1
|
Henein M, Russo F, Sentell ZT, Goupil R, Kitzler TM. Phenotypic Discordance among Siblings with Autosomal Recessive Polycystic Kidney Disease: Case Report and Review of the Literature. Nephron Clin Pract 2024:1-9. [PMID: 39467534 DOI: 10.1159/000540741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/02/2024] [Indexed: 10/30/2024] Open
Abstract
Missense variants in the PKHD1 gene are associated with the full spectrum of autosomal recessive polycystic kidney disease severity and exhibit variable expressivity. The study of clinical expressivity is limited by the extensive allelic heterogeneity within the PKHD1 gene, which encodes a 4074-amino-acid protein. We report the case of adult siblings with biallelic missense PKHD1 variants, c.4870C>T (p.Arg1624Trp) and c.8206T>G (p.Trp2736Gly), who presented with discordant phenotypes. Patient A developed progressive chronic kidney disease and Caroli syndrome in childhood requiring combined liver and kidney transplantation, while patient B remains minimally affected in the fourth decade of life with normal kidney function and signs of medullary sponge kidney on imaging. We review previously reported cases of phenotypic discordance among siblings and suggest that genotypes composed of at least one hypomorphic missense variant are more likely to lead to phenotypic discordance.
Collapse
Affiliation(s)
- Marc Henein
- Division of Medical Genetics, McGill University Health Centre, Montreal, Québec, Canada,
| | - Felicia Russo
- Division of Medical Genetics, McGill University Health Centre, Montreal, Québec, Canada
| | - Zachary T Sentell
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Rémi Goupil
- Department of Nephrology, Hôpital du Sacré-Cœur de Montréal, Montreal, Québec, Canada
| | - Thomas M Kitzler
- Division of Medical Genetics, McGill University Health Centre, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
2
|
Taniguchi Y, Miura K, Shira Y, Fujimaru T, Sohara E, Yamaguchi Y, Hattori M. Primary Cilia Elongation in Early-Onset Polycystic Kidney Disease with 2 Hypomorphic PKD1 Alleles: A Case Report. Kidney Med 2024; 6:100857. [PMID: 39105070 PMCID: PMC11298903 DOI: 10.1016/j.xkme.2024.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
Recent studies have described several children with very early-onset polycystic kidney disease (PKD) that mimicked autosomal recessive polycystic kidney disease because of 2 hypomorphic PKD1 gene variants. However, no reports have described pathological changes in the primary cilia in these cases. We analyzed the primary cilia in the kidney tubules of an early elementary school child who had very early-onset PKD and a history of large, echogenic kidneys in utero. There was no family history of autosomal dominant PKD. The patient developed kidney failure and received a living-donor kidney transplant from his father. Genetic analysis revealed compound heterozygous variants in the PKD1 gene: c.3876C>A (p. Phe1292Leu) and c.5957C>T (p. Thr1986Met). These variants were likely pathogenic based on in silico analysis. The absence of kidney cysts in the parents suggested that these variants were hypomorphic alleles. Pathological examination of the patient's excised kidney showed prominent dilatation of the proximal and distal tubules. Immunofluorescence staining for α-tubulin showed pronounced elongation of the primary cilia. These findings suggest that the hypomorphic PKD1 variants expressed in this patient with very early-onset PKD were pathogenic.
Collapse
Affiliation(s)
- Yohei Taniguchi
- Department of Pediatric Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
- Department of Pediatrics, Hyogo Medical University, Hyogo, Japan
| | - Kenichiro Miura
- Department of Pediatric Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yoko Shira
- Department of Pediatric Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Takuya Fujimaru
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Motoshi Hattori
- Department of Pediatric Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
3
|
Bannell TAK, Cockburn JJB. The molecular structure and function of fibrocystin, the key gene product implicated in autosomal recessive polycystic kidney disease (ARPKD). Ann Hum Genet 2024; 88:58-75. [PMID: 37905714 DOI: 10.1111/ahg.12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Autosomal recessive polycystic kidney disease is an early onset inherited hepatorenal disorder affecting around 1 in 20,000 births with no approved specific therapies. The disease is almost always caused by variations in the polycystic kidney and hepatic disease 1 gene, which encodes fibrocystin (FC), a very large, single-pass transmembrane glycoprotein found in primary cilia, urine and urinary exosomes. By comparison to proteins involved in autosomal dominant PKD, our structural and molecular understanding of FC has lagged far behind such that there are no published experimentally determined structures of any part of the protein. Bioinformatics analyses predict that the ectodomain contains a long chain of immunoglobulin-like plexin-transcription factor domains, a protective antigen 14 domain, a tandem G8-TMEM2 homology region and a sperm protein, enterokinase and agrin domain. Here we review current knowledge on the molecular function of the protein from a structural perspective.
Collapse
Affiliation(s)
- Travis A K Bannell
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joseph J B Cockburn
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Burgmaier K, Broekaert IJ, Liebau MC. Autosomal Recessive Polycystic Kidney Disease: Diagnosis, Prognosis, and Management. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:468-476. [PMID: 38097335 DOI: 10.1053/j.akdh.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 12/18/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is the rare and usually early-onset form of polycystic kidney disease with a typical clinical presentation of enlarged cystic kidneys and liver involvement with congenital hepatic fibrosis or Caroli syndrome. ARPKD remains a clinical challenge in pediatrics, frequently requiring continuous and long-term multidisciplinary treatment. In this review, we aim to give an overview over clinical aspects of ARPKD and recent developments in our understanding of disease progression, risk patterns, and treatment of ARPKD.
Collapse
Affiliation(s)
- Kathrin Burgmaier
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany; Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Ilse J Broekaert
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Max C Liebau
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany; Center for Family Health, Center for Rare Diseases and Center for Molecular Medicine Cologne, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Botero-Calderon L, Lawrence A, O’Toole N, Guay-Woodford LM. Fetal renal cystic disease and post-natal follow up-a single center experience. Front Pediatr 2023; 11:1243504. [PMID: 37635794 PMCID: PMC10449118 DOI: 10.3389/fped.2023.1243504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Prenatal sonographic evidence of large, echogenic, or cystic kidneys may indicate any one of a diverse set of disorders including renal ciliopathies, congenital anomalies of the kidney and urinary tract (CAKUT), or multisystem syndromic disorders. Systematic transition planning for these infants from in utero detection to post-natal nephrology management remains to be established. Aim of the work We sought to evaluate the presentation and transition planning for infants identified in utero with bilateral renal cystic disease. Methods Our retrospective observational study identified 72 pregnancies with bilateral renal cystic disease in a single center from 2012 to 2022; 13 of which had a confirmed renal ciliopathy disorder. Clinical and imaging data, genetic test results, and documentation of postnatal follow-up were collected and compared. Results In our suspected renal ciliopathy cohort (n = 17), autosomal recessive polycystic disease (ARPKD) was the most common diagnosis (n = 4), followed by Bardet-Biedl syndrome (BBS, n = 3), autosomal dominant polycystic disease (ADPKD, n = 2), HNF1B-related disease (n = 2), and Meckel-Gruber syndrome (MKS, n = 2). Four cases were not genetically resolved. Anhydramnios was observed primarily in fetuses with ARPKD (n = 3). Polydactyly (n = 3) was detected only in patients with BBS and MKS, cardiac defects (n = 6) were identified in fetuses with ARPKD (n = 3), MKS (n = 2), and BBS (n = 1), and abnormalities of the CNS (n = 5) were observed in patients with ARPKD (n = 1), MKS (n = 2), and BBS (n = 3). In general, documentation of transition planning was incomplete, with post-natal nephrology management plans established primarily for infants with renal ciliopathies (n = 11/13; 85%). Conclusion Prenatal sonographic detection of echogenic kidneys should raise suspicion for a broad range of disorders, including renal ciliopathies and CAKUT. Multicenter collaboration will be required to standardize the implementation of transition guidelines for comprehensive nephrology management of infants identified in utero with enlarged, echogenic kidneys.
Collapse
Affiliation(s)
| | - Anne Lawrence
- Prenatal Pediatrics Institute, Children’s National Hospital, Washington, DC, United States
| | - Natalie O’Toole
- Center for Translational Research, Children’s National Research Institute, Washington, DC, United States
| | - Lisa M. Guay-Woodford
- Division of Nephrology, Children’s National Hospital, Washington, DC, United States
- Center for Translational Research, Children’s National Research Institute, Washington, DC, United States
| |
Collapse
|
6
|
Tutal O, Gulhan B, Atayar E, Yuksel S, Ozcakar ZB, Soylemezoglu O, Saygili S, Caliskan S, Inozu M, Baskin E, Duzova A, Hayran M, Topaloglu R, Ozaltin F. The Clinical and Mutational Spectrum of 69 Turkish Children with Autosomal Recessive or Autosomal Dominant Polycystic Kidney Disease: A Multicenter Retrospective Cohort Study. Nephron Clin Pract 2023; 148:319-332. [PMID: 36657418 DOI: 10.1159/000528258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/11/2022] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Autosomal recessive polycystic kidney disease (ARPKD) is associated with pathogenic variants in the PKHD1 gene. Autosomal dominant polycystic kidney disease (ADPKD) is mainly associated with pathogenic variants in PKD1 or PKD2. The present study aimed to identify the clinical and genetic features of Turkish pediatric ARPKD and ADPKD patients. METHODS This multicenter, retrospective cohort study included 21 genetically confirmed ARPKD and 48 genetically confirmed ADPKD patients from 7 pediatric nephrology centers. Demographic features, clinical, and laboratory findings at presentation and during 12-month intervals were recorded. RESULTS The median age of the ARPKD patients at diagnosis was lower than the median age of ADPKD patients (10.5 months [range: 0-15 years] vs. 5.2 years [range: 0.1-16 years], respectively, [p = 0.014]). At the time of diagnosis, the median eGFR in the ARPKD patients was lower compared to that of ADPKD patients (81.6 [IQR: 28.7-110.5] mL/min/1.73 m2 and 118 [IQR: 91.2-139.8] mL/min/1.73 m2, respectively, [p = 0.0001]). In total, 11 (52.4%) ARPKD patients had malnutrition; 7 (33.3%) patients had growth retardation at presentation; and 4 (19%) patients had both malnutrition and growth retardation. At diagnosis, 8 (16.7%) of the ADPKD patients had malnutrition, and 5 (10.4%) patients had growth retardation. The malnutrition, growth retardation, and hypertension rates at diagnosis were higher in the ARPKD patients than the ADPKD patients (p = 0.002, p = 0.02, and p = 0.0001, respectively). ARPKD patients with malnutrition and growth retardation had worse renal survival compared to the patients without (p = 0.03 and p = 0.01). Similarly, ADPKD patients with malnutrition had worse renal survival compared to the patients without (p = 0.002). ARPKD patients with truncating variants had poorer 3- and 6-year renal outcome than those carrying non-truncating variants (p = 0.017). CONCLUSION Based on renal survival analysis, type of genetic variant, growth retardation, and/or malnutrition at presentation were observed to be factors associated with progression to chronic kidney disease (CKD). Differentiation of ARPKD and ADPKD, and identification of the predictors of the development of CKD are vital for optimal management of patients with ARPKD or ADPKD.
Collapse
Affiliation(s)
- Ozum Tutal
- Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Bora Gulhan
- Division of Pediatric Nephrology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Emine Atayar
- Nephrogenetics Laboratory, Division of Pediatric Nephrology, Department of Pediatrics Hacettepe University, Ankara, Turkey
| | - Selcuk Yuksel
- Division of Pediatric Nephrology, Department of Pediatrics, Pamukkale University, Denizli, Turkey
| | - Z Birsin Ozcakar
- Division of Pediatric Nephrology, Department of Pediatrics, Ankara University, Ankara, Turkey
| | - Oguz Soylemezoglu
- Division of Pediatric Nephrology, Department of Pediatrics, Gazi University, Ankara, Turkey
| | - Seha Saygili
- Division of Pediatric Nephrology, Department of Pediatrics, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Salim Caliskan
- Division of Pediatric Nephrology, Department of Pediatrics, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Mihriban Inozu
- Department of Pediatric Nephrology, Ankara City Hospital, Bilkent, Ankara, Turkey
| | - Esra Baskin
- Division of Pediatric Nephrology, Department of Pediatrics, Baskent University, Ankara, Turkey
| | - Ali Duzova
- Division of Pediatric Nephrology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Mutlu Hayran
- Department of Preventive Oncology, Hacettepe University, Ankara, Turkey
| | - Rezan Topaloglu
- Division of Pediatric Nephrology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Fatih Ozaltin
- Division of Pediatric Nephrology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
- Nephrogenetics Laboratory, Division of Pediatric Nephrology, Department of Pediatrics Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Goggolidou P, Richards T. The genetics of Autosomal Recessive Polycystic Kidney Disease (ARPKD). Biochim Biophys Acta Mol Basis Dis 2022; 1868:166348. [PMID: 35032595 DOI: 10.1016/j.bbadis.2022.166348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/27/2021] [Accepted: 01/06/2022] [Indexed: 12/21/2022]
Abstract
ARPKD is a genetically inherited kidney disease that manifests by bilateral enlargement of cystic kidneys and liver fibrosis. It shows a range of severity, with 30% of individuals dying early on and the majority having good prognosis if they survive the first year of life. The reasons for this variability remain unclear. Two genes have been shown to cause ARPKD when mutated, PKHD1, mutations in which lead to most of ARPKD cases and DZIP1L, which is associated with moderate ARPKD. This mini review will explore the genetics of ARPKD and discuss potential genetic modifiers and phenocopies that could affect diagnosis.
