1
|
Miranda S, Vermeesen R, Janssen A, Rehnberg E, Etlioglu E, Baatout S, Tabury K, Baselet B. Effects of simulated space conditions on CD4+ T cells: a multi modal analysis. Front Immunol 2024; 15:1443936. [PMID: 39286254 PMCID: PMC11402665 DOI: 10.3389/fimmu.2024.1443936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction The immune system is an intricate network of cellular components that safeguards against pathogens and aberrant cells, with CD4+ T cells playing a central role in this process. Human space travel presents unique health challenges, such as heavy ion ionizing radiation, microgravity, and psychological stress, which can collectively impede immune function. The aim of this research was to examine the consequences of simulated space stressors on CD4+ T cell activation, cytokine production, and gene expression. Methods CD4+ T cells were obtained from healthy individuals and subjected to Fe ion particle radiation, Photon irradiation, simulated microgravity, and hydrocortisone, either individually or in different combinations. Cytokine levels for Th1 and Th2 cells were determined using multiplex Luminex assays, and RNA sequencing was used to investigate gene expression patterns and identify essential genes and pathways impacted by these stressors. Results Simulated microgravity exposure resulted in an apparent Th1 to Th2 shift, evidenced on the level of cytokine secretion as well as altered gene expression. RNA sequencing analysis showed that several gene pathways were altered, particularly in response to Fe ions irradiation and simulated microgravity exposures. Individually, each space stressor caused differential gene expression, while the combination of stressors revealed complex interactions. Discussion The research findings underscore the substantial influence of the space exposome on immune function, particularly in the regulation of T cell responses. Future work should focus expanding the limited knowledge in this field. Comprehending these modifications will be essential for devising effective strategies to safeguard the health of astronauts during extended space missions. Conclusion The effects of simulated space stressors on CD4+ T cell function are substantial, implying that space travel poses a potential threat to immune health. Additional research is necessary to investigate the intricate relationship between space stressors and to develop effective countermeasures to mitigate these consequences.
Collapse
Affiliation(s)
- Silvana Miranda
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Emil Rehnberg
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Emre Etlioglu
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, United States
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| |
Collapse
|
2
|
Rogers J, Bajur AT, Salaita K, Spillane KM. Mechanical control of antigen detection and discrimination by T and B cell receptors. Biophys J 2024; 123:2234-2255. [PMID: 38794795 PMCID: PMC11331051 DOI: 10.1016/j.bpj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
The adaptive immune response is orchestrated by just two cell types, T cells and B cells. Both cells possess the remarkable ability to recognize virtually any antigen through their respective antigen receptors-the T cell receptor (TCR) and B cell receptor (BCR). Despite extensive investigations into the biochemical signaling events triggered by antigen recognition in these cells, our ability to predict or control the outcome of T and B cell activation remains elusive. This challenge is compounded by the sensitivity of T and B cells to the biophysical properties of antigens and the cells presenting them-a phenomenon we are just beginning to understand. Recent insights underscore the central role of mechanical forces in this process, governing the conformation, signaling activity, and spatial organization of TCRs and BCRs within the cell membrane, ultimately eliciting distinct cellular responses. Traditionally, T cells and B cells have been studied independently, with researchers working in parallel to decipher the mechanisms of activation. While these investigations have unveiled many overlaps in how these cell types sense and respond to antigens, notable differences exist. To fully grasp their biology and harness it for therapeutic purposes, these distinctions must be considered. This review compares and contrasts the TCR and BCR, placing emphasis on the role of mechanical force in regulating the activity of both receptors to shape cellular and humoral adaptive immune responses.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom; Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
3
|
Gómez-Morón Á, Alegre-Gómez S, Ramirez-Muñoz R, Hernaiz-Esteban A, Carrasco-Padilla C, Scagnetti C, Aguilar-Sopeña Ó, García-Gil M, Borroto A, Torres-Ruiz R, Rodriguez-Perales S, Sánchez-Madrid F, Martín-Cófreces NB, Roda-Navarro P. Human T-cell receptor triggering requires inactivation of Lim kinase-1 by Slingshot-1 phosphatase. Commun Biol 2024; 7:918. [PMID: 39080357 PMCID: PMC11289303 DOI: 10.1038/s42003-024-06605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Actin dynamics control early T-cell receptor (TCR) signalling during T-cell activation. However, the precise regulation of initial actin rearrangements is not completely understood. Here, we have investigated the regulatory role of the phosphatase Slingshot-1 (SSH1) in this process. Our data show that SSH1 rapidly polarises to nascent cognate synaptic contacts and later relocalises to peripheral F-actin networks organised at the mature immunological synapse. Knockdown of SSH1 expression by CRISPR/Cas9-mediated genome editing or small interfering RNA reveal a regulatory role for SSH1 in CD3ε conformational change, allowing Nck binding and proper downstream signalling and immunological synapse organisation. TCR triggering induces SSH1-mediated activation of actin dynamics through a mechanism mediated by Limk-1 inactivation. These data suggest that during early TCR activation, SSH1 is required for rapid F-actin rearrangements that mediate initial conformational changes of the TCR, integrin organisation and proximal signalling events for proper synapse organisation. Therefore, the SSH1 and Limk-1 axis is a key regulatory element for full T cell activation.
Collapse
Affiliation(s)
- Álvaro Gómez-Morón
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
| | - Sergio Alegre-Gómez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Rocio Ramirez-Muñoz
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Alicia Hernaiz-Esteban
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Carlos Carrasco-Padilla
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Camila Scagnetti
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
| | - Óscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Marta García-Gil
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Raul Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnologicas (CIEMAT); Advanced Therapies Unit, Instituto de Investigacion Sanitaria Fundacion Jiménez Díaz; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
- Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Noa Beatriz Martín-Cófreces
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain.
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain.
- Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain.
| |
Collapse
|
4
|
Guan C, Li Y, Wang Q, Wang J, Tian C, He Y, Li Z. Genome-wide identification of ATG genes and their expression profiles under biotic and abiotic stresses in Fenneropenaeus chinensis. BMC Genomics 2024; 25:625. [PMID: 38902611 PMCID: PMC11188248 DOI: 10.1186/s12864-024-10529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Autophagy is a conserved catabolic process in eukaryotes that contributes to cell survival in response to multiple stresses and is important for organism fitness. Extensive research has shown that autophagy plays a pivotal role in both viral infection and replication processes. Despite the increasing research dedicated to autophagy, investigations into shrimp autophagy are relatively scarce. RESULTS Based on three different methods, a total of 20 members of the ATGs were identified from F. chinensis, all of which contained an autophagy domain. These genes were divided into 18 subfamilies based on their different C-terminal domains, and were found to be located on 16 chromosomes. Quantitative real-time PCR (qRT-PCR) results showed that ATG genes were extensively distributed in all the tested tissues, with the highest expression levels were detected in muscle and eyestalk. To clarify the comprehensive roles of ATG genes upon biotic and abiotic stresses, we examined their expression patterns. The expression levels of multiple ATGs showed an initial increase followed by a decrease, with the highest expression levels observed at 6 h and/or 24 h after WSSV injection. The expression levels of three genes (ATG1, ATG3, and ATG4B) gradually increased until 60 h after injection. Under low-salt conditions, 12 ATG genes were significantly induced, and their transcription abundance peaked at 96 h after treatment. CONCLUSIONS These results suggested that ATG genes may have significant roles in responding to various environmental stressors. Overall, this study provides a thorough characterization and expression analysis of ATG genes in F. chinensis, laying a strong foundation for further functional studies and promising potential in innate immunity.
Collapse
Affiliation(s)
- Chenhui Guan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266237, PR China
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Yalun Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266237, PR China
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Qiong Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Jiajia Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Caijuan Tian
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Bio-technology, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, PR China
| | - Yuying He
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China.
| | - Zhaoxia Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266237, PR China.
| |
Collapse
|
5
|
Zhang Q, Wu L, Zhang Y, Wang D, Sima Y, Wang Z, Yin Z, Wu H, Zhuo Y, Zhang Y, Wang L, Chen Y, Liu Y, Qiu L, Tan W. Aptamer-Based Nongenetic Reprogramming of CARs Enables Flexible Modulation of T Cell-Mediated Tumor Immunotherapy. ACS CENTRAL SCIENCE 2024; 10:813-822. [PMID: 38680567 PMCID: PMC11046454 DOI: 10.1021/acscentsci.3c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 05/01/2024]
Abstract
Innovating the design of chimeric antigen receptors (CARs) beyond conventional structures would be necessary to address the challenges of efficacy, safety, and applicability in T cell-based cancer therapy, whereas excessive genetic modification might complicate CAR design and manufacturing, and increase gene editing risks. In this work, we used aptamers as the antigen-recognition unit to develop a nongenetic CAR engineering strategy for programming the antitumor activity and specificity of CAR T cells. Our results demonstrated that aptamer-functionalized CAR (Apt-CAR) T cells could be directly activated by recognizing target antigens on cancer cells, and then impart a cytotoxic effect for cancer elimination in vitro and in vivo. The designable antigen recognition capability of Apt-CAR T cells allows for easy modulation of their efficacy and specificity. Additionally, multiple features, e.g., tunable antigen-binding avidity and the tumor microenvironment responsiveness, could be readily integrated into Apt-CAR design without T cell re-engineering, offering a new paradigm for developing adaptable immunotherapeutics.
Collapse
Affiliation(s)
- Qiang Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Limei Wu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yue Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Dan Wang
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yingyu Sima
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zhimin Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zhiwei Yin
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Hui Wu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yuting Zhuo
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yutong Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Linlin Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yong Chen
- NHC
Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410000, P. R. China
| | - Yanlan Liu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Weihong Tan
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Institute
of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University
School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Lin CP, Levy PL, Alflen A, Apriamashvili G, Ligtenberg MA, Vredevoogd DW, Bleijerveld OB, Alkan F, Malka Y, Hoekman L, Markovits E, George A, Traets JJH, Krijgsman O, van Vliet A, Poźniak J, Pulido-Vicuña CA, de Bruijn B, van Hal-van Veen SE, Boshuizen J, van der Helm PW, Díaz-Gómez J, Warda H, Behrens LM, Mardesic P, Dehni B, Visser NL, Marine JC, Markel G, Faller WJ, Altelaar M, Agami R, Besser MJ, Peeper DS. Multimodal stimulation screens reveal unique and shared genes limiting T cell fitness. Cancer Cell 2024; 42:623-645.e10. [PMID: 38490212 PMCID: PMC11003465 DOI: 10.1016/j.ccell.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/03/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Genes limiting T cell antitumor activity may serve as therapeutic targets. It has not been systematically studied whether there are regulators that uniquely or broadly contribute to T cell fitness. We perform genome-scale CRISPR-Cas9 knockout screens in primary CD8 T cells to uncover genes negatively impacting fitness upon three modes of stimulation: (1) intense, triggering activation-induced cell death (AICD); (2) acute, triggering expansion; (3) chronic, causing dysfunction. Besides established regulators, we uncover genes controlling T cell fitness either specifically or commonly upon differential stimulation. Dap5 ablation, ranking highly in all three screens, increases translation while enhancing tumor killing. Loss of Icam1-mediated homotypic T cell clustering amplifies cell expansion and effector functions after both acute and intense stimulation. Lastly, Ctbp1 inactivation induces functional T cell persistence exclusively upon chronic stimulation. Our results functionally annotate fitness regulators based on their unique or shared contribution to traits limiting T cell antitumor activity.
