1
|
Pang B, Wu L, Peng Y. In vitro modelling of the neurovascular unit for ischemic stroke research: Emphasis on human cell applications and 3D model design. Exp Neurol 2024; 381:114942. [PMID: 39222766 DOI: 10.1016/j.expneurol.2024.114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Ischemic stroke has garnered global medical attention as one of the most serious cerebrovascular diseases. The mechanisms involved in both the development and recovery phases of ischemic stroke are complex, involving intricate interactions among different types of cells, each with its own unique functions. To better understand the possible pathogenesis, neurovascular unit (NVU), a concept comprising neurons, endothelial cells, mural cells, glial cells, and extracellular matrix components, has been used in analysing various brain diseases, particularly in ischemic stroke, aiming to depict the interactions between cerebral vasculature and neural cells. While in vivo models often face limitations in terms of reproducibility and the ability to precisely mimic human pathophysiology, it is now important to establish in vitro NVU models for ischemic stroke research. In order to accurately portray the pathological processes occurring within the brain, a diverse array of NVU 2D and 3D in vitro models, each possessing unique characteristics and advantages, have been meticulously developed. This review presents a comprehensive overview of recent advancements in in vitro models specifically tailored for investigating ischemic stroke. Through a systematic categorization of these developments, we elucidate the intricate links between NVU components and the pathogenesis of ischemic stroke. Furthermore, we explore the distinct advantages offered by innovative NVU models, notably 3D models, which closely emulate in vivo conditions. Additionally, an examination of current therapeutic modalities for ischemic stroke developed utilizing in vitro NVU models is provided. Serving as a valuable reference, this review aids in the design and implementation of effective in vitro models for ischemic stroke research.
Collapse
Affiliation(s)
- Bo Pang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Li Y, Fu J, Wang H. Advancements in Targeting Ion Channels for the Treatment of Neurodegenerative Diseases. Pharmaceuticals (Basel) 2024; 17:1462. [PMID: 39598374 PMCID: PMC11597607 DOI: 10.3390/ph17111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Ion channels are integral membrane proteins embedded in biological membranes, and they comprise specific proteins that control the flow of ion transporters in and out of cells, playing crucial roles in the biological functions of different cells. They maintain the homeostasis of water and ion metabolism by facilitating ion transport and participate in the physiological processes of neurons and glial cells by regulating signaling pathways. Neurodegenerative diseases are a group of disorders characterized by the progressive loss of neurons in the central nervous system (CNS) or peripheral nervous system (PNS). Despite significant progress in understanding the pathophysiological processes of various neurological diseases in recent years, effective treatments for mitigating the damage caused by these diseases remain inadequate. Increasing evidence suggests that ion channels are closely associated with neuroinflammation; oxidative stress; and the characteristic proteins in neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, studying the pathogenic mechanisms closely related to ion channels in neurodegenerative diseases can help identify more effective therapeutic targets for treating neurodegenerative diseases. Here, we discuss the progress of research on ion channels in different neurodegenerative diseases and emphasize the feasibility and potential of treating such diseases from the perspective of ion channels.
Collapse
Affiliation(s)
- Yuxuan Li
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.L.); (J.F.)
| | - Jingxuan Fu
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.L.); (J.F.)
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.L.); (J.F.)
| |
Collapse
|
3
|
Chen J, Yang J, Chu J, Chen KH, Alt J, Rais R, Qiu Z. The SWELL1 Channel Promotes Ischemic Brain Damage by Mediating Neuronal Swelling and Glutamate Toxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401085. [PMID: 39056405 PMCID: PMC11423184 DOI: 10.1002/advs.202401085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Cytotoxic neuronal swelling and glutamate excitotoxicity are two hallmarks of ischemic stroke. However, the underlying molecular mechanisms are not well understood. Here, it is reported that SWELL1, the essential subunit of the volume-regulated anion channel (VRAC), plays a dual role in ischemic injury by promoting neuronal swelling and glutamate excitotoxicity. SWELL1 expression is upregulated in neurons and astrocytes after experimental stroke in mice. The neuronal SWELL1 channel is activated by intracellular hypertonicity, leading to Cl- influx-dependent cytotoxic neuronal swelling and subsequent cell death. Additionally, the SWELL1 channel in astrocytes mediates pathological glutamate release, indicated by increases in neuronal slow inward current frequency and tonic NMDAR current. Pharmacologically, targeting VRAC with a new inhibitor, an FDA-approved drug Dicumarol, attenuated cytotoxic neuronal swelling and cell death, reduced astrocytic glutamate release, and provided significant neuroprotection in mice when administered either before or after ischemia. Therefore, these findings uncover the pleiotropic effects of the SWELL1 channel in neurons and astrocytes in the pathogenesis of ischemic stroke and provide proof of concept for therapeutically targeting it in this disease.
Collapse
Affiliation(s)
- Jianan Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, TX, 77843, USA
| | - Jiachen Chu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kevin Hong Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
4
|
Jiang Z, Sun Y, Wang Z, Liu S. Causal relations between ischemic stroke and epilepsy: A bidirectional Mendelian randomization study. Heliyon 2024; 10:e32532. [PMID: 38961935 PMCID: PMC11219486 DOI: 10.1016/j.heliyon.2024.e32532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Background Although previous studies have reported a bidirectional relationship between ischemic stroke (IS) and epilepsy, the existence of a causal nexus and its directionality remains a topic of controversy. Methods The single nucleotide polymorphisms (SNPs) associated with IS were extracted from the Genome-Wide Association Study (GWAS) database. Pooled genetic data encompassing all epilepsy cases, as well as generalized and focal epilepsy subtypes, were acquired from the International League Against Epilepsy's GWAS study. In this study, the primary analysis approach utilized the inverse variance weighting (IVW) method as the main analytical technique. To enhance the robustness of the findings against potential pleiotropy, additional sensitivity analyses were conducted. Results In the forward analysis, the IVW method demonstrated that IS was associated with an increased risk of all epilepsy (odds ratio (OR) = 1.127, 95 % confidence interval (CI) = 1.038-1.224, P = 0.004) and generalized epilepsy (IVW: OR = 1.340, 95 % CI = 1.162-1.546, P = 5.70 × 10-5). There was no substantial causal relationship observed between IS and focal epilepsy (P > 0.05). Furthermore, generalized epilepsy, focal epilepsy, and all epilepsy did not show a causal relationship with IS. Conclusion This Mendelian randomization (MR) analysis demonstrates that IS increases the risk of developing epilepsy, especially generalized epilepsy. Conversely, no clear causal association was found between epilepsy and the onset of stroke. Therefore, the possible mechanisms of the effect of epilepsy on the pathogenesis of IS still need to be further investigated.
Collapse
Affiliation(s)
- Zongzhi Jiang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yining Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ziyi Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Songyan Liu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
5
|
Weilinger NL, Yang K, Choi HB, Groten CJ, Wendt S, Murugan M, Wicki-Stordeur LE, Bernier LP, Velayudhan PS, Zheng J, LeDue JM, Rungta RL, Tyson JR, Snutch TP, Wu LJ, MacVicar BA. Pannexin-1 opening in neuronal edema causes cell death but also leads to protection via increased microglia contacts. Cell Rep 2023; 42:113128. [PMID: 37742194 PMCID: PMC10824275 DOI: 10.1016/j.celrep.2023.113128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Neuronal swelling during cytotoxic edema is triggered by Na+ and Cl- entry and is Ca2+ independent. However, the causes of neuronal death during swelling are unknown. Here, we investigate the role of large-conductance Pannexin-1 (Panx1) channels in neuronal death during cytotoxic edema. Panx1 channel inhibitors reduce and delay neuronal death in swelling triggered by voltage-gated Na+ entry with veratridine. Neuronal swelling causes downstream production of reactive oxygen species (ROS) that opens Panx1 channels. We confirm that ROS activates Panx1 currents with whole-cell electrophysiology and find scavenging ROS is neuroprotective. Panx1 opening and subsequent ATP release attract microglial processes to contact swelling neurons. Depleting microglia using the CSF1 receptor antagonist PLX3397 or blocking P2Y12 receptors exacerbates neuronal death, suggesting that the Panx1-ATP-dependent microglia contacts are neuroprotective. We conclude that cytotoxic edema triggers oxidative stress in neurons that opens Panx1 to trigger death but also initiates neuroprotective feedback mediated by microglia contacts.
Collapse
Affiliation(s)
- Nicholas L Weilinger
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Kai Yang
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hyun B Choi
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Christopher J Groten
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Stefan Wendt
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Leigh E Wicki-Stordeur
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Louis-Philippe Bernier
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Prashanth S Velayudhan
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeffrey M LeDue
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ravi L Rungta
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Stomatology and Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - John R Tyson
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Terrance P Snutch
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian A MacVicar
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
6
|
Ranjan AK, Gulati A. Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy. J Clin Med 2023; 12:6653. [PMID: 37892791 PMCID: PMC10607511 DOI: 10.3390/jcm12206653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a condition that results in brain damage in newborns due to insufficient blood and oxygen supply during or after birth. HIE is a major cause of neurological disability and mortality in newborns, with over one million neonatal deaths occurring annually worldwide. The severity of brain injury and the outcome of HIE depend on several factors, including the cause of oxygen deprivation, brain maturity, regional blood flow, and maternal health conditions. HIE is classified into mild, moderate, and severe categories based on the extent of brain damage and resulting neurological issues. The pathophysiology of HIE involves different phases, including the primary phase, latent phase, secondary phase, and tertiary phase. The primary and secondary phases are characterized by episodes of energy and cell metabolism failures, increased cytotoxicity and apoptosis, and activated microglia and inflammation in the brain. A tertiary phase occurs if the brain injury persists, characterized by reduced neural plasticity and neuronal loss. Understanding the cellular and molecular aspects of the different phases of HIE is crucial for developing new interventions and therapeutics. This review aims to discuss the pathophysiology of HIE, therapeutic hypothermia (TH), the only approved therapy for HIE, ongoing developments of adjuvants for TH, and potential future drugs for HIE.