Collapse
Affiliation(s)
- Paraskevi Goggolidou
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Taylor Richards
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| |
Collapse
|
8
|
Jordan P, Dorval G, Arrondel C, Morinière V, Tournant C, Audrezet MP, Michel-Calemard L, Putoux A, Lesca G, Labalme A, Whalen S, Loeuillet L, Martinovic J, Attie-Bitach T, Bessières B, Schaefer E, Scheidecker S, Lambert L, Beneteau C, Patat O, Boute-Benejean O, Molin A, Guimiot F, Fontanarosa N, Nizon M, Lefebvre M, Jeanpierre C, Saunier S, Heidet L. Targeted next-generation sequencing in a large series of fetuses with severe renal diseases. Hum Mutat 2022; 43:347-361. [PMID: 35005812 DOI: 10.1002/humu.24324] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 11/07/2022]
Abstract
We report the screening of a large panel of genes in a series of 100 fetuses (98 families) affected with severe renal defects. Causative variants were identified in 22% of cases, greatly improving genetic counseling. The percentage of variants explaining the phenotype was different according to the type of phenotype. The highest diagnostic yield was found in cases affected with the ciliopathy-like phenotype (11/15 families and, in addition, a single heterozygous or a homozygous Class 3 variant in PKHD1 in three unrelated cases with autosomal recessive polycystic kidney disease). The lowest diagnostic yield was observed in cases with congenital anomalies of the kidney and urinary tract (9/78 families and, in addition, Class 3 variants in GREB1L in three unrelated cases with bilateral renal agenesis). Inheritance was autosomal recessive in nine genes (PKHD1, NPHP3, CEP290, TMEM67, DNAJB11, FRAS1, ACE, AGT, and AGTR1), and autosomal dominant in six genes (PKD1, PKD2, PAX2, EYA1, BICC1, and MYOCD). Finally, we developed an original approach of next-generation sequencing targeted RNA sequencing using the custom capture panel used for the sequencing of DNA, to validate one MYOCD heterozygous splicing variant identified in two male siblings with megabladder and inherited from their healthy mother.
Collapse
Affiliation(s)
- Penelope Jordan
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Guillaume Dorval
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France.,APHP Service de Néphrologie Pédiatrique, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Christelle Arrondel
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Vincent Morinière
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Carole Tournant
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Marie-Pierre Audrezet
- Service de Génétique moléculaire, Génétique, Génomique et Biotechnologies, UMR 1078, Hôpital Universitaire de Brest, Brest, France
| | - Laurence Michel-Calemard
- Service Biochimie Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Groupement Hospitalier Est, CBPE, Bron, France
| | - Audrey Putoux
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Gaethan Lesca
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Audrey Labalme
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Sandra Whalen
- APHP UF de Génétique Clinique, Centre de Référence des Anomalies du Développement et Syndromes Malformatifs, APHP, Hôpital Armand Trousseau, ERN ITHACA, Sorbonne Université, Paris, France
| | - Laurence Loeuillet
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Jelena Martinovic
- APHP Service de Fœtopathologie, Hôpital Universitaire Antoine Béclère, Clamart, France
| | - Tania Attie-Bitach
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U 1163, Institut Imagine, Université de Paris, Paris, France
| | - Bettina Bessières
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U 1163, Institut Imagine, Université de Paris, Paris, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sophie Scheidecker
- Service de Génétique Médicale, Institut de Génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laetitia Lambert
- Service de Génétique Médicale, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Claire Beneteau
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Olivier Patat
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Odile Boute-Benejean
- Service de Génétique Médicale, Hôpital Jeanne de Flandre, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Arnaud Molin
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Fabien Guimiot
- APHP Service d'Embryo-Fœtopathologie, Hôpital Universitaire Robert Debré, Paris, France
| | | | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, L'institut Du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Mathilde Lefebvre
- APHP Service de Pathologie fœtale, Hôpital Universitaire Armand Trousseau, Paris, France
| | - Cécile Jeanpierre
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Sophie Saunier
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Laurence Heidet
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France.,APHP Service de Néphrologie Pédiatrique, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| |
Collapse
|
9
|
|
10
|
Heidari M, Gharshasbi H, Isazadeh A, Soleyman-Nejad M, Taskhiri MH, Shapouri J, Bolhassani M, Sadighi N, Heidari M. Identification of Two Novel Mutations in PKHD1 Gene from Two Families with Polycystic Kidney Disease by Whole Exome Sequencing. Curr Genomics 2021; 22:232-236. [PMID: 34975292 PMCID: PMC8640847 DOI: 10.2174/1389202922666210219111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022] Open
Abstract
Background Polycystic kidney disease (PKD) is an autosomal recessive disorder resulting from mutations in the PKHD1 gene on chromosome 6 (6p12), a large gene spanning 470 kb of genomic DNA. Objective The aim of the present study was to report newly identified mutations in the PKHD1 gene in two Iranian families with PKD. Materials and Methods Genetic alterations of a 3-month-old boy and a 27-year-old girl with PKD were evaluated using whole-exome sequencing. The PCR direct sequencing was performed to analyse the co-segregation of the variants with the disease in the family. Finally, the molecular function of the identified novel mutations was evaluated by in silico study. Results In the 3 month-old boy, a novel homozygous frameshift mutation was detected in the PKHD1 gene, which can cause PKD. Moreover, we identified three novel heterozygous missense mutations in ATIC, VPS13B, and TP53RK genes. In the 27-year-old woman, with two recurrent abortions history and two infant mortalities at early weeks due to metabolic and/or renal disease, we detected a novel missense mutation on PKHD1 gene and a novel mutation in ETFDH gene. Conclusion In general, we have identified two novel mutations in the PKHD1 gene. These molecular findings can help accurately correlate genotype and phenotype in families with such disease in order to reduce patient births through preoperative genetic diagnosis or better management of disorders.
Collapse
Affiliation(s)
- Masoud Heidari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hamid Gharshasbi
- Department of Genetics, Tabriz Branch Islamic Azad University, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Javad Shapouri
- Pediatric Clinical Research and Development Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Nahid Sadighi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mansour Heidari
- Department of Medical Genetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
11
|
de Fallois J, Schönauer R, Münch J, Nagel M, Popp B, Halbritter J. Challenging Disease Ontology by Instances of Atypical PKHD1 and PKD1 Genetics. Front Genet 2021; 12:682565. [PMID: 34249099 PMCID: PMC8267867 DOI: 10.3389/fgene.2021.682565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 12/03/2022] Open
Abstract
Background Autosomal polycystic kidney disease is distinguished into dominant (ADPKD) and recessive (ARPKD) inheritance usually caused by either monoallelic (PKD1/PKD2) or biallelic (PKHD1) germline variation. Clinical presentations are genotype-dependent ranging from fetal demise to mild chronic kidney disease (CKD) in adults. Additionally, exemptions from dominant and recessive inheritance have been reported in both disorders resulting in respective phenocopies. Here, we comparatively report three young adults with microcystic-hyperechogenic kidney morphology based on unexpected genetic alterations beyond typical inheritance. Methods Next-generation sequencing (NGS)-based gene panel analysis and multiplex ligation-dependent probe amplification (MLPA) of PKD-associated genes, familial segregation analysis, and reverse phenotyping. Results Three unrelated individuals presented in late adolescence for differential diagnosis of incidental microcystic-hyperechogenic kidneys with preserved kidney and liver function. Upon genetic analysis, we identified a homozygous hypomorphic PKHD1 missense variant causing pseudodominant inheritance in a family, a large monoallelic PKDH1-deletion with atypical transmission, and biallelic PKD1 missense hypomorphs with recessive inheritance. Conclusion By this report, we illustrate clinical presentations associated with atypical PKD-gene alterations beyond traditional modes of inheritance. Large monoallelic PKHD1-alterations as well as biallelic hypomorphs of both PKD1 and PKHD1 may lead to mild CKD in the absence of prominent macrocyst formation and functional liver impairment. The long-term renal prognosis throughout life, however, remains undetermined. Increased detection of atypical inheritance challenges our current thinking of disease ontology not only in PKD but also in Mendelian disorders in general.
Collapse
Affiliation(s)
- Jonathan de Fallois
- Department of Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Ria Schönauer
- Department of Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Johannes Münch
- Department of Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Mato Nagel
- Center for Nephrology and Metabolic Disorders, Weißwasser, Germany
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jan Halbritter
- Department of Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
12
|
Mansilla MA, Sompallae RR, Nishimura CJ, Kwitek AE, Kimble MJ, Freese ME, Campbell CA, Smith RJ, Thomas CP. Targeted broad-based genetic testing by next-generation sequencing informs diagnosis and facilitates management in patients with kidney diseases. Nephrol Dial Transplant 2021; 36:295-305. [PMID: 31738409 PMCID: PMC7834596 DOI: 10.1093/ndt/gfz173] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Background The clinical diagnosis of genetic renal diseases may be limited by the overlapping spectrum of manifestations between diseases or by the advancement of disease where clues to the original process are absent. The objective of this study was to determine whether genetic testing informs diagnosis and facilitates management of kidney disease patients. Methods We developed a comprehensive genetic testing panel (KidneySeq) to evaluate patients with various phenotypes including cystic diseases, congenital anomalies of the kidney and urinary tract (CAKUT), tubulointerstitial diseases, transport disorders and glomerular diseases. We evaluated this panel in 127 consecutive patients ranging in age from newborns to 81 years who had samples sent in for genetic testing. Results The performance of the sequencing pipeline for single-nucleotide variants was validated using CEPH (Centre de’Etude du Polymorphism) controls and for indels using Genome-in-a-Bottle. To test the reliability of the copy number variant (CNV) analysis, positive samples were re-sequenced and analyzed. For patient samples, a multidisciplinary review board interpreted genetic results in the context of clinical data. A genetic diagnosis was made in 54 (43%) patients and ranged from 54% for CAKUT, 53% for ciliopathies/tubulointerstitial diseases, 45% for transport disorders to 33% for glomerulopathies. Pathogenic and likely pathogenic variants included 46% missense, 11% nonsense, 6% splice site variants, 23% insertion–deletions and 14% CNVs. In 13 cases, the genetic result changed the clinical diagnosis. Conclusion Broad genetic testing should be considered in the evaluation of renal patients as it complements other tests and provides insight into the underlying disease and its management.
Collapse
Affiliation(s)
- M Adela Mansilla
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | | | - Carla J Nishimura
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Anne E Kwitek
- Physiology, Medical College of Wisconsin, Iowa City, IA, USA
| | - Mycah J Kimble
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | | | - Colleen A Campbell
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Richard J Smith
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA.,Internal Medicine, University of Iowa, Iowa City, IA, USA.,Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Christie P Thomas
- Internal Medicine, University of Iowa, Iowa City, IA, USA.,Pediatrics, University of Iowa, Iowa City, IA, USA.,Veterans Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
13
|
Burgmaier K, Brinker L, Erger F, Beck BB, Benz MR, Bergmann C, Boyer O, Collard L, Dafinger C, Fila M, Kowalewska C, Lange-Sperandio B, Massella L, Mastrangelo A, Mekahli D, Miklaszewska M, Ortiz-Bruechle N, Patzer L, Prikhodina L, Ranchin B, Ranguelov N, Schild R, Seeman T, Sever L, Sikora P, Szczepanska M, Teixeira A, Thumfart J, Uetz B, Weber LT, Wühl E, Zerres K, Dötsch J, Schaefer F, Liebau MC. Refining genotype-phenotype correlations in 304 patients with autosomal recessive polycystic kidney disease and PKHD1 gene variants. Kidney Int 2021; 100:650-659. [PMID: 33940108 DOI: 10.1016/j.kint.2021.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a severe disease of early childhood that is clinically characterized by fibrocystic changes of the kidneys and the liver. The main cause of ARPKD are variants in the PKHD1 gene encoding the large transmembrane protein fibrocystin. The mechanisms underlying the observed clinical heterogeneity in ARPKD remain incompletely understood, partly due to the fact that genotype-phenotype correlations have been limited to the association of biallelic null variants in PKHD1 with the most severe phenotypes. In this observational study we analyzed a deep clinical dataset of 304 patients with ARPKD from two independent cohorts and identified novel genotype-phenotype correlations during childhood and adolescence. Biallelic null variants frequently show severe courses. Additionally, our data suggest that the affected region in PKHD1 is important in determining the phenotype. Patients with two missense variants affecting amino acids 709-1837 of fibrocystin or a missense variant in this region and a null variant less frequently developed chronic kidney failure, and patients with missense variants affecting amino acids 1838-2624 showed better hepatic outcome. Variants affecting amino acids 2625-4074 of fibrocystin were associated with poorer hepatic outcome. Thus, our data expand the understanding of genotype-phenotype correlations in pediatric ARPKD patients and can lay the foundation for more precise and personalized counselling and treatment approaches.