Collapse
Affiliation(s)
- Chun-Pu Lin
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Pierre L Levy
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Tumor Immunology and Immunotherapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Astrid Alflen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Georgi Apriamashvili
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten A Ligtenberg
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ferhat Alkan
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Yuval Malka
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ettai Markovits
- Ella Lemelbaum Institute for Immuno-oncology and Melanoma, Sheba Medical Center, Ramat Gan 52612, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Austin George
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Joleen J H Traets
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alex van Vliet
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Joanna Poźniak
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Carlos Ariel Pulido-Vicuña
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Beaunelle de Bruijn
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Susan E van Hal-van Veen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Julia Boshuizen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Pim W van der Helm
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Judit Díaz-Gómez
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Hamdy Warda
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Leonie M Behrens
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Paula Mardesic
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Bilal Dehni
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Gal Markel
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel; Davidoff Cancer Center and Samueli Integrative Cancer Pioneering Institute, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - William J Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Michal J Besser
- Ella Lemelbaum Institute for Immuno-oncology and Melanoma, Sheba Medical Center, Ramat Gan 52612, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel; Davidoff Cancer Center and Samueli Integrative Cancer Pioneering Institute, Rabin Medical Center, Petach Tikva 4941492, Israel; Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pathology, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Sharma S, Whitehead T, Kotowski M, Ng EZQ, Clarke J, Leitner J, Chen YL, Santos AM, Steinberger P, Davis SJ. A high-throughput two-cell assay for interrogating inhibitory signaling pathways in T cells. Life Sci Alliance 2024; 7:e202302359. [PMID: 38073578 PMCID: PMC10703992 DOI: 10.26508/lsa.202302359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
The recent success of immunotherapies relying on manipulation of T-cell activation highlights the value of characterising the mediators of immune checkpoint signaling. CRISPR/Cas9 is a popular approach for interrogating signaling pathways; however, the lack of appropriate assays for studying inhibitory signaling in T cells is limiting the use of large-scale perturbation-based approaches. Here, we adapted an existing Jurkat cell-based transcriptional reporter assay to study both activatory and inhibitory (PD-1-mediated) T-cell signaling using CRISPR-based genome screening in arrayed and pooled formats. We targeted 64 SH2 domain-containing proteins expressed by Jurkat T cells in an arrayed screen, in which individual targets could be assessed independently, showing that arrays can be used to study mediators of both activatory and inhibitory signaling. Pooled screens succeeded in simultaneously identifying many of the known mediators of proximal activating and inhibitory T-cell signaling, including SHP2 and PD-1, confirming the utility of the method. Altogether, the data suggested that SHP2 is the major PD-1-specific, SH2 family mediator of inhibitory signaling. These approaches should allow the systematic analysis of signaling pathways in T cells.
Collapse
Affiliation(s)
- Sumana Sharma
- https://ror.org/052gg0110 MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Toby Whitehead
- https://ror.org/052gg0110 MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mateusz Kotowski
- https://ror.org/052gg0110 MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Emily Zhi Qing Ng
- https://ror.org/052gg0110 MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Joseph Clarke
- https://ror.org/052gg0110 MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Yi-Ling Chen
- https://ror.org/052gg0110 MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Ana Mafalda Santos
- https://ror.org/052gg0110 MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Simon J Davis
- https://ror.org/052gg0110 MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Lee HN, Lee SE, Inn KS, Seong J. Optical sensing and control of T cell signaling pathways. Front Physiol 2024; 14:1321996. [PMID: 38269062 PMCID: PMC10806162 DOI: 10.3389/fphys.2023.1321996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
T cells regulate adaptive immune responses through complex signaling pathways mediated by T cell receptor (TCR). The functional domains of the TCR are combined with specific antibodies for the development of chimeric antigen receptor (CAR) T cell therapy. In this review, we first overview current understanding on the T cell signaling pathways as well as traditional methods that have been widely used for the T cell study. These methods, however, are still limited to investigating dynamic molecular events with spatiotemporal resolutions. Therefore, genetically encoded biosensors and optogenetic tools have been developed to study dynamic T cell signaling pathways in live cells. We review these cutting-edge technologies that revealed dynamic and complex molecular mechanisms at each stage of T cell signaling pathways. They have been primarily applied to the study of dynamic molecular events in TCR signaling, and they will further aid in understanding the mechanisms of CAR activation and function. Therefore, genetically encoded biosensors and optogenetic tools offer powerful tools for enhancing our understanding of signaling mechanisms in T cells and CAR-T cells.
Collapse
Affiliation(s)
- Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technoloy, Seoul, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Eun Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Soo Inn
- Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Jihye Seong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| |
Collapse
|
9
|
Cammarata LV, Uhler C, Shivashankar GV. Adhesome Receptor Clustering is Accompanied by the Colocalization of the Associated Genes in the Cell Nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570697. [PMID: 38106037 PMCID: PMC10723460 DOI: 10.1101/2023.12.07.570697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Proteins on the cell membrane cluster to respond to extracellular signals; for example, adhesion proteins cluster to enhance extracellular matrix sensing; or T-cell receptors cluster to enhance antigen sensing. Importantly, the maturation of such receptor clusters requires transcriptional control to adapt and reinforce the extracellular signal sensing. However, it has been unclear how such efficient clustering mechanisms are encoded at the level of the genes that code for these receptor proteins. Using the adhesome as an example, we show that genes that code for adhesome receptor proteins are spatially co-localized and co-regulated within the cell nucleus. Towards this, we use Hi-C maps combined with RNA-seq data of adherent cells to map the correspondence between adhesome receptor proteins and their associated genes. Interestingly, we find that the transcription factors that regulate these genes are also co-localized with the adhesome gene loci, thereby potentially facilitating a transcriptional reinforcement of the extracellular matrix sensing machinery. Collectively, our results highlight an important layer of transcriptional control of cellular signal sensing.
Collapse
Affiliation(s)
- Louis V. Cammarata
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Caroline Uhler
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - G. V. Shivashankar
- Department of Health Science and Technology, ETH Zurich; Zurich, Switzerland
- Paul Scherrer Institute; Villigen, Switzerland
| |
Collapse
|
10
|
Qi T, Liao X, Cao Y. Development of bispecific T cell engagers: harnessing quantitative systems pharmacology. Trends Pharmacol Sci 2023; 44:880-890. [PMID: 37852906 PMCID: PMC10843027 DOI: 10.1016/j.tips.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Bispecific T cell engagers (bsTCEs) have emerged as a promising class of cancer immunotherapy. Several bsTCEs have achieved marketing approval; dozens more are under clinical investigation. However, the clinical development of bsTCEs remains rife with challenges, including nuanced pharmacology, limited translatability of preclinical findings, frequent on-target toxicity, and convoluted dosing regimens. In this opinion article we present a distinct perspective on how quantitative systems pharmacology (QSP) can serve as a powerful tool for overcoming these obstacles. Recent advances in QSP modeling have empowered developers of bsTCEs to gain a deeper understanding of their context-dependent pharmacology, bridge gaps in experimental data, guide first-in-human (FIH) dose selection, design dosing regimens with expanded therapeutic windows, and improve long-term treatment outcomes. We use recent case studies to exemplify the potential of QSP techniques to support future bsTCE development.
Collapse
Affiliation(s)
- Timothy Qi
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaozhi Liao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Paillon N, Mouro V, Dogniaux S, Maurin M, Saez Pons JJ, Ferran H, Bataille L, Zucchetti AE, Hivroz C. PD-1 inhibits T cell actin remodeling at the immunological synapse independently of its signaling motifs. Sci Signal 2023; 16:eadh2456. [PMID: 38015913 DOI: 10.1126/scisignal.adh2456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
Engagement of the receptor programmed cell death molecule 1 (PD-1) by its ligands PD-L1 and PD-L2 inhibits T cell-mediated immune responses. Blocking such signaling provides the clinical effects of PD-1-targeted immunotherapy. Here, we investigated the mechanisms underlying PD-1-mediated inhibition. Because dynamic actin remodeling is crucial for T cell functions, we characterized the effects of PD-1 engagement on actin remodeling at the immunological synapse, the interface between a T cell and an antigen-presenting cell (APC) or target cell. We used microscopy to analyze the formation of immunological synapses between PD-1+ Jurkat cells or primary human CD8+ cytotoxic T cells and APCs that presented T cell-activating antibodies and were either positive or negative for PD-L1. PD-1 binding to PD-L1 inhibited T cell spreading induced by antibody-mediated activation, which was characterized by the absence of the F-actin-dense distal lamellipodial network at the immunological synapse and the Arp2/3 complex, which mediates branched actin formation. PD-1-induced inhibition of actin remodeling also prevented the characteristic deformation of T cells that contact APCs and the release of cytotoxic granules. We showed that the effects of PD-1 on actin remodeling did not require its tyrosine-based signaling motifs, which are thought to mediate the co-inhibitory effects of PD-1. Our study highlights a previously unappreciated mechanism of PD-1-mediated suppression of T cell activity, which depends on the regulation of actin cytoskeleton dynamics in a signaling motif-independent manner.