Collapse
Affiliation(s)
- Amaresh K Ranjan
- Research and Development, Pharmazz Inc., Willowbrook, IL 60527, USA
| | - Anil Gulati
- Research and Development, Pharmazz Inc., Willowbrook, IL 60527, USA
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL 60607, USA
- College of Pharmacy, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
7
|
Jagečić D, Petrović DJ, Šimunić I, Isaković J, Mitrečić D. The Oxygen and Glucose Deprivation of Immature Cells of the Nervous System Exerts Distinct Effects on Mitochondria, Mitophagy, and Autophagy, Depending on the Cells' Differentiation Stage. Brain Sci 2023; 13:910. [PMID: 37371388 DOI: 10.3390/brainsci13060910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Perinatal brain damage, one of the most common causes of lifelong impairment, is predominantly caused by a lack of oxygen and glucose during early development. These conditions, in turn, affect cells of the nervous tissue through various stages of their maturation. To quantify the influence of these factors on cell differentiation and mitochondrial parameters, we exposed neural cell precursors to oxygen and glucose deprivation (OGD) during three stages of their differentiation: day 1, day 7, and day 14 (D1, D7, and D14, respectively). The obtained results show that OGD slows down cellular differentiation and causes cell death. Regardless of the level of cell maturity, the overall area of the mitochondria, their length, and the branching of their filaments decreased uniformly when exposed to OGD-related stress. Moreover, the cells in all stages of differentiation exhibited an increase in ROS production, hyperpolarization of the mitochondrial membrane, and autophagy. Interestingly, day 7 was the only stage in which a significant increase in mitochondrial fission, along with measurable instances of mitophagy, were detected. Taken together, the results of this study suggest that, apart from common reactions to a sudden lack of oxygen and glucose, cells in specific stages of neural differentiation can also exhibit increased preferences for mitochondrial fission and mitophagy. Such findings could play a role in guiding the future development of novel therapeutic approaches targeting perinatal brain damage during specific stages of nervous system development.
Collapse
Affiliation(s)
- Denis Jagečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
| | - Dražen Juraj Petrović
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
- Genos d.o.o., Laboratory for Glycobiology, 10 000 Zagreb, Croatia
| | - Iva Šimunić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
| | - Jasmina Isaković
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
- Omnion Research International, 10 000 Zagreb, Croatia
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
8
|
Amaral-Silva L, Santin JM. Synaptic modifications transform neural networks to function without oxygen. BMC Biol 2023; 21:54. [PMID: 36927477 PMCID: PMC10022038 DOI: 10.1186/s12915-023-01518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/18/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Neural circuit function is highly sensitive to energetic limitations. Much like mammals, brain activity in American bullfrogs quickly fails in hypoxia. However, after emergence from overwintering, circuits transform to function for approximately 30-fold longer without oxygen using only anaerobic glycolysis for fuel, a unique trait among vertebrates considering the high cost of network activity. Here, we assessed neuronal functions that normally limit network output and identified components that undergo energetic plasticity to increase robustness in hypoxia. RESULTS In control animals, oxygen deprivation depressed excitatory synaptic drive within native circuits, which decreased postsynaptic firing to cause network failure within minutes. Assessments of evoked and spontaneous synaptic transmission showed that hypoxia impairs synaptic communication at pre- and postsynaptic loci. However, control neurons maintained membrane potentials and a capacity for firing during hypoxia, indicating that those processes do not limit network activity. After overwintering, synaptic transmission persisted in hypoxia to sustain motor function for at least 2 h. CONCLUSIONS Alterations that allow anaerobic metabolism to fuel synapses are critical for transforming a circuit to function without oxygen. Data from many vertebrate species indicate that anaerobic glycolysis cannot fuel active synapses due to the low ATP yield of this pathway. Thus, our results point to a unique strategy whereby synapses switch from oxidative to exclusively anaerobic glycolytic metabolism to preserve circuit function during prolonged energy limitations.
Collapse
Affiliation(s)
- Lara Amaral-Silva
- Division of Biological Sciences, The University of Missouri, Columbia, USA.
| | - Joseph M Santin
- Division of Biological Sciences, The University of Missouri, Columbia, USA.
| |
Collapse
|
9
|
Yu W, Gong E, Liu B, Zhou L, Che C, Hu S, Zhang Z, Liu J, Shi J. Hydrogel-mediated drug delivery for treating stroke. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
10
|
Norouzkhani N, Karimi AG, Badami N, Jalalifar E, Mahmoudvand B, Ansari A, Pakrou Sariyarighan N, Alijanzadeh D, Aghakhani S, Shayestehmehr R, Arzaghi M, Sheikh Z, Salami Y, Marabi MH, Abdi A, Deravi N. From kitchen to clinic: Pharmacotherapeutic potential of common spices in Indian cooking in age-related neurological disorders. Front Pharmacol 2022; 13:960037. [PMID: 36438833 PMCID: PMC9685814 DOI: 10.3389/fphar.2022.960037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Aging is described as an advanced time-related collection of changes that may negatively affect with the risk of several diseases or death. Aging is a main factor of several age-related neurological disorders, including neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease, and dementia), stroke, neuroinflammation, neurotoxicity, brain tumors, oxidative stress, and reactive oxygen species (ROS). Currently available medications for age-related neurological disorders may lead to several side effects, such as headache, diarrhea, nausea, gastrointestinal (GI) diseases, dyskinesia, and hallucinosis. These days, studies on plant efficacy in traditional medicine are being conducted because herbal medicine is affordable, safe, and culturally acceptable and easily accessible. The Indian traditional medicine system called Ayurveda uses several herbs and medicinal plants to treat various disorders including neurological disorders. This review aims to summarize the data on the neuroprotective potential of the following common Indian spices widely used in Ayurveda: cumin (Cuminum cyminum (L.), Apiaceae), black cumin (Nigella sativa (L.), Ranunculaceae), black pepper (Piper nigrum (L.), Piperaceae), curry leaf tree (Murraya koenigii (L.), Spreng Rutaceae), fenugreek (Trigonella foenum-graecum (L.), Fabaceae), fennel (Foeniculum vulgare Mill, Apiaceae), cardamom (Elettaria cardamomum (L.) Maton, Zingiberaceae), cloves (Syzygium aromaticum (L.) Merr. & L.M.Perry, Myrtaceae), and coriander (Coriandrum sativum (L.), Apiaceae) in age-related neurological disorders.
Collapse
Affiliation(s)
- Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arian Ghannadi Karimi
- Preclinical, Cardiovascular Imaging Core Facility, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Badami
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Erfan Jalalifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Mahmoudvand
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Dorsa Alijanzadeh
- Student Research committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Aghakhani
- Student Research Committee, Esfahan University of Medical Sciences, Esfahan, Iran
| | - Reza Shayestehmehr
- Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | | | - Zahra Sheikh
- Babol University of Medical Sciences, Babol, Iran
| | - Yasaman Salami
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hesam Marabi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Deravi
- Student Research committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Niloofar Deravi, ,
| |
Collapse
|
11
|
Excitatory Synaptic Transmission in Ischemic Stroke: A New Outlet for Classical Neuroprotective Strategies. Int J Mol Sci 2022; 23:ijms23169381. [PMID: 36012647 PMCID: PMC9409263 DOI: 10.3390/ijms23169381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/01/2023] Open
Abstract
Stroke is one of the leading causes of death and disability in the world, of which ischemia accounts for the majority. There is growing evidence of changes in synaptic connections and neural network functions in the brain of stroke patients. Currently, the studies on these neurobiological alterations mainly focus on the principle of glutamate excitotoxicity, and the corresponding neuroprotective strategies are limited to blocking the overactivation of ionic glutamate receptors. Nevertheless, it is disappointing that these treatments often fail because of the unspecificity and serious side effects of the tested drugs in clinical trials. Thus, in the prevention and treatment of stroke, finding and developing new targets of neuroprotective intervention is still the focus and goal of research in this field. In this review, we focus on the whole processes of glutamatergic synaptic transmission and highlight the pathological changes underlying each link to help develop potential therapeutic strategies for ischemic brain damage. These strategies include: (1) controlling the synaptic or extra-synaptic release of glutamate, (2) selectively blocking the action of the glutamate receptor NMDAR subunit, (3) increasing glutamate metabolism, and reuptake in the brain and blood, and (4) regulating the glutamate system by GABA receptors and the microbiota–gut–brain axis. Based on these latest findings, it is expected to promote a substantial understanding of the complex glutamate signal transduction mechanism, thereby providing excellent neuroprotection research direction for human ischemic stroke (IS).
Collapse
|
12
|
Asada M, Hayashi H, Takagi N. Possible Involvement of DNA Methylation and Protective Effect of Zebularine on Neuronal Cell Death after Glutamate Excitotoxity. Biol Pharm Bull 2022; 45:770-779. [PMID: 35650104 DOI: 10.1248/bpb.b22-00147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuronal cell death after cerebral ischemia consists various steps including glutamate excitotoxity. Excessive Ca2+ influx through the N-methyl-D-aspartate (NMDA) receptor, which is one of the ionotropic glutamate receptors, plays a central role in neuronal cell death after cerebral ischemia. We previously reported that DNA methylation is transiently increased in neurons during ischemic injury and that this aberrant DNA methylation is accompanied by neuronal cell death. Therefore, we performed the present experiments on glutamate excitotoxicity to gain further insight into DNA methylation involvement in the neuronal cell death. We demonstrated that knockdown of DNA methyltransferase (DNMT)1, DNMT3a, or DNMT3b gene in Neuro2a cells was performed to examine which DNMTs were more important for neuronal cell death after glutamate excitotoxicity. Although we confirmed a decrease in the levels of the target DNMT protein after small interfering RNA (siRNA) transfection, the Neuro2a cells were not protected from injury by transfection with siRNA for each DNMT. We next revealed that the pharmacological inhibitor of DNMTs protected against glutamate excitotoxicity in Neuro2a cells and also in primary cultured cortical neurons. This protective effect was associated with a decrease in the number of 5-methylcytosine (5 mC)-positive cells under glutamate excitotoxicity. In addition, the increased level of cleaved caspase-3 was also reduced by a DNMT inhibitor. Our results suggest the possibility that at least 2 or all DNMTs functionally would cooperate to activate DNA methylation after glutamate excitotoxicity and that inhibition of DNA methylation in neurons after cerebral ischemia might become a strategy to reduce the neuronal injury.