Collapse
Affiliation(s)
- Kathrin Burgmaier
- Department of Pediatrics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany; Center for Rare Diseases, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany
| | - Leonie Brinker
- Department of Pediatrics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Florian Erger
- Center for Rare Diseases, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany; Institute of Human Genetics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Bodo B Beck
- Center for Rare Diseases, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany; Institute of Human Genetics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | | | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany; Renal Division, Department of Medicine, University Freiburg Medical Center, Freiburg, Germany
| | - Olivia Boyer
- Department of Pediatric Nephrology and Kidney Transplantation, Necker Hospital, APHP, Paris University, Paris, France
| | - Laure Collard
- Reference centre pediatric nephrology, Clinique de l'Espérance, Montegnee, Belgium
| | - Claudia Dafinger
- Department of Pediatrics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Marc Fila
- Pediatric Nephrology Unit, CHU Arnaud de Villeneuve-Université de Montpellier, Montpellier, France
| | - Claudia Kowalewska
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Bärbel Lange-Sperandio
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Laura Massella
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital - IRCCS, Rome, Italy
| | - Antonio Mastrangelo
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Djalila Mekahli
- PKD Research Group, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Monika Miklaszewska
- Department of Pediatric Nephrology and Hypertension, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | | | - Ludwig Patzer
- Department of Pediatrics, Children's Hospital St. Elisabeth and St. Barbara, Halle (Saale), Germany
| | - Larisa Prikhodina
- Department of Inherited and Acquired Kidney Diseases, Research Clinical Institute for Pediatrics n.a. acad. Y. E. Veltishev, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Bruno Ranchin
- Pediatric Nephrology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Centre de référence maladies rénales rares, Bron, France
| | - Nadejda Ranguelov
- Department of Pediatrics, Université Catholique de Louvain Medical School, Saint-Luc Academic Hospital, Brussels, Belgium
| | - Raphael Schild
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Tomas Seeman
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany; Department of Pediatrics, University Hospital Motol, 2nd Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | - Lale Sever
- Department of Pediatric Nephrology, Cerrahpaşa School of Medicine, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Maria Szczepanska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Ana Teixeira
- Centro Materno-Infantil do Norte, Centro Hospitalar do Porto, Porto, Portugal
| | - Julia Thumfart
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Barbara Uetz
- KfH Center of Pediatric Nephrology, Children's Hospital Munich Schwabing, Munich, Germany
| | - Lutz Thorsten Weber
- Department of Pediatrics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany; Center for Rare Diseases, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany
| | - Elke Wühl
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus Zerres
- Institute of Human Genetics, RWTH University Hospital Aachen, Aachen, Germany
| | - Jörg Dötsch
- Department of Pediatrics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany; Center for Rare Diseases, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Max Christoph Liebau
- Department of Pediatrics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany; Center for Rare Diseases, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Panfoli I, Granata S, Candiano G, Verlato A, Lombardi G, Bruschi M, Zaza G. Analysis of urinary exosomes applications for rare kidney disorders. Expert Rev Proteomics 2021; 17:735-749. [PMID: 33395324 DOI: 10.1080/14789450.2020.1866993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Exosomes are nanovesicles that play important functions in a variety of physiological and pathological conditions. They are powerful cell-to-cell communication tool thanks to the protein, mRNA, miRNA, and lipid cargoes they carry. They are also emerging as valuable diagnostic and prognostic biomarker sources. Urinary exosomes carry information from all the cells of the urinary tract, downstream of the podocyte. Rare kidney diseases are a subset of an inherited diseases whose genetic diagnosis can be unclear, and presentation can vary due to genetic, epigenetic, and environmental factors. Areas covered: In this review, we focus on a group of rare and often neglected kidney diseases, for which we have sufficient available literature data on urinary exosomes. The analysis of their content can help to comprehend pathological mechanisms and to identify biomarkers for diagnosis, prognosis, and therapeutic targets. Expert opinion: The foreseeable large-scale application of system biology approach to the profiling of exosomal proteins as a source of renal disease biomarkers will be also useful to stratify patients with rare kidney diseases whose penetrance, phenotypic presentation, and age of onset vary sensibly. This can ameliorate the clinical management.
Collapse
Affiliation(s)
- Isabella Panfoli
- Department of Pharmacy-DIFAR, University of Genoa , Genoa, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona , Verona, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini , Genoa, Italy
| | - Alberto Verlato
- Renal Unit, Department of Medicine, University-Hospital of Verona , Verona, Italy
| | - Gianmarco Lombardi
- Renal Unit, Department of Medicine, University-Hospital of Verona , Verona, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini , Genoa, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona , Verona, Italy
| |
Collapse
|
15
|
Liebau MC. Early clinical management of autosomal recessive polycystic kidney disease. Pediatr Nephrol 2021; 36:3561-3570. [PMID: 33594464 PMCID: PMC8497312 DOI: 10.1007/s00467-021-04970-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/06/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a rare but highly relevant disorder in pediatric nephrology. This genetic disease is mainly caused by variants in the PKHD1 gene and is characterized by fibrocystic hepatorenal phenotypes with major clinical variability. ARPKD frequently presents perinatally, and the management of perinatal and early disease symptoms may be challenging. This review discusses aspects of early manifestations in ARPKD and its clincial management with a special focus on kidney disease.
Collapse
Affiliation(s)
- Max Christoph Liebau
- Department of Pediatrics and Center for Molecular Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
16
|
Jordan P, Arrondel C, Bessières B, Tessier A, Attié-Bitach T, Guterman S, Morinière V, Antignac C, Saunier S, Gubler MC, Heidet L. Bi-allelic pathogenic variations in DNAJB11 cause Ivemark II syndrome, a renal-hepatic-pancreatic dysplasia. Kidney Int 2020; 99:405-409. [PMID: 33129895 DOI: 10.1016/j.kint.2020.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022]
Abstract
DNAJB11 (DnaJ Heat Shock Protein Family (Hsp40) Member B11) heterozygous loss of function variations have been reported in autosomal dominant cystic kidney disease with extensive fibrosis, associated with maturation and trafficking defect involving both the autosomal dominant polycystic kidney disease protein polycystin-1 and the autosomal dominant tubulointerstitial kidney disease protein uromodulin. Here we show that biallelic pathogenic variations in DNAJB11 lead to a severe fetal disease including enlarged cystic kidneys, dilation and proliferation of pancreatic duct cells, and liver ductal plate malformation, an association known as Ivemark II syndrome. Cysts of the kidney were developed exclusively from uromodulin negative tubular segments. In addition, tubular cells from the affected kidneys had elongated primary cilia, a finding previously reported in ciliopathies. Thus, our data show that the recessive disease associated with DNAJB11 variations is a ciliopathy rather than a disease of the autosomal dominant tubulointerstitial kidney disease spectrum, and prompt screening of DNAJB11 in fetal hyperechogenic/cystic kidneys.
Collapse
Affiliation(s)
- Penelope Jordan
- APHP, Génétique moléculaire, Hôpital universitaire Necker-Enfants malades, Paris, France
| | - Christelle Arrondel
- Laboratoire des Maladies rénales héréditaires, Institut Imagine, Inserm U1163, Université de Paris, Paris, France
| | - Bettina Bessières
- APHP, Embryofœtopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital universitaire Necker-Enfants malades, Paris, France
| | - Aude Tessier
- APHP, Embryofœtopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital universitaire Necker-Enfants malades, Paris, France
| | - Tania Attié-Bitach
- APHP, Embryofœtopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital universitaire Necker-Enfants malades, Paris, France; Université de Paris, Imagine Institute, Paris, France
| | - Sarah Guterman
- APHP, Obstétrique et Médecine fœtale, Hôpital universitaire Necker-Enfants malades, Paris, France
| | - Vincent Morinière
- APHP, Génétique moléculaire, Hôpital universitaire Necker-Enfants malades, Paris, France
| | - Corinne Antignac
- APHP, Génétique moléculaire, Hôpital universitaire Necker-Enfants malades, Paris, France; Laboratoire des Maladies rénales héréditaires, Institut Imagine, Inserm U1163, Université de Paris, Paris, France; Université de Paris, Imagine Institute, Paris, France
| | - Sophie Saunier
- Laboratoire des Maladies rénales héréditaires, Institut Imagine, Inserm U1163, Université de Paris, Paris, France
| | - Marie-Claire Gubler
- Laboratoire des Maladies rénales héréditaires, Institut Imagine, Inserm U1163, Université de Paris, Paris, France
| | - Laurence Heidet
- Laboratoire des Maladies rénales héréditaires, Institut Imagine, Inserm U1163, Université de Paris, Paris, France; APHP, Néphrologie pédiatrique, Centre de Référence MARHEA, Hôpital universitaire Necker-Enfants malades, Paris, France.
| |
Collapse
|
17
|
Al Alawi I, Molinari E, Al Salmi I, Al Rahbi F, Al Mawali A, Sayer JA. Clinical and genetic characteristics of autosomal recessive polycystic kidney disease in Oman. BMC Nephrol 2020; 21:347. [PMID: 32799815 PMCID: PMC7429752 DOI: 10.1186/s12882-020-02013-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND There is a high prevalence of rare genetic disorders in the Middle East, and their study provides unique clinical and genetic insights. Autosomal recessive polycystic kidney disease (ARPKD) is one of the leading causes of kidney and liver-associated morbidity and mortality in Oman. We describe the clinical and genetic profile of cohort of ARPKD patients. METHODS We studied patients with a clinical diagnosis of ARPKD (n = 40) and their relatives (parents (n = 24) and unaffected siblings (n = 10)) from 32 apparently unrelated families, who were referred to the National Genetic Centre in Oman between January 2015 and December 2018. Genetic analysis of PKHD1 if not previously known was performed using targeted exon PCR of known disease alleles and Sanger sequencing. RESULTS A clinical diagnosis of ARPKD was made prenatally in 8 patients, 21 were diagnosed during infancy (0-1 year), 9 during early childhood (2-8 years) and 2 at later ages (9-13 years). Clinical phenotypes included polycystic kidneys, hypertension, hepatic fibrosis and splenomegaly. Twenty-four patients had documented chronic kidney disease (median age 3 years). Twenty-four out of the 32 families had a family history suggesting an autosomal recessive pattern of inherited kidney disease, and there was known consanguinity in 21 families (66%). A molecular genetic diagnosis with biallelic PKHD1 mutations was known in 18 patients and newly identified in 20 other patients, totalling 38 patients from 30 different families. Two unrelated patients remained genetically unsolved. The different PKHD1 missense pathogenic variants were: c.107C > T, p.(Thr36Met); c.406A > G, p.(Thr136Ala); c.4870C > T, p.(Arg1624Trp) and c.9370C > T, p.(His3124Tyr) located in exons 3, 6, 32 and 58, respectively. The c.406A > G, p.(Thr136Ala) missense mutation was detected homozygously in one family and heterozygously with a c.107C > T, p.(Thr36Met) allele in 5 other families. Overall, the most commonly detected pathogenic allele was c.107C > T; (Thr36Met), which was seen in 24 families. CONCLUSIONS Molecular genetic screening of PKHD1 in clinically suspected ARPKD cases produced a high diagnostic rate. The limited number of PKHD1 missense variants identified in ARPKD cases suggests these may be common founder alleles in the Omani population. Cost effective targeted PCR analysis of these specific alleles can be a useful diagnostic tool for future cases of suspected ARPKD in Oman.
Collapse
Affiliation(s)
- Intisar Al Alawi
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
- National Genetic Center, Ministry of Health, Muscat, Oman.
| | - Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Issa Al Salmi
- Renal Medicine Department, Ministry of Health, Royal Hospital, Muscat, Oman
| | - Fatma Al Rahbi
- Renal Medicine Department, Ministry of Health, Royal Hospital, Muscat, Oman
| | - Adhra Al Mawali
- Center of Studies and Research, Ministry of Health, Muscat, Oman
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
18
|
Gimpel C, Bergmann C, Brinkert F, Cetiner M, Gembruch U, Haffner D, Kemper M, König J, Liebau M, Maier RF, Oh J, Pape L, Riechardt S, Rolle U, Rossi R, Stegmann J, Vester U, Kaisenberg CV, Weber S, Schaefer F. [Kidney Cysts and Cystic Nephropathies in Children - A Consensus Guideline by 10 German Medical Societies]. KLINISCHE PADIATRIE 2020; 232:228-248. [PMID: 32659844 DOI: 10.1055/a-1179-0728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This consensus-based guideline was developed by all relevant German pediatric medical societies. Ultrasound is the standard imaging modality for pre- and postnatal kidney cysts and should also exclude extrarenal manifestations in the abdomen and internal genital organs. MRI has selected indications. Suspicion of a cystic kidney disease should prompt consultation of a pediatric nephrologist. Prenatal management must be tailored to very different degrees of disease severity. After renal oligohydramnios, we recommend delivery in a perinatal center. Neonates should not be denied renal replacement therapy solely because of their age. Children with unilateral multicystic dysplastic kidney do not require routine further imaging or nephrectomy, but long-term nephrology follow-up (as do children with uni- or bilateral kidney hypo-/dysplasia with cysts). ARPKD (autosomal recessive polycystic kidney disease), nephronophthisis, Bardet-Biedl syndrome and HNF1B mutations cause relevant extrarenal disease and genetic testing is advisable. Children with tuberous sclerosis complex, tumor predisposition (e. g. von Hippel Lindau syndrome) or high risk of acquired kidney cysts should have regular ultrasounds. Even asymptomatic children of parents with ADPKD (autosomal dominant PKD) should be monitored for hypertension and proteinuria. Presymptomatic diagnostic ultrasound or genetic examination for ADPKD in minors should only be done after thorough counselling. Simple cysts are very rare in children and ADPKD in a parent should be excluded. Complex renal cysts require further investigation.