Collapse
Affiliation(s)
- Noémie Paillon
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
- Université Paris Cité, 75005 Paris, France
| | - Violette Mouro
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
- Université Paris Cité, 75005 Paris, France
| | - Stéphanie Dogniaux
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Juan-José Saez Pons
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Hermine Ferran
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
- Université Paris Cité, 75005 Paris, France
| | - Laurence Bataille
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Andrés Ernesto Zucchetti
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| | - Claire Hivroz
- Institut Curie, PSL Research University, INSERM, U932 "Integrative analysis of T cell activation" team, Paris, France
| |
Collapse
|
12
|
Sauerer T, Velázquez GF, Schmid C. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation: immune escape mechanisms and current implications for therapy. Mol Cancer 2023; 22:180. [PMID: 37951964 PMCID: PMC10640763 DOI: 10.1186/s12943-023-01889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by the expansion of immature myeloid cells in the bone marrow (BM) and peripheral blood (PB) resulting in failure of normal hematopoiesis and life-threating cytopenia. Allogeneic hematopoietic stem cell transplantation (allo-HCT) is an established therapy with curative potential. Nevertheless, post-transplant relapse is common and associated with poor prognosis, representing the major cause of death after allo-HCT. The occurrence of relapse after initially successful allo-HCT indicates that the donor immune system is first able to control the leukemia, which at a later stage develops evasion strategies to escape from immune surveillance. In this review we first provide a comprehensive overview of current knowledge regarding immune escape in AML after allo-HCT, including dysregulated HLA, alterations in immune checkpoints and changes leading to an immunosuppressive tumor microenvironment. In the second part, we draw the line from bench to bedside and elucidate to what extend immune escape mechanisms of relapsed AML are yet exploited in treatment strategies. Finally, we give an outlook how new emerging technologies could help to improve the therapy for these patients, and elucidate potential new treatment options.
Collapse
Affiliation(s)
- Tatjana Sauerer
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany
| | - Giuliano Filippini Velázquez
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany
| | - Christoph Schmid
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany.
| |
Collapse
|
13
|
Ockfen E, Filali L, Pereira Fernandes D, Hoffmann C, Thomas C. Actin cytoskeleton remodeling at the cancer cell side of the immunological synapse: good, bad, or both? Front Immunol 2023; 14:1276602. [PMID: 37869010 PMCID: PMC10585106 DOI: 10.3389/fimmu.2023.1276602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Cytotoxic lymphocytes (CLs), specifically cytotoxic T lymphocytes and natural killer cells, are indispensable guardians of the immune system and orchestrate the recognition and elimination of cancer cells. Upon encountering a cancer cell, CLs establish a specialized cellular junction, known as the immunological synapse that stands as a pivotal determinant for effective cell killing. Extensive research has focused on the presynaptic side of the immunological synapse and elucidated the multiple functions of the CL actin cytoskeleton in synapse formation, organization, regulatory signaling, and lytic activity. In contrast, the postsynaptic (cancer cell) counterpart has remained relatively unexplored. Nevertheless, both indirect and direct evidence has begun to illuminate the significant and profound consequences of cytoskeletal changes within cancer cells on the outcome of the lytic immunological synapse. Here, we explore the understudied role of the cancer cell actin cytoskeleton in modulating the immune response within the immunological synapse. We shed light on the intricate interplay between actin dynamics and the evasion mechanisms employed by cancer cells, thus providing potential routes for future research and envisioning therapeutic interventions targeting the postsynaptic side of the immunological synapse in the realm of cancer immunotherapy. This review article highlights the importance of actin dynamics within the immunological synapse between cytotoxic lymphocytes and cancer cells focusing on the less-explored postsynaptic side of the synapse. It presents emerging evidence that actin dynamics in cancer cells can critically influence the outcome of cytotoxic lymphocyte interactions with cancer cells.
Collapse
Affiliation(s)
- Elena Ockfen
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Liza Filali
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Diogo Pereira Fernandes
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
14
|
Liu C, Zhou J, Kudlacek S, Qi T, Dunlap T, Cao Y. Population dynamics of immunological synapse formation induced by bispecific T cell engagers predict clinical pharmacodynamics and treatment resistance. eLife 2023; 12:e83659. [PMID: 37490053 PMCID: PMC10368424 DOI: 10.7554/elife.83659] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/01/2023] [Indexed: 07/26/2023] Open
Abstract
Effector T cells need to form immunological synapses (IS) with recognized target cells to elicit cytolytic effects. Facilitating IS formation is the principal pharmacological action of most T cell-based cancer immunotherapies. However, the dynamics of IS formation at the cell population level, the primary driver of the pharmacodynamics of many cancer immunotherapies, remains poorly defined. Using classic immunotherapy CD3/CD19 bispecific T cell engager (BiTE) as our model system, we integrate experimental and theoretical approaches to investigate the population dynamics of IS formation and their relevance to clinical pharmacodynamics and treatment resistance. Our models produce experimentally consistent predictions when defining IS formation as a series of spatiotemporally coordinated events driven by molecular and cellular interactions. The models predict tumor-killing pharmacodynamics in patients and reveal trajectories of tumor evolution across anatomical sites under BiTE immunotherapy. Our models highlight the bone marrow as a potential sanctuary site permitting tumor evolution and antigen escape. The models also suggest that optimal dosing regimens are a function of tumor growth, CD19 expression, and patient T cell abundance, which confer adequate tumor control with reduced disease evolution. This work has implications for developing more effective T cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Can Liu
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Jiawei Zhou
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Stephan Kudlacek
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Timothy Qi
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Tyler Dunlap
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
15
|
Kleine Borgmann FB, Hoffmann C, Carpentier A, Mittelbronn M, Thomas C. Correlative light and electron microscopy to explore the lytic immunological synapse between natural killer cells and cancer cells. Methods Cell Biol 2023; 178:93-106. [PMID: 37516530 DOI: 10.1016/bs.mcb.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Cytotoxic lymphocytes, such as natural killer (NK) cells and cytotoxic T cells, can recognize and kill tumor cells by establishing a highly specialized cell-cell contact called the immunological synapse. The formation and lytic activity of the immunological synapse are accompanied by local changes in the organization, dynamics and molecular composition of the cell membrane, as well as the polarization of various cellular components, such as the cytoskeleton, vesicles and organelles. Characterization and understanding of the molecular and cellular processes underlying immunological synapse formation and activity requires the combination of complementary types of information provided by different imaging modalities, the correlation of which can be difficult. Correlative light and electron microscopy (CLEM) allows for the accurate correlation of functional information provided by fluorescent light microscopy with ultrastructural features provided by high-resolution electron microscopy. In this chapter, we present a detailed protocol describing each step to generate cell-cell conjugates between NK cells and cancer cells, and to analyze these conjugates by CLEM using separate confocal laser-scanning and transmission electron microscopes.
Collapse
Affiliation(s)
- Felix Bruno Kleine Borgmann
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg; Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg.
| | - Celine Hoffmann
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anaïs Carpentier
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg; National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg; Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Life Science and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg; National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
16
|
Kim HR, Park JS, Soh WC, Kim NY, Moon HY, Lee JS, Jun CD. T Cell Microvilli: Finger-Shaped External Structures Linked to the Fate of T Cells. Immune Netw 2023; 23:e3. [PMID: 36911802 PMCID: PMC9995986 DOI: 10.4110/in.2023.23.e3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/11/2023] [Accepted: 02/11/2023] [Indexed: 03/07/2023] Open
Abstract
Microvilli are outer membrane organelles that contain cross-linked filamentous actin. Unlike well-characterized epithelial microvilli, T-cell microvilli are dynamic similar to those of filopodia, which grow and shrink intermittently via the alternate actin-assembly and -disassembly. T-cell microvilli are specialized for sensing Ags on the surface of Ag-presenting cells (APCs). Thus, these finger-shaped microprotrusions contain many signaling-related proteins and can serve as a signaling platforms that induce intracellular signals. However, they are not limited to sensing external information but can provide sites for parts of the cell-body to tear away from the cell. Cells are known to produce many types of extracellular vesicles (EVs), such as exosomes, microvesicles, and membrane particles. T cells also produce EVs, but little is known about under what conditions T cells generate EVs and which types of EVs are released. We discovered that T cells produce few exosomes but release large amounsts of microvilli-derived particles during physical interaction with APCs. Although much is unanswered as to why T cells use the same organelles to sense Ags or to produce EVs, these events can significantly affect T cell fate, including clonal expansion and death. Since TCRs are localized at microvilli tips, this membrane event also raises a new question regarding long-standing paradigm in T cell biology; i.e., surface TCR downmodulation following T cell activation. Since T-cell microvilli particles carry T-cell message to their cognate partner, these particles are termed T-cell immunological synaptosomes (TISs). We discuss the potential physiological role of TISs and their application to immunotherapies.
Collapse
Affiliation(s)
- Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Division of Rare and Refractory Cancer, Tumor Immunology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Won-Chang Soh
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Na-Young Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Hyun-Yoong Moon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Ji-Su Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
17
|
Noman MZ, Bocci IA, Karam M, Moer KV, Bosseler M, Kumar A, Berchem G, Auclair C, Janji B. The β-carboline Harmine improves the therapeutic benefit of anti-PD1 in melanoma by increasing the MHC-I-dependent antigen presentation. Front Immunol 2022; 13:980704. [PMID: 36458012 PMCID: PMC9705972 DOI: 10.3389/fimmu.2022.980704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/19/2022] [Indexed: 10/20/2023] Open
Abstract
Harmine is a dual-specificity tyrosine-regulated kinase 1A (DYRK1A) inhibitor that displays a number of biological and pharmacological properties. Also referred to as ACB1801 molecule, we have previously reported that harmine increases the presentation of major histocompatibility complex (MHC)-I-dependent antigen on melanoma cells. Here, we show that ACB1801 upregulates the mRNA expression of several proteins of the MHC-I such as Transporter Associated with antigen Processing TAP1 and 2, Tapasin and Lmp2 (hereafter referred to as MHC-I signature) in melanoma cells. Treatment of mice bearing melanoma B16-F10 with ACB1801 inhibits the growth and weight of tumors and induces a profound modification of the tumor immune landscape. Strikingly, combining ACB1801 with anti-PD1 significantly improves its therapeutic benefit in B16-F10 melanoma-bearing mice. These results suggest that, by increasing the MHC-I, ACB1801 can be combined with anti-PD1/PD-L1 therapy to improve the survival benefit in cancer patients displaying a defect in MHC-I expression. This is further supported by data showing that i) high expression levels of TAP1, Tapasin and Lmp2 was observed in melanoma patients that respond to anti-PD1; ii) the survival is significantly improved in melanoma patients who express high MHC-I signature relative to those expressing low MHC-I signature; and iii) high expression of MHC-I signature in melanoma patients was correlated with increased expression of CD8 and NK cell markers and overexpression of proinflammatory chemokines involved in the recruitment of CD8+ T cells.