Collapse
Affiliation(s)
- Mayumi Asada
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
13
|
Rayasam A, Kijak JA, Kissel L, Choi YH, Kim T, Hsu M, Joshi D, Laaker CJ, Cismaru P, Lindstedt A, Kovacs K, Vemuganti R, Chiu SY, Priyathilaka TT, Sandor M, Fabry Z. CXCL13 expressed on inflamed cerebral blood vessels recruit IL-21 producing T FH cells to damage neurons following stroke. J Neuroinflammation 2022; 19:125. [PMID: 35624463 PMCID: PMC9145182 DOI: 10.1186/s12974-022-02490-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Ischemic stroke is a leading cause of mortality worldwide, largely due to the inflammatory response to brain ischemia during post-stroke reperfusion. Despite ongoing intensive research, there have not been any clinically approved drugs targeting the inflammatory component to stroke. Preclinical studies have identified T cells as pro-inflammatory mediators of ischemic brain damage, yet mechanisms that regulate the infiltration and phenotype of these cells are lacking. Further understanding of how T cells migrate to the ischemic brain and facilitate neuronal death during brain ischemia can reveal novel targets for post-stroke intervention. METHODS To identify the population of T cells that produce IL-21 and contribute to stroke, we performed transient middle cerebral artery occlusion (tMCAO) in mice and performed flow cytometry on brain tissue. We also utilized immunohistochemistry in both mouse and human brain sections to identify cell types and inflammatory mediators related to stroke-induced IL-21 signaling. To mechanistically demonstrate our findings, we employed pharmacological inhibitor anti-CXCL13 and performed histological analyses to evaluate its effects on brain infarct damage. Finally, to evaluate cellular mechanisms of stroke, we exposed mouse primary neurons to oxygen glucose deprivation (OGD) conditions with or without IL-21 and measured cell viability, caspase activity and JAK/STAT signaling. RESULTS Flow cytometry on brains from mice following tMCAO identified a novel population of cells IL-21 producing CXCR5+ CD4+ ICOS-1+ T follicular helper cells (TFH) in the ischemic brain early after injury. We observed augmented expression of CXCL13 on inflamed brain vascular cells and demonstrated that inhibition of CXCL13 protects mice from tMCAO by restricting the migration and influence of IL-21 producing TFH cells in the ischemic brain. We also illustrate that neurons express IL-21R in the peri-infarct regions of both mice and human stroke tissue in vivo. Lastly, we found that IL-21 acts on mouse primary ischemic neurons to activate the JAK/STAT pathway and induce caspase 3/7-mediated apoptosis in vitro. CONCLUSION These findings identify a novel mechanism for how pro-inflammatory T cells are recruited to the ischemic brain to propagate stroke damage and provide a potential new therapeutic target for stroke.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| | - Julie A Kijak
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Lee Kissel
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Yun Hwa Choi
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Taehee Kim
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Martin Hsu
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Dinesh Joshi
- Department of Physiology, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Collin J Laaker
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter Cismaru
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Anders Lindstedt
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Krisztian Kovacs
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Administration Hospital, Madison, WI, USA
| | - Shing Yan Chiu
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Physiology, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
14
|
Engin AB, Neagu M. Editorial overview: Neuroreceptors and neurotoxic effect through altered synaptic transmission of neurotransmitters. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Siu RCF, Kotova A, Timonina K, Zoidl C, Zoidl GR. Convergent NMDA receptor-Pannexin1 signaling pathways regulate the interaction of CaMKII with Connexin-36. Commun Biol 2021; 4:702. [PMID: 34103655 PMCID: PMC8187354 DOI: 10.1038/s42003-021-02230-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) binding and phosphorylation of mammalian connexin-36 (Cx36) potentiate electrical coupling. To explain the molecular mechanism of how Cx36 modifies plasticity at gap junctions, we investigated the roles of ionotropic N-methyl-D-aspartate receptors and pannexin1 (Panx1) channels in regulating Cx36 binding to CaMKII. Pharmacological interference and site-directed mutagenesis of protein interaction sites shows that NMDA receptor activation opens Cx36 channels, causing the Cx36- CaMKII binding complex to adopt a compact conformation. Ectopic Panx1 expression in a Panx1 knock-down cell line is required to restore CaMKII mediated opening of Cx36. Furthermore, blocking of Src-family kinase activation of Panx1 is sufficient to prevent the opening of Cx36 channels. Our research demonstrates that the efficacy of Cx36 channels requires convergent calcium-dependent signaling processes in which activation of ionotropic N-methyl-D-aspartate receptor, Src-family kinase, and Pannexin1 open Cx36. Our results add to the best of our knowledge a new twist to mounting evidence for molecular communication between these core components of electrical and chemical synapses.
Collapse
Affiliation(s)
- Ryan C F Siu
- Department of Biology, York University, Toronto, ON, Canada
- Center of Vision Research, York University, Toronto, ON, Canada
| | - Anna Kotova
- Department of Biology, York University, Toronto, ON, Canada
- Center of Vision Research, York University, Toronto, ON, Canada
| | - Ksenia Timonina
- Department of Biology, York University, Toronto, ON, Canada
- Center of Vision Research, York University, Toronto, ON, Canada
| | | | - Georg R Zoidl
- Department of Biology, York University, Toronto, ON, Canada.
- Center of Vision Research, York University, Toronto, ON, Canada.
- Department of Psychology, York University, Toronto, ON, Canada.
| |
Collapse
|
16
|
Harcha PA, Garcés P, Arredondo C, Fernández G, Sáez JC, van Zundert B. Mast Cell and Astrocyte Hemichannels and Their Role in Alzheimer's Disease, ALS, and Harmful Stress Conditions. Int J Mol Sci 2021; 22:ijms22041924. [PMID: 33672031 PMCID: PMC7919494 DOI: 10.3390/ijms22041924] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Considered relevant during allergy responses, numerous observations have also identified mast cells (MCs) as critical effectors during the progression and modulation of several neuroinflammatory conditions, including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). MC granules contain a plethora of constituents, including growth factors, cytokines, chemokines, and mitogen factors. The release of these bioactive substances from MCs occurs through distinct pathways that are initiated by the activation of specific plasma membrane receptors/channels. Here, we focus on hemichannels (HCs) formed by connexins (Cxs) and pannexins (Panxs) proteins, and we described their contribution to MC degranulation in AD, ALS, and harmful stress conditions. Cx/Panx HCs are also expressed by astrocytes and are likely involved in the release of critical toxic amounts of soluble factors—such as glutamate, adenosine triphosphate (ATP), complement component 3 derivate C3a, tumor necrosis factor (TNFα), apoliprotein E (ApoE), and certain miRNAs—known to play a role in the pathogenesis of AD, ALS, and other neurodegenerative disorders. We propose that blocking HCs on MCs and glial cells offers a promising novel strategy for ameliorating the progression of neurodegenerative diseases by reducing the release of cytokines and other pro-inflammatory compounds.
Collapse
Affiliation(s)
- Paloma A. Harcha
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Valparaíso 2381850, Chile
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| | - Polett Garcés
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Cristian Arredondo
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Germán Fernández
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Juan C. Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Valparaíso 2381850, Chile
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| | - Brigitte van Zundert
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| |
Collapse
|
17
|
Wu Z, Xie C, Kuang H, Wu J, Chen X, Liu H, Liu T. Oxytocin mediates neuroprotection against hypoxic-ischemic injury in hippocampal CA1 neuron of neonatal rats. Neuropharmacology 2021; 187:108488. [PMID: 33556384 DOI: 10.1016/j.neuropharm.2021.108488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (NHIE) is one of the most prevalent causes of death during the perinatal period. The lack of exposure to oxytocin is associated with NHIE-mediated severe brain injury. However, the underlying mechanism is not fully understood. This study combined immunohistochemistry with electrophysiological recordings of hippocampal CA1 neurons to investigate the role of oxytocin in an in vitro model of hypoxic-ischemic (HI) injury (oxygen and glucose deprivation, OGD) in postnatal day 7-10 rats. Immunohistochemical analysis showed that oxytocin largely reduced the relative intensity of TOPRO-3 staining following OGD in the hippocampal CA1 region. Whole-cell patch-clamp recording revealed that the OGD-induced onset time of anoxic depolarization (AD) was significantly delayed by oxytocin. This protective effect of oxytocin was blocked by pretreatment with [d(CH2)51, Tyr (Me)2, Thr4, Orn8, des-Gly-NH29] vasotocin (dVOT, an oxytocin receptor antagonist) or bicuculline (a GABAA receptor antagonist). Interestingly, oxytocin enhanced inhibitory postsynaptic currents in CA1 pyramidal neurons, which were abolished by tetrodotoxin or dVOT. In contrast, oxytocin had no effect on excitatory postsynaptic currents but induced an inward current in 86% of the pyramidal neurons tested. Taken together, these results demonstrate that oxytocin receptor signaling plays a critical role in attenuating neonatal neural death by facilitating GABAergic transmission, which may help to regulate the excitatory-inhibitory balance in local neuronal networks in NHIE patients.