Collapse
Affiliation(s)
- Charlotte Gimpel
- Department of Internal Medicine IV, Medical Center - University of Freiburg, Freiburg.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau
| | - Carsten Bergmann
- Department of Internal Medicine IV, Medical Center - University of Freiburg, Freiburg.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau.,Medizinische Genetik Mainz, Limbach Genetics, Mainz
| | - Florian Brinkert
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Metin Cetiner
- Department of Pediatrics II, University Hospital Essen, Essen
| | - Ulrich Gembruch
- Department of Obstetrics and Prenatal Medicine, University Hospital of Bonn, Bonn
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover
| | - Markus Kemper
- Department of Pediatrics, Asklepios Kliniken Hamburg GmbH, Asklepios Klinik Nord, Standort Heidberg, Hamburg
| | - Jens König
- Department of General Pediatrics, University Children's Hospital Münster, Münster
| | - Max Liebau
- Department of Pediatrics, University Hospital Cologne, Cologne.,Center for Molecular Medicine, University of Cologne, Cologne
| | - Rolf Felix Maier
- Department of Pediatrics, University Hospital of Giessen and Marburg, Campus Marburg, Marburg
| | - Jun Oh
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Lars Pape
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover
| | - Silke Riechardt
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Udo Rolle
- Department of Pediatric Surgery, Hospital of the Goethe University Frankfurt, Frankfurt am Main
| | - Rainer Rossi
- Department of Pediatrics, Vivantes Klinikum Neukölln, Berlin
| | - Joachim Stegmann
- Department of Radiology, Catholic Children's Hospital Wilhelmstift, Hamburg
| | - Udo Vester
- Department of Pediatrics, HELIOS Hospital Duisburg, Duisburg
| | - Constantin von Kaisenberg
- Department of Obstetrics and Gynaecology, Center for Perinatal Medicine, Hannover Medical School, Hannover
| | - Stefanie Weber
- Department of Pediatrics, University Hospital of Giessen and Marburg, Campus Marburg, Marburg
| | - Franz Schaefer
- Center for Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology, University Hospital Heidelberg, Heidelberg
| |
Collapse
|
19
|
Cilia and polycystic kidney disease. Semin Cell Dev Biol 2020; 110:139-148. [PMID: 32475690 DOI: 10.1016/j.semcdb.2020.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 11/20/2022]
Abstract
Polycystic kidney disease (PKD), comprising autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), is characterized by incessant cyst formation in the kidney and liver. ADPKD and ARPKD represent the leading genetic causes of renal disease in adults and children, respectively. ADPKD is caused by mutations in PKD1 encoding polycystin1 (PC1) and PKD2 encoding polycystin 2 (PC2). PC1/2 are multi-pass transmembrane proteins that form a complex localized in the primary cilium. Predominant ARPKD cases are caused by mutations in polycystic kidney and hepatic disease 1 (PKHD1) gene that encodes the Fibrocystin/Polyductin (FPC) protein, whereas a small subset of cases are caused by mutations in DAZ interacting zinc finger protein 1 like (DZIP1L) gene. FPC is a type I transmembrane protein, localizing to the cilium and basal body, in addition to other compartments, and DZIP1L encodes a transition zone/basal body protein. Apparently, PC1/2 and FPC are signaling molecules, while the mechanism that cilia employ to govern renal tubule morphology and prevent cyst formation is unclear. Nonetheless, recent genetic and biochemical studies offer a glimpse of putative physiological malfunctions and the pathomechanisms underlying both disease entities. In this review, I summarize the results of genetic studies that deduced the function of PC1/2 on cilia and of cilia themselves in cyst formation in ADPKD, and I discuss studies regarding regulation of polycystin biogenesis and cilia trafficking. I also summarize the synergistic genetic interactions between Pkd1 and Pkhd1, and the unique tissue patterning event controlled by FPC, but not PC1. Interestingly, while DZIP1L mutations generate compromised PC1/2 cilia expression, FPC deficiency does not affect PC1/2 biogenesis and ciliary localization, indicating that divergent mechanisms could lead to cyst formation in ARPKD. I conclude by outlining promising areas for future PKD research and highlight rationales for potential therapeutic interventions for PKD treatment.
Collapse
|
20
|
Zhang J, Dai LM, Li FR, Zhang B, Zhao JH, Cheng JB. A Chinese family of autosomal recessive polycystic kidney disease identified by whole exome sequencing. Medicine (Baltimore) 2020; 99:e20413. [PMID: 32481435 DOI: 10.1097/md.0000000000020413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Autosomal recessive polycystic kidney disease (ARPKD) is an autosomal recessive hepatorenal fibrocystic syndrome. The majority of ARPKD patients progress to end-stage renal disease. Precise molecular diagnosis of ARPKD has proven valuable for understanding its mechanism and selecting optimal therapy. METHODS A Chinese family with ARPKD was recruited in current study. The clinical characteristics of ARPKD patient were collected from medical records and the potential responsible genes were studied by the whole exome sequencing (WES). Candidate pathogenic variants were validated by Sanger sequencing. RESULTS Both renal manifestation and hepatobiliary phenotype were observed. WES revealed compound heterozygous mutations of polycystic kidney and hepatic disease 1 genes, NM_138694: c.751G>T, (p.Asp251Tyr) and c.3998_4004delACCTGAA (p.Asn1333Thr fs × 13), which were confirmed by Sanger sequencing. Moreover, the mutations in the proband and its affected sib were co-segregated with the phenotype. CONCLUSIONS The novel mutation in polycystic kidney and hepatic disease 1 gene identified by WES might be molecular pathogenic basis of this disorder.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Nephrology, the key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital
| | - Li-Meng Dai
- Department of Medical Genetics, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fu-Rong Li
- Department of Nephrology, the key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital
| | - Bo Zhang
- Department of Nephrology, the key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital
| | - Jing-Hong Zhao
- Department of Nephrology, the key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital
| | - Jin-Bo Cheng
- Department of Nephrology, the key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital
| |
Collapse
|
21
|
Jung J, Seo GH, Kim YM, Han YM, Park JK, Kim GH, Lee JH, Park YS, Lee BS, Kim EAR, Lee PR, Lee BH. Fatal outcome of autosomal recessive polycystic kidney disease in neonates with recessive PKHD1 mutations. Medicine (Baltimore) 2020; 99:e20113. [PMID: 32384486 PMCID: PMC7440252 DOI: 10.1097/md.0000000000020113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is the most common inherited childhood-onset renal disease, with underlying ciliopathy, and varies widely in clinical severity. The aim of this study was to describe the most severe form of ARPKD, with a fatal clinical course, and its association with mutations in polycystic kidney and hepatic disease 1 (fibrocystin) (PKHD1). Clinical, imaging, pathological, and molecular genetic findings were reviewed in patients prenatally affected with ARPKD and their families.Five unrelated Korean families, including 9 patients, were analyzed. Among the 9 patients, 2 fetuses died in utero, 6 patients did not survive longer than a few days, and 1 patient survived for 5 months with ventilator support and renal replacement therapy. A total of 6 truncating mutations (all nonsense) and 4 missense mutations were detected in a compound heterozygous state, including 4 novel mutations. The most severe phenotypes were shared among all affected patients in each family, irrespective of mutation types.Our data suggest a strong genotype-phenotype relationship in ARPKD, with minimal intra-familial heterogeneity. These findings are important for informing future reproductive planning in affected families.
Collapse
Affiliation(s)
- Jiwon Jung
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
| | | | - Yoo-Mi Kim
- Department of Pediatrics, Chungnam National University School of Medicine, Chungnam National University Hospital, Daejeon
| | - Young Mi Han
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan
| | - Ji Kwon Park
- Department of Obsteterics, Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine, Changwon
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center Children's Hospital
| | - Joo Hoon Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
| | - Young Seo Park
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
| | - Byong Sop Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
| | - Ellen Ai-Rhan Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
| | - Pil-Ryang Lee
- Department of Obstetrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
- Medical Genetics Center, Asan Medical Center Children's Hospital
| |
Collapse
|
22
|
Short article: Sequence variations of PKHD1 underlie congenital hepatic fibrosis in a Chinese family. Eur J Gastroenterol Hepatol 2019; 31:363-367. [PMID: 30507656 DOI: 10.1097/meg.0000000000001295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Congenital hepatic fibrosis (CHF) is a developmental disorder of the portobiliary system characterized by hepatic fibrosis, portal hypertension, and renal cystic disease. The aim of our study was to identify the disease-causing gene of a Chinese family with CHF. PATIENTS AND METHODS Whole-exome sequencing was performed in the family with CHF and variants were confirmed by Sanger sequencing. Online bioinformatics tools were used to evaluate the pathogenicity of the missense variants. Liver specimens were reviewed to confirm the histopathological diagnosis. RESULTS The compound heterozygous variants c.7994T>C, p.(Leu2665Pro) and c.8518C>T, p.(Arg2840Cys) in PKHD1 were identified in a Chinese family with CHF by whole-exome sequencing. Liver histomorphology was reviewed to confirm the diagnosis of CHF. CONCLUSION We have identified variations in PKHD1 in a Chinese family with CHF. Our study extends the mutation spectrum of CHF and provides information for genetic counseling of patients' family members.
Collapse
|
23
|
A rare deep intronic mutation of PKHD1 gene, c.8798-459 C > A, causes autosomal recessive polycystic kidney disease by pseudoexon activation. J Hum Genet 2019; 64:207-214. [PMID: 30617278 DOI: 10.1038/s10038-018-0550-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 12/29/2022]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD), is a rare hepatorenal fibrocystic disorder primarily associated with progressive growth of multiple cysts in the kidneys causing progressive loss of renal function. The disease is linked to mutations in the PKHD1 gene. In this study, we describe the gene diagnosis and prenatal diagnosis for a consanguineous family with two fetuses diagnosed with polycystic kidney disease by fetal sonography during the pregnancy. Sequence analysis of cDNA synthesized from the PKHD1 mRNA of the second induced fetus identified a 111-nucleotide insert at the junction of exon 56 and 57 that originated from intervening sequence (IVS) 56. Further genomic sequencing of IVS 56 of the PKHD1 gene identified a rare homozygous deep intronic mutation (c.8798-459 C > A), which was inherited from the parents and not detectable in 100 unrelated control subjects. Moreover, we explored the pathogenicity of this deep intronic mutation by conducting a minigene splicing assay experiment, which demonstrated that the mutation causes a pseudoexon insertion, which results in a frameshift followed by a premature termination codon in exon 57. Eventually, the parents had a healthy baby by undergoing prenatal genetic diagnosis based on the targeted detection of the intron mutation. The newly identified deep intronic mutation is associated with a rare mechanism of abnormal splicing that expands the spectrum of known PKHD1 gene mutations. It can be used in evidence-based genetic and reproductive counseling for families with ARPKD.
Collapse
|
24
|
Abstract
Congenital anomalies of the kidneys and the urinary tract (CAKUT) are one of the most common sonographically identified antenatal malformations. Dilatation of the renal pelvis accounts for the majority of cases, but this is usually mild rather than an indicator of obstructive uropathy. Other conditions such as small through large hyperechogenic and/or cystic kidneys present a significant diagnostic dilemma on routine scanning. Accurate diagnosis and prediction of prognosis is often not possible without a positive family history, although maintenance of adequate amniotic fluid is usually a good sign. Both pre- and postnatal genetic screening is possible for multiple known CAKUT genes but less than a fifth of non-syndromic sporadic cases have detectable monogenic mutations with current technology. In utero management options are limited, with little evidence of benefit from shunting of obstructed systems or installation of artificial amniotic fluid. Often outcome hinges on associated cardiac, neurological or other abnormalities, particularly in syndromic cases. Hence, management centres on a careful assessment of all anomalies and planning for postnatal care. Early delivery is rarely indicated since this exposes the baby to the risks of prematurity in addition to their underlying CAKUT. Parents value discussions with a multidisciplinary team including fetal medicine and paediatric nephrology or urology, with neonatologists to plan perinatal care and clinical geneticists for future risks of CAKUT.
Collapse
Affiliation(s)
- Angela Yulia
- Fetal Medicine Unit, Elizabeth Garrett Anderson Hospital, University College Hospitals London, Huntley Street, London WC1N 6AU, UK.
| | - Paul Winyard
- Fetal Medicine Unit, Elizabeth Garrett Anderson Hospital, University College Hospitals London, Huntley Street, London WC1N 6AU, UK; Nephro-Urology Group, Developmental Biology and Cancer programme, University College London Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK.
| |
Collapse
|
25
|
Szabó T, Orosz P, Balogh E, Jávorszky E, Máttyus I, Bereczki C, Maróti Z, Kalmár T, Szabó AJ, Reusz G, Várkonyi I, Marián E, Gombos É, Orosz O, Madar L, Balla G, Kappelmayer J, Tory K, Balogh I. Comprehensive genetic testing in children with a clinical diagnosis of ARPKD identifies phenocopies. Pediatr Nephrol 2018; 33:1713-1721. [PMID: 29956005 DOI: 10.1007/s00467-018-3992-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/12/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Autosomal recessive polycystic kidney disease (ARPKD) is genetically one of the least heterogeneous ciliopathies, resulting primarily from mutations of PKHD1. Nevertheless, 13-20% of patients diagnosed with ARPKD are found not to carry PKHD1 mutations by sequencing. Here, we assess whether PKHD1 copy number variations or second locus mutations explain these cases. METHODS Thirty-six unrelated patients with the clinical diagnosis of ARPKD were screened for PKHD1 point mutations and copy number variations. Patients without biallelic mutations were re-evaluated and screened for second locus mutations targeted by the phenotype, followed, if negative, by clinical exome sequencing. RESULTS Twenty-eight patients (78%) carried PKHD1 point mutations, three of whom on only one allele. Two of the three patients harbored in trans either a duplication of exons 33-35 or a large deletion involving exons 1-55. All eight patients without PKHD1 mutations (22%) harbored mutations in other genes (PKD1 (n = 2), HNF1B (n = 3), NPHP1, TMEM67, PKD1/TSC2). Perinatal respiratory failure, a kidney length > +4SD and early-onset hypertension increase the likelihood of PKHD1-associated ARPKD. A patient compound heterozygous for a second and a last exon truncating PKHD1 mutation (p.Gly4013Alafs*25) presented with a moderate phenotype, indicating that fibrocystin is partially functional in the absence of its C-terminal 62 amino acids. CONCLUSIONS We found all ARPKD cases without PKHD1 point mutations to be phenocopies, and none to be explained by biallelic PKHD1 copy number variations. Screening for copy number variations is recommended in patients with a heterozygous point mutation.
