation at different steps in meiotic recombination. RMI2 stabilizes the RMI1 scaffolding protein, and lack of RMI2 in mitosis leads to elevated sister chromatid exchange, as observed upon RMI1 knockdown. However, much less is known about the involvement of RMI2 in meiotic recombination. So far, RMI2 homologs have been found in vertebrates and plants, but not in lower organisms such as Drosophila, yeast, or worms. We report the identification of the Caenorhabditis elegans functional homolog of RMI2, which we named RMIF-2. The protein shows a dynamic localization pattern to recombination foci during meiotic prophase I and concentration into recombination foci is mutually dependent on other BTR complex proteins. Comparative analysis of the rmif-2 and rmh-1 phenotypes revealed numerous commonalities, including in regulating CO formation and directing COs toward chromosome arms. Surprisingly, the prevalence of heterologous recombination was several fold lower in the rmif-2 mutant, suggesting that RMIF-2 may be dispensable or less strictly required for some BTR complex-mediated activities during meiosis. Bloom syndrome is caused by mutations in proteins of the BTR complex (consisting of the Bloom helicase, topoisomerase 3, and the RMI1 and RMI2 scaffolding proteins) and the clinical characteristics are growth deficiency, short stature, skin photosensitivity, and increased cancer predisposition. At the cellular level, characteristic features are the presence of increased sister chromatid exchange on chromosomes; unresolved DNA recombination intermediates that eventually cause genome instability; and erroneous DNA repair by heterologous recombination (recombination between non-identical sequences, extremely rare in wild type animals), which can trigger translocations and chromosomal rearrangements. Identification of the Caenorhabditis elegans ortholog of RMI2 (called RMIF-2) allowed us to compare heterologous recombination in the germline of mutants of various BTR complex proteins. The heterologous recombination rate was several fold lower in rmif-2 mutants than in mutants of rmh-1 and him-6 (worm homologs of RMI1 and the Bloom helicase, respectively). Nevertheless, many phenotypic features point at RMIF-2 working together with RMH-1. If these germline functions of RMI2/RMIF-2 are conserved in humans, this might mean that individuals with RMI2 mutations have a lower risk of translocations and genome rearrangements than those with mutations in the other BTR complex genes.
Collapse
Affiliation(s)
- Maria Velkova
- Department of Chromosome Biology, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
| | - Nicola Silva
- Department of Chromosome Biology, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
| | | | - Alexander Schleiffer
- Research Institute of Molecular Pathology, Campus Vienna BioCenter, Vienna 1, Vienna, Austria
- Institute of Molecular Biotechnology, Campus Vienna BioCenter, Vienna, Austria
| | - Pierre Barraud
- Expression Génétique Microbienne, UMR 8261, Centre national de la recherche scientifique, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
- * E-mail:
| |
Collapse
|
28
|
Chadourne M, Poumerol E, Jouneau L, Passet B, Castille J, Sellem E, Pailhoux E, Mandon-Pépin B. Structural and Functional Characterization of a Testicular Long Non-coding RNA (4930463O16Rik) Identified in the Meiotic Arrest of the Mouse Topaz1 -/- Testes. Front Cell Dev Biol 2021; 9:700290. [PMID: 34277642 PMCID: PMC8281061 DOI: 10.3389/fcell.2021.700290] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022] Open
Abstract
Spermatogenesis involves coordinated processes, including meiosis, to produce functional gametes. We previously reported Topaz1 as a germ cell-specific gene highly conserved in vertebrates. Topaz1 knockout males are sterile with testes that lack haploid germ cells because of meiotic arrest after prophase I. To better characterize Topaz1–/– testes, we used RNA-sequencing analyses at two different developmental stages (P16 and P18). The absence of TOPAZ1 disturbed the expression of genes involved in microtubule and/or cilium mobility, biological processes required for spermatogenesis. Moreover, a quarter of P18 dysregulated genes are long non-coding RNAs (lncRNAs), and three of them are testis-specific and located in spermatocytes, their expression starting between P11 and P15. The suppression of one of them, 4939463O16Rik, did not alter fertility although sperm parameters were disturbed and sperm concentration fell. The transcriptome of P18-4939463O16Rik–/– testes was altered and the molecular pathways affected included microtubule-based processes, the regulation of cilium movement and spermatogenesis. The absence of TOPAZ1 protein or 4930463O16Rik produced the same enrichment clusters in mutant testes despite a contrasted phenotype on male fertility. In conclusion, although Topaz1 is essential for the meiosis in male germ cells and regulate the expression of numerous lncRNAs, these studies have identified a Topaz1 regulated lncRNA (4930463O16Rik) that is key for both sperm production and motility.