Collapse
Affiliation(s)
- Zhihong Wu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China
| | - Changning Xie
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China
| | - Haixia Kuang
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China
| | - Jian Wu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China
| | - Xiao Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China
| | - Huibao Liu
- Department of Pediatrics, Xinyu Maternal and Child Health Hospital, 292 S. Laodong, Xinyu, Jiangxi, 338025, PR China.
| | - Tao Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
18
|
García F, Lobos P, Ponce A, Cataldo K, Meza D, Farías P, Estay C, Oyarzun-Ampuero F, Herrera-Molina R, Paula-Lima A, Ardiles ÁO, Hidalgo C, Adasme T, Muñoz P. Astaxanthin Counteracts Excitotoxicity and Reduces the Ensuing Increases in Calcium Levels and Mitochondrial Reactive Oxygen Species Generation. Mar Drugs 2020; 18:md18060335. [PMID: 32604880 PMCID: PMC7345213 DOI: 10.3390/md18060335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Astaxanthin (ASX) is a carotenoid pigment with strong antioxidant properties. We have reported previously that ASX protects neurons from the noxious effects of amyloid-β peptide oligomers, which promote excessive mitochondrial reactive oxygen species (mROS) production and induce a sustained increase in cytoplasmic Ca2+ concentration. These properties make ASX a promising therapeutic agent against pathological conditions that entail oxidative and Ca2+ dysregulation. Here, we studied whether ASX protects neurons from N-methyl-D-aspartate (NMDA)-induced excitotoxicity, a noxious process which decreases cellular viability, alters gene expression and promotes excessive mROS production. Incubation of the neuronal cell line SH-SY5Y with NMDA decreased cellular viability and increased mitochondrial superoxide production; pre-incubation with ASX prevented these effects. Additionally, incubation of SH-SY5Y cells with ASX effectively reduced the basal mROS production and prevented hydrogen peroxide-induced cell death. In primary hippocampal neurons, transfected with a genetically encoded cytoplasmic Ca2+ sensor, ASX also prevented the increase in intracellular Ca2+ concentration induced by NMDA. We suggest that, by preventing the noxious mROS and Ca2+ increases that occur under excitotoxic conditions, ASX could be useful as a therapeutic agent in neurodegenerative pathologies that involve alterations in Ca2+ homeostasis and ROS generation.
Collapse
Affiliation(s)
- Francisca García
- Laboratory of Cellular and Molecular Plasticity, Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile; (F.G.); (A.P.); (K.C.); (D.M.); (P.F.); (C.E.); (Á.O.A.)
- Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Biomedical Research Center, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Pedro Lobos
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (P.L.); (A.P.-L.); (C.H.)
| | - Alejandra Ponce
- Laboratory of Cellular and Molecular Plasticity, Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile; (F.G.); (A.P.); (K.C.); (D.M.); (P.F.); (C.E.); (Á.O.A.)
- Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Biomedical Research Center, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Karla Cataldo
- Laboratory of Cellular and Molecular Plasticity, Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile; (F.G.); (A.P.); (K.C.); (D.M.); (P.F.); (C.E.); (Á.O.A.)
- Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Biomedical Research Center, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Daniela Meza
- Laboratory of Cellular and Molecular Plasticity, Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile; (F.G.); (A.P.); (K.C.); (D.M.); (P.F.); (C.E.); (Á.O.A.)
- Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Biomedical Research Center, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Patricio Farías
- Laboratory of Cellular and Molecular Plasticity, Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile; (F.G.); (A.P.); (K.C.); (D.M.); (P.F.); (C.E.); (Á.O.A.)
- Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Biomedical Research Center, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Carolina Estay
- Laboratory of Cellular and Molecular Plasticity, Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile; (F.G.); (A.P.); (K.C.); (D.M.); (P.F.); (C.E.); (Á.O.A.)
- Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Biomedical Research Center, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Felipe Oyarzun-Ampuero
- Department of Technology and Pharmaceutical Sciences, Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile;
| | - Rodrigo Herrera-Molina
- Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany;
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (P.L.); (A.P.-L.); (C.H.)
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile
| | - Álvaro O. Ardiles
- Laboratory of Cellular and Molecular Plasticity, Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile; (F.G.); (A.P.); (K.C.); (D.M.); (P.F.); (C.E.); (Á.O.A.)
- Interdisciplinary Center of Neuroscience of Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile
- Interdisciplinary Center for Health Studies, Universidad de Valparaíso, Valparaíso 2341386, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (P.L.); (A.P.-L.); (C.H.)
- Department of Neurosciences and Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Tatiana Adasme
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Correspondence: (T.A.); (P.M.); Tel.: +56-29-786-496 (T.A.); +56-32-250-7368 (P.M.)
| | - Pablo Muñoz
- Laboratory of Cellular and Molecular Plasticity, Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile; (F.G.); (A.P.); (K.C.); (D.M.); (P.F.); (C.E.); (Á.O.A.)
- Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Biomedical Research Center, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Correspondence: (T.A.); (P.M.); Tel.: +56-29-786-496 (T.A.); +56-32-250-7368 (P.M.)
| |
Collapse
|
19
|
Zhou Y, Chen Q, Wang Y, Wu H, Xu W, Pan Y, Gao S, Dong X, Zhang JH, Shao A. Persistent Neurovascular Unit Dysfunction: Pathophysiological Substrate and Trigger for Late-Onset Neurodegeneration After Traumatic Brain Injury. Front Neurosci 2020; 14:581. [PMID: 32581697 PMCID: PMC7296179 DOI: 10.3389/fnins.2020.00581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) represents one of the major causes of death worldwide and leads to persisting neurological deficits in many of the survivors. One of the most significant long-term sequelae deriving from TBI is neurodegenerative disease, which is a group of incurable diseases that impose a heavy socio-economic burden. However, mechanisms underlying the increased susceptibility of TBI to neurodegenerative disease remain elusive. The neurovascular unit (NVU) is a functional unit composed of neurons, neuroglia, vascular cells, and the basal lamina matrix. The key role of NVU dysfunction in many central nervous system diseases has been revealed. Studies have proved the presence of prolonged structural and functional abnormalities of the NVU after TBI. Moreover, growing evidence suggests impaired NVU function is also implicated in neurodegenerative diseases. Therefore, we propose the Neurovascular Unit Dysfunction (NVUD) Hypothesis, in which the persistent NVU dysfunction is thought to underlie the development of post-TBI neurodegeneration. We deduce NVUD Hypothesis through relational inference and supporting evidence, and suggest continued NVU abnormalities following TBI serve as the pathophysiological substrate and trigger yielding chronic neuroinflammation, proteinopathies and oxidative stress, consequently leading to the progression of neurodegenerative diseases. The NVUD Hypothesis may provide potential treatment and prevention strategies for TBI and late-onset neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanbo Pan
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Dong
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - John H. Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
The potential of drug repurposing combined with reperfusion therapy in cerebral ischemic stroke: A supplementary strategy to endovascular thrombectomy. Life Sci 2019; 236:116889. [PMID: 31610199 DOI: 10.1016/j.lfs.2019.116889] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 11/21/2022]
Abstract
Stroke is the major cause of adult disability and the second or third leading cause of death in developed countries. The treatment options for stroke (thrombolysis or thrombectomy) are restricted to a small subset of patients with acute ischemic stroke because of the limited time for an efficacious response and the strict criteria applied to minimize the risk of cerebral hemorrhage. Attempts to develop new treatments, such as neuroprotectants, for acute ischemic stroke have been costly and time-consuming and to date have yielded disappointing results. The repurposing approved drugs known to be relatively safe, such as statins and minocycline, may provide a less costly and more rapid alternative to new drug discovery in this clinical condition. Because adequate perfusion is thought to be vital for a neuroprotectant to be effective, endovascular thrombectomy (EVT) with advanced imaging modalities offers the possibility of documenting reperfusion in occluded large cerebral vessels. An examination of established medications that possess neuroprotective characters using in a large-vessel occlusive disorder with EVT may speed the identification of new and more broadly efficacious medications for the treatment of ischemic stroke. These approaches are highlighted in this review along with a critical assessment of drug repurposing combined with reperfusion therapy as a supplementary means for halting or mitigating stroke-induced brain damage.
Collapse
|
21
|
Chen QF, Liu YY, Pan CS, Fan JY, Yan L, Hu BH, Chang X, Li Q, Han JY. Angioedema and Hemorrhage After 4.5-Hour tPA (Tissue-Type Plasminogen Activator) Thrombolysis Ameliorated by T541 via Restoring Brain Microvascular Integrity. Stroke 2019; 49:2211-2219. [PMID: 30354988 DOI: 10.1161/strokeaha.118.021754] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background and Purpose- tPA (tissue-type plasminogen activator) is the only recommended intravenous thrombolytic agent for ischemic stroke. However, its application is limited because of increased risk of hemorrhagic transformation beyond the time window. T541 is a Chinese compound medicine with potential to attenuate ischemia and reperfusion injury. This study was to explore whether T541-benefited subjects underwent tPA thrombolysis extending the time window. Methods- Male C57BL/6 N mice were subjected to carotid artery thrombosis by stimulation with 10% FeCl3 followed by 10 mg/kg tPA with/without 20 mg/kg T541 intervention at 4.5 hours. Thrombolysis and cerebral blood flow were observed dynamically until 24 hours after drug treatment. Neurological deficit scores, brain edema and hemorrhage, cerebral microvascular junctions and basement membrane proteins, and energy metabolism in cortex were assessed then. An in vitro hypoxia/reoxygenation model using human cerebral microvascular endothelial cells was used to evaluate effect of T541 on tight junctions and F-actin in the presence of tPA. Results- tPA administered at 4.5 hours after carotid thrombosis resulted in a decrease in thrombus area and survival rate, whereas no benefit on cerebral blood flow. Study at 24 hours after tPA administration revealed a significant angioedema and hemorrhage in the ischemia hemisphere, a decreased expression of junction proteins claudin-5, zonula occludens-1, occludin, junctional adhesion molecule-1 and vascular endothelial cadherin, and collagen IV and laminin. Meanwhile, ADP/ATP, AMP/ATP, and ATP5D (ATP synthase subunit) expression and activities of mitochondria complex I, II, and IV declined, whereas malondialdehyde and 8-Oxo-2'-deoxyguanosine increased and F-actin arrangement disordered. All the insults after tPA treatment were attenuated by addition of T541 dose dependently. Conclusions- The results suggest T541 as a potential remedy to attenuate delayed tPA-related angioedema and hemorrhage and extend time window for tPA treatment. The potential of T541 to upregulate energy metabolism and protect blood-brain barrier is likely attributable to its effects observed.
Collapse
Affiliation(s)
- Qing-Fang Chen
- From the Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China (Q.-F.C., J.-Y.H.).,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Jing-Yan Han
- From the Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China (Q.-F.C., J.-Y.H.).,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| |
Collapse
|
22
|
Simultaneous Determination of Glutamate and Calcium Ion in Rat Brain during Spreading Depression and Ischemia Processes. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61146-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors. Neurochem Res 2019; 44:735-750. [PMID: 30610652 DOI: 10.1007/s11064-018-02712-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 02/08/2023]
Abstract
The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-D-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of L-arginine, can regulate ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders. In this review, we will focus on the pathophysiological aspects of the neurological disorders regulated by these ion channels and receptors, and their interaction with agmatine in CNS injury.