Collapse
Affiliation(s)
- Tamás Szabó
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Petronella Orosz
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary
| | - Eszter Balogh
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary.,MTA-SE Lendulet Nephrogenetic Laboratory, Budapest, Hungary
| | - Eszter Jávorszky
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary.,MTA-SE Lendulet Nephrogenetic Laboratory, Budapest, Hungary
| | - István Máttyus
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary
| | - Csaba Bereczki
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Zoltán Maróti
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Tibor Kalmár
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Attila J Szabó
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary.,MTA-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - George Reusz
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary
| | - Ildikó Várkonyi
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary
| | - Erzsébet Marián
- Department of Pediatrics, Szabolcs-Szatmár-Bereg Jósa András County Hospital, Nyíregyháza, Hungary
| | - Éva Gombos
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary
| | - Orsolya Orosz
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary
| | - László Madar
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary
| | - György Balla
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Kappelmayer
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary
| | - Kálmán Tory
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary. .,MTA-SE Lendulet Nephrogenetic Laboratory, Budapest, Hungary.
| | - István Balogh
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary.
| |
Collapse
|
26
|
Bonsib SM. Urologic Diseases Germane to the Medical Renal Biopsy: Review of a Large Diagnostic Experience in the Context of the Renal Architecture and Its Environs. Adv Anat Pathol 2018; 25:333-352. [PMID: 30036201 PMCID: PMC6086223 DOI: 10.1097/pap.0000000000000199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The kidney is one of the most complicated organs in development and is susceptible to more types of diseases than other organs. The disease spectrum includes developmental and cystic diseases, involvement by systemic diseases, iatrogenic complications, ascending infections and urinary tract obstruction, and neoplastic diseases. The diagnosis of kidney disease is unique involving 2 subspecialties, urologic pathology and renal pathology. Both renal and urologic pathologists employ the renal biopsy as a diagnostic modality. However, urologic pathologists commonly have a generous specimen in the form of a nephrectomy or partial nephrectomy while a renal pathologist requires ancillary modalities of immunofluorescence and electron microscopy. The 2 subspecialties differ in the disease spectrum they diagnose. This separation is not absolute as diseases of one subspecialty not infrequently appear in the diagnostic materials of the other. The presence of medical renal diseases in a nephrectomy specimen is well described and recommendations for reporting these findings have been formalized. However, urologic diseases appearing in a medical renal biopsy have received less attention. This review attempts to fill that gap by first reviewing the perirenal anatomy to illustrate why inadvertent biopsy of adjacent organs occurs and determine its incidence in renal biopsies followed by a discussion of gross anatomic features relevant to the microscopic domain of the medical renal biopsy. Unsuspected neoplasms and renal cysts and cystic kidney diseases will then be discussed as they create a diagnostic challenge for the renal pathologist who often has limited training and experience in these diseases.
Collapse
|
27
|
Burgmaier K, Kunzmann K, Ariceta G, Bergmann C, Buescher AK, Burgmaier M, Dursun I, Duzova A, Eid L, Erger F, Feldkoetter M, Galiano M, Geßner M, Goebel H, Gokce I, Haffner D, Hooman N, Hoppe B, Jankauskiene A, Klaus G, König J, Litwin M, Massella L, Mekahli D, Melek E, Mir S, Pape L, Prikhodina L, Ranchin B, Schild R, Seeman T, Sever L, Shroff R, Soliman NA, Stabouli S, Stanczyk M, Tabel Y, Taranta-Janusz K, Testa S, Thumfart J, Topaloglu R, Weber LT, Wicher D, Wühl E, Wygoda S, Yilmaz A, Zachwieja K, Zagozdzon I, Zerres K, Dötsch J, Schaefer F, Liebau MC. Risk Factors for Early Dialysis Dependency in Autosomal Recessive Polycystic Kidney Disease. J Pediatr 2018; 199:22-28.e6. [PMID: 29753540 DOI: 10.1016/j.jpeds.2018.03.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/12/2018] [Accepted: 03/20/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To identify prenatal, perinatal, and postnatal risk factors for dialysis within the first year of life in children with autosomal recessive polycystic kidney disease (ARPKD) as a basis for parental counseling after prenatal and perinatal diagnosis. STUDY DESIGN A dataset comprising 385 patients from the ARegPKD international registry study was analyzed for potential risk markers for dialysis during the first year of life. RESULTS Thirty-six out of 385 children (9.4%) commenced dialysis in the first year of life. According to multivariable Cox regression analysis, the presence of oligohydramnios or anhydramnios, prenatal kidney enlargement, a low Apgar score, and the need for postnatal breathing support were independently associated with an increased hazard ratio for requiring dialysis within the first year of life. The increased risk associated with Apgar score and perinatal assisted breathing was time-dependent and vanished after 5 and 8 months of life, respectively. The predicted probabilities for early dialysis varied from 1.5% (95% CI, 0.5%-4.1%) for patients with ARPKD with no prenatal sonographic abnormalities to 32.3% (95% CI, 22.2%-44.5%) in cases of documented oligohydramnios or anhydramnios, renal cysts, and enlarged kidneys. CONCLUSIONS This study, which identified risk factors associated with onset of dialysis in ARPKD in the first year of life, may be helpful in prenatal parental counseling in cases of suspected ARPKD.
Collapse
Affiliation(s)
- Kathrin Burgmaier
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Kevin Kunzmann
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Gema Ariceta
- Department of Pediatric Nephrology, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Carsten Bergmann
- Bioscientia Center for Human Genetics, Ingelheim, Germany; Renal Division, Department of Medicine, University Freiburg Medical Center, Freiburg, Germany
| | | | - Mathias Burgmaier
- Department of Internal Medicine I, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Ismail Dursun
- Department of Pediatric Nephrology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Ali Duzova
- Department of Pediatrics, Division of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Loai Eid
- Department of Pediatric Nephrology, Dubai Kidney Center Of Excellence, Dubai Hospital, Dubai, United Arab Emirates
| | - Florian Erger
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany; Center for Molecular Medicine, University Hospital of Cologne, Cologne, Germany
| | - Markus Feldkoetter
- Department of Pediatrics, Division of Pediatric Nephrology, University Hospital Bonn, Bonn, Germany
| | - Matthias Galiano
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michaela Geßner
- Department of General Pediatrics and Hematology/Oncology, Children's University Hospital Tuebingen, Germany
| | - Heike Goebel
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Ibrahim Gokce
- Research and Training Hospital, Division of Pediatric Nephrology, Marmara University, Istanbul, Turkey
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Nakysa Hooman
- Department of Pediatric Nephrology, Ali-Asghar Children Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bernd Hoppe
- Department of Pediatrics, Division of Pediatric Nephrology, University Hospital Bonn, Bonn, Germany
| | - Augustina Jankauskiene
- Clinic of Children Diseases, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
| | - Guenter Klaus
- KfH Center of Paediatric Nephrology, University Hospital of Marburg, Marburg, Germany
| | - Jens König
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | | | - Laura Massella
- Nephrology and Dialysis Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Djalila Mekahli
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium; KU Leuven - University of Leuven, Department of Development and Regeneration, Laboratory of Pediatrics, PKD research group, B-3000 Leuven, Belgium
| | - Engin Melek
- Department of Pediatric Nephrology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Sevgi Mir
- Department of Pediatric Nephrology, Ege University Medical Faculty, Izmir, Turkey
| | - Lars Pape
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Larisa Prikhodina
- Department of Inherited and Acquired Kidney Diseases, Research Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Bruno Ranchin
- Pediatric Nephrology Unit, Hôpital Femme Mere Enfant, Hospices Civils de Lyon, Lyon, France
| | - Raphael Schild
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Tomas Seeman
- Department of Pediatrics, University Hospital Motol, 2nd Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | - Lale Sever
- Department of Pediatric Nephrology, Cerrahpaşa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Rukshana Shroff
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology and Transplantation, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Stella Stabouli
- First Department of Pediatrics, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Malgorzata Stanczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Yilmaz Tabel
- Department of Pediatric Nephrology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | | | - Sara Testa
- Pediatric Nephrology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Julia Thumfart
- Department of Pediatric Nephrology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Rezan Topaloglu
- Department of Pediatrics, Division of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Dorota Wicher
- The Children's Memorial Health Institute, Warsaw, Poland
| | - Elke Wühl
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Simone Wygoda
- Clinic for Children and Adolescents, Hospital St. Georg, Leipzig, Germany
| | - Alev Yilmaz
- Pediatric Nephrology Department, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Katarzyna Zachwieja
- Department of Pediatric Nephrology and Hypertension, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Ilona Zagozdzon
- Department of Nephrology and Hypertension of Children and Adolescents, Medical University of Gdansk, Gdansk, Poland
| | - Klaus Zerres
- Institute of Human Genetics, RWTH University Hospital Aachen, Aachen, Germany
| | | | | | - Jörg Dötsch
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Max Christoph Liebau
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany; Center for Molecular Medicine, University Hospital of Cologne, Cologne, Germany
| | | |
Collapse
|
28
|
Hamo S, Bacchetta J, Bertholet-Thomas A, Ranchin B, Cochat P, Michel-Calemard L. [PKHD1 mutations in autosomal recessive polycystic kidney disease (ARPKD): Genotype-phenotype correlations from a series of 308 cases to improve prenatal counselling]. Nephrol Ther 2018; 14:474-477. [PMID: 29703621 DOI: 10.1016/j.nephro.2018.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 03/17/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES ARPKD is a recessive rare disease due to PKHD1 mutation. The main objective of the study was to characterize the phenotypic variability according to the different types of PKHD1 mutations. METHODS This study was performed in 308 ARPKD patients with a genetic diagnosis from our genetic center. Related physicians provided minimal clinical and biological data. RESULTS Patients were divided into three genotypic groups: the first group (G1; n=65) consisted of patients with two truncating mutations, the second group (G2; n=117) of patients with one truncating and one non-truncating mutation, and the third group (G3; n=126) of patients with two non-truncating mutations. In the entire cohort, the outcomes consisted of 31% of pregnancy termination, 18% of neonatal deaths and 51% of patient survival after the neonatal period. The proportion of severe ARPKD (pregnancy termination or neonatal death) was significantly greater in G1: 94% versus 47% in G2 and 27% in G3 (P<0.001). CONCLUSION The presence of two truncating mutations in PKHD1 is associated with the most severe perinatal phenotype. However, the phenotypic variability observed in the other genotypic groups requires caution for prenatal counseling.
Collapse
Affiliation(s)
- Suzy Hamo
- Centre de référence des maladies rénales rares néphrogones, filière ORKID, hôpital Femme-Mère-Enfant, 59, boulevard Pinel, 69677 Bron cedex, France.
| | - Justine Bacchetta
- Centre de référence des maladies rénales rares néphrogones, filière ORKID, hôpital Femme-Mère-Enfant, 59, boulevard Pinel, 69677 Bron cedex, France; Faculté de médecine Lyon Est, université Claude-Bernard Lyon 1, 69008 Lyon, France
| | - Aurélia Bertholet-Thomas
- Centre de référence des maladies rénales rares néphrogones, filière ORKID, hôpital Femme-Mère-Enfant, 59, boulevard Pinel, 69677 Bron cedex, France
| | - Bruno Ranchin
- Centre de référence des maladies rénales rares néphrogones, filière ORKID, hôpital Femme-Mère-Enfant, 59, boulevard Pinel, 69677 Bron cedex, France
| | - Pierre Cochat
- Centre de référence des maladies rénales rares néphrogones, filière ORKID, hôpital Femme-Mère-Enfant, 59, boulevard Pinel, 69677 Bron cedex, France; Faculté de médecine Lyon Est, université Claude-Bernard Lyon 1, 69008 Lyon, France
| | - Laurence Michel-Calemard
- UM pathologies endocriniennes, rénales, musculaires et mucoviscidose, CBPE, groupement hospitalier Est, 59, boulevard Pinel, 69677 Bron cedex, France
| |
Collapse
|
29
|
Fujimaru T, Mori T, Sekine A, Mandai S, Chiga M, Kikuchi H, Ando F, Mori Y, Nomura N, Iimori S, Naito S, Okado T, Rai T, Hoshino J, Ubara Y, Uchida S, Sohara E. Kidney enlargement and multiple liver cyst formation implicate mutations in PKD1/2 in adult sporadic polycystic kidney disease. Clin Genet 2018. [PMID: 29520754 DOI: 10.1111/cge.13249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Distinguishing autosomal-dominant polycystic kidney disease (ADPKD) from other inherited renal cystic diseases in patients with adult polycystic kidney disease and no family history is critical for correct treatment and appropriate genetic counseling. However, for patients with no family history, there are no definitive imaging findings that provide an unequivocal ADPKD diagnosis. We analyzed 53 adult polycystic kidney disease patients with no family history. Comprehensive genetic testing was performed using capture-based next-generation sequencing for 69 genes currently known to cause hereditary renal cystic diseases including ADPKD. Through our analysis, 32 patients had PKD1 or PKD2 mutations. Additionally, 3 patients with disease-causing mutations in NPHP4, PKHD1, and OFD1 were diagnosed with an inherited renal cystic disease other than ADPKD. In patients with PKD1 or PKD2 mutations, the prevalence of polycystic liver disease, defined as more than 20 liver cysts, was significantly higher (71.9% vs 33.3%, P = .006), total kidney volume was significantly increased (median, 1580.7 mL vs 791.0 mL, P = .027) and mean arterial pressure was significantly higher (median, 98 mm Hg vs 91 mm Hg, P = .012). The genetic screening approach and clinical features described here are potentially beneficial for optimal management of adult sporadic polycystic kidney disease patients.