Collapse
Affiliation(s)
- Manon Chadourne
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elodie Poumerol
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luc Jouneau
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bruno Passet
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Johan Castille
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Eric Pailhoux
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | | |
Collapse
|
29
|
Gray S, Santiago ER, Chappie JS, Cohen PE. Cyclin N-Terminal Domain-Containing-1 Coordinates Meiotic Crossover Formation with Cell-Cycle Progression in a Cyclin-Independent Manner. Cell Rep 2021; 32:107858. [PMID: 32640224 PMCID: PMC7341696 DOI: 10.1016/j.celrep.2020.107858] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/14/2020] [Accepted: 06/12/2020] [Indexed: 01/01/2023] Open
Abstract
During mammalian meiotic prophase I, programmed DNA double-strand breaks are repaired by non-crossover or crossover events, the latter predominantly occurring via the class I crossover pathway and requiring the cyclin N-terminal domain-containing 1(CNTD1) protein. Using an epitope-tagged Cntd1 allele, we detect a short isoform of CNTD1 in vivo that lacks a predicted N-terminal cyclin domain and does not bind cyclin-dependent kinases. Instead, we find that the short-form CNTD1 variant associates with components of the replication factor C (RFC) machinery to facilitate crossover formation, and with the E2 ubiquitin conjugating enzyme, CDC34, to regulate ubiquitylation and subsequent degradation of the WEE1 kinase, thereby modulating cell-cycle progression. We propose that these interactions facilitate a role for CNTD1 as a stop-go regulator during prophase I, ensuring accurate and complete crossover formation before allowing metaphase progression and the first meiotic division. CNTD1 associates with sites of crossing over in meiosis, co-localizing with MutLγ In the testis, CNTD1 does not interact with CDKs or with known crossover regulators CNTD1 regulates crossing over via interactions with the replication factor C complex CNTD1 regulates cell-cycle progression via interactions with the SCF complex
Collapse
Affiliation(s)
- Stephen Gray
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA.
| | - Emerson R Santiago
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Paula E Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
30
|
TMEM150B is dispensable for oocyte maturation and female fertility in mouse. Sci Rep 2020; 10:21381. [PMID: 33288838 PMCID: PMC7721906 DOI: 10.1038/s41598-020-78554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 11/08/2022] Open
Abstract
Premature ovarian insufficiency (POI) refers to severe decline of ovary function in females which usually leads to infertility. It has been reported that the TMEM150B gene is mostly associated with age at natural menopause, early menopause and POI, but its role in female reproduction remains unknown. In this study, we found Tmem150b was highly expressed in mouse oocytes, but its deletion had no obvious effect on meiotic maturation of oocytes indicated by first polar body emission and spindle morphology. There were also no obvious differences in follicle development and corpus luteum formation between knockout and wild type mice. Finally, knockout of Tmem150b did not affect female fertility and sexual hormone levels. In summary, our results suggest that TMEM150B is not essential for female fertility in mice.
Collapse
|
31
|
Palmer N, Talib SZA, Singh P, Goh CMF, Liu K, Schimenti JC, Kaldis P. A novel function for CDK2 activity at meiotic crossover sites. PLoS Biol 2020; 18:e3000903. [PMID: 33075054 PMCID: PMC7595640 DOI: 10.1371/journal.pbio.3000903] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/29/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022] Open
Abstract
Genetic diversity in offspring is induced by meiotic recombination, which is initiated between homologs at >200 sites originating from meiotic double-strand breaks (DSBs). Of this initial pool, only 1-2 DSBs per homolog pair will be designated to form meiotic crossovers (COs), where reciprocal genetic exchange occurs between parental chromosomes. Cyclin-dependent kinase 2 (CDK2) is known to localize to so-called "late recombination nodules" (LRNs) marking incipient CO sites. However, the role of CDK2 kinase activity in the process of CO formation remains uncertain. Here, we describe the phenotype of 2 Cdk2 point mutants with elevated or decreased activity, respectively. Elevated CDK2 activity was associated with increased numbers of LRN-associated proteins, including CDK2 itself and the MutL homolog 1 (MLH1) component of the MutLγ complex, but did not lead to increased numbers of COs. In contrast, reduced CDK2 activity leads to the complete absence of CO formation during meiotic prophase I. Our data suggest an important role for CDK2 in regulating MLH1 focus numbers and that the activity of this kinase is a key regulatory factor in the formation of meiotic COs.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore, Republic of Singapore
- Department of Biochemistry, National University of Singapore (NUS), Singapore, Republic of Singapore
| | - S. Zakiah A. Talib
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore, Republic of Singapore
| | - Priti Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Christine M. F. Goh
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore, Republic of Singapore
| | - Kui Liu
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
| | - John C. Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore, Republic of Singapore
- Department of Biochemistry, National University of Singapore (NUS), Singapore, Republic of Singapore
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
- * E-mail:
| |
Collapse
|
32
|
Shang Y, Huang T, Liu H, Liu Y, Liang H, Yu X, Li M, Zhai B, Yang X, Wei Y, Wang G, Chen Z, Wang S, Zhang L. MEIOK21: a new component of meiotic recombination bridges required for spermatogenesis. Nucleic Acids Res 2020; 48:6624-6639. [PMID: 32463460 PMCID: PMC7337969 DOI: 10.1093/nar/gkaa406] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Repair of DNA double-strand breaks (DSBs) with homologous chromosomes is a hallmark of meiosis that is mediated by recombination ‘bridges’ between homolog axes. This process requires cooperation of DMC1 and RAD51 to promote homology search and strand exchange. The mechanism(s) regulating DMC1/RAD51-ssDNA nucleoprotein filament and the components of ‘bridges’ remain to be investigated. Here we show that MEIOK21 is a newly identified component of meiotic recombination bridges and is required for efficient formation of DMC1/RAD51 foci. MEIOK21 dynamically localizes on chromosomes from on-axis foci to ‘hanging foci’, then to ‘bridges’, and finally to ‘fused foci’ between homolog axes. Its chromosome localization depends on DSBs. Knockout of Meiok21 decreases the numbers of HSF2BP and DMC1/RAD51 foci, disrupting DSB repair, synapsis and crossover recombination and finally causing male infertility. Therefore, MEIOK21 is a novel recombination factor and probably mediates DMC1/RAD51 recruitment to ssDNA or their stability on chromosomes through physical interaction with HSF2BP.