Collapse
|
24
|
Li X, Jiang LH. A critical role of the transient receptor potential melastatin 2 channel in a positive feedback mechanism for reactive oxygen species-induced delayed cell death. J Cell Physiol 2018; 234:3647-3660. [PMID: 30229906 DOI: 10.1002/jcp.27134] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022]
Abstract
Transient receptor potential melastatin 2 (TRPM2) channel activation by reactive oxygen species (ROS) plays a critical role in delayed neuronal cell death, responsible for postischemia brain damage via altering intracellular Zn2+ homeostasis, but a mechanistic understanding is still lacking. Here, we showed that H2 O2 induced neuroblastoma SH-SY5Y cell death with a significant delay, dependently of the TRPM2 channel and increased [Zn2+ ]i , and therefore used this cell model to investigate the mechanisms underlying ROS-induced TRPM2-mediated delayed cell death. H2 O2 increased concentration-dependently the [Zn2+ ]i and caused lysosomal dysfunction and Zn2+ loss and, furthermore, mitochondrial Zn2+ accumulation, fragmentation, and ROS generation. Such effects were suppressed by preventing poly(adenosine diphosphate ribose, ADPR) polymerase-1-dependent TRPM2 channel activation with PJ34 and 3,3',5,5'-tetra-tert-butyldiphenoquinone, inhibiting the TRPM2 channel with 2-aminoethoxydiphenyl borate (2-APB) and N-(p-amylcinnamoyl)anthranilic acid, or chelating Zn2+ with N,N,N,N-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN). Bafilomycin-induced lysosomal dysfunction also resulted in mitochondrial Zn2+ accumulation, fragmentation, and ROS generation that were inhibited by PJ34 or 2-APB, suggesting that these mitochondrial events are TRPM2 dependent and sequela of lysosomal dysfunction. Mitochondrial TRPM2 expression was detected and exposure to ADPR-induced Zn2+ uptake in isolated mitochondria, which was prevented by TPEN. H2 O2 -induced delayed cell death was inhibited by apocynin and diphenyleneiodonium, nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase (NOX) inhibitors, GKT137831, an NOX1/4-specific inhibitor, or Gö6983, a protein kinase C (PKC) inhibitor. Moreover, inhibition of PKC/NOX prevented H2 O2 -induced ROS generation, lysosomal dysfunction and Zn2+ release, and mitochondrial Zn2+ accumulation, fragmentation and ROS generation. Collectively, these results support a critical role for the TRPM2 channel in coupling PKC/NOX-mediated ROS generation, lysosomal Zn2+ release, and mitochondrial Zn2+ accumulation, and ROS generation to form a vicious positive feedback signaling mechanism for ROS-induced delayed cell death.
Collapse
Affiliation(s)
- Xin Li
- Sino-UK Joint Laboratory of Brain Function and Injury, Xinxiang Medical University, Xinxiang, China.,Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury, Xinxiang Medical University, Xinxiang, China.,Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
25
|
Gonçalves LV, Herlinger AL, Ferreira TAA, Coitinho JB, Pires RGW, Martins-Silva C. Environmental enrichment cognitive neuroprotection in an experimental model of cerebral ischemia: biochemical and molecular aspects. Behav Brain Res 2018; 348:171-183. [DOI: 10.1016/j.bbr.2018.04.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/07/2018] [Accepted: 04/16/2018] [Indexed: 01/25/2023]
|
26
|
Makarenkova HP, Shah SB, Shestopalov VI. The two faces of pannexins: new roles in inflammation and repair. J Inflamm Res 2018; 11:273-288. [PMID: 29950881 PMCID: PMC6016592 DOI: 10.2147/jir.s128401] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pannexins belong to a family of ATP-release channels expressed in almost all cell types. An increasing body of literature on pannexins suggests that these channels play dual and sometimes contradictory roles, contributing to normal cell function, as well as to the pathological progression of disease. In this review, we summarize our understanding of pannexin "protective" and "harmful" functions in inflammation, regeneration and mechanical signaling. We also suggest a possible basis for pannexin's dual roles, related to extracellular ATP and K+ levels and the activation of various types of P2 receptors that are associated with pannexin. Finally, we speculate upon therapeutic strategies related to pannexin using eyes, lacrimal glands, and peripheral nerves as examples of interesting therapeutic targets.
Collapse
Affiliation(s)
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California.,Research Division, Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Valery I Shestopalov
- Bascom Eye Institute, Department of Ophthalmology, University of Miami, Miami, FL, USA.,Vavilov Institute for General Genetics, Russian Academy of Sciences.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
27
|
Dvoriantchikova G, Pronin A, Kurtenbach S, Toychiev A, Chou TH, Yee CW, Prindeville B, Tayou J, Porciatti V, Sagdullaev BT, Slepak VZ, Shestopalov VI. Pannexin 1 sustains the electrophysiological responsiveness of retinal ganglion cells. Sci Rep 2018; 8:5797. [PMID: 29643381 PMCID: PMC5895610 DOI: 10.1038/s41598-018-23894-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
Pannexin 1 (Panx1) forms ATP-permeable membrane channels that play a key role in purinergic signaling in the nervous system in both normal and pathological conditions. In the retina, particularly high levels of Panx1 are found in retinal ganglion cells (RGCs), but the normal physiological function in these cells remains unclear. In this study, we used patch clamp recordings in the intact inner retina to show that evoked currents characteristic of Panx1 channel activity were detected only in RGCs, particularly in the OFF-type cells. The analysis of pattern electroretinogram (PERG) recordings indicated that Panx1 contributes to the electrical output of the retina. Consistently, PERG amplitudes were significantly impaired in the eyes with targeted ablation of the Panx1 gene in RGCs. Under ocular hypertension and ischemic conditions, however, high Panx1 activity permeated cell membranes and facilitated the selective loss of RGCs or stably transfected Neuro2A cells. Our results show that high expression of the Panx1 channel in RGCs is essential for visual function in the inner retina but makes these cells highly sensitive to mechanical and ischemic stresses. These findings are relevant to the pathophysiology of retinal disorders induced by increased intraocular pressure, such as glaucoma.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA
| | - Alexey Pronin
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Sarah Kurtenbach
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA
| | - Abduqodir Toychiev
- Department of Ophthalmology, Weill Cornell Medical College, 156 William St., New York, NY, 10038, USA
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA
| | - Christopher W Yee
- Winifred Masterson Burke Medical Research Institute, New York, 785 Mamaroneck Ave., White Plains, NY, 10605, USA
| | - Breanne Prindeville
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA
| | - Junior Tayou
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA
| | - Botir T Sagdullaev
- Department of Ophthalmology, Weill Cornell Medical College, 156 William St., New York, NY, 10038, USA
- Winifred Masterson Burke Medical Research Institute, New York, 785 Mamaroneck Ave., White Plains, NY, 10605, USA
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Valery I Shestopalov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, 900 NW 10 Ave., Miami, FL, 33136, USA.
- Department of Cell Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA.
- Vavilov Institute for General Genetics, Gubkina Str. 3, Russian Academy of Sciences, Moscow, Russia.
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
28
|
Li S, Bjelobaba I, Stojilkovic SS. Interactions of Pannexin1 channels with purinergic and NMDA receptor channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:166-173. [PMID: 28389204 PMCID: PMC5628093 DOI: 10.1016/j.bbamem.2017.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Pannexins are a three-member family of vertebrate plasma membrane spanning molecules that have homology to the invertebrate gap junction forming proteins, the innexins. However, pannexins do not form gap junctions but operate as plasma membrane channels. The best-characterized member of these proteins, Pannexin1 (Panx1) was suggested to be functionally associated with purinergic P2X and N-methyl-D-aspartate (NMDA) receptor channels. Activation of these receptor channels by their endogenous ligands leads to cross-activation of Panx1 channels. This in turn potentiates P2X and NMDA receptor channel signaling. Two potentiation concepts have been suggested: enhancement of the current responses and/or sustained receptor channel activation by ATP released through Panx1 pore and adenosine generated by ectonucleotidase-dependent dephosphorylation of ATP. Here we summarize the current knowledge and hypotheses about interactions of Panx1 channels with P2X and NMDA receptor channels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Ivana Bjelobaba
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 11000 Belgrade, Serbia
| | - Stanko S Stojilkovic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Liu TL, Liu MN, Xu XL, Liu WX, Shang PJ, Zhai XH, Xu H, Ding Y, Li YW, Wen AD. Differential gene expression profiles between two subtypes of ischemic stroke with blood stasis syndromes. Oncotarget 2017; 8:111608-111622. [PMID: 29340078 PMCID: PMC5762346 DOI: 10.18632/oncotarget.22877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/17/2017] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke is a cerebrovascular thrombotic disease with high morbidity and mortality. Qi deficiency blood stasis (QDBS) and Yin deficiency blood stasis (YDBS) are the two major subtypes of ischemic stroke according to the theories of traditional Chinese medicine. This study was conducted to distinguish these two syndromes at transcriptomics level and explore the underlying mechanisms. Male rats were randomly divided into three groups: sham group, QDBS/MCAO group and YDBS/MCAO group. Morphological changes were assessed after 24 h of reperfusion. Microarray analysis with circulating mRNA was then performed to identify differential gene expression profile, gene ontology and pathway enrichment analyses were carried out to predict the gene function, gene co-expression and pathway networks were constructed to identify the hub biomarkers, which were further validated by western blotting and Tunel staining analysis. Three subsets of dysregulated genes were acquired, including 445 QDBS-specific genes, 490 YDBS-specific genes and 1676 blood stasis common genes. Our work reveals for the first time that T cell receptor, MAPK and apoptosis pathway were identified as the hub pathways based on the pathway networks, while Nfκb1, Egfr and Casp3 were recognized as the hub genes by co-expression networks. This research helps contribute to a clearer understanding of the pathological characteristics of ischemic stroke with QDBS and YDBS syndrome, the proposed biomarkers might provide insight into the accurate diagnose and proper treatment for ischemic stroke with blood stasis syndrome.