Collapse
Affiliation(s)
- T Fujimaru
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - T Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - A Sekine
- Nephrology Center, Toranomon Hospital, Tokyo, Japan
| | - S Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - M Chiga
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - H Kikuchi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - F Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Y Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - N Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - S Iimori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - S Naito
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - T Okado
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - T Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - J Hoshino
- Nephrology Center, Toranomon Hospital, Tokyo, Japan.,Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Y Ubara
- Nephrology Center, Toranomon Hospital, Tokyo, Japan.,Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - S Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - E Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
30
|
Outeda P, Menezes L, Hartung EA, Bridges S, Zhou F, Zhu X, Xu H, Huang Q, Yao Q, Qian F, Germino GG, Watnick T. A novel model of autosomal recessive polycystic kidney questions the role of the fibrocystin C-terminus in disease mechanism. Kidney Int 2017; 92:1130-1144. [PMID: 28729032 PMCID: PMC6005173 DOI: 10.1016/j.kint.2017.04.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/09/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
Abstract
Autosomal recessive polycystic kidney disease (OMIM 263200) is a serious condition of the kidney and liver caused by mutations in a single gene, PKHD1. This gene encodes fibrocystin/polyductin (FPC, PD1), a large protein shown by in vitro studies to undergo Notch-like processing. Its cytoplasmic tail, reported to include a ciliary targeting sequence, a nuclear localization signal, and a polycystin-2 binding domain, is thought to traffic to the nucleus after cleavage. We now report a novel mouse line with a triple HA-epitope "knocked-in" to the C-terminus along with lox P sites flanking exon 67, which encodes most of the C-terminus (Pkhd1Flox67HA). The triple HA-epitope has no functional effect as assayed by phenotype and allows in vivo tracking of Fibrocystin. We used the HA tag to identify previously predicted Fibrocystin cleavage products in tissue. In addition, we found that Polycystin-2 fails to co-precipitate with Fibrocystin in kidney samples. Immunofluorescence studies with anti-HA antibodies demonstrate that Fibrocystin is primarily present in a sub-apical location the in kidney, biliary duct, and pancreatic ducts, partially overlapping with the Golgi. In contrast to previous studies, the endogenous protein in the primary cilia was not detectable in mouse tissues. After Cre-mediated deletion, homozygous Pkhd1Δ67 mice are completely normal. Thus, Pkhd1Flox67HA is a valid model to track Pkhd1-derived products containing the C-terminus. Significantly, exon 67 containing the nuclear localization signal and the polycystin-2 binding domain is not essential for Fibrocystin function in our model.
Collapse
Affiliation(s)
- Patricia Outeda
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Luis Menezes
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Erum A Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stacey Bridges
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Fang Zhou
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Study, Sichuan Academy of Sciences and Sichuan Provincial People's Hospital Chengdue, Sichuan, China
| | - Hangxue Xu
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Qiong Huang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Qin Yao
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gregory G Germino
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
31
|
Ars E, Torra R. Rare diseases, rare presentations: recognizing atypical inherited kidney disease phenotypes in the age of genomics. Clin Kidney J 2017; 10:586-593. [PMID: 28980669 PMCID: PMC5622904 DOI: 10.1093/ckj/sfx051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/03/2017] [Indexed: 12/11/2022] Open
Abstract
A significant percentage of adults (10%) and children (20%) on renal replacement therapy have an inherited kidney disease (IKD). The new genomic era, ushered in by the next generation sequencing techniques, has contributed to the identification of new genes and facilitated the genetic diagnosis of the highly heterogeneous IKDs. Consequently, it has also allowed the reclassification of diseases and has broadened the phenotypic spectrum of many classical IKDs. Various genetic, epigenetic and environmental factors may explain ‘atypical’ phenotypes. In this article, we examine different mechanisms that may contribute to phenotypic variability and also provide case examples that illustrate them. The aim of the article is to raise awareness, among nephrologists and geneticists, of rare presentations that IKDs may show, to facilitate diagnosis.
Collapse
Affiliation(s)
- Elisabet Ars
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Roser Torra
- Inherited Kidney Disorders, Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Spain
| |
Collapse
|
32
|
Ebner K, Dafinger C, Ortiz-Bruechle N, Koerber F, Schermer B, Benzing T, Dötsch J, Zerres K, Weber LT, Beck BB, Liebau MC. Challenges in establishing genotype-phenotype correlations in ARPKD: case report on a toddler with two severe PKHD1 mutations. Pediatr Nephrol 2017; 32:1269-1273. [PMID: 28364132 DOI: 10.1007/s00467-017-3648-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Autosomal recessive polycystic kidney disease (ARPKD) constitutes an important cause of pediatric end stage renal disease and is characterized by a broad phenotypic variability. The disease is caused by mutations in a single gene, Polycystic Kidney and Hepatic Disease 1 (PKHD1), which encodes a large transmembrane protein of poorly understood function called fibrocystin. Based on current knowledge of genotype-phenotype correlations in ARPKD, two truncating mutations are considered to result in a severe phenotype with peri- or neonatal mortality. Infants surviving the neonatal period are expected to carry at least one missense mutation. CASE-DIAGNOSIS/TREATMENT We report on a female patient with two truncating PKHD1 mutations who survived the first 30 months of life without renal replacement therapy. Our patient carries not only a known stop mutation, c.8011C>T (p.Arg2671*), but also the previously reported c.51A>G PKHD1 sequence variant of unknown significance in exon 2. Using functional in vitro studies we have confirmed the pathogenic nature of c.51A>G, demonstrating activation of a new donor splice site in intron 2 that results in a frameshift mutation and generation of a premature stop codon. CONCLUSIONS This case illustrates the importance of functional mutation analyses and also raises questions regarding the current belief that the presence of at least one missense mutation is necessary for perinatal survival in ARPKD.
Collapse
Affiliation(s)
- Kathrin Ebner
- Department of Pediatrics, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Claudia Dafinger
- Department of Pediatrics, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.,Department II of Internal Medicine and Center for Molecular Medicine Cologne University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol) University of Cologne, Cologne, Germany
| | | | - Friederike Koerber
- Pediatric Radiology, Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol) University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol) University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Klaus Zerres
- Institute of Human Genetics, RWTH University Hospital Aachen, Aachen, Germany
| | - Lutz Thorsten Weber
- Department of Pediatrics, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Bodo B Beck
- Institute of Human Genetics and Center for Molecular Medicine, University Hospital of Cologne, Cologne, Germany
| | - Max Christoph Liebau
- Department of Pediatrics, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany. .,Department II of Internal Medicine and Center for Molecular Medicine Cologne University of Cologne, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol) University of Cologne, Cologne, Germany.
| |
Collapse
|
33
|
Edrees BM, Athar M, Abduljaleel Z, Al-Allaf FA, Taher MM, Khan W, Bouazzaoui A, Al-Harbi N, Safar R, Al-Edressi H, Alansary K, Anazi A, Altayeb N, Ahmed MA. Functional alterations due to amino acid changes and evolutionary comparative analysis of ARPKD and ADPKD genes. GENOMICS DATA 2016; 10:127-134. [PMID: 27843768 PMCID: PMC5099264 DOI: 10.1016/j.gdata.2016.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/18/2016] [Accepted: 10/30/2016] [Indexed: 12/15/2022]
Abstract
A targeted customized sequencing of genes implicated in autosomal recessive polycystic kidney disease (ARPKD) phenotype was performed to identify candidate variants using the Ion torrent PGM next-generation sequencing. The results identified four potential pathogenic variants in PKHD1 gene [c.4870C > T, p.(Arg1624Trp), c.5725C > T, p.(Arg1909Trp), c.1736C > T, p.(Thr579Met) and c.10628T > G, p.(Leu3543Trp)] among 12 out of 18 samples. However, one variant c.4870C > T, p.(Arg1624Trp) was common among eight patients. Some patient samples also showed few variants in autosomal dominant polycystic kidney disease (ADPKD) disease causing genes PKD1 and PKD2 such as c.12433G > A, p.(Val4145Ile) and c.1445T > G, p.(Phe482Cys), respectively. All causative variants were validated by capillary sequencing and confirmed the presence of a novel homozygous variant c.10628T > G, p.(Leu3543Trp) in a male proband. We have recently published the results of these studies (Edrees et al., 2016). Here we report for the first time the effect of the common mutation p.(Arg1624Trp) found in eight samples on the protein structure and function due to the specific amino acid changes of PKHD1 protein using molecular dynamics simulations. The computational approaches provide tool predict the phenotypic effect of variant on the structure and function of the altered protein. The structural analysis with the common mutation p.(Arg1624Trp) in the native and mutant modeled protein were also studied for solvent accessibility, secondary structure and stabilizing residues to find out the stability of the protein between wild type and mutant forms. Furthermore, comparative genomics and evolutionary analyses of variants observed in PKHD1, PKD1, and PKD2 genes were also performed in some mammalian species including human to understand the complexity of genomes among closely related mammalian species. Taken together, the results revealed that the evolutionary comparative analyses and characterization of PKHD1, PKD1, and PKD2 genes among various related and unrelated mammalian species will provide important insights into their evolutionary process and understanding for further disease characterization and management.
Collapse
Affiliation(s)
- Burhan M Edrees
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; King Fahad Medical City, P.O. Box 59046, Riyadh 11525, Saudi Arabia
| | - Mohammad Athar
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Zainularifeen Abduljaleel
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Faisal A Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; Molecular Diagnostics Unit, Department of Laboratory and Blood Bank, King Abdullah Medical City, Makkah 21955, Saudi Arabia
| | - Mohiuddin M Taher
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Wajahatullah Khan
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, P.O. Box 3660, Riyadh 11426, Saudi Arabia
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Naffaa Al-Harbi
- Department of Pediatric, King Faisal Specialist Hospital and Research Centre, P.O. Box 40047, Jeddah 21499, Saudi Arabia
| | - Ramzia Safar
- Madinah Maternity and Children's Hospital, P.O. Box 5073, Madinah 42318, Saudi Arabia
| | - Howaida Al-Edressi
- Madinah Maternity and Children's Hospital, P.O. Box 5073, Madinah 42318, Saudi Arabia
| | - Khawala Alansary
- King Fahad Medical City, P.O. Box 59046, Riyadh 11525, Saudi Arabia
| | - Abulkareem Anazi
- King Fahad Medical City, P.O. Box 59046, Riyadh 11525, Saudi Arabia
| | - Naji Altayeb
- King Fahad Medical City, P.O. Box 59046, Riyadh 11525, Saudi Arabia
| | - Muawia A Ahmed
- King Salman Armed Forces Hospital, P.O. box 100, Tabuk, Saudi Arabia
| |
Collapse
|
34
|
Edrees BM, Athar M, Al-Allaf FA, Taher MM, Khan W, Bouazzaoui A, Al-Harbi N, Safar R, Al-Edressi H, Alansary K, Anazi A, Altayeb N, Ahmed MA, Abduljaleel Z. Next-generation sequencing for molecular diagnosis of autosomal recessive polycystic kidney disease. Gene 2016; 591:214-226. [DOI: 10.1016/j.gene.2016.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/26/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022]
|
35
|
Kang HG, Lee HK, Ahn YH, Joung JG, Nam J, Kim NKD, Ko JM, Cho MH, Shin JI, Kim J, Park HW, Park YS, Ha IS, Chung WY, Lee DY, Kim SY, Park WY, Cheong HI. Targeted exome sequencing resolves allelic and the genetic heterogeneity in the genetic diagnosis of nephronophthisis-related ciliopathy. Exp Mol Med 2016; 48:e251. [PMID: 27491411 PMCID: PMC5007639 DOI: 10.1038/emm.2016.63] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 01/02/2023] Open
Abstract
Nephronophthisis-related ciliopathy (NPHP-RC) is a common genetic cause of end-stage renal failure during childhood and adolescence and exhibits an autosomal recessive pattern of inheritance. Genetic diagnosis is quite limited owing to genetic heterogeneity in NPHP-RC. We designed a novel approach involving the step-wise screening of Sanger sequencing and targeted exome sequencing for the genetic diagnosis of 55 patients with NPHP-RC. First, five NPHP-RC genes were analyzed by Sanger sequencing in phenotypically classified patients. Known pathogenic mutations were identified in 12 patients (21.8%); homozygous deletions of NPHP1 in 4 juvenile nephronophthisis patients, IQCB1/NPHP5 mutations in 3 Senior–Løken syndrome patients, a CEP290/NPHP6 mutation in 1 Joubert syndrome patient, and TMEM67/MKS3 mutations in 4 Joubert syndrome patients with liver involvement. In the remaining undiagnosed patients, we applied targeted exome sequencing of 34 ciliopathy-related genes to detect known pathogenic mutations in 7 (16.3%) of 43 patients. Another 18 likely damaging heterozygous variants were identified in 13 NPHP-RC genes in 18 patients. In this study, we report a variety of pathogenic and candidate mutations identified in 55 patients with NPHP-RC in Korea using a step-wise application of two genetic tests. These results support the clinical utility of targeted exome sequencing to resolve the issue of allelic and genetic heterogeneity in NPHP-RC.