Collapse
Affiliation(s)
- Yongliang Shang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Tao Huang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Hongbin Liu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Yanlei Liu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Heng Liang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Xiaoxia Yu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Mengjing Li
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Binyuan Zhai
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China.,Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China
| | - Xiao Yang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Yudong Wei
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Guoqiang Wang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Zijiang Chen
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Shunxin Wang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Liangran Zhang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China.,Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
33
|
DNA Mismatch Repair Gene Variants in Sporadic Solid Cancers. Int J Mol Sci 2020; 21:ijms21155561. [PMID: 32756484 PMCID: PMC7432688 DOI: 10.3390/ijms21155561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
The phenotypic effects of single nucleotide polymorphisms (SNPs) in the development of sporadic solid cancers are still scarce. The aim of this review was to summarise and analyse published data on the associations between SNPs in mismatch repair genes and various cancers. The mismatch repair system plays a unique role in the control of the genetic integrity and it is often inactivated (germline and somatic mutations and hypermethylation) in cancer patients. Here, we focused on germline variants in mismatch repair genes and found the outcomes rather controversial: some SNPs are sometimes ascribed as protective, while other studies reported their pathological effects. Regarding the complexity of cancer as one disease, we attempted to ascertain if particular polymorphisms exert the effect in the same direction in the development and treatment of different malignancies, although it is still not straightforward to conclude whether polymorphisms always play a clear positive role or a negative one. Most recent and robust genome-wide studies suggest that risk of cancer is modulated by variants in mismatch repair genes, for example in colorectal cancer. Our study shows that rs1800734 in MLH1 or rs2303428 in MSH2 may influence the development of different malignancies. The lack of functional studies on many DNA mismatch repair SNPs as well as their interactions are not explored yet. Notably, the concerted action of more variants in one individual may be protective or harmful. Further, complex interactions of DNA mismatch repair variations with both the environment and microenvironment in the cancer pathogenesis will deserve further attention.
Collapse
|
34
|
ElInati E, Zielinska AP, McCarthy A, Kubikova N, Maciulyte V, Mahadevaiah S, Sangrithi MN, Ojarikre O, Wells D, Niakan KK, Schuh M, Turner JMA. The BCL-2 pathway preserves mammalian genome integrity by eliminating recombination-defective oocytes. Nat Commun 2020; 11:2598. [PMID: 32451402 PMCID: PMC7248069 DOI: 10.1038/s41467-020-16441-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/27/2020] [Indexed: 11/17/2022] Open
Abstract
DNA double-strand breaks (DSBs) are toxic to mammalian cells. However, during meiosis, more than 200 DSBs are generated deliberately, to ensure reciprocal recombination and orderly segregation of homologous chromosomes. If left unrepaired, meiotic DSBs can cause aneuploidy in gametes and compromise viability in offspring. Oocytes in which DSBs persist are therefore eliminated by the DNA-damage checkpoint. Here we show that the DNA-damage checkpoint eliminates oocytes via the pro-apoptotic BCL-2 pathway members Puma, Noxa and Bax. Deletion of these factors prevents oocyte elimination in recombination-repair mutants, even when the abundance of unresolved DSBs is high. Remarkably, surviving oocytes can extrude a polar body and be fertilised, despite chaotic chromosome segregation at the first meiotic division. Our findings raise the possibility that allelic variants of the BCL-2 pathway could influence the risk of embryonic aneuploidy. If left unrepaired, meiotic DSBs are toxic to mammalian cells, thus oocytes in which DSBs persist are eliminated by the DNA-damage checkpoint. Here the authors provide insights into the roles of PUMA, NOXA and BAX during DNA damage checkpoint that eliminates Dmc1−/− and Msh5−/− oocytes.
Collapse
Affiliation(s)
- Elias ElInati
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Agata P Zielinska
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077, Germany
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Nada Kubikova
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.,IVI-RMA, Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA, UK
| | - Valdone Maciulyte
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Shantha Mahadevaiah
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Mahesh N Sangrithi
- Duke-NUS Graduate Medical School, Singapore, 119077, Singapore.,Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Obah Ojarikre
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Dagan Wells
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.,IVI-RMA, Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA, UK
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Melina Schuh
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077, Germany
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
35
|
Huang T, Yuan S, Gao L, Li M, Yu X, Zhan J, Yin Y, Liu C, Zhang C, Lu G, Li W, Liu J, Chen ZJ, Liu H. The histone modification reader ZCWPW1 links histone methylation to PRDM9-induced double-strand break repair. eLife 2020; 9:e53459. [PMID: 32374261 PMCID: PMC7314539 DOI: 10.7554/elife.53459] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
The histone modification writer Prdm9 has been shown to deposit H3K4me3 and H3K36me3 at future double-strand break (DSB) sites during the very early stages of meiosis, but the reader of these marks remains unclear. Here, we demonstrate that Zcwpw1 is an H3K4me3 reader that is required for DSB repair and synapsis in mouse testes. We generated H3K4me3 reader-dead Zcwpw1 mutant mice and found that their spermatocytes were arrested at the pachytene-like stage, which phenocopies the Zcwpw1 knock-out mice. Based on various ChIP-seq and immunofluorescence analyses using several mutants, we found that Zcwpw1's occupancy on chromatin is strongly promoted by the histone-modification activity of PRDM9. Zcwpw1 localizes to DMC1-labelled hotspots in a largely Prdm9-dependent manner, where it facilitates completion of synapsis by mediating the DSB repair process. In sum, our study demonstrates the function of ZCWPW1 that acts as part of the selection system for epigenetics-based recombination hotspots in mammals.