Collapse
Affiliation(s)
- Tian-Long Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacy, 25th Hospital of PLA, Jiuquan, China
| | - Min-Na Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Xin-Liang Xu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Department of Traumatic Surgery, Jining No.1 Peoples Hospital, Jining, China
| | - Wen-Xing Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei-Jin Shang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao-Hu Zhai
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hang Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Wen Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacy, The First Affiliated Hospital of SooChow University, Suzhou, China
| | - Ai-Dong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
30
|
Helleringer R, Chever O, Daniel H, Galante M. Oxygen and Glucose Deprivation Induces Bergmann Glia Membrane Depolarization and Ca 2+ Rises Mainly Mediated by K + and ATP Increases in the Extracellular Space. Front Cell Neurosci 2017; 11:349. [PMID: 29163059 PMCID: PMC5675856 DOI: 10.3389/fncel.2017.00349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/20/2017] [Indexed: 01/24/2023] Open
Abstract
During brain ischemia, intense energy deficiency induces a complex succession of events including pump failure, acidosis and exacerbated glutamate release. In the cerebellum, glutamate is the principal mediator of Purkinje neuron anoxic depolarization during episodes of oxygen and glucose deprivation (OGD). Here, the impact of OGD is studied in Bergmann glia, specialized astrocytes closely associated to Purkinje neurons. Patch clamp experiments reveal that during OGD Bergmann glial cells develop a large depolarizing current that is not mediated by glutamate and purinergic receptors but is mainly due to the accumulation of K+ in the extracellular space. Furthermore, we also found that increases in the intracellular Ca2+ concentration appear in Bergmann glia processes several minutes following OGD. These elevations require, in an early phase, Ca2+ mobilization from internal stores via P2Y receptor activation, and, over longer periods, Ca2+ entry through store-operated calcium channels. Our results suggest that increases of K+ and ATP concentrations in the extracellular space are primordial mediators of the OGD effects on Bergmann glia. In the cerebellum, glial responses to energy deprivation-triggering events are therefore highly likely to follow largely distinct rules from those of their neuronal counterparts.
Collapse
Affiliation(s)
- Romain Helleringer
- Pharmacology and Biochemistry of the Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Orsay, France
| | - Oana Chever
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, UMR 7241, INSERM U1050, Labex Memolife, PSL Research University Paris, Paris, France
| | - Hervé Daniel
- Pharmacology and Biochemistry of the Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Orsay, France
| | - Micaela Galante
- Pharmacology and Biochemistry of the Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Orsay, France
| |
Collapse
|
31
|
Hu HJ, Song M. Disrupted Ionic Homeostasis in Ischemic Stroke and New Therapeutic Targets. J Stroke Cerebrovasc Dis 2017; 26:2706-2719. [PMID: 29054733 DOI: 10.1016/j.jstrokecerebrovasdis.2017.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Stroke is a leading cause of long-term disability. All neuroprotectants targeting excitotoxicity have failed to become stroke medications. In order to explore and identify new therapeutic targets for stroke, we here reviewed present studies of ionic transporters and channels that are involved in ischemic brain damage. METHOD We surveyed recent literature from animal experiments and clinical reports in the databases of PubMed and Elsevier ScienceDirect to analyze ionic mechanisms underlying ischemic cell damage and suggest promising ideas for stroke therapy. RESULTS Dysfunction of ionic transporters and disrupted ionic homeostasis are most early changes that underlie ischemic brain injury, thus receiving sustained attention in translational stroke research. The Na+/K+-ATPase, Na+/Ca2+ Exchanger, ionotropic glutamate receptor, acid-sensing ion channels (ASICs), sulfonylurea receptor isoform 1 (SUR1)-regulated NCCa-ATP channels, and transient receptor potential (TRP) channels are critically involved in ischemia-induced cellular degenerating processes such as cytotoxic edema, excitotoxicity, necrosis, apoptosis, and autophagic cell death. Some ionic transporters/channels also act as signalosomes to regulate cell death signaling. For acute stroke treatment, glutamate-mediated excitotoxicity must be interfered within 2 hours after stroke. The SUR1-regulated NCCa-ATP channels, Na+/K+-ATPase, ASICs, and TRP channels have a much longer therapeutic window, providing new therapeutic targets for developing feasible pharmacological treatments toward acute ischemic stroke. CONCLUSION The next generation of stroke therapy can apply a polypharmacology strategy for which drugs are designed to target multiple ion transporters/channels or their interaction with neurotoxic signaling pathways. But a successful translation of neuroprotectants relies on in-depth analyses of cell death mechanisms and suitable animal models resembling human stroke.
Collapse
Affiliation(s)
- Hui-Jie Hu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingke Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
32
|
Tetteh H, Lee M, Lau CG, Yang S, Yang S. Tinnitus: Prospects for Pharmacological Interventions With a Seesaw Model. Neuroscientist 2017; 24:353-367. [PMID: 29283017 DOI: 10.1177/1073858417733415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chronic tinnitus, the perception of lifelong constant ringing in ear, is one capital cause of disability in modern society. It is often present with various comorbid factors that severely affect quality of life, including insomnia, deficits in attention, anxiety, and depression. Currently, there are limited therapeutic treatments for alleviation of tinnitus. Tinnitus can involve a shift in neuronal excitation/inhibition (E/I) balance, which is largely modulated by ion channels and receptors. Thus, ongoing research is geared toward pharmaceutical approaches that modulate the function of ion channels and receptors. Here, we propose a seesaw model that delineates how tinnitus-related ion channels and receptors are involved in homeostatic E/I balance of neurons. This review provides a thorough account of our current mechanistic understanding of tinnitus and insight into future direction of drug development.
Collapse
Affiliation(s)
- Hannah Tetteh
- 1 Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Minseok Lee
- 2 Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - C Geoffrey Lau
- 1 Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Sunggu Yang
- 2 Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Sungchil Yang
- 1 Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
33
|
Baghdadi G, Towhidkhah F, Rostami R. An electrophysiological model of working memory performance. COGN SYST RES 2017. [DOI: 10.1016/j.cogsys.2017.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Zhang JY, Kong LH, Lai D, Jin ZX, Gu XM, Zhou JJ. Glutamate protects against Ca(2+) paradox-induced injury and inhibits calpain activity in isolated rat hearts. Clin Exp Pharmacol Physiol 2017; 43:951-9. [PMID: 27279457 DOI: 10.1111/1440-1681.12605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 04/25/2016] [Accepted: 06/02/2016] [Indexed: 01/13/2023]
Abstract
This study determined the effects of glutamate on the Ca(2+) paradoxical heart, which is a model for Ca(2+) overload-induced injury during myocardial ischaemia and reperfusion, and evaluated its effect on a known mediator of injury, calpain. An isolated rat heart was retrogradely perfused in a Langendorff apparatus. Ca(2+) paradox was elicited via perfusion with a Ca(2+) -free Krebs-Henseleit (KH) solution for 3 minutes followed by Ca(2+) -containing normal KH solution for 30 minutes. The Ca(2+) paradoxical heart exhibited almost no viable tissue on triphenyltetrazolium chloride staining and markedly increased LDH release, caspase-3 activity, cytosolic cytochrome c content, and apoptotic index. These hearts also displayed significantly increased LVEDP and a disappearance of LVDP. Glutamate (5 and 20 mmol/L) significantly alleviated Ca(2+) paradox-induced injury. In contrast, 20 mmol/L mannitol had no effect on Ca(2+) paradox. Ca(2+) paradox significantly increased the extent of the translocation of μ-calpain to the sarcolemmal membrane and the proteolysis of α-fodrin, which suggests calpain activation. Glutamate also blocked these effects. A non-selective inhibitor of glutamate transporters, dl-TBOA (10 μmol/L), had no effect on control hearts, but it reversed glutamate-induced cardioprotection and reduction in calpain activity. Glutamate treatment significantly increased intracellular glutamate content in the Ca(2+) paradoxical heart, which was also blocked by dl-TBOA. We conclude that glutamate protects the heart against Ca(2+) overload-induced injury via glutamate transporters, and the inhibition of calpain activity is involved in this process.
Collapse
Affiliation(s)
- Jian-Ying Zhang
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| | - Ling-Heng Kong
- Department of Physiology, The Fourth Military Medical University, Xi'an, China.,Institute of Basic Medical Science, Xi'an Medical College, Xi'an, China
| | - Dong Lai
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| | - Zhen-Xiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Ming Gu
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| | - Jing-Jun Zhou
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
35
|
Lohman AW, Weilinger NL, Santos SM, Bialecki J, Werner AC, Anderson CL, Thompson RJ. Regulation of pannexin channels in the central nervous system by Src family kinases. Neurosci Lett 2017; 695:65-70. [PMID: 28911820 DOI: 10.1016/j.neulet.2017.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/24/2017] [Accepted: 09/10/2017] [Indexed: 02/06/2023]
Abstract
Pannexins form single membrane channels that regulate the passage of ions, small molecules and metabolites between the intra- and extracellular compartments. In the central nervous system, these channels are integrated into numerous signaling cascades that shape brain physiology and pathology. Post-translational modification of pannexins is complex, with phosphorylation emerging as a prominent form of functional regulation. While much is still not known regarding the specific kinases and modified amino acids, recent reports support a role for Src family tyrosine kinases (SFK) in regulating pannexin channel activity. This review outlines the current evidence supporting SFK-dependent pannexin phosphorylation in the CNS and examines the importance of these modifications in the healthy and diseased brain.