Collapse
Affiliation(s)
- Hee Gyung Kang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Hyun Kyung Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Yo Han Ahn
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jaeyong Nam
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Nayoung K D Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Min Hyun Cho
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hye Won Park
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young Seo Park
- Department of Pediatrics, Asian Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Il-Soo Ha
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Woo Yeong Chung
- Department of Pediatrics, College of Medicine, Inje University, Busan Paik Hospital, Busan, Republic of Korea
| | - Dae-Yeol Lee
- Department of Pediatrics, College of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Su Young Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan, Republic of Korea
| | - Woong Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| |
Collapse
|
36
|
Melchionda S, Palladino T, Castellana S, Giordano M, Benetti E, De Bonis P, Zelante L, Bisceglia L. Expanding the mutation spectrum in 130 probands with ARPKD: identification of 62 novel PKHD1 mutations by sanger sequencing and MLPA analysis. J Hum Genet 2016; 61:811-21. [PMID: 27225849 DOI: 10.1038/jhg.2016.58] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/15/2016] [Accepted: 04/28/2016] [Indexed: 12/30/2022]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a rare severe genetic disorder arising in the perinatal period, although a late-onset presentation of the disease has been described. Pulmonary hypoplasia is the major cause of morbidity and mortality in the newborn period. ARPKD is caused by mutations in the PKHD1 (polycystic kidney and hepatic disease 1) gene that is among the largest human genes. To achieve a molecular diagnosis of the disease, a large series of Italian affected subjects were recruited. Exhaustive mutation analysis of PKHD1 gene was carried out by Sanger sequencing and multiple ligation probe amplification (MLPA) technique in 110 individuals. A total of 173 mutations resulting in a detection rate of 78.6% were identified. Additional 20 unrelated patients, in whom it was not possible to analyze the whole coding sequence, have been included in this study. Taking into account the total number (n=130) of this cohort of patients, 107 different types of mutations have been detected in 193 mutated alleles. Out of 107 mutations, 62 were novel: 11 nonsense, 6 frameshift, 7 splice site mutations, 2 in-frame deletions and 2 multiexon deletion detected by MLPA. Thirty-four were missense variants. In conclusion, our report expands the spectrum of PKHD1 mutations and confirms the heterogeneity of this disorder. The population under study represents the largest Italian ARPKD cohort reported to date. The estimated costs and the time invested for molecular screening of genes with large size and allelic heterogeneity such as PKHD1 demand the use of next-generation sequencing (NGS) technologies for a faster and cheaper screening of the affected subjects.
Collapse
Affiliation(s)
- Salvatore Melchionda
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Teresa Palladino
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Stefano Castellana
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza-Mendel, Rome, Italy
| | - Mario Giordano
- Pediatric Nephrology and Dialysis Unit, Pediatric Hospital Giovanni XXIII, Bari, Italy
| | - Elisa Benetti
- Pediatric Nephrology, Dialysis and Transplant Unit, Women's and Children's Health Department, University of Padua, Padua, Italy
| | - Patrizia De Bonis
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Leopoldo Zelante
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Luigi Bisceglia
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| |
Collapse
|
37
|
Al-Hamed MH, Kurdi W, Alsahan N, Alabdullah Z, Abudraz R, Tulbah M, Alnemer M, Khan R, Al-Jurayb H, Alahmed A, Tahir AI, Khalil D, Edwards N, Al Abdulaziz B, Binhumaid FS, Majid S, Faquih T, El-Kalioby M, Abouelhoda M, Altassan N, Monies D, Meyer B, Sayer JA, Albaqumi M. Genetic spectrum of Saudi Arabian patients with antenatal cystic kidney disease and ciliopathy phenotypes using a targeted renal gene panel. J Med Genet 2016; 53:338-47. [PMID: 26862157 PMCID: PMC4853542 DOI: 10.1136/jmedgenet-2015-103469] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/04/2016] [Indexed: 12/24/2022]
Abstract
Background Inherited cystic kidney disorders are a common cause of end-stage renal disease. Over 50 ciliopathy genes, which encode proteins that influence the structure and function of the primary cilia, are implicated in cystic kidney disease. Methods To define the phenotype and genotype of cystic kidney disease in fetuses and neonates, we correlated antenatal ultrasound examination and postnatal renal ultrasound examination with targeted exon sequencing, using a renal gene panel. A cohort of 44 families in whom antenatal renal ultrasound scanning findings in affected cases included bilateral cystic kidney disease, echogenic kidneys or enlarged kidneys was investigated. Results In this cohort, disease phenotypes were severe with 36 cases of stillbirth or perinatal death. Extra renal malformations, including encephalocele, polydactyly and heart malformations, consistent with ciliopathy phenotypes, were frequently detected. Renal gene panel testing identified causative mutations in 21 out of 34 families (62%), where patient and parental DNA was available. In the remaining 10 families, where only parental DNA was available, 7 inferred causative mutations were found. Together, mutations were found in 12 different genes with a total of 13 novel pathogenic variants, including an inferred novel variant in NEK8. Mutations in CC2D2A were the most common cause of an antenatal cystic kidney disease and a suspected ciliopathy in our cohort. Conclusions In families with ciliopathy phenotypes, mutational analysis using a targeted renal gene panel allows a rapid molecular diagnosis and provides important information for patients, parents and their physicians.
Collapse
Affiliation(s)
- Mohamed H Al-Hamed
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Wesam Kurdi
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nada Alsahan
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Zainab Alabdullah
- Obstetrics & Gynecology Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Rania Abudraz
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maha Tulbah
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maha Alnemer
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Rubina Khan
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Haya Al-Jurayb
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ahmed Alahmed
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Asma I Tahir
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dania Khalil
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Noel Edwards
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | - Basma Al Abdulaziz
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Faisal S Binhumaid
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Salma Majid
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Tariq Faquih
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mohamed El-Kalioby
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mohamed Abouelhoda
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia Saudi Human Genome Project, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Nada Altassan
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia Saudi Human Genome Project, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Dorota Monies
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia Saudi Human Genome Project, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Brian Meyer
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia Saudi Human Genome Project, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - John A Sayer
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | - Mamdouh Albaqumi
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Obeidova L, Seeman T, Elisakova V, Reiterova J, Puchmajerova A, Stekrova J. Molecular genetic analysis of PKHD1 by next-generation sequencing in Czech families with autosomal recessive polycystic kidney disease. BMC MEDICAL GENETICS 2015; 16:116. [PMID: 26695994 PMCID: PMC4689053 DOI: 10.1186/s12881-015-0261-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/11/2015] [Indexed: 12/18/2022]
Abstract
Background Autosomal recessive polycystic kidney disease (ARPKD) is an early-onset form of polycystic kidney disease that often leads to devastating outcomes for patients. ARPKD is caused by mutations in the PKHD1 gene, an extensive gene that encodes for the ciliary protein fibrocystin/polyductin. Next-generation sequencing is presently the best option for molecular diagnosis of ARPKD. Our aim was to set up the first study of ARPKD patients from the Czech Republic, to determine the composition of their mutations and genotype-phenotype correlations, along with establishment of next-generation sequencing of the PKHD1 gene that could be used for the diagnosis of ARPKD patients. Methods Mutational analysis of the PKHD1 gene was performed in 24 families using the amplicon-based next-generation sequencing (NGS) technique. In patients without 2 causal mutations identified by NGS, subsequent MLPA analysis of the PKHD1 gene was carried out. Results Two underlying mutations were detected in 54 % of families (n = 13), one mutation in 13 % of families (n = 3), and in 33 % of families (n = 8) no mutation could be detected. Overall, seventeen different mutations (5 novel) were detected, including deletion of one exon. The detection rate in our study reached 60 % in the entire cohort of patients; but 90 % in the group of patients who fulfilled all clinical criteria of ARPKD, and 42 % in the group of patients with unknown kidney pathology. The most frequent mutation was T36M, accounting for nearly 21 % of all identified mutations. Conclusions Next-generation sequencing of the PKHD1 gene is a very useful method of molecular diagnosis in patients with a full clinical picture of ARPKD, and it has a high detection rate. Furthermore, its relatively low costs and rapidity allow the molecular genetic analysis of patients without the full clinical criteria of ARPKD, who might also have mutations in the PKHD1 gene.
Collapse
Affiliation(s)
- Lena Obeidova
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, General University Hospital in Prague, Prague, Czech.
| | - Tomas Seeman
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech.
| | - Veronika Elisakova
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, General University Hospital in Prague, Prague, Czech.
| | - Jana Reiterova
- Department of Nephrology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech.
| | - Alena Puchmajerova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech.
| | - Jitka Stekrova
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, General University Hospital in Prague, Prague, Czech.
| |
Collapse
|
39
|
Beaudry JB, Cordi S, Demarez C, Lepreux S, Pierreux CE, Lemaigre FP. Proliferation-Independent Initiation of Biliary Cysts in Polycystic Liver Diseases. PLoS One 2015; 10:e0132295. [PMID: 26125584 PMCID: PMC4488361 DOI: 10.1371/journal.pone.0132295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/11/2015] [Indexed: 12/14/2022] Open
Abstract
Biliary cysts in adult patients affected by polycystic liver disease are lined by cholangiocytes that proliferate, suggesting that initiation of cyst formation depends on proliferation. Here, we challenge this view by analyzing cyst-lining cell proliferation and differentiation in Cpk mouse embryos and in livers from human fetuses affected by Autosomal Recessive Polycystic Kidney Disease (ARPKD), at early stages of cyst formation. Proliferation of fetal cholangiocyte precursors, measured by immunostaining in human and mouse livers, was low and did not differ between normal and ARPKD or Cpk livers, excluding excessive proliferation as an initiating cause of liver cysts. Instead, our analyses provide evidence that the polycystic livers exhibit increased and accelerated differentiation of hepatoblasts into cholangiocyte precursors, eventually coalescing into large biliary cysts. Lineage tracing experiments, performed in mouse embryos, indicated that the cholangiocyte precursors in Cpk mice generate cholangiocytes and periportal hepatocytes, like in wild-type animals. Therefore, contrary to current belief, cyst formation in polycystic liver disease does not necessarily depend on overproliferation. Combining our prenatal data with available data from adult livers, we propose that polycystic liver can be initiated by proliferation-independent mechanisms at a fetal stage, followed by postnatal proliferation-dependent cyst expansion.
Collapse
Affiliation(s)
| | - Sabine Cordi
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Céline Demarez
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | | | | | | |
Collapse
|
40
|
Kurschat CE, Müller RU, Franke M, Maintz D, Schermer B, Benzing T. An approach to cystic kidney diseases: the clinician's view. Nat Rev Nephrol 2014; 10:687-99. [DOI: 10.1038/nrneph.2014.173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Hartung EA, Guay-Woodford LM. Autosomal recessive polycystic kidney disease: a hepatorenal fibrocystic disorder with pleiotropic effects. Pediatrics 2014; 134:e833-45. [PMID: 25113295 PMCID: PMC4143997 DOI: 10.1542/peds.2013-3646] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 12/31/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is an important cause of chronic kidney disease in children. The care of ARPKD patients has traditionally been the realm of pediatric nephrologists; however, the disease has multisystem effects, and a comprehensive care strategy often requires a multidisciplinary team. Most notably, ARPKD patients have congenital hepatic fibrosis, which can lead to portal hypertension, requiring close follow-up by pediatric gastroenterologists. In severely affected infants, the diagnosis is often first suspected by obstetricians detecting enlarged, echogenic kidneys and oligohydramnios on prenatal ultrasounds. Neonatologists are central to the care of these infants, who may have respiratory compromise due to pulmonary hypoplasia and massively enlarged kidneys. Surgical considerations can include the possibility of nephrectomy to relieve mass effect, placement of dialysis access, and kidney and/or liver transplantation. Families of patients with ARPKD also face decisions regarding genetic testing of affected children, testing of asymptomatic siblings, or consideration of preimplantation genetic diagnosis for future pregnancies. They may therefore interface with genetic counselors, geneticists, and reproductive endocrinologists. Children with ARPKD may also be at risk for neurocognitive dysfunction and may require neuropsychological referral. The care of patients and families affected by ARPKD is therefore a multidisciplinary effort, and the general pediatrician can play a central role in this complex web of care. In this review, we outline the spectrum of clinical manifestations of ARPKD and review genetics of the disease, clinical and genetic diagnosis, perinatal management, management of organ-specific complications, and future directions for disease monitoring and potential therapies.