Collapse
Affiliation(s)
- Tao Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong UniversityJinanChina
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong UniversityJinanChina
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong UniversityJinanChina
| | - Shenli Yuan
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lei Gao
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
| | - Mengjing Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong UniversityJinanChina
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong UniversityJinanChina
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong UniversityJinanChina
| | - Xiaochen Yu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong UniversityJinanChina
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong UniversityJinanChina
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong UniversityJinanChina
| | - Jianhong Zhan
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yingying Yin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong UniversityJinanChina
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong UniversityJinanChina
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong UniversityJinanChina
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Chuanxin Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong UniversityJinanChina
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong UniversityJinanChina
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong UniversityJinanChina
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Chinese University of Hong KongHong KongChina
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong UniversityJinanChina
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong UniversityJinanChina
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong UniversityJinanChina
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghaiChina
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong UniversityJinanChina
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong UniversityJinanChina
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong UniversityJinanChina
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Chinese University of Hong KongHong KongChina
| |
Collapse
|
36
|
Lin M, Guo L, Cheng Z, Huan X, Huang Y, Xu K. Association of hMSH5 C85T polymorphism with radiation sensitivity of testicular cell lines GC-1, GC-2, TM3, and TM4. Andrology 2020; 8:1174-1183. [PMID: 32306546 DOI: 10.1111/andr.12803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/12/2020] [Accepted: 04/14/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND The hMSH5 C85T polymorphism, which encodes hMSH5 P29S, is associated with individual differences in spermatogenic abnormalities caused by ionizing radiation (IR), but the molecular mechanisms remain unclear. OBJECTIVES This manuscript aims to explore the role of hMSH5 C85T polymorphism in IR-induced individual differences in spermatogenic abnormalities. MATERIAL AND METHODS We transfected pcDNA-hMSH5P29S vector into mouse spermatogonia GC-1, mouse spermatocytes GC-2, mouse testicular mesenchymal cells TM3, and mouse testicular support cells TM4. After radiation, we evaluated cell survival with colony formation assay, apoptosis with TUNEL assay and caspase-3 activity assay, DNA damage with comet assay and an in vivo NHEJ activity assay. RESULTS Results showed that only spermatocytes GC-2 transfected with pcDNA-hMSH5P29S vector had significant differences in IR-induced cell survival and apoptosis when compared to that transfected with pcDNA empty vector and pcDNA-wild-hMSH5 vector, while there was no statistical difference in GC-1, TM3, and TM4. In addition, comet assay showed that the DNA damage of GC-2 transfected with pcDNA-hMSH5P29S vector increased significantly compared to that transfected with pcDNA empty vector and pcDNA-wild-hMSH5 vector after IR. And in vivo NHEJ activity assay showed that the NHEJ activity of GC-2 transfected with pcDNA-hMSH5P29S vector was statistically higher than that transfected with pcDNA empty vector and pcDNA-wild-hMSH5 vector. CONCLUSION Our study indicates that the hMSH5 C85T polymorphism leads to an abnormal increase in apoptosis and lessen the control on error-prone NHEJ of spermatocyte GC-2, thereby altering the difference of radiation sensitivity of spermatogenesis.
Collapse
Affiliation(s)
- Mingyue Lin
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Lihuang Guo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhenbo Cheng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xisha Huan
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yue Huang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Keqian Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
37
|
Pyatnitskaya A, Borde V, De Muyt A. Crossing and zipping: molecular duties of the ZMM proteins in meiosis. Chromosoma 2019; 128:181-198. [PMID: 31236671 DOI: 10.1007/s00412-019-00714-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 11/25/2022]
Abstract
Accurate segregation of homologous chromosomes during meiosis depends on the ability of meiotic cells to promote reciprocal exchanges between parental DNA strands, known as crossovers (COs). For most organisms, including budding yeast and other fungi, mammals, nematodes, and plants, the major CO pathway depends on ZMM proteins, a set of molecular actors specifically devoted to recognize and stabilize CO-specific DNA intermediates that are formed during homologous recombination. The progressive implementation of ZMM-dependent COs takes place within the context of the synaptonemal complex (SC), a proteinaceous structure that polymerizes between homologs and participates in close homolog juxtaposition during prophase I of meiosis. While SC polymerization starts from ZMM-bound sites and ZMM proteins are required for SC polymerization in budding yeast and the fungus Sordaria, other organisms differ in their requirement for ZMM in SC elongation. This review provides an overview of ZMM functions and discusses their collaborative tasks for CO formation and SC assembly, based on recent findings and on a comparison of different model organisms.
Collapse
Affiliation(s)
- Alexandra Pyatnitskaya
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Paris Sorbonne Université, Paris, France
| | - Valérie Borde
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France.