Collapse
Affiliation(s)
- Muhammad Zaeem Noman
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Irene Adelaide Bocci
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Manale Karam
- AC Bioscience, Biopôle, Route de la Corniche 4, Epalinges, Switzerland
- AC Biotech, Villejuif Biopark, Villejuif, France
| | - Kris Van Moer
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Manon Bosseler
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Akinchan Kumar
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Guy Berchem
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
- Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Christian Auclair
- AC Bioscience, Biopôle, Route de la Corniche 4, Epalinges, Switzerland
- AC Biotech, Villejuif Biopark, Villejuif, France
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME) group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| |
Collapse
|
18
|
Wu S, Pushalkar S, Maity S, Pressler M, Rendleman J, Vitrinel B, Carlock M, Ross T, Choi H, Vogel C. Proteomic Signatures of the Serological Response to Influenza Vaccination in a Large Human Cohort Study. Viruses 2022; 14:v14112479. [PMID: 36366577 PMCID: PMC9696600 DOI: 10.3390/v14112479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
The serological response to the influenza virus vaccine is highly heterogeneous for reasons that are not entirely clear. While the impact of demographic factors such as age, body mass index (BMI), sex, prior vaccination and titer levels are known to impact seroconversion, they only explain a fraction of the response. To identify signatures of the vaccine response, we analyzed 273 protein levels from 138 serum samples of influenza vaccine recipients (2019-2020 season). We found that levels of proteins functioning in cholesterol transport were positively associated with seroconversion, likely linking to the known impact of BMI. When adjusting seroconversion for the demographic factors, we identified additional, unexpected signatures: proteins regulating actin cytoskeleton dynamics were significantly elevated in participants with high adjusted seroconversion. Viral strain specific analysis showed that this trend was largely driven by the H3N2 strain. Further, we identified complex associations between adjusted seroconversion and other factors: levels of proteins of the complement system associated positively with adjusted seroconversion in younger participants, while they were associated negatively in the older population. We observed the opposite trends for proteins of high density lipoprotein remodeling, transcription, and hemostasis. In sum, careful integrative modeling can extract new signatures of seroconversion from highly variable data that suggest links between the humoral response as well as immune cell communication and migration.
Collapse
Affiliation(s)
- Shaohuan Wu
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Correspondence: (S.W.); (C.V.)
| | - Smruti Pushalkar
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Shuvadeep Maity
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Birla Institute of Technology and Science (BITS)-Pilani (Hyderabad Campus), Hyderabad 500078, India
| | - Matthew Pressler
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Justin Rendleman
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Burcu Vitrinel
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Michael Carlock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA
| | - Ted Ross
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Christine Vogel
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Correspondence: (S.W.); (C.V.)
| |
Collapse
|
19
|
Ma Z, Zhu K, Gao Y, Tan S, Miao Y. Molecular condensation and mechanoregulation of plant class I formin, an integrin‐like actin nucleator. FEBS J 2022. [DOI: 10.1111/febs.16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Zhiming Ma
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Kexin Zhu
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Yong‐Gui Gao
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Suet‐Mien Tan
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
| | - Yansong Miao
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Institute for Digital Molecular Analytics and Science Nanyang Technological University Singapore City Singapore
| |
Collapse
|
20
|
CLL-Derived Extracellular Vesicles Impair T-Cell Activation and Foster T-Cell Exhaustion via Multiple Immunological Checkpoints. Cells 2022; 11:cells11142176. [PMID: 35883619 PMCID: PMC9320608 DOI: 10.3390/cells11142176] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of malignant B-cells and multiple immune defects. This leads, among others, to severe infectious complications and inefficient immune surveillance. T-cell deficiencies in CLL include enhanced immune(-metabolic) exhaustion, impaired activation and cytokine production, and immunological synapse malformation. Several studies have meanwhile reported CLL-cell–T-cell interactions that culminate in T-cell dysfunction. However, the complex entirety of their interplay is incompletely understood. Here, we focused on the impact of CLL cell-derived vesicles (EVs), which are known to exert immunoregulatory effects, on T-cell function. Methods: We characterized EVs secreted by CLL-cells and determined their influence on T-cells in terms of survival, activation, (metabolic) fitness, and function. Results: We found that CLL-EVs hamper T-cell viability, proliferation, activation, and metabolism while fostering their exhaustion and formation of regulatory T-cell subsets. A detailed analysis of the CLL-EV cargo revealed an abundance of immunological checkpoints (ICs) that could explain the detected T-cell dysregulations. Conclusions: The identification of a variety of ICs loaded on CLL-EVs may account for T-cell defects in CLL patients and could represent a barrier for immunotherapies such as IC blockade or adoptive T-cell transfer. Our findings could pave way for improving antitumor immunity by simultaneously targeting EV formation or multiple ICs.
Collapse
|
21
|
Vaseghi-Shanjani M, Snow AL, Margolis DJ, Latrous M, Milner JD, Turvey SE, Biggs CM. Atopy as Immune Dysregulation: Offender Genes and Targets. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1737-1756. [PMID: 35680527 DOI: 10.1016/j.jaip.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases are a heterogeneous group of disorders resulting from exaggerated type 2 inflammation. Although typically viewed as polygenic multifactorial disorders caused by the interaction of several genes with the environment, we have come to appreciate that allergic diseases can also be caused by monogenic variants affecting the immune system and the skin epithelial barrier. Through a myriad of genetic association studies and high-throughput sequencing tools, many monogenic and polygenic culprits of allergic diseases have been described. Identifying the genetic causes of atopy has shaped our understanding of how these conditions occur and how they may be treated and even prevented. Precision diagnostic tools and therapies that address the specific molecular pathways implicated in allergic inflammation provide exciting opportunities to improve our care for patients across the field of allergy and immunology. Here, we highlight offender genes implicated in polygenic and monogenic allergic diseases and list targeted therapeutic approaches that address these disrupted pathways.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - David J Margolis
- Department of Dermatology and Dermatologic Surgery, University of Pennsylvania Medical Center, Philadelphia, Pa; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Medical Center, Philadelphia, Pa
| | - Meriem Latrous
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
22
|
An C, Wang X, Song F, Hu J, Li L. Insights into intercellular receptor-ligand binding kinetics in cell communication. Front Bioeng Biotechnol 2022; 10:953353. [PMID: 35837553 PMCID: PMC9273785 DOI: 10.3389/fbioe.2022.953353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 01/14/2023] Open
Abstract
Cell-cell communication is crucial for cells to sense, respond and adapt to environmental cues and stimuli. The intercellular communication process, which involves multiple length scales, is mediated by the specific binding of membrane-anchored receptors and ligands. Gaining insight into two-dimensional receptor-ligand binding kinetics is of great significance for understanding numerous physiological and pathological processes, and stimulating new strategies in drug design and discovery. To this end, extensive studies have been performed to illuminate the underlying mechanisms that control intercellular receptor-ligand binding kinetics via experiment, theoretical analysis and numerical simulation. It has been well established that the cellular microenvironment where the receptor-ligand interaction occurs plays a vital role. In this review, we focus on the advances regarding the regulatory effects of three factors including 1) protein-membrane interaction, 2) biomechanical force, and 3) bioelectric microenvironment to summarize the relevant experimental observations, underlying mechanisms, as well as their biomedical significances and applications. Meanwhile, we introduce modeling methods together with experiment technologies developed for dealing with issues at different scales. We also outline future directions to advance the field and highlight that building up systematic understandings for the coupling effects of these regulatory factors can greatly help pharmaceutical development.
Collapse
Affiliation(s)
- Chenyi An
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohuan Wang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Kloc M, Uosef A, Wosik J, Kubiak JZ, Ghobrial RM. Virus interactions with the actin cytoskeleton-what we know and do not know about SARS-CoV-2. Arch Virol 2022; 167:737-749. [PMID: 35102456 PMCID: PMC8803281 DOI: 10.1007/s00705-022-05366-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton and actin-dependent molecular and cellular events are responsible for the organization of eukaryotic cells and their functions. Viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), depend on host cell organelles and molecular components for cell entry and propagation. Thus, it is not surprising that they also interact at many levels with the actin cytoskeleton of the host. There have been many studies on how different viruses reconfigure and manipulate the actin cytoskeleton of the host during successive steps of their life cycle. However, we know relatively little about the interactions of SARS-CoV-2 with the actin cytoskeleton. Here, we describe how the actin cytoskeleton is involved in the strategies used by different viruses for entry, assembly, and egress from the host cell. We emphasize what is known and unknown about SARS-CoV-2 in this regard. This review should encourage further investigation of the interactions of SARS-CoV-2 with cellular components, which will eventually be helpful for developing novel antiviral therapies for mitigating the severity of COVID-19.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA.
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX, 77204, USA
- Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA
| | - Jacek Z Kubiak
- Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, 04-141, Warsaw, Poland
- Institute of Genetics and Development of Rennes, Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Univ. Rennes, UMR 6290, CNRS, 35000, Rennes, France
| | - Rafik M Ghobrial
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
24
|
Paensuwan P, Ngoenkam J, Wangteeraprasert A, Pongcharoen S. Essential function of adaptor protein Nck1 in platelet-derived growth factor receptor signaling in human lens epithelial cells. Sci Rep 2022; 12:1063. [PMID: 35058548 PMCID: PMC8776929 DOI: 10.1038/s41598-022-05183-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
Binding of platelet-derived growth factor-BB (PDGF-BB) to its cognate receptor (PDGFR) promotes lens epithelial cell (LEC) proliferation and migration. After cataract surgery, these LEC behaviors have been proposed as an influential cause of posterior capsule opacification (PCO). Stimulated PDFGR undergoes dimerization and tyrosine phosphorylation providing docking sites for a SH2-domain-containing noncatalytic region of tyrosine kinase (Nck). Nck is an adaptor protein acting as a linker of the proximal and downstream signaling events. However, the functions of Nck1 protein in LEC have not been investigated so far. We reported here a crucial role of Nck1 protein in regulating PDGFR-mediated LEC activation using LEC with a silenced expression of Nck1 protein. The knockdown of Nck1 suppressed PDGF-BB-stimulated LEC proliferation and migration and disrupted the cell cycle progression especially G1/S transition. LEC lacking Nck1 protein failed to exhibit actin polymerization and membrane protrusions. The downregulation of Nck1 protein in LEC impaired PDGFR‐induced phosphorylation of intracellular signaling proteins, including Erk1/2, Akt, CREB and ATF1, which resulted in inhibition of LEC responses. Therefore, these data suggest that the loss of Nck1 expression may disturb LEC activation and Nck1 may potentially be a drug target to prevent PCO and lens-related disease.
