1
|
Ju Y, Du M, Wang Z, Mu X, Miao Y, Guo Z, Wang D, Wang S, Ding J, Jin G, Zhang W, Qiao H, Su Y, Liu X, Yuchi Z, Tan X, Wang Y. Kukoamine A alleviates nephrolithiasis by inhibiting endogenous oxalate synthesis via the IL-6/JAK/STAT3/DAO signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156145. [PMID: 39461201 DOI: 10.1016/j.phymed.2024.156145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND The recurrent nature and socioeconomic burden of nephrolithiasis demand effective treatments. Delineating the crosstalk between inflammatory processes and the endogenous oxalate metabolism pathway, which underpins nephrolithiasis pathogenesis, is essential for advancing treatment strategies. PURPOSE We aim to screen therapeutic Chinese herbal remedies and their bioactive constituents for kidney stone treatment using a fruit fly model, followed by efficacy and mechanism validation in a rodent nephrolithiasis model as well as in vitro human cell culture model. STUDY DESIGN AND METHODS We developed a fruit fly model to screen for efficient traditional Chinese medicine herbs and their active compounds for kidney stone treatment. Candidate active compounds from efficient herbs were separated and identified by solid-phase chromatography coupled with LC-MS analysis. Fruit fly genetic tools were employed to manipulate the expression of related genes to explore the therapeutic mechanisms of the Lycii Cortex and kukoamine A (KuA). To confirm the therapeutic effects and mechanisms of KuA for mammalian nephrolithiasis, mouse model of glyoxylate-induced kidney stone and human renal tubular cells were used. The therapeutic role of kukoamine A in nephrolithiasis was evaluated by assessing tubular injury, crystal deposition, and adhesion. The level of expression and phosphorylation in cells and mice was assessed using RT-qPCR and western blot. RESULTS Our findings indicate that Lycii Cortex potently inhibits calcium oxalate stone formation via activation of the JNK/Upd3/JAK/STAT signaling cascade, resulting in diminished endogenous oxalate synthesis by downregulating D-amino acid oxidase (DAO) gene expression, predominantly in fruit fly Malpighian tube stellate cells. KuA was identified as the principal bioactive constituent mediating these effects. Both mouse models and human cell assays confirmed KuA's efficacy in preventing calcium oxalate nephrolithiasis in mammals, through hepatic JAK/STAT3 pathway activation and upregulation of IL-6, culminating in reduced urinary crystal deposition. CONCLUSION Our research underscores the potential of kukoamine A as a lead compound in treating nephrolithiasis and reveals the interplay between the IL-6/JAK/STAT3 inflammatory pathway and endogenous oxalate metabolism in nephrolithiasis pathogenesis. Additionally, it highlights the utility of the fruit fly model as a powerful tool for deciphering the therapeutic mechanisms of traditional Chinese herbs.
Collapse
Affiliation(s)
- Yingjie Ju
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Mengwei Du
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhongyi Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| | - Zhimou Guo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dekun Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shiyao Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Junjie Ding
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gaowa Jin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wen Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Huanhuan Qiao
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yanfang Su
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiuyun Liu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Zhiguang Yuchi
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Xiaoyue Tan
- School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Lu Y, Wu Z, Du Z, Lin X, Tian E, Zhang F, Chao Z. The anti-urolithiasis activity and safety of strangury-relieving herbs: A comparative study based on fruit fly kidney stone model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117968. [PMID: 38428655 DOI: 10.1016/j.jep.2024.117968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Urolithiasis is one of the oldest and most widespread urological diseases suffered globally. In the long history of Traditional Chinese Medicine, there're numerous herbs documented with strangury-relieving properties playing crucial roles in treating various urological disorders, including dysuria, hematuria, and renal colic, etc., which may be caused by urolithiasis. Exploring these herbs may reveal safer, more effective, and cost-efficient drugs and therapies for urolithiasis. AIM OF THE STUDY This study aims to assess the anti-urolithiasis efficacy and safety of 46 Chinese traditional and folk herbal drugs using the fruit fly (Drosophila melanogaster) kidney stone model, in order to identify the most valuable ethnomedicinal materials. MATERIALS AND METHODS Water extract and 50% ethanol extract of each herb were prepared respectively. 