Collapse
Affiliation(s)
- Alexander W Lohman
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas L Weilinger
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Silva Mf Santos
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer Bialecki
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Allison C Werner
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Connor L Anderson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
36
|
Whyte-Fagundes P, Zoidl G. Mechanisms of pannexin1 channel gating and regulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:65-71. [PMID: 28735901 DOI: 10.1016/j.bbamem.2017.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 01/07/2023]
Abstract
Pannexins are a family of integral membrane proteins with distinct post-translational modifications, sub-cellular localization and tissue distribution. Panx1 is the most studied and best-characterized isoform of this gene family. The ubiquitous expression, as well as its function as a major ATP release and nucleotide permeation channel, makes Panx1 a primary candidate for participating in the pathophysiology of CNS disorders. While many investigations revolve around Panx1 functions in health and disease, more recently, details started emerging about mechanisms that control Panx1 channel activity. These advancements in Panx1 biology have revealed that beyond its classical role as an unopposed plasma membrane channel, it participates in alternative pathways involving multiple intracellular compartments, protein complexes and a myriad of extracellular participants. Here, we review recent progress in our understanding of Panx1 at the center of these pathways, highlighting its modulation in a context specific manner. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
| | - Georg Zoidl
- Biology, York University, Toronto, Canada; Psychology, York University, Toronto, Canada.
| |
Collapse
|
37
|
Luo P, Liu D, Guo L. Protecting Oligodendrocytes by Targeting Non-Glutamate Receptors as a New Therapeutic Strategy for Ischemic Stroke. Pharmacology 2017. [PMID: 28637049 DOI: 10.1159/000477939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ischemic stroke has many devastating effects within the brain. At the cellular level, excitotoxicity has been a popular pharmacological target for therapeutics. To date, many clinical trials have been performed with drugs that target excitatory neurotransmitter receptors, such as NMDA receptor agonists. The results, however, have been lackluster. Most efforts to understand the impacts of excitotoxicity on the brain have focused primarily on neurons, and to a lesser degree, on gliocytes as cellular targets. Recent evidence suggests that oligodendrocytes (OLGs), the myelin-forming cells in the central nervous system, are damaged by ischemia in a manner completely different from that in neurons. Whereas ischemia primarily damages neurons through overactivation of ionotropic glutamate receptors, the ischemia damage in OLGs occurs through overactivation of H+-gated transient receptor potential channels. Given the differential mechanisms of ischemic injury between neurons and OLGs, strategies to target non-glutamate receptors to prevent OLG damage/demyelination deserve greater attention in drug development. Such strategies, combined with neuroprotective measures, could provide an excellent therapeutic avenue for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Pan Luo
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
38
|
Sun MY, Taylor A, Zorumski CF, Mennerick S. 24S-hydroxycholesterol and 25-hydroxycholesterol differentially impact hippocampal neuronal survival following oxygen-glucose deprivation. PLoS One 2017; 12:e0174416. [PMID: 28346482 PMCID: PMC5367825 DOI: 10.1371/journal.pone.0174416] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/08/2017] [Indexed: 12/23/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs), a major subtype of glutamate receptor mediating excitatory transmission throughout the CNS, participate in ischemia-induced neuronal death. Unfortunately, undesired side effects have limited the strategy of inhibiting/blocking NMDARs as therapy. Targeting endogenous positive allosteric modulators of NMDAR function may offer a strategy with fewer downsides. Here, we explored whether 24S-hydroxycholesterol (24S-HC), an endogenous positive NMDAR modulator characterized recently by our group, participates in NMDAR-mediated excitotoxicity following oxygen-glucose deprivation (OGD) in primary neuron cultures. 24S-HC is the major brain cholesterol metabolite produced exclusively in neurons near sites of glutamate transmission. By selectively potentiating NMDAR current, 24S-HC may participate in NMDAR-mediated excitotoxicity following energy failure, thus impacting recovery after stroke. In support of this hypothesis, our findings indicate that exogenous application of 24S-HC exacerbates NMDAR-dependent excitotoxicity in primary neuron culture following OGD, an ischemic-like challenge. Similarly, enhancement of endogenous 24S-HC synthesis reduced survival rate. On the other hand, reducing endogenous 24S-HC synthesis alleviated OGD-induced cell death. We found that 25-HC, another oxysterol that antagonizes 24S-HC potentiation, partially rescued OGD-mediated cell death in the presence or absence of exogenous 24S-HC application, and 25-HC exhibited NMDAR-dependent/24S-HC-dependent neuroprotection, as well as NMDAR-independent neuroprotection in rat tissue but not mouse tissue. Our findings suggest that both endogenous and exogenous 24S-HC exacerbate OGD-induced damage via NMDAR activation, while 25-HC exhibits species dependent neuroprotection through both NMDAR-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Amanda Taylor
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
39
|
Cai W, Zhang K, Li P, Zhu L, Xu J, Yang B, Hu X, Lu Z, Chen J. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: An aging effect. Ageing Res Rev 2017; 34:77-87. [PMID: 27697546 PMCID: PMC5384332 DOI: 10.1016/j.arr.2016.09.006] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/15/2016] [Accepted: 09/26/2016] [Indexed: 12/23/2022]
Abstract
Current understanding on the mechanisms of brain injury and neurodegeneration highlights an appreciation of multicellular interactions within the neurovascular unit (NVU), which include the evolution of blood-brain barrier (BBB) damage, neuronal cell death or degeneration, glial reaction, and immune cell infiltration. Aging is an important factor that influences the integrity of the NVU. The age-related physiological or pathological changes in the cellular components of the NVU have been shown to increase the vulnerability of the NVU to ischemia/reperfusion injury or neurodegeneration, and to result in deteriorated brain damage. This review describes the impacts of aging on each NVU component and discusses the mechanisms by which aging increases NVU sensitivity to stroke and neurodegenerative diseases. Prophylactic or therapeutic perspectives that may delay or diminish aging and thus prevent the incidence of these neurological disorders will also be reviewed.
Collapse
Affiliation(s)
- Wei Cai
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kai Zhang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ling Zhu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jing Xu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Boyu Yang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China.
| | - Jun Chen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
40
|
Rayasam A, Hsu M, Hernández G, Kijak J, Lindstedt A, Gerhart C, Sandor M, Fabry Z. Contrasting roles of immune cells in tissue injury and repair in stroke: The dark and bright side of immunity in the brain. Neurochem Int 2017; 107:104-116. [PMID: 28245997 DOI: 10.1016/j.neuint.2017.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 01/09/2023]
Abstract
Despite considerable efforts in research and clinical studies, stroke is still one of the leading causes of death and disability worldwide. Originally, stroke was considered a vascular thrombotic disease without significant immune involvement. However, over the last few decades it has become increasingly obvious that the immune responses can significantly contribute to both tissue injury and protection following stroke. Recently, much research has been focused on the immune system's role in stroke pathology and trying to elucidate the mechanism used by immune cells in tissue injury and protection. Since the discovery of tissue plasminogen activator therapy in 1996, there have been no new treatments for stroke. For this reason, research into understanding how the immune system contributes to stroke pathology may lead to better therapies or enhance the efficacy of current treatments. Here, we discuss the contrasting roles of immune cells to stroke pathology while emphasizing myeloid cells and T cells. We propose that focusing future research on balancing the beneficial-versus-detrimental roles of immunity may lead to the discovery of better and novel stroke therapies.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin Hsu
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Gianna Hernández
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Julie Kijak
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Anders Lindstedt
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian Gerhart
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
41
|
Chen B, Wang G, Li W, Liu W, Lin R, Tao J, Jiang M, Chen L, Wang Y. Memantine attenuates cell apoptosis by suppressing the calpain-caspase-3 pathway in an experimental model of ischemic stroke. Exp Cell Res 2017; 351:163-172. [PMID: 28069373 DOI: 10.1016/j.yexcr.2016.12.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022]
Abstract
Ischemic stroke, the second leading cause of death worldwide, leads to excessive glutamate release, over-activation of N-methyl-D-aspartate receptor (NMDAR), and massive influx of calcium (Ca2+), which may activate calpain and caspase-3, resulting in cellular damage and death. Memantine is an uncompetitive NMDAR antagonist with low-affinity/fast off-rate. We investigated the potential mechanisms through which memantine protects against ischemic stroke in vitro and in vivo. Middle cerebral artery occlusion-reperfusion (MCAO) was performed to establish an experimental model of ischemic stroke. The neuroprotective effects of memantine on ischemic rats were evaluated by neurological deficit scores and infarct volumes. The activities of calpain and caspase-3, and expression levels of microtubule-associated protein-2 (MAP2) and postsynaptic density-95 (PSD95) were determined by Western blotting. Additionally, Nissl staining and immunostaining were performed to examine brain damage, cell apoptosis, and neuronal loss induced by ischemia. Our results show that memantine could significantly prevent ischemic stroke-induced neurological deficits and brain infarct, and reduce ATP depletion-induced neuronal death. Moreover, memantine markedly suppressed the activation of the calpain-caspase-3 pathway and cell apoptosis, and consequently, attenuated brain damage and neuronal loss in MCAO rats. These results provide a molecular basis for the role of memantine in reducing neuronal apoptosis and preventing neuronal damage, suggesting that memantine may be a promising therapy for stroke patients.
Collapse
Affiliation(s)
- Bin Chen
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Guoxiang Wang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Weiwei Li
- Department of Anesthesiology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Weilin Liu
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Ruhui Lin
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jing Tao
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Min Jiang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Lidian Chen
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yun Wang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
42
|
Pannexin 1 Differentially Affects Neural Precursor Cell Maintenance in the Ventricular Zone and Peri-Infarct Cortex. J Neurosci 2016; 36:1203-10. [PMID: 26818508 DOI: 10.1523/jneurosci.0436-15.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED We demonstrated previously that Pannexin 1 (Panx1), an ion and metabolite channel, promotes the growth and proliferation of ventricular zone (VZ) neural precursor cells (NPCs) in vitro. To investigate its role in vivo, we used floxed Panx1 mice in combination with viruses to delete Panx1 in VZ NPCs and to track numbers of Panx1-null and Panx1-expressing VZ NPCs over time. Two days after virus injection, Panx1-null cells were less abundant than Panx1-expressing cells, suggesting that Panx1 is required for the maintenance of VZ NPCs. We also investigated the effect of Panx1 deletion in VZ NPCs after focal cortical stroke via photothrombosis. Panx1 is essential for maintaining elevated VZ NPC numbers after stroke. In contrast, Panx1-null NPCs were more abundant than Panx1-expressing NPCs in the peri-infarct cortex. Together, these findings suggest that Panx1 plays an important role in NPC maintenance in the VZ niche in the naive and stroke brain and could be a key target for improving NPC survival in the peri-infarct cortex. SIGNIFICANCE STATEMENT Here, we demonstrate that Pannexin 1 (Panx1) maintains a consistent population size of neural precursor cells in the ventricular zone, both in the healthy brain and in the context of stroke. In contrast, Panx1 appears to be detrimental to the survival of neural precursor cells that surround damaged cortical tissue in the stroke brain. This suggests that targeting Panx1 in the peri-infarct cortex, in combination with other therapies, could improve cell survival around the injury site.