Collapse
Affiliation(s)
- Pussadee Paensuwan
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Tapho District, Phitsanulok, 65000, Thailand.
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Tapho District, Phitsanulok, 65000, Thailand
| | - Apirath Wangteeraprasert
- Department of Medicine, Faculty of Medicine, Naresuan University, Tapho District, Phitsanulok, 65000, Thailand
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Tapho District, Phitsanulok, 65000, Thailand.
| |
Collapse
|
25
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
26
|
Thapa P, Guyer RS, Yang AY, Parks CA, Brusko TM, Brusko M, Connors TJ, Farber DL. Infant T cells are developmentally adapted for robust lung immune responses through enhanced T cell receptor signaling. Sci Immunol 2021; 6:eabj0789. [PMID: 34890254 PMCID: PMC8765725 DOI: 10.1126/sciimmunol.abj0789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Infants require coordinated immune responses to prevent succumbing to multiple infectious challenges during early life, particularly in the respiratory tract. The mechanisms by which infant T cells are functionally adapted for these responses are not well understood. Here, we demonstrated using an in vivo mouse cotransfer model that infant T cells generated greater numbers of lung-homing effector cells in response to influenza infection compared with adult T cells in the same host, due to augmented T cell receptor (TCR)–mediated signaling. Mouse infant T cells showed increased sensitivity to low antigen doses, originating at the interface between T cells and antigen-bearing accessory cells—through actin-mediated mobilization of signaling molecules to the immune synapse. This enhanced signaling was also observed in human infant versus adult T cells. Our findings provide a mechanism for how infants control pathogen load and dissemination, which is important for designing developmentally targeted strategies for promoting immune responses at this vulnerable life stage.
Collapse
Affiliation(s)
- Puspa Thapa
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York NY 10032
| | - Rebecca S. Guyer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York NY 10032
| | - Alexander Y. Yang
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York NY 10032
| | - Christopher A. Parks
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Maigan Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Thomas J. Connors
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York NY 10032
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032
| |
Collapse
|
27
|
Wang G, Zhou Q, Xu Y, Zhao B. Emerging Roles of Pleckstrin-2 Beyond Cell Spreading. Front Cell Dev Biol 2021; 9:768238. [PMID: 34869363 PMCID: PMC8637889 DOI: 10.3389/fcell.2021.768238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Pleckstrin-2 is a member of pleckstrin family with well-defined structural features that was first identified in 1999. Over the past 20 years, our understanding of PLEK2 biology has been limited to cell spreading. Recently, increasing evidences support that PLEK2 plays important roles in other cellular events beyond cell spreading, such as erythropoiesis, tumorigenesis and metastasis. It serves as a potential diagnostic and prognostic biomarker as well as an attractive target for the treatment of cancers. Herein, we summary the protein structure and molecular interactions of pleckstrin-2, with an emphasis on its regulatory roles in tumorigenesis.
Collapse
Affiliation(s)
- Gengchen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baobing Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
28
|
Prestimulation of CD2 confers resistance to HIV-1 latent infection in blood resting CD4 T cells. iScience 2021; 24:103305. [PMID: 34765923 PMCID: PMC8571718 DOI: 10.1016/j.isci.2021.103305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/08/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
HIV-1 infects blood CD4 T cells through the use of CD4 and CXCR4 or CCR5 receptors, which can be targeted through blocking viral binding to CD4/CXCR4/CCR5 or virus-cell fusion. Here we describe a novel mechanism by which HIV-1 nuclear entry can also be blocked through targeting a non-entry receptor, CD2. Cluster of differentiation 2 (CD2) is an adhesion molecule highly expressed on human blood CD4, particularly, memory CD4 T cells. We found that CD2 ligation with its cell-free ligand LFA-3 or anti-CD2 antibodies rendered blood resting CD4 T cells highly resistant to HIV-1 infection. We further demonstrate that mechanistically, CD2 binding initiates competitive signaling leading to cofilin activation and localized actin polymerization around CD2, which spatially inhibits HIV-1-initiated local actin polymerization needed for viral nuclear migration. Our study identifies CD2 as a novel target to block HIV-1 infection of blood resting T cells. CD2 is highly expressed on human blood CD4 T cells, particularly memory T cells Prestimulation of CD2 rendered resting T cells highly resistant to HIV infection CD2 signaling activates cofilin and actin polymerization blocking HIV nuclear entry CD2 may serve as a novel target to inhibit HIV-1 infection of blood resting T cells
Collapse
|
29
|
Garlick E, Thomas SG, Owen DM. Super-Resolution Imaging Approaches for Quantifying F-Actin in Immune Cells. Front Cell Dev Biol 2021; 9:676066. [PMID: 34490240 PMCID: PMC8416680 DOI: 10.3389/fcell.2021.676066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/20/2021] [Indexed: 11/21/2022] Open
Abstract
Immune cells comprise a diverse set of cells that undergo a complex array of biological processes that must be tightly regulated. A key component of cellular machinery that achieves this is the cytoskeleton. Therefore, imaging and quantitatively describing the architecture and dynamics of the cytoskeleton is an important research goal. Optical microscopy is well suited to this task. Here, we review the latest in the state-of-the-art methodology for labeling the cytoskeleton, fluorescence microscopy hardware suitable for such imaging and quantitative statistical analysis software applicable to describing cytoskeletal structures. We also highlight ongoing challenges and areas for future development.
Collapse
Affiliation(s)
- Evelyn Garlick
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Steven G Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Dylan M Owen
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, United Kingdom.,Institute for Immunology and Immunotherapy, College of Medical and Dental Science and School of Mathematics, College of Engineering and Physical Science, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
Cerny O, Godlee C, Tocci R, Cross NE, Shi H, Williamson JC, Alix E, Lehner PJ, Holden DW. CD97 stabilises the immunological synapse between dendritic cells and T cells and is targeted for degradation by the Salmonella effector SteD. PLoS Pathog 2021; 17:e1009771. [PMID: 34314469 PMCID: PMC8345877 DOI: 10.1371/journal.ppat.1009771] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/06/2021] [Accepted: 06/29/2021] [Indexed: 11/19/2022] Open
Abstract
The Salmonella enterica effector SteD depletes mature MHC class II (mMHCII) molecules from the surface of infected antigen-presenting cells through ubiquitination of the cytoplasmic tail of the mMHCII β chain. This requires the Nedd4 family HECT E3 ubiquitin ligase Wwp2 and a tumor-suppressing transmembrane protein adaptor Tmem127. Here, through a proteomic screen of dendritic cells, we found that SteD targets the plasma membrane protein CD97 for degradation by a similar mechanism. SteD enhanced ubiquitination of CD97 on K555 and mutation of this residue eliminated the effect of SteD on CD97 surface levels. We showed that CD97 localises to and stabilises the immunological synapse between dendritic cells and T cells. Removal of CD97 by SteD inhibited dendritic cell-T cell interactions and reduced T cell activation, independently of its effect on MHCII. Therefore, SteD suppresses T cell immunity by two distinct processes.
Collapse
Affiliation(s)
- Ondrej Cerny
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
- * E-mail: (OC); (DWH)
| | - Camilla Godlee
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Romina Tocci
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Nancy E. Cross
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Haoran Shi
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - James C. Williamson
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
| | - Eric Alix
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Paul J. Lehner
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
| | - David W. Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
- * E-mail: (OC); (DWH)
| |
Collapse
|
31
|
German Y, Vulliard L, Kamnev A, Pfajfer L, Huemer J, Mautner AK, Rubio A, Kalinichenko A, Boztug K, Ferrand A, Menche J, Dupré L. Morphological profiling of human T and NK lymphocytes by high-content cell imaging. Cell Rep 2021; 36:109318. [PMID: 34233185 DOI: 10.1016/j.celrep.2021.109318] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/25/2021] [Accepted: 06/07/2021] [Indexed: 01/21/2023] Open
Abstract
The immunological synapse is a complex structure that decodes stimulatory signals into adapted lymphocyte responses. It is a unique window to monitor lymphocyte activity because of development of systematic quantitative approaches. Here we demonstrate the applicability of high-content imaging to human T and natural killer (NK) cells and develop a pipeline for unbiased analysis of high-definition morphological profiles. Our approach reveals how distinct facets of actin cytoskeleton remodeling shape immunological synapse architecture and affect lytic granule positioning. Morphological profiling of CD8+ T cells from immunodeficient individuals allows discrimination of the roles of the ARP2/3 subunit ARPC1B and the ARP2/3 activator Wiskott-Aldrich syndrome protein (WASP) in immunological synapse assembly. Single-cell analysis further identifies uncoupling of lytic granules and F-actin radial distribution in ARPC1B-deficient lymphocytes. Our study provides a foundation for development of morphological profiling as a scalable approach to monitor primary lymphocyte responsiveness and to identify complex aspects of lymphocyte micro-architecture.
Collapse
Affiliation(s)
- Yolla German
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, CNRS UMR5051, Toulouse III Paul Sabatier University, Toulouse, France; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Loan Vulliard
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, CNRS UMR5051, Toulouse III Paul Sabatier University, Toulouse, France; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Jakob Huemer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Anna-Katharina Mautner
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Aude Rubio
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31024 Toulouse, France
| | - Artem Kalinichenko
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Audrey Ferrand
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31024 Toulouse, France
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria; Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Loïc Dupré
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, CNRS UMR5051, Toulouse III Paul Sabatier University, Toulouse, France; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Oftedal BE, Maio S, Handel AE, White MPJ, Howie D, Davis S, Prevot N, Rota IA, Deadman ME, Kessler BM, Fischer R, Trede NS, Sezgin E, Maizels RM, Holländer GA. The chaperonin CCT8 controls proteostasis essential for T cell maturation, selection, and function. Commun Biol 2021; 4:681. [PMID: 34083746 PMCID: PMC8175432 DOI: 10.1038/s42003-021-02203-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
T cells rely for their development and function on the correct folding and turnover of proteins generated in response to a broad range of molecular cues. In the absence of the eukaryotic type II chaperonin complex, CCT, T cell activation induced changes in the proteome are compromised including the formation of nuclear actin filaments and the formation of a normal cell stress response. Consequently, thymocyte maturation and selection, and T cell homeostatic maintenance and receptor-mediated activation are severely impaired. In the absence of CCT-controlled protein folding, Th2 polarization diverges from normal differentiation with paradoxical continued IFN-γ expression. As a result, CCT-deficient T cells fail to generate an efficient immune protection against helminths as they are unable to sustain a coordinated recruitment of the innate and adaptive immune systems. These findings thus demonstrate that normal T cell biology is critically dependent on CCT-controlled proteostasis and that its absence is incompatible with protective immunity.