- Paris Sorbonne Université, Paris, France.
| | - Arnaud De Muyt
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France.
- Paris Sorbonne Université, Paris, France.
| |
Collapse
|
38
|
Mutation of the ATPase Domain of MutS Homolog-5 (MSH5) Reveals a Requirement for a Functional MutSγ Complex for All Crossovers in Mammalian Meiosis. G3-GENES GENOMES GENETICS 2019; 9:1839-1850. [PMID: 30944090 PMCID: PMC6553527 DOI: 10.1534/g3.119.400074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During meiosis, induction of DNA double strand breaks (DSB) leads to recombination between homologous chromosomes, resulting in crossovers (CO) and non-crossovers (NCO). In the mouse, only 10% of DSBs resolve as COs, mostly through a class I pathway dependent on MutSγ (MSH4/ MSH5) and MutLγ (MLH1/MLH3), the latter representing the ultimate marker of these CO events. A second Class II CO pathway accounts for only a few COs, but is not thought to involve MutSγ/ MutLγ, and is instead dependent on MUS81-EME1. For class I events, loading of MutLγ is thought to be dependent on MutSγ, however MutSγ loads very early in prophase I at a frequency that far exceeds the final number of class I COs. Moreover, loss of MutSγ in mouse results in apoptosis before CO formation, preventing the analysis of its CO function. We generated a mutation in the ATP binding domain of Msh5 (Msh5GA). While this mutation was not expected to affect MutSγ complex formation, MutSγ foci do not accumulate during prophase I. However, most spermatocytes from Msh5GA/GA mice progress to late pachynema and beyond, considerably further than meiosis in Msh5−/− animals. At pachynema, Msh5GA/GA spermatocytes show persistent DSBs, incomplete homolog pairing, and fail to accumulate MutLγ. Unexpectedly, Msh5GA/GA diakinesis-staged spermatocytes have no chiasmata at all from any CO pathway, indicating that a functional MutSγ complex is critical for all CO events regardless of their mechanism of generation.
Collapse
|
39
|
Toledo M, Sun X, Brieño-Enríquez MA, Raghavan V, Gray S, Pea J, Milano CR, Venkatesh A, Patel L, Borst PL, Alani E, Cohen PE. A mutation in the endonuclease domain of mouse MLH3 reveals novel roles for MutLγ during crossover formation in meiotic prophase I. PLoS Genet 2019; 15:e1008177. [PMID: 31170160 PMCID: PMC6588253 DOI: 10.1371/journal.pgen.1008177] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/21/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
During meiotic prophase I, double-strand breaks (DSBs) initiate homologous recombination leading to non-crossovers (NCOs) and crossovers (COs). In mouse, 10% of DSBs are designated to become COs, primarily through a pathway dependent on the MLH1-MLH3 heterodimer (MutLγ). Mlh3 contains an endonuclease domain that is critical for resolving COs in yeast. We generated a mouse (Mlh3DN/DN) harboring a mutation within this conserved domain that is predicted to generate a protein that is catalytically inert. Mlh3DN/DN males, like fully null Mlh3-/- males, have no spermatozoa and are infertile, yet spermatocytes have grossly normal DSBs and synapsis events in early prophase I. Unlike Mlh3-/- males, mutation of the endonuclease domain within MLH3 permits normal loading and frequency of MutLγ in pachynema. However, key DSB repair factors (RAD51) and mediators of CO pathway choice (BLM helicase) persist into pachynema in Mlh3DN/DN males, indicating a temporal delay in repair events and revealing a mechanism by which alternative DSB repair pathways may be selected. While Mlh3DN/DN spermatocytes retain only 22% of wildtype chiasmata counts, this frequency is greater than observed in Mlh3-/- males (10%), suggesting that the allele may permit partial endonuclease activity, or that other pathways can generate COs from these MutLγ-defined repair intermediates in Mlh3DN/DN males. Double mutant mice homozygous for the Mlh3DN/DN and Mus81-/- mutations show losses in chiasmata close to those observed in Mlh3-/- males, indicating that the MUS81-EME1-regulated crossover pathway can only partially account for the increased residual chiasmata in Mlh3DN/DN spermatocytes. Our data demonstrate that mouse spermatocytes bearing the MLH1-MLH3DN/DN complex display the proper loading of factors essential for CO resolution (MutSγ, CDK2, HEI10, MutLγ). Despite these functions, mice bearing the Mlh3DN/DN allele show defects in the repair of meiotic recombination intermediates and a loss of most chiasmata.