Collapse
Affiliation(s)
- Erum A Hartung
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Lisa M Guay-Woodford
- Center for Translational Science, Children's National Health System, Washington, District of Columbia
| |
Collapse
|
42
|
Frank V, Zerres K, Bergmann C. Transcriptional complexity in autosomal recessive polycystic kidney disease. Clin J Am Soc Nephrol 2014; 9:1729-36. [PMID: 25104275 DOI: 10.2215/cjn.00920114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND OBJECTIVES Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in the PKHD1 gene. The longest open reading frame comprises 66 exons encoding polyductin or fibrocystin, a type I transmembrane protein with 4074 amino acids. Functional investigations are considerably hampered by its large size and lack of expression in tissues that are usually available for analysis such as lymphocytes or fibroblasts. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Allegedly strong and clear-cut genotype-phenotype correlations for the type of PKHD1 mutation could be established. Thus far, practically all patients with two truncating mutations showed perinatal or neonatal demise and at least one hypomorphic missense mutation is thought to be indispensable for survival. Mutation analysis of >500 ARPKD families was performed by conventional and next-generation sequencing techniques. RESULTS This study presents four unrelated patients with ARPKD with a nonlethal, moderate clinical course despite the burden of two PKHD1 mutations expected to lead to premature termination of translation. In line with parental consanguinity, all mutations occurred in the homozygous state and segregated with the disorder in these families. To try to unravel the mechanisms that underlie this obvious contradiction, these patients were further analyzed in detail by utilizing different methods. In all cases, complex transcriptional alterations were detected. Alternative splicing patterns might disrupt a critical stoichiometric and temporal balance between different protein products and may play a crucial role in defining the phenotype of these patients. CONCLUSIONS Although these findings represent rare events, they are of importance for genetic counseling and illustrate that some caution is warranted in the interpretation of mutations and their clinical significance. The authors hypothesize that expression of a minimal amount of functional protein is needed for survival of the neonatal period in ARPKD.
Collapse
Affiliation(s)
- Valeska Frank
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Klaus Zerres
- Department of Human Genetics, RWTH Aachen University, Aachen, Germany; and
| | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany; Department of Human Genetics, RWTH Aachen University, Aachen, Germany; and Renal Division, Department of Medicine, University Freiburg Medical Center, Freiburg, Germany
| |
Collapse
|
43
|
Liver disease in autosomal recessive polycystic kidney disease: clinical characteristics and management in relation to renal failure. J Pediatr Gastroenterol Nutr 2014; 59:190-6. [PMID: 24806835 DOI: 10.1097/mpg.0000000000000422] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We correlated liver and kidney manifestations in a national cohort of patients with autosomal recessive polycystic kidney disease (ARPKD). METHODS A total of 27 consecutive patients with ARPKD were included. Hepatobiliary disorders were comparatively evaluated in 2 groups: children in group 1 (n = 10) displayed renal failure as infants and those in group 2 (n = 17) had normal kidney function through the first year of life. RESULTS Median follow-up time was 10.6 (range, 0.4-40) years. Portal hypertension was diagnosed in 13 patients (48%) at the median age 5.0 (1.5-27.9) years. Esophageal varices developed in 8 patients (30%) at age 8.0 (2.1-11.9) years; 4 patients (15%) had variceal bleeding, and hypersplenism/splenomegaly occurred in 52%, similarly in both groups. Biliary tract dilatation was detected at 2.8 years in group 1 and at 7.9 years in group 2, significantly more frequently in group 1 (60% vs 18%, P = 0.039), causing cholangitis in 2 (20%) versus none in group 2 (P = 0.055). A total of 10 patients (37%) underwent cadaveric liver transplantation (LT) at a median age of 6.6 (1.0-20.0) years. In 1 patient LT was performed because of hepatoblastoma. Nine of these were combined liver-kidney transplantations (CLKT). Patients in group 1 required LT earlier (4.1 years vs 18.2 years, P = 0.017) and more frequently (70% vs 18%, P = 0.01). Overall survival beyond neonatal period was 85%. Two patients died because of infectious complications after CLKT, and 1 patient because of recurrent hepatoblastoma. CONCLUSIONS Although correlation of renal and liver manifestations was variable, biliary dilatation was associated with early renal failure. CLKT may be a treatment for patients with ARPKD with marked hepatobiliary complications.
Collapse
|
44
|
Abstract
At least 10% of adults and nearly all children who receive renal-replacement therapy have an inherited kidney disease. These patients rarely die when their disease progresses and can remain alive for many years because of advances in organ-replacement therapy. However, these disorders substantially decrease their quality of life and have a large effect on health-care systems. Since the kidneys regulate essential homoeostatic processes, inherited kidney disorders have multisystem complications, which add to the usual challenges for rare disorders. In this review, we discuss the nature of rare inherited kidney diseases, the challenges they pose, and opportunities from technological advances, which are well suited to target the kidney. Mechanistic insights from rare disorders are relevant for common disorders such as hypertension, kidney stones, cardiovascular disease, and progression of chronic kidney disease.
Collapse
Affiliation(s)
- Olivier Devuyst
- Division of Nephrology, Université catholique de Louvain, Brussels, Belgium; Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| | - Nine V A M Knoers
- Department of Medical Genetics, Division of Biomedical Genetics, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Giuseppe Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso and Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Franz Schaefer
- Pediatric Nephrology Division, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
45
|
Hao X, Liu S, Dong Q, Zhang H, Zhao J, Su L. Whole exome sequencing identifies recessive PKHD1 mutations in a Chinese twin family with Caroli disease. PLoS One 2014; 9:e92661. [PMID: 24710345 PMCID: PMC3977808 DOI: 10.1371/journal.pone.0092661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/24/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mutations in PKHD1 cause autosomal recessive Caroli disease, which is a rare congenital disorder involving cystic dilatation of the intrahepatic bile ducts. However, the mutational spectrum of PKHD1 and the phenotype-genotype correlations have not yet been fully established. METHODS Whole exome sequencing (WES) was performed on one twin sample with Caroli disease from a Chinese family from Shandong province. Routine Sanger sequencing was used to validate the WES and to carry out segregation studies. We also described the PKHD1 mutation associated with the genotype-phenotype of this twin. RESULTS A combination of WES and Sanger sequencing revealed the genetic defect to be a novel compound heterozygous genotype in PKHD1, including the missense mutation c.2507 T>C, predicted to cause a valine to alanine substitution at codon 836 (c.2507T>C, p.Val836Ala), and the nonsense mutation c.2341C>T, which is predicted to result in an arginine to stop codon at codon 781 (c.2341C>T, p.Arg781*). This compound heterozygous genotype co-segregates with the Caroli disease-affected pedigree members, but is absent in 200 normal chromosomes. CONCLUSIONS Our findings indicate exome sequencing can be useful in the diagnosis of Caroli disease patients and associate a compound heterozygous genotype in PKHD1 with Caroli disease, which further increases our understanding of the mutation spectrum of PKHD1 in association with Caroli disease.
Collapse
Affiliation(s)
- Xiwei Hao
- Pediatric Surgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Shiguo Liu
- Genetic Laboratory, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Qian Dong
- Pediatric Surgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
- * E-mail:
| | - Hong Zhang
- Pediatric Surgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Jing Zhao
- Pediatric Surgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Lin Su
- Pediatric Surgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
46
|
Krall P, Pineda C, Ruiz P, Ejarque L, Vendrell T, Camacho JA, Mendizábal S, Oliver A, Ballarín J, Torra R, Ars E. Cost-effective PKHD1 genetic testing for autosomal recessive polycystic kidney disease. Pediatr Nephrol 2014; 29:223-34. [PMID: 24162162 DOI: 10.1007/s00467-013-2657-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/30/2013] [Accepted: 10/04/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genetic diagnosis of autosomal recessive polycystic kidney disease (ARPKD) is challenging due to the length and allelic heterogeneity of the PKHD1 gene. Mutations appear to be clustered at specific exons, depending on the geographic origin of the patient. We aimed to identify the PKHD1 exons most likely mutated in Spanish ARPKD patients. METHODS Mutation analysis was performed in 50 ARPKD probands and nine ARPKD-suspicious patients by sequencing PKHD1 exons arranged by their reported mutation frequency. Haplotypes containing the most frequent mutations were analyzed. Other PKD genes (HNF1B, PKD1, PKD2) were sequenced in PKHD1-negative cases. RESULTS Thirty-six different mutations (concentrated in 24 PKHD1 exons) were detected, giving a mutation detection rate of 86%. The screening of five exons (58, 32, 34, 36, 37) yielded a 54% chance of detecting one mutation; the screening of nine additional exons (3, 9, 39, 61, 5, 22, 26, 41, 57) increased the chance to 76%. The c.9689delA mutation was present in 17 (34%) patients, all of whom shared the same haplotype. Two HNF1B mutations and one PKD1 variant were detected in negative cases. CONCLUSIONS Establishing a PKHD1 exon mutation profile in a specific population and starting the analysis with the most likely mutated exons might significantly enhance the efficacy of genetic testing in ARPKD. Analysis of other PKD genes might be considered, especially in suspicious cases.
Collapse
Affiliation(s)
- Paola Krall
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, C/Cartagena, 340-350, 08025, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
The ciliary protein cystin forms a regulatory complex with necdin to modulate Myc expression. PLoS One 2013; 8:e83062. [PMID: 24349431 PMCID: PMC3859662 DOI: 10.1371/journal.pone.0083062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/30/2013] [Indexed: 12/18/2022] Open
Abstract
Cystin is a novel cilia-associated protein that is disrupted in the cpk mouse, a well-characterized mouse model of autosomal recessive polycystic kidney disease (ARPKD). Interestingly, overexpression of the Myc gene is evident in animal models of ARPKD and is thought to contribute to the renal cystic phenotype. Using a yeast two-hybrid approach, the growth suppressor protein necdin, known to modulate Myc expression, was found as an interacting partner of cystin. Deletion mapping demonstrated that the C-terminus of cystin and both termini of necdin are required for their mutual interaction. Speculating that these two proteins may function to regulate gene expression, we developed a luciferase reporter assay and observed that necdin strongly activated the Myc P1 promoter, and cystin did so more modestly. Interestingly, the necdin effect was significantly abrogated when cystin was co-transfected. Chromatin immunoprecipitation and electrophoretic mobility shift assays revealed a physical interaction with both necdin and cystin and the Myc P1 promoter, as well as between these proteins. The data suggest that these proteins likely function in a regulatory complex. Thus, we speculate that Myc overexpression in the cpk kidney results from the dysregulation of the cystin-necdin regulatory complex and c-Myc, in turn, contributes to cystogenesis in the cpk mouse.
Collapse
|
48
|
Looking at the (w)hole: magnet resonance imaging in polycystic kidney disease. Pediatr Nephrol 2013; 28:1771-83. [PMID: 23239392 DOI: 10.1007/s00467-012-2370-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 12/29/2022]
Abstract
Inherited cystic kidney diseases, including autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), are the most common monogenetic causes of end-stage renal disease (ESRD) in children and adults. While ARPKD is a rare and usually severe pediatric disease, the more common ADPKD typically shows a slowly progressive course leading to ESRD in adulthood. At the present time there is no established disease-modifying treatment for either ARPKD or ADPKD. Various therapeutic approaches are currently under investigation, such as V2 receptor antagonists, somatostatins, and mTOR inhibitors. Renal function remains stable for decades in ADPKD, and thus clinically meaningful surrogate markers to assess therapeutic efficacy are needed. Various studies have pointed out that total kidney volume (TKV) is a potential surrogate parameter for disease severity in ADPKD. Recent trials have therefore measured TKV by magnet resonance imaging (MRI) to monitor and to predict disease progression. Here, we discuss novel insights on polycystic kidney disease (PKD), the value of MRI, and the measurement of TKV in the diagnosis and follow-up of PKD, as well as novel emerging therapeutic strategies for ADPKD.
Collapse
|
49
|
Abstract
Renal biopsy was introduced in the 1950s. By 1980 the pathologic diagnostic criteria for the majority of medical kidney diseases known today, including pediatric diseases, were established using light, electron microscopy and immunohistochemistry. However, it has become clear that there are limitations in the morphologic evaluation, mainly because a given pattern of injury can be caused by different aetiologies and, conversely, a single aetiology may present with more than one histological pattern. An explosion in kidney disease research in the last 20-30 years has brought new knowledge from bench to bedside rapidly and resulted in new molecular and genetic tools that enhance the diagnostic and prognostic power of the renal biopsy. Genomic technologies such as polymerase chain reaction (PCR), in situ hybridization and oligonucleotide microarrays, collectively known as genomics, detect single or multiple genes underscoring the pathologic changes and revealing specific causes of injury that may require different treatment. The aims of this review are to (1) summarize current recommendations for diagnostic renal biopsies encompassing light microscopy, immunofluorescence or immunohistochemistry and electron microscopy; (2) address the limitations of morphology; (3) show current contributions of genomic technologies adjunct to the renal biopsy, and provide examples of how these may transform pathologic interpretation into molecular disease phenotypes.
Collapse
|
50
|
Abstract
Renal cysts are a common radiological finding in both adults and children. They occur in a variety of conditions, and the clinical presentation, management, and prognosis varies widely. In this article, we discuss the major causes of renal cysts in children and adults with a particular focus on the most common genetic forms. Many cystoproteins have been localized to the cilia centrosome complex (CCC). We consider the evidence for a universal 'cilia hypothesis' for cyst formation and the evidence for non-ciliary proteins in cyst formation.
Collapse
|