Collapse
Affiliation(s)
- Bergithe E Oftedal
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Clinical Science, University of Bergen, Bergen, Norway, K.G. Jebsen Center for Autoimmune Disorders, Bergen, Norway
| | - Stefano Maio
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Adam E Handel
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Duncan Howie
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Simon Davis
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Nicolas Prevot
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ioanna A Rota
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Mary E Deadman
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Nikolaus S Trede
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Georg A Holländer
- Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
- Paediatric Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
33
|
Modulation of lung cytoskeletal remodeling, RXR based metabolic cascades and inflammation to achieve redox homeostasis during extended exposures to lowered pO 2. Apoptosis 2021; 26:431-446. [PMID: 34002323 DOI: 10.1007/s10495-021-01679-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Extended exposure to low pO2 has multiple effects on signaling cascades. Despite multiple exploratory studies, omics studies elucidating the signaling cascades essential for surviving extended low pO2 exposures are lacking. In this study, we simulated low pO2 (PB = 40 kPa; 7620 m) exposure in male Sprague-Dawley rats for 3, 7 and 14 days. Redox stress assays and proteomics based network biology were performed using lungs and plasma. We observed that redox homeostasis was achieved after day 3 of exposure. We investigated the causative events for this. Proteo-bioinformatics analysis revealed STAT3 to be upstream of lung cytoskeletal processes and systemic lipid metabolism (RXR) derived inflammatory processes, which were the key events. Thus, during prolonged low pO2 exposure, particularly those involving slowly decreasing pressures, redox homeostasis is achieved but energy metabolism is perturbed and this leads to an immune/inflammatory signaling impetus after third day of exposure. We found that an interplay of lung cytoskeletal elements, systemic energy metabolism and inflammatory proteins aid in achieving redox homeostasis and surviving extended low pO2 exposures. Qualitative perturbations to cytoskeletal stability and innate immunity/inflammation were also observed during extended low pO2 exposure in humans exposed to 14,000 ft for 7, 14 and 21 days.
Collapse
|
34
|
Gao Y, Wang Y, Luo F, Chu Y. Optimization of T Cell Redirecting Strategies: Obtaining Inspirations From Natural Process of T Cell Activation. Front Immunol 2021; 12:664329. [PMID: 33981310 PMCID: PMC8107274 DOI: 10.3389/fimmu.2021.664329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptors (CARs) or bispecific antibodies (bsAbs) redirected T cell against tumors is one of the most promising immunotherapy approaches. However, insufficient clinical outcomes are still observed in treatments of both solid and non-solid tumors. Limited efficacy and poor persistence are two major challenges in redirected T cell therapies. The immunological synapse (IS) is a vital component during the T cell response, which largely determines the clinical outcomes of T cell-based therapies. Here, we review the structural and signaling characteristics of IS formed by natural T cells and redirected T cells. Furthermore, inspired by the elaborate natural T cell receptor-mediated IS, we provide potential strategies for higher efficacy and longer persistence of redirected T cells.
Collapse
Affiliation(s)
- Yiyuan Gao
- Institutes of Biomedical Sciences, and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Yuedi Wang
- Institutes of Biomedical Sciences, and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai, China.,Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwei Chu
- Institutes of Biomedical Sciences, and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Różycki B, Weikl TR. Cooperative Stabilization of Close-Contact Zones Leads to Sensitivity and Selectivity in T-Cell Recognition. Cells 2021; 10:1023. [PMID: 33926103 PMCID: PMC8145674 DOI: 10.3390/cells10051023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022] Open
Abstract
T cells are sensitive to 1 to 10 foreign-peptide-MHC complexes among a vast majority of self-peptide-MHC complexes, and discriminate selectively between peptide-MHC complexes that differ not much in their binding affinity to T-cell receptors (TCRs). Quantitative models that aim to explain this sensitivity and selectivity largely focus on single TCR/peptide-MHC complexes, but T cell adhesion involves a multitude of different complexes. In this article, we demonstrate in a three-dimensional computational model of T-cell adhesion that the cooperative stabilization of close-contact zones is sensitive to one to three foreign-peptide-MHC complexes and occurs at a rather sharp threshold affinity of these complexes, which implies selectivity. In these close-contact zones with lateral extensions of hundred to several hundred nanometers, few TCR/foreign-peptide-MHC complexes and many TCR/self-peptide-MHC complexes are segregated from LFA-1/ICAM-1 complexes that form at larger membrane separations. Previous high-resolution microscopy experiments indicate that the sensitivity and selectivity in the formation of closed-contact zones reported here are relevant for T-cell recognition, because the stabilization of close-contact zones by foreign, agonist peptide-MHC complexes precedes T-cell signaling and activation in the experiments.
Collapse
Affiliation(s)
- Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland;
| | - Thomas R. Weikl
- Department of Theory and Bio-Systems, Max Planck Institut of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
36
|
Kim HR, Park JS, Karabulut H, Yasmin F, Jun CD. Transgelin-2: A Double-Edged Sword in Immunity and Cancer Metastasis. Front Cell Dev Biol 2021; 9:606149. [PMID: 33898417 PMCID: PMC8060441 DOI: 10.3389/fcell.2021.606149] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Transgelin-2, a small actin-binding protein, is the only transgelin family member expressed in immune cells. In T and B lymphocytes, transgelin-2 is constitutively expressed, but in antigen-presenting cells, it is significantly upregulated upon lipopolysaccharide stimulation. Transgelin-2 acts as a molecular staple to stabilize the actin cytoskeleton, and it competes with cofilin to bind filamentous (F)-actin. This action may enable immune synapse stabilization during T-cell interaction with cognate antigen-presenting cells. Furthermore, transgelin-2 blocks Arp2/3 complex-nucleated actin branching, which is presumably related to small filopodia formation, enhanced phagocytic function, and antigen presentation. Overall, transgelin-2 is an essential part of the molecular armament required for host defense against neoplasms and infectious diseases. However, transgelin-2 acts as a double-edged sword, as its expression is also essential for a wide range of tumor development, including drug resistance and metastasis. Thus, targeting transgelin-2 can also have a therapeutic advantage for cancer treatment; selectively suppressing transgelin-2 expression may prevent multidrug resistance in cancer chemotherapy. Here, we review newly discovered molecular characteristics of transgelin-2 and discuss clinical applications for cancer and immunotherapy.
Collapse
Affiliation(s)
- Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Hatice Karabulut
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Fatima Yasmin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| |
Collapse
|
37
|
Kim HR, Park JS, Fatima Y, Kausar M, Park JH, Jun CD. Potentiating the Antitumor Activity of Cytotoxic T Cells via the Transmembrane Domain of IGSF4 That Increases TCR Avidity. Front Immunol 2021; 11:591054. [PMID: 33597944 PMCID: PMC7882689 DOI: 10.3389/fimmu.2020.591054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/14/2020] [Indexed: 01/25/2023] Open
Abstract
A robust T-cell response is an important component of sustained antitumor immunity. In this respect, the avidity of TCR in the antigen-targeting of tumors is crucial for the quality of the T-cell response. This study reports that the transmembrane (TM) domain of immunoglobulin superfamily member 4 (IGSF4) binds to the TM of the CD3 ζ-chain through an interaction between His177 and Asp36, which results in IGSF4-CD3 ζ dimers. IGSF4 also forms homo-dimers through the GxxVA motif in the TM domain, thereby constituting large TCR clusters. Overexpression of IGSF4 lacking the extracellular (IG4ΔEXT) domain potentiates the OTI CD8+ T cells to release IFN-γ and TNF-α and to kill OVA+-B16F10 melanoma cells. In animal models, IG4ΔEXT significantly reduces B16F10 tumor metastasis as well as tumor growth. Collectively, the results indicate that the TM domain of IGSF4 can regulate TCR avidity, and they further demonstrate that TCR avidity regulation is critical for improving the antitumor activity of cytotoxic T cells.
Collapse
MESH Headings
- Animals
- Cell Adhesion Molecule-1/genetics
- Cell Adhesion Molecule-1/immunology
- Cell Line, Tumor
- Humans
- Immunotherapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice, Inbred C57BL
- Mice, Transgenic
- Protein Domains
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes/immunology
- Mice
Collapse
Affiliation(s)
- Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Yasmin Fatima
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Maiza Kausar
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Jin-Hwa Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| |
Collapse
|
38
|
Felce JH, Parolini L, Sezgin E, Céspedes PF, Korobchevskaya K, Jones M, Peng Y, Dong T, Fritzsche M, Aarts D, Frater J, Dustin ML. Single-Molecule, Super-Resolution, and Functional Analysis of G Protein-Coupled Receptor Behavior Within the T Cell Immunological Synapse. Front Cell Dev Biol 2021; 8:608484. [PMID: 33537301 PMCID: PMC7848080 DOI: 10.3389/fcell.2020.608484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
A central process in immunity is the activation of T cells through interaction of T cell receptors (TCRs) with agonistic peptide-major histocompatibility complexes (pMHC) on the surface of antigen presenting cells (APCs). TCR-pMHC binding triggers the formation of an extensive contact between the two cells termed the immunological synapse, which acts as a platform for integration of multiple signals determining cellular outcomes, including those from multiple co-stimulatory/inhibitory receptors. Contributors to this include a number of chemokine receptors, notably CXC-chemokine receptor 4 (CXCR4), and other members of the G protein-coupled receptor (GPCR) family. Although best characterized as mediators of ligand-dependent chemotaxis, some chemokine receptors are also recruited to the synapse and contribute to signaling in the absence of ligation. How these and other GPCRs integrate within the dynamic structure of the synapse is unknown, as is how their normally migratory Gαi-coupled signaling is terminated upon recruitment. Here, we report the spatiotemporal organization of several GPCRs, focusing on CXCR4, and the G protein Gαi2 within the synapse of primary human CD4+ T cells on supported lipid bilayers, using standard- and super-resolution fluorescence microscopy. We find that CXCR4 undergoes orchestrated phases of reorganization, culminating in recruitment to the TCR-enriched center. This appears to be dependent on CXCR4 ubiquitination, and does not involve stable interactions with TCR microclusters, as viewed at the nanoscale. Disruption of this process by mutation impairs CXCR4 contributions to cellular activation. Gαi2 undergoes active exclusion from the synapse, partitioning from centrally-accumulated CXCR4. Using a CRISPR-Cas9 knockout screen, we identify several diverse GPCRs with contributions to T cell activation, most significantly the sphingosine-1-phosphate receptor S1PR1, and the oxysterol receptor GPR183. These, and other GPCRs, undergo organization similar to CXCR4; including initial exclusion, centripetal transport, and lack of receptor-TCR interactions. These constitute the first observations of GPCR dynamics within the synapse, and give insights into how these receptors may contribute to T cell activation. The observation of broad GPCR contributions to T cell activation also opens the possibility that modulating GPCR expression in response to cell status or environment may directly regulate responsiveness to pMHC.