Collapse
Affiliation(s)
- Melissa Toledo
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Xianfei Sun
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Miguel A. Brieño-Enríquez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Stephen Gray
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Jeffrey Pea
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Carolyn R. Milano
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Anita Venkatesh
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Lekha Patel
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Peter L. Borst
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
40
|
Kokubu D, Ooba R, Abe Y, Ishizaki H, Yoshida S, Asano A, Kashiwabara SI, Miyazaki H. Angelica keiskei (Ashitaba) powder and its functional compound xanthoangelol prevent heat stress-induced impairment in sperm density and quality in mouse testes. J Reprod Dev 2019; 65:139-146. [PMID: 30686791 PMCID: PMC6473112 DOI: 10.1262/jrd.2018-141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Recently, gradual decline in human sperm production has become a serious worldwide concern because it leads to increased rates of infertility. Endocrine disrupters, lifestyle changes, and
varicocele, all of which elevate testicular temperature, are thought to be the main causes of this decline. The present study aimed to determine whether the dietary phytochemicals
Angelica keiskei (Ashitaba) powder (57.5 mg/kg) and its functional component, xanthoangelol (3 mg/kg), can prevent heat stress-induced impairment in sperm density and
quality in mice. Sperm parameters were analyzed 28 days after mice exposure to heat. Supplementation with Ashitaba powder completely prevented heat-induced impairment in sperm parameters,
including densities of motile sperms and progressive sperms (> 25 μm/sec), and amplitude of lateral head displacement. Xanthoangelol did not exert a complete protective effect;
nevertheless, it significantly prevented heat stress-induced reduction in most parameters. Both Ashitaba powder and xanthoangelol elevated the expression of the widely expressed heat shock
proteins (HSPs) Hspa1a and Hsp40 and the antioxidant enzyme glutathione synthase in non-stressed testes. Ashitaba powder significantly
prevented heat stress-induced reduction in the expression of Hspa1l and Hspa2, which are highly expressed in the testes and critical for fertility. Our
results showed that Ashitaba powder and xanthoangelol protected testicular cells from heat stress, probably by elevating the levels of antioxidant enzymes and HSPs. Supplementation with
dietary functional phytochemicals may help prevent heat stress-induced male infertility.
Collapse
Affiliation(s)
- Daichi Kokubu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Ryousuke Ooba
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Yukiko Abe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Hana Ishizaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Shigeki Yoshida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Shin-Ichi Kashiwabara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Hitoshi Miyazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
41
|
Larose H, Shami AN, Abbott H, Manske G, Lei L, Hammoud SS. Gametogenesis: A journey from inception to conception. Curr Top Dev Biol 2019; 132:257-310. [PMID: 30797511 PMCID: PMC7133493 DOI: 10.1016/bs.ctdb.2018.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gametogenesis, the process of forming mature germ cells, is an integral part of both an individual's and a species' health and well-being. This chapter focuses on critical male and female genetic and epigenetic processes underlying normal gamete formation through their differentiation to fertilization. Finally, we explore how knowledge gained from this field has contributed to progress in areas with great clinical promise, such as in vitro gametogenesis.
Collapse
Affiliation(s)
- Hailey Larose
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Haley Abbott
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gabriel Manske
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lei Lei
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States.
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
42
|
Zhang Q, Ji SY, Busayavalasa K, Yu C. SPO16 binds SHOC1 to promote homologous recombination and crossing-over in meiotic prophase I. SCIENCE ADVANCES 2019; 5:eaau9780. [PMID: 30746471 PMCID: PMC6357729 DOI: 10.1126/sciadv.aau9780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/10/2018] [Indexed: 05/06/2023]
Abstract
Segregation of homologous chromosomes in meiosis I is tightly regulated by their physical links, or crossovers (COs), generated from DNA double-strand breaks (DSBs) through meiotic homologous recombination. In budding yeast, three ZMM (Zip1/2/3/4, Mer3, Msh4/5) proteins, Zip2, Zip4, and Spo16, form a "ZZS" complex, functioning to promote meiotic recombination via a DSB repair pathway. Here, we identified the mammalian ortholog of Spo16, termed SPO16, which interacts with the mammalian ortholog of Zip2 (SHOC1/MZIP2), and whose functions are evolutionarily conserved to promote the formation of COs. SPO16 localizes to the recombination nodules, as SHOC1 and TEX11 do. SPO16 is required for stabilization of SHOC1 and proper localization of other ZMM proteins. The DSBs formed in SPO16-deleted meiocytes were repaired without COs formation, although synapsis is less affected. Therefore, formation of SPO16-SHOC1 complex-associated recombination intermediates is a key step facilitating meiotic recombination that produces COs from yeast to mammals.
Collapse
Affiliation(s)
- Qianting Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Shu-Yan Ji
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Kiran Busayavalasa
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Chao Yu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Corresponding author.
| |
Collapse
|
43
|
BRCA1-BARD1 associate with the synaptonemal complex and pro-crossover factors and influence RAD-51 dynamics during Caenorhabditis elegans meiosis. PLoS Genet 2018; 14:e1007653. [PMID: 30383754 PMCID: PMC6211622 DOI: 10.1371/journal.pgen.1007653] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/23/2018] [Indexed: 11/19/2022] Open
Abstract
During meiosis, the maternal and paternal homologous chromosomes must align along their entire length and recombine to achieve faithful segregation in the gametes. Meiotic recombination is accomplished through the formation of DNA double-strand breaks, a subset of which can mature into crossovers to link the parental homologous chromosomes and promote their segregation. Breast and ovarian cancer susceptibility protein BRCA1 and its heterodimeric partner BARD1 play a pivotal role in DNA repair in mitotic cells; however, their functions in gametogenesis are less well understood. Here we show that localization of BRC-1 and BRD-1 (Caenorhabditis elegans orthologues of BRCA1 and BARD1) is dynamic during meiotic prophase I; they ultimately becoming concentrated at regions surrounding the presumptive crossover sites, co-localizing with the pro-crossover factors COSA-1, MSH-5 and ZHP-3. The synaptonemal complex and PLK-2 activity are essential for recruitment of BRC-1 to chromosomes and its subsequent redistribution towards the short arm of the bivalent. BRC-1 and BRD-1 form in vivo complexes with the synaptonemal complex component SYP-3 and the crossover-promoting factor MSH-5. Furthermore, BRC-1 is essential for efficient stage-specific recruitment/stabilization of the RAD-51 recombinase to DNA damage sites when synapsis is impaired and upon induction of exogenous damage. Taken together, our data provide new insights into the localization and meiotic function of the BRC-1-BRD-1 complex and highlight its essential role in DNA double-strand break repair during gametogenesis.