Collapse
|
43
|
Toloue Pouya V, Hashemy SI, Shoeibi A, Nosrati Tirkani A, Tavallaie S, Zahedi Avval F, Soukhtanloo M, Mashkani BA, Hamidi Alamdari D. Serum Pro-Oxidant-Antioxidant Balance, Advanced Oxidized Protein Products (AOPP) and Protein Carbonyl in Patients With Stroke. RAZAVI INTERNATIONAL JOURNAL OF MEDICINE 2016. [DOI: 10.17795/rijm38203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
44
|
Zhao JJ, Song JQ, Pan SY, Wang K. Treatment with Isorhamnetin Protects the Brain Against Ischemic Injury in Mice. Neurochem Res 2016; 41:1939-48. [PMID: 27161367 DOI: 10.1007/s11064-016-1904-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/22/2016] [Accepted: 03/28/2016] [Indexed: 12/20/2022]
Abstract
Ischemic stroke is a major cause of morbidity and mortality, yet lacks effective neuroprotective treatments. The aim of this work was to investigate whether treatment with isorhamnetin protected the brain against ischemic injury in mice. Experimental stroke mice underwent the filament model of middle cerebral artery occlusion with reperfusion. Treatment with isorhamnetin or vehicle was initiated immediately at the onset of reperfusion. It was found that treatment of experimental stroke mice with isorhamnetin reduced infarct volume and caspase-3 activity (a biomarker of apoptosis), and improved neurological function recovery. Treatment of experimental stroke mice with isorhamnetin attenuated cerebral edema, improved blood-brain barrier function, and upregulated gene expression of tight junction proteins including occludin, ZO-1, and claudin-5. Treatment of experimental stroke mice with isorhamnetin activated Nrf2/HO-1, suppressed iNOS/NO, and led to reduced formation of MDA and 3-NT in ipsilateral cortex. In addition, treatment of experimental stroke mice with isorhamnetin suppressed activity of MPO (a biomarker of neutrophil infiltration) and reduced protein levels of IL-1β, IL-6, and TNF-α in ipsilateral cortex. Furthermore, it was found that treatment of experimental stroke mice with isorhamnetin reduced mRNA and protein expression of NMDA receptor subunit NR1 in ipsilateral cortex. In conclusion, treatment with isorhamnetin protected the brain against ischemic injury in mice. Isorhamnetin could thus be envisaged as a countermeasure for ischemic stroke but remains to be tested in humans.
Collapse
Affiliation(s)
- Jin-Jing Zhao
- Department of Neurology, 305th Hospital of the People's Liberation Army, Jia13 Wenjin Road, Beijing, 100017, China
| | - Jin-Qing Song
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Shu-Yi Pan
- Department of Hyperbaric Oxygen, Navy General Hospital of People's Liberation Army, Beijing, 100048, China
| | - Kai Wang
- Department of Neurology, 305th Hospital of the People's Liberation Army, Jia13 Wenjin Road, Beijing, 100017, China.
| |
Collapse
|
45
|
Forreider B, Pozivilko D, Kawaji Q, Geng X, Ding Y. Hibernation-like neuroprotection in stroke by attenuating brain metabolic dysfunction. Prog Neurobiol 2016; 157:174-187. [PMID: 26965388 DOI: 10.1016/j.pneurobio.2016.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/24/2022]
Abstract
Many mammalian species naturally undergo hibernation, a process that is associated with drastic changes in metabolism and systemic physiology. Their ability to retain an undamaged central nervous system during severely reduced cerebral blood flow has been studied for possible therapeutic application in human ischemic stroke. By inducing a less extreme 'hibernation-like' state, it has been hypothesized that similar neuroprotective effects reduce ischemia-mediated tissue damage in stroke patients. This manuscript includes reviews and evaluations of: (1) true hibernation, (2) hibernation-like state and its neuroprotective characteristics, (3) the preclinical and clinical methods for induction of artificial hibernation (i.e., therapeutic hypothermia, phenothiazine drugs, and ethanol), and (4) the mechanisms by which cerebral ischemia leads to tissue damage and how the above-mentioned induction methods function to inhibit those processes.
Collapse
Affiliation(s)
- Brian Forreider
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - David Pozivilko
- Michigan State University College of Human Medicine, East Lansing, MI, USA
| | - Qingwen Kawaji
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA; China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA; China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
46
|
Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat Neurosci 2016; 19:432-42. [PMID: 26854804 DOI: 10.1038/nn.4236] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/07/2016] [Indexed: 02/07/2023]
Abstract
Overactivation of neuronal N-methyl-D-aspartate receptors (NMDARs) causes excitotoxicity and is necessary for neuronal death. In the classical view, these ligand-gated Ca(2+)-permeable ionotropic receptors require co-agonists and membrane depolarization for activation. We report that NMDARs signal during ligand binding without activation of their ion conduction pore. Pharmacological pore block with MK-801, physiological pore block with Mg(2+) or a Ca(2+)-impermeable NMDAR variant prevented NMDAR currents, but did not block excitotoxic dendritic blebbing and secondary currents induced by exogenous NMDA. NMDARs, Src kinase and Panx1 form a signaling complex, and activation of Panx1 required phosphorylation at Y308. Disruption of this NMDAR-Src-Panx1 signaling complex in vitro or in vivo by administration of an interfering peptide either before or 2 h after ischemia or stroke was neuroprotective. Our observations provide insights into a new signaling modality of NMDARs that has broad-reaching implications for brain physiology and pathology.
Collapse
|
47
|
Kumar P, Kumar D, Jha SK, Jha NK, Ambasta RK. Ion Channels in Neurological Disorders. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:97-136. [DOI: 10.1016/bs.apcsb.2015.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Stoler O, Fleidervish IA. Functional implications of axon initial segment cytoskeletal disruption in stroke. Acta Pharmacol Sin 2016; 37:75-81. [PMID: 26687934 DOI: 10.1038/aps.2015.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Axon initial segment (AIS) is the proximal part of the axon, which is not covered with a myelin sheath and possesses a distinctive, specialized assembly of voltage-gated ion channels and associated proteins. AIS plays critical roles in synaptic integration and action potential generation in central neurons. Recent evidence shows that stroke causes rapid, irreversible calpain-mediated proteolysis of the AIS cytoskeleton of neurons surrounding the ischemic necrotic core. A better understanding of the molecular mechanisms underlying this "non-lethal" neuronal damage might provide new therapeutic strategies for improving stroke outcome. Here, we present a brief overview of the structure and function of the AIS. We then discuss possible mechanisms underlying stroke-induced AIS damage, including the roles of calpains and possible sources of Ca(2+) ions, which are necessary for the activation of calpains. Finally, we discuss the potential functional implications of the loss of the AIS cytoskeleton and ion channel clusters for neuronal excitability.
Collapse
|
49
|
Detrimental or beneficial: the role of TRPM2 in ischemia/reperfusion injury. Acta Pharmacol Sin 2016; 37:4-12. [PMID: 26725732 DOI: 10.1038/aps.2015.141] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/14/2015] [Indexed: 12/30/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is the main cause of tissue damage and dysfunction. I/R injury is characterized by Ca(2+) overload and production of reactive oxygen species (ROS), which play critical roles in the process of I/R injury to the brain, heart and kidney, but the underlying mechanisms are largely elusive. Recent evidence demonstrates that TRPM2, a Ca(2+)-permeable cationic channel and ROS sensor, is involved in I/R injury, but whether TRPM2 plays a protective or detrimental role in this process remains controversial. In this review, we discuss the recent progress in understanding the role of TRPM2 in reperfusion process after brain, heart and kidney ischemia and the potential of targeting TRPM2 for the development of therapeutic drugs to treat I/R injury.
Collapse
|
50
|
Sun MY, Izumi Y, Benz A, Zorumski CF, Mennerick S. Endogenous 24S-hydroxycholesterol modulates NMDAR-mediated function in hippocampal slices. J Neurophysiol 2015; 115:1263-72. [PMID: 26745248 DOI: 10.1152/jn.00890.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/18/2015] [Indexed: 11/22/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs), a major subtype of glutamate receptors mediating excitatory transmission throughout the central nervous system (CNS), play critical roles in governing brain function and cognition. Because NMDAR dysfunction contributes to the etiology of neurological and psychiatric disorders including stroke and schizophrenia, NMDAR modulators are potential drug candidates. Our group recently demonstrated that the major brain cholesterol metabolite, 24S-hydroxycholesterol (24S-HC), positively modulates NMDARs when exogenously administered. Here, we studied whether endogenous 24S-HC regulates NMDAR activity in hippocampal slices. In CYP46A1(-/-) (knockout; KO) slices where endogenous 24S-HC is greatly reduced, NMDAR tone, measured as NMDAR-to-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) excitatory postsynaptic current (EPSC) ratio, was reduced. This difference translated into more NMDAR-driven spiking in wild-type (WT) slices compared with KO slices. Application of SGE-301, a 24S-HC analog, had comparable potentiating effects on NMDAR EPSCs in both WT and KO slices, suggesting that endogenous 24S-HC does not saturate its NMDAR modulatory site in ex vivo slices. KO slices did not differ from WT slices in either spontaneous neurotransmission or in neuronal intrinsic excitability, and exhibited LTP indistinguishable from WT slices. However, KO slices exhibited higher resistance to persistent NMDAR-dependent depression of synaptic transmission induced by oxygen-glucose deprivation (OGD), an effect restored by SGE-301. Together, our results suggest that loss of positive NMDAR tone does not elicit compensatory changes in excitability or transmission, but it protects transmission against NMDAR-mediated dysfunction. We expect that manipulating this endogenous NMDAR modulator may offer new treatment strategies for neuropsychiatric dysfunction.
Collapse
Affiliation(s)
- Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Ann Benz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|