Collapse
Affiliation(s)
- James H Felce
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Lucia Parolini
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Erdinc Sezgin
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Pablo F Céspedes
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | | | - Mathew Jones
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Yanchun Peng
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tao Dong
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marco Fritzsche
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.,Rosalind Franklin Institute, Didcot, United Kingdom
| | - Dirk Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Jin S, Vu HT, Hioki K, Noda N, Yoshida H, Shimane T, Ishizuka S, Takashima I, Mizuhata Y, Beverly Pe K, Ogawa T, Nishimura N, Packwood D, Tokitoh N, Kurata H, Yamasaki S, Ishii KJ, Uesugi M. Discovery of Self‐Assembling Small Molecules as Vaccine Adjuvants. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shuyu Jin
- Graduate School of Medicine Kyoto University, Uji Kyoto 611-0011 Japan
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Hue Thi Vu
- Graduate School of Medicine Kyoto University, Uji Kyoto 611-0011 Japan
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Kou Hioki
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC) Osaka University Osaka 565-0871 Japan
- Division of Vaccine Science the Institute of Medical Science University of Tokyo Tokyo 108-8639 Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research National Institute of Biomedical Innovation, Health and Nutrition Osaka 567-0085 Japan
| | - Naotaka Noda
- Graduate School of Medicine Kyoto University, Uji Kyoto 611-0011 Japan
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Hiroki Yoshida
- Graduate School of Medicine Kyoto University, Uji Kyoto 611-0011 Japan
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Toru Shimane
- Research Institute for Microbial Diseases Osaka University, Suita Osaka 565-0871 Japan
| | - Shigenari Ishizuka
- Research Institute for Microbial Diseases Osaka University, Suita Osaka 565-0871 Japan
| | - Ippei Takashima
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Kathleen Beverly Pe
- Graduate School of Medicine Kyoto University, Uji Kyoto 611-0011 Japan
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Tetsuya Ogawa
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Naoya Nishimura
- Research Institute for Microbial Diseases Osaka University, Suita Osaka 565-0871 Japan
| | - Daniel Packwood
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Kyoto 606-8501 Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Hiroki Kurata
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases Osaka University, Suita Osaka 565-0871 Japan
| | - Ken J. Ishii
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC) Osaka University Osaka 565-0871 Japan
- Division of Vaccine Science the Institute of Medical Science University of Tokyo Tokyo 108-8639 Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research National Institute of Biomedical Innovation, Health and Nutrition Osaka 567-0085 Japan
| | - Motonari Uesugi
- Institute for Chemical Research Kyoto University, Uji Kyoto 611-0011 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Kyoto 606-8501 Japan
- School of Pharmacy Fudan University Shanghai 201203 China
| |
Collapse
|
40
|
Jin S, Vu HT, Hioki K, Noda N, Yoshida H, Shimane T, Ishizuka S, Takashima I, Mizuhata Y, Beverly Pe K, Ogawa T, Nishimura N, Packwood D, Tokitoh N, Kurata H, Yamasaki S, Ishii KJ, Uesugi M. Discovery of Self-Assembling Small Molecules as Vaccine Adjuvants. Angew Chem Int Ed Engl 2021; 60:961-969. [PMID: 32979004 DOI: 10.1002/anie.202011604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 11/06/2022]
Abstract
Immune potentiators, termed adjuvants, trigger early innate immune responses to ensure the generation of robust and long-lasting adaptive immune responses of vaccines. Presented here is a study that takes advantage of a self-assembling small-molecule library for the development of a novel vaccine adjuvant. Cell-based screening of the library and subsequent structural optimization led to the discovery of a simple, chemically tractable deoxycholate derivative (molecule 6, also named cholicamide) whose well-defined nanoassembly potently elicits innate immune responses in macrophages and dendritic cells. Functional and mechanistic analyses indicate that the virus-like assembly enters the cells and stimulates the innate immune response through Toll-like receptor 7 (TLR7), an endosomal TLR that detects single-stranded viral RNA. As an influenza vaccine adjuvant in mice, molecule 6 was as potent as Alum, a clinically used adjuvant. The studies described here pave the way for a new approach to discovering and designing self-assembling small-molecule adjuvants against pathogens, including emerging viruses.
Collapse
Affiliation(s)
- Shuyu Jin
- Graduate School of Medicine, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hue Thi Vu
- Graduate School of Medicine, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kou Hioki
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, 565-0871, Japan.,Division of Vaccine Science, the Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.,Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Naotaka Noda
- Graduate School of Medicine, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hiroki Yoshida
- Graduate School of Medicine, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Toru Shimane
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shigenari Ishizuka
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ippei Takashima
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kathleen Beverly Pe
- Graduate School of Medicine, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Tetsuya Ogawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Naoya Nishimura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Daniel Packwood
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hiroki Kurata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, 565-0871, Japan.,Division of Vaccine Science, the Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.,Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Motonari Uesugi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan.,School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
41
|
Papa R, Penco F, Volpi S, Gattorno M. Actin Remodeling Defects Leading to Autoinflammation and Immune Dysregulation. Front Immunol 2021. [PMID: 33488606 DOI: 10.3389/fimmu.2020.604206)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A growing number of monogenic immune-mediated diseases have been related to genes involved in pathways of actin cytoskeleton remodeling. Increasing evidences associate cytoskeleton defects to autoinflammatory diseases and primary immunodeficiencies. We reviewed the pathways of actin cytoskeleton remodeling in order to identify inflammatory and immunological manifestations associated to pathological variants. We list more than twenty monogenic diseases, ranging from pure autoinflammatory conditions as familial Mediterranean fever, mevalonate kinase deficiency and PAPA syndrome, to classic and novel primary immunodeficiencies as Wiskott-Aldrich syndrome and DOCK8 deficiency, characterized by the presence of concomitant inflammatory and autoimmune manifestations, such as vasculitis and cytopenia, to severe and recurrent infections. We classify these disorders according to the role of the mutant gene in actin cytoskeleton remodeling, and in particular as disorders of transcription, elongation, branching and activation of actin. This expanding field of rare immune disorders offers a new perspective to all immunologists to better understand the physiological and pathological role of actin cytoskeleton in cells of innate and adaptive immunity.
Collapse
Affiliation(s)
- Riccardo Papa
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Penco
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
42
|
Papa R, Penco F, Volpi S, Gattorno M. Actin Remodeling Defects Leading to Autoinflammation and Immune Dysregulation. Front Immunol 2021; 11:604206. [PMID: 33488606 PMCID: PMC7817698 DOI: 10.3389/fimmu.2020.604206] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
A growing number of monogenic immune-mediated diseases have been related to genes involved in pathways of actin cytoskeleton remodeling. Increasing evidences associate cytoskeleton defects to autoinflammatory diseases and primary immunodeficiencies. We reviewed the pathways of actin cytoskeleton remodeling in order to identify inflammatory and immunological manifestations associated to pathological variants. We list more than twenty monogenic diseases, ranging from pure autoinflammatory conditions as familial Mediterranean fever, mevalonate kinase deficiency and PAPA syndrome, to classic and novel primary immunodeficiencies as Wiskott-Aldrich syndrome and DOCK8 deficiency, characterized by the presence of concomitant inflammatory and autoimmune manifestations, such as vasculitis and cytopenia, to severe and recurrent infections. We classify these disorders according to the role of the mutant gene in actin cytoskeleton remodeling, and in particular as disorders of transcription, elongation, branching and activation of actin. This expanding field of rare immune disorders offers a new perspective to all immunologists to better understand the physiological and pathological role of actin cytoskeleton in cells of innate and adaptive immunity.
Collapse
Affiliation(s)
- Riccardo Papa
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Penco
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
43
|
Esen E, Sergin I, Jesudason R, Himmels P, Webster JD, Zhang H, Xu M, Piskol R, McNamara E, Gould S, Capietto AH, Delamarre L, Walsh K, Ye W. MAP4K4 negatively regulates CD8 T cell-mediated antitumor and antiviral immunity. Sci Immunol 2020; 5:5/45/eaay2245. [PMID: 32220977 DOI: 10.1126/sciimmunol.aay2245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/01/2019] [Accepted: 02/27/2020] [Indexed: 12/28/2022]
Abstract
During cytotoxic T cell activation, lymphocyte function-associated antigen-1 (LFA-1) engages its ligands on antigen-presenting cells (APCs) or target cells to enhance T cell priming or lytic activity. Inhibiting LFA-1 dampens T cell-dependent symptoms in inflammation, autoimmune diseases, and graft-versus-host disease. However, the therapeutic potential of augmenting LFA-1 function is less explored. Here, we show that genetic deletion or inhibition of mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) enhances LFA-1 activation on CD8 T cells and improves their adherence to APCs or LFA-1 ligand. In addition, loss of Map4k4 increases CD8 T cell priming, which culminates in enhanced antigen-dependent activation, proliferation, cytokine production, and cytotoxic activity, resulting in impaired tumor growth and improved response to viral infection. LFA-1 inhibition reverses these phenotypes. The ERM (ezrin, radixin, and moesin) proteins reportedly regulate T cell-APC conjugation, but the molecular regulator and effector of ERM proteins in T cells have not been defined. In this study, we demonstrate that the ERM proteins serve as mediators between MAP4K4 and LFA-1. Last, systematic analyses of many organs revealed that inducible whole-body deletion of Map4k4 in adult animals is tolerated under homeostatic conditions. Our results uncover MAP4K4 as a potential target to augment antitumor and antiviral immunity.