Collapse
|
44
|
Jiao X, Ke H, Qin Y, Chen ZJ. Molecular Genetics of Premature Ovarian Insufficiency. Trends Endocrinol Metab 2018; 29:795-807. [PMID: 30078697 DOI: 10.1016/j.tem.2018.07.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022]
Abstract
Premature ovarian insufficiency (POI) is highly heterogeneous in genetic etiology. Yet identifying causative genes has been challenging with candidate gene approaches. Recent approaches using next generation sequencing (NGS), especially whole exome sequencing (WES), in large POI pedigrees have identified new causatives and proposed relevant candidates, mainly enriched in DNA damage repair, homologous recombination, and meiosis. In the near future, NGS or whole genome sequencing will help better define genes involved in intricate regulatory networks. The research into miRNA and age at menopause represents an emerging field that will help unveil the molecular mechanisms underlying pathogenesis of POI. Shedding light on the genetic architecture is important in interpreting pathogenesis of POI, and will facilitate risk prediction for POI.
Collapse
Affiliation(s)
- Xue Jiao
- Center for Reproductive Medicine, Shandong University, Jinan 250021, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, Shandong, China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, Shandong, China; Suzhou Institute of Shandong University, Suzhou 215123, Jiangsu, China
| | - Hanni Ke
- Center for Reproductive Medicine, Shandong University, Jinan 250021, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, Shandong, China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, Shandong, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Jinan 250021, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, Shandong, China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, Shandong, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan 250021, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, Shandong, China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, Shandong, China; Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200127, China.
| |
Collapse
|
45
|
Stringer JM, Winship A, Liew SH, Hutt K. The capacity of oocytes for DNA repair. Cell Mol Life Sci 2018; 75:2777-2792. [PMID: 29748894 PMCID: PMC11105623 DOI: 10.1007/s00018-018-2833-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/27/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
Abstract
Female fertility and offspring health are critically dependent on the maintenance of an adequate supply of high-quality oocytes. Like somatic cells, oocytes are subject to a variety of different types of DNA damage arising from endogenous cellular processes and exposure to exogenous genotoxic stressors. While the repair of intentionally induced DNA double strand breaks in gametes during meiotic recombination is well characterised, less is known about the ability of oocytes to repair pathological DNA damage and the relative contribution of DNA repair to oocyte quality is not well defined. This review will discuss emerging data suggesting that oocytes are in fact capable of efficient DNA repair and that DNA repair may be an important mechanism for ensuring female fertility, as well as the transmission of high-quality genetic material to subsequent generations.
Collapse
Affiliation(s)
- Jessica M Stringer
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Amy Winship
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Seng H Liew
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Karla Hutt
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
46
|
Bothun AM, Gao Y, Takai Y, Ishihara O, Seki H, Karger B, Tilly JL, Woods DC. Quantitative Proteomic Profiling of the Human Ovary from Early to Mid-Gestation Reveals Protein Expression Dynamics of Oogenesis and Folliculogenesis. Stem Cells Dev 2018; 27:723-735. [PMID: 29631484 DOI: 10.1089/scd.2018.0002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The in vivo gene networks involved in coordinating human fetal ovarian development remain obscure. In this study, quantitative mass spectrometry was conducted on ovarian tissue collected at key stages during the first two trimesters of human gestational development, confirming the expression profiling data using immunofluorescence, as well as in vitro modeling with human oogonial stem cells (OSCs) and human embryonic stem cells (ESCs). A total of 3,837 proteins were identified in samples spanning developmental days 47-137. Bioinformatics clustering and Ingenuity Pathway Analysis identified DNA mismatch repair and base excision repair as major pathways upregulated during this time. In addition, MAEL and TEX11, two key meiosis-related proteins, were identified as highly expressed during the developmental window associated with fetal oogenesis. These findings were confirmed and extended using in vitro differentiation of OSCs into in vitro derived oocytes and of ESCs into primordial germ cell-like cells and oocyte-like cells, as models. In conclusion, the global protein expression profiling data generated by this study have provided novel insights into human fetal ovarian development in vivo and will serve as a valuable new resource for future studies of the signaling pathways used to orchestrate human oogenesis and folliculogenesis.
Collapse
Affiliation(s)
- Alisha M Bothun
- 1 Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University , Boston, Massachusetts
| | - Yuanwei Gao
- 2 Department of Chemistry & Chemical Biology, The Barnett Institute for Chemical and Biological Analysis, Northeastern University , Boston, Massachusetts
| | - Yasushi Takai
- 3 Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University , Saitama, Japan
| | - Osamu Ishihara
- 4 Department of Obstetrics and Gynecology, Saitama Medical University , Saitama, Japan
| | - Hiroyuki Seki
- 3 Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University , Saitama, Japan
| | - Barry Karger
- 2 Department of Chemistry & Chemical Biology, The Barnett Institute for Chemical and Biological Analysis, Northeastern University , Boston, Massachusetts
| | - Jonathan L Tilly
- 1 Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University , Boston, Massachusetts
| | - Dori C Woods
- 1 Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University , Boston, Massachusetts
| |
Collapse
|
47
|
Testa E, Nardozi D, Antinozzi C, Faieta M, Di Cecca S, Caggiano C, Fukuda T, Bonanno E, Zhenkun L, Maldonado A, Roig I, Di Giacomo M, Barchi M. H2AFX and MDC1 promote maintenance of genomic integrity in male germ cells. J Cell Sci 2018; 131:jcs.214411. [PMID: 29437857 DOI: 10.1242/jcs.214411] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022] Open
Abstract
In somatic cells, H2afx and Mdc1 are close functional partners in DNA repair and damage response. However, it is not known whether they are also involved in the maintenance of genome integrity in meiosis. By analyzing chromosome dynamics in H2afx-/- spermatocytes, we found that the synapsis of autosomes and X-Y chromosomes was impaired in a fraction of cells. Such defects correlated with an abnormal recombination profile. Conversely, Mdc1 was dispensable for the synapsis of the autosomes and played only a minor role in X-Y synapsis, compared with the action of H2afx This suggested that those genes have non-overlapping functions in chromosome synapsis. However, we observed that both genes play a similar role in the assembly of MLH3 onto chromosomes, a key step in crossover formation. Moreover, we show that H2afx and Mdc1 cooperate in promoting the activation of the recombination-dependent checkpoint, a mechanism that restrains the differentiation of cells with unrepaired DSBs. This occurs by a mechanism that involves P53. Overall, our data show that, in male germ cells, H2afx and Mdc1 promote the maintenance of genome integrity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Erika Testa
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Daniela Nardozi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Cristina Antinozzi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Monica Faieta
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Di Cecca
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Cinzia Caggiano
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Tomoyuki Fukuda
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, 951-8510 Niigata, Japan.,Graduate School of Biological Sciences, Nara Institute of Science and Technology, 630-0192 Nara, Japan
| | - Elena Bonanno
- Department of Experimental Medicine and Surgery, Section of Pathological Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Lou Zhenkun
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905 USA
| | - Andros Maldonado
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | - Marco Barchi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
48
|
Vimal D, Kumar S, Pandey A, Sharma D, Saini S, Gupta S, Ravi Ram K, Chowdhuri DK. Mlh1 is required for female fertility in Drosophila melanogaster: An outcome of effects on meiotic crossing over, ovarian follicles and egg activation. Eur J Cell Biol 2018; 97:75-89. [DOI: 10.1016/j.ejcb.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/29/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022] Open
|
49
|
Carlosama C, Elzaiat M, Patiño LC, Mateus HE, Veitia RA, Laissue P. A homozygous donor splice-site mutation in the meiotic gene MSH4 causes primary ovarian insufficiency. Hum Mol Genet 2018; 26:3161-3166. [PMID: 28541421 DOI: 10.1093/hmg/ddx199] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/19/2017] [Indexed: 11/12/2022] Open
Abstract
Premature ovarian insufficiency (POI) is a frequent pathology that affects women under 40 years of age, characterized by an early cessation of menses and high FSH levels. Despite recent progresses in molecular diagnosis, the etiology of POI remains idiopathic in most cases. Whole-exome sequencing of members of a Colombian family affected by POI allowed us to identify a novel homozygous donor splice-site mutation in the meiotic gene MSH4 (MutS Homolog 4). The variant followed a strict mendelian segregation within the family and was absent in a cohort of 135 women over 50 years of age without history of infertility, from the same geographical region as the affected family. Exon trapping experiments showed that the splice-site mutation induced skipping of exon 17. At the protein level, the mutation p.Ile743_Lys785del is predicted to lead to the ablation of the highly conserved Walker B motif of the ATP-binding domain, thus inactivating MSH4. Our study describes the first MSH4 mutation associated with POI and increases the number of meiotic/DNA repair genes formally implicated as being responsible for this condition.
Collapse
Affiliation(s)
- Carolina Carlosama
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Maëva Elzaiat
- Institut Jacques Monod, Université Paris Diderot, Paris, France
| | - Liliana C Patiño
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Heidi E Mateus
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Reiner A Veitia
- Institut Jacques Monod, Université Paris Diderot, Paris, France
| | - Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
50
|
Laissue P. The molecular complexity of primary ovarian insufficiency aetiology and the use of massively parallel sequencing. Mol Cell Endocrinol 2018; 460:170-180. [PMID: 28743519 DOI: 10.1016/j.mce.2017.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 11/28/2022]
Abstract
Primary ovarian insufficiency (POI) is a frequently occurring pathology, leading to infertility. Genetic anomalies have been described in POI and mutations in numerous genes have been definitively related to the pathogenesis of the disease. Some studies based on next generation sequencing (NGS) have been successfully undertaken as they have led to identify new mutations associated with POI aetiology. The purpose of this review is to present the most relevant molecules involved in diverse complex pathways, which may contribute towards POI. The main genes participating in bipotential gonad formation, sex determination, meiosis, folliculogenesis and ovulation are described to enable understanding how they may be considered putative candidates involved in POI. Considerations regarding NGS technical aspects such as design and data interpretation are mentioned. Successful NGS initiatives used for POI studying and future challenges are also discussed.
Collapse
Affiliation(s)
- Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|