Collapse
Affiliation(s)
- Emel Esen
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Ismail Sergin
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Rajiv Jesudason
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Patricia Himmels
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Joshua D Webster
- Department of Research Pathology, Genentech, South San Francisco, CA, USA
| | - Hua Zhang
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Min Xu
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Robert Piskol
- Department of Bioinformatics, Genentech, South San Francisco, CA, USA
| | - Erin McNamara
- Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | - Stephen Gould
- Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | | | - Lélia Delamarre
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Kevin Walsh
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA.
| | - Weilan Ye
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
44
|
Caveolin-1, tetraspanin CD81 and flotillins in lymphocyte cell membrane organization, signaling and immunopathology. Biochem Soc Trans 2020; 48:2387-2397. [PMID: 33242069 DOI: 10.1042/bst20190387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022]
Abstract
The adaptive immune system relies on B and T lymphocytes to ensure a specific and long-lasting protection of an individual from a wide range of potential pathogenic hits. Lymphocytes are highly potent and efficient in eliminating pathogens. However, lymphocyte activation must be tightly regulated to prevent incorrect activity that could result in immunopathologies, such as autoimmune disorders or cancers. Comprehensive insight into the molecular events underlying lymphocyte activation is of enormous importance to better understand the function of the immune system. It provides the basis to design therapeutics to regulate lymphocyte activation in pathological scenarios. Most reported defects in immunopathologies affect the regulation of intracellular signaling pathways. This highlights the importance of these molecules, which control lymphocyte activation and homeostasis impacting lymphocyte tolerance to self, cytokine production and responses to infections. Most evidence for these defects comes from studies of disease models in genetically engineered mice. There is an increasing number of studies focusing on lymphocytes derived from patients which supports these findings. Many indirectly involved proteins are emerging as unexpected regulators of the immune system. In this mini-review, we focus in proteins that regulate plasma membrane (PM) compartmentalization and thereby impact the steady state and the activation of immunoreceptors, namely the T cell antigen receptor (TCR) and the B cell antigen receptor (BCR). Some of these membrane proteins are shown to be involved in immune abnormalities; others, however, are not thoroughly investigated in the context of immune pathogenesis. We aim to highlight them and stimulate future research avenues.
Collapse
|
45
|
Liu Y, Zografos K, Fidalgo J, Duchêne C, Quintard C, Darnige T, Filipe V, Huille S, du Roure O, Oliveira MSN, Lindner A. Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles. SOFT MATTER 2020; 16:9844-9856. [PMID: 32996949 DOI: 10.1039/d0sm01293a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The transport of bio-particles in viscous flows exhibits a rich variety of dynamical behaviour, such as morphological transitions, complex orientation dynamics or deformations. Characterising such complex behaviour under well controlled flows is key to understanding the microscopic mechanical properties of biological particles as well as the rheological properties of their suspensions. While generating regions of simple shear flow in microfluidic devices is relatively straightforward, generating straining flows in which the strain rate is maintained constant for a sufficiently long time to observe the objects' morphologic evolution is far from trivial. In this work, we propose an innovative approach based on optimised design of microfluidic converging-diverging channels coupled with a microscope-based tracking method to characterise the dynamic behaviour of individual bio-particles under homogeneous straining flow. The tracking algorithm, combining a motorised stage and a microscopy imaging system controlled by external signals, allows us to follow individual bio-particles transported over long-distances with high-quality images. We demonstrate experimentally the ability of the numerically optimised microchannels to provide linear velocity streamwise gradients along the centreline of the device, allowing for extended consecutive regions of homogeneous elongation and compression. We selected three test cases (DNA, actin filaments and protein aggregates) to highlight the ability of our approach for investigating dynamics of objects with a wide range of sizes, characteristics and behaviours of relevance in the biological world.
Collapse
Affiliation(s)
- Yanan Liu
- PMMH, CNRS, ESPCI Paris PSL, Sorbonne Université, Université de Paris, F-75005, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chung JK, Huang WYC, Carbone CB, Nocka LM, Parikh AN, Vale RD, Groves JT. Coupled membrane lipid miscibility and phosphotyrosine-driven protein condensation phase transitions. Biophys J 2020; 120:1257-1265. [PMID: 33080222 DOI: 10.1016/j.bpj.2020.09.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Lipid miscibility phase separation has long been considered to be a central element of cell membrane organization. More recently, protein condensation phase transitions, into three-dimensional droplets or in two-dimensional lattices on membrane surfaces, have emerged as another important organizational principle within cells. Here, we reconstitute the linker for activation of T cells (LAT):growth-factor-receptor-bound protein 2 (Grb2):son of sevenless (SOS) protein condensation on the surface of giant unilamellar vesicles capable of undergoing lipid phase separations. Our results indicate that the assembly of the protein condensate on the membrane surface can drive lipid phase separation. This phase transition occurs isothermally and is governed by tyrosine phosphorylation on LAT. Furthermore, we observe that the induced lipid phase separation drives localization of the SOS substrate, K-Ras, into the LAT:Grb2:SOS protein condensate.
Collapse
Affiliation(s)
- Jean K Chung
- Department of Chemistry, University of California, Berkeley, Berkeley, California; The Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - William Y C Huang
- Department of Chemistry, University of California, Berkeley, Berkeley, California; The Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Catherine B Carbone
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California; The Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Laura M Nocka
- Department of Chemistry, University of California, Berkeley, Berkeley, California
| | - Atul N Parikh
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California; The Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, California; The Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts.
| |
Collapse
|
47
|
Kunimura K, Uruno T, Fukui Y. DOCK family proteins: key players in immune surveillance mechanisms. Int Immunol 2020; 32:5-15. [PMID: 31630188 PMCID: PMC6949370 DOI: 10.1093/intimm/dxz067] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Dedicator of cytokinesis (DOCK) proteins constitute a family of evolutionarily conserved guanine nucleotide exchange factors (GEFs) for the Rho family of GTPases. Although DOCK family proteins do not contain the Dbl homology domain typically found in other GEFs, they mediate the GTP–GDP exchange reaction through the DOCK homology region-2 (DHR-2) domain. In mammals, this family consists of 11 members, each of which has unique functions depending on the expression pattern and the substrate specificity. For example, DOCK2 is a Rac activator critical for migration and activation of leukocytes, whereas DOCK8 is a Cdc42-specific GEF that regulates interstitial migration of dendritic cells. Identification of DOCK2 and DOCK8 as causative genes for severe combined immunodeficiency syndromes in humans has highlighted their roles in immune surveillance. In addition, the recent discovery of a naturally occurring DOCK2-inhibitory metabolite has uncovered an unexpected mechanism of tissue-specific immune evasion. On the other hand, GEF-independent functions have been shown for DOCK8 in antigen-induced IL-31 production in helper T cells. This review summarizes multifaced functions of DOCK family proteins in the immune system.
Collapse
Affiliation(s)
- Kazufumi Kunimura
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Takehito Uruno
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Research Center for Advanced Immunology, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Research Center for Advanced Immunology, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
48
|
Llorente García I, Marsh M. A biophysical perspective on receptor-mediated virus entry with a focus on HIV. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183158. [PMID: 31863725 PMCID: PMC7156917 DOI: 10.1016/j.bbamem.2019.183158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Abstract
As part of their entry and infection strategy, viruses interact with specific receptor molecules expressed on the surface of target cells. The efficiency and kinetics of the virus-receptor interactions required for a virus to productively infect a cell is determined by the biophysical properties of the receptors, which are in turn influenced by the receptors' plasma membrane (PM) environments. Currently, little is known about the biophysical properties of these receptor molecules or their engagement during virus binding and entry. Here we review virus-receptor interactions focusing on the human immunodeficiency virus type 1 (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), as a model system. HIV is one of the best characterised enveloped viruses, with the identity, roles and structure of the key molecules required for infection well established. We review current knowledge of receptor-mediated HIV entry, addressing the properties of the HIV cell-surface receptors, the techniques used to measure these properties, and the macromolecular interactions and events required for virus entry. We discuss some of the key biophysical principles underlying receptor-mediated virus entry and attempt to interpret the available data in the context of biophysical mechanisms. We also highlight crucial outstanding questions and consider how new tools might be applied to advance understanding of the biophysical properties of viral receptors and the dynamic events leading to virus entry.
Collapse
Affiliation(s)
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
49
|
Garcia E, Ismail S. Spatiotemporal Regulation of Signaling: Focus on T Cell Activation and the Immunological Synapse. Int J Mol Sci 2020; 21:E3283. [PMID: 32384769 PMCID: PMC7247333 DOI: 10.3390/ijms21093283] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/22/2023] Open
Abstract
In a signaling network, not only the functions of molecules are important but when (temporal) and where (spatial) those functions are exerted and orchestrated is what defines the signaling output. To temporally and spatially modulate signaling events, cells generate specialized functional domains with variable lifetime and size that concentrate signaling molecules, enhancing their transduction potential. The plasma membrane is a key in this regulation, as it constitutes a primary signaling hub that integrates signals within and across the membrane. Here, we examine some of the mechanisms that cells exhibit to spatiotemporally regulate signal transduction, focusing on the early events of T cell activation from triggering of T cell receptor to formation and maturation of the immunological synapse.
Collapse
Affiliation(s)
- Esther Garcia
- CR-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Shehab Ismail
- CR-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
50
|
Salz A, Gurniak C, Jönsson F, Witke W. Cofilin1-driven actin dynamics controls migration of thymocytes and is essential for positive selection in the thymus. J Cell Sci 2020; 133:jcs238048. [PMID: 31974112 DOI: 10.1242/jcs.238048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/14/2020] [Indexed: 11/20/2022] Open
Abstract
Actin dynamics is essential for T-cell development. We show here that cofilin1 is the key molecule for controlling actin filament turnover in this process. Mice with specific depletion of cofilin1 in thymocytes showed increased steady-state levels of actin filaments, and associated alterations in the pattern of thymocyte migration and adhesion. Our data suggest that cofilin1 is controlling oscillatory F-actin changes, a parameter that influences the migration pattern in a 3-D environment. In a collagen matrix, cofilin1 controls the speed and resting intervals of migrating thymocytes. Cofilin1 was not involved in thymocyte proliferation, cell survival, apoptosis or surface receptor trafficking. However, in cofilin1 mutant mice, impaired adhesion and migration resulted in a specific block of thymocyte differentiation from CD4/CD8 double-positive thymocytes towards CD4 and CD8 single-positive cells. Our data suggest that tuning of the dwelling time of thymocytes in the thymic niches is tightly controlled by cofilin1 and essential for positive selection during T-cell differentiation. We describe a novel role of cofilin1 in the physiological context of migration-dependent cell differentiation.
Collapse
Affiliation(s)
- Andree Salz
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Christine Gurniak
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Friederike Jönsson
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, 75015 Paris, France
| | - Walter Witke
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| |
Collapse
|