0.2% (w/w) sodium oxalate was chosen as appropriate lithogenic agent through fruit fly life span study. Male fruit-flies within three days of emergence were aged for an additional three days, then were randomly divided into experimental groups, model group and control groups (n = 20). The flies in blank control group, model group and positive control group were fed with standard food, standard food containing 0.2% sodium oxalate, standard food containing 0.2% sodium oxalate and 3% (w/w) Garcinia cambogia extract, respectively. Meanwhile, flies in the experimental groups were raised on standard food containing 0.2% sodium oxalate and 3% (w/w) herbal extract. The anti-urolithiasis capability of the extracts was evaluated using stone area ratio (the stone area divided by the area of the Malpighian tubule) and stone-clearing rate. Additionally, the 7-day mortality rate was employed as an indicator of safety. RESULTS Out of the 46 herbs, 24 exhibited significant anti-urolithiasis effects in their water extracts. Among them, Herba Nephrolepidis, Herba Humuli, Herba Desmodii Styracifolii, Cortex Plumeriae Rubrae, and Herba Mimosae Pudicae showed us a low 7-day mortality rate of fruit-flies as well. However, only a limited number of herbal extracts (8 out of 46) showed obvious anti-urolithiasis activity in their 50% ethanol extracts. CONCLUSION Highly potential anti-urolithiasis candidates were discovered from strangury-relieving herbs recorded in classical Traditional Chinese Medicine works, highlighting the significant value of traditional and folk ethnopharmacological knowledge.
Collapse
Affiliation(s)
- Yi Lu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Faculty of Medicinal Plant and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zeliang Wu
- Faculty of Medicinal Plant and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhengxi Du
- Faculty of Medicinal Plant and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaozhu Lin
- Faculty of Medicinal Plant and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Enwei Tian
- Faculty of Medicinal Plant and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Fujian Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; National Clinical Research Center for Kidney Disease, Guangzhou, 510515, China; State Key Laboratory of Organ Failure Research, Guangzhou, 510515, China; Guangdong Provincial Institute of Nephrology, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Zhi Chao
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Faculty of Medicinal Plant and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Dong C, Zhou J, Su X, He Z, Song Q, Song C, Ke H, Wang C, Liao W, Yang S. Understanding formation processes of calcareous nephrolithiasis in renal interstitium and tubule lumen. J Cell Mol Med 2024; 28:e18235. [PMID: 38509735 PMCID: PMC10955165 DOI: 10.1111/jcmm.18235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Kidney stone, one of the oldest known diseases, has plagued humans for centuries, consistently imposing a heavy burden on patients and healthcare systems worldwide due to their high incidence and recurrence rates. Advancements in endoscopy, imaging, genetics, molecular biology and bioinformatics have led to a deeper and more comprehensive understanding of the mechanism behind nephrolithiasis. Kidney stone formation is a complex, multi-step and long-term process involving the transformation of stone-forming salts from free ions into asymptomatic or symptomatic stones influenced by physical, chemical and biological factors. Among the various types of kidney stones observed in clinical practice, calcareous nephrolithiasis is currently the most common and exhibits the most intricate formation mechanism. Extensive research suggests that calcareous nephrolithiasis primarily originates from interstitial subepithelial calcified plaques and/or calcified blockages in the openings of collecting ducts. These calcified plaques and blockages eventually come into contact with urine in the renal pelvis, serving as a nidus for crystal formation and subsequent stone growth. Both pathways of stone formation share similar mechanisms, such as the drive of abnormal urine composition, involvement of oxidative stress and inflammation, and an imbalance of stone inhibitors and promoters. However, they also possess unique characteristics. Hence, this review aims to provide detailed description and present recent discoveries regarding the formation processes of calcareous nephrolithiasis from two distinct birthplaces: renal interstitium and tubule lumen.
Collapse
Affiliation(s)
- Caitao Dong
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Jiawei Zhou
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Xiaozhe Su
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Ziqi He
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Qianlin Song
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Chao Song
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Hu Ke
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Chuan Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Wenbiao Liao
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Sixing Yang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| |
Collapse
|
4
|
Yamamoto Y, Fujiwara Y. Calcium storage in Malpighian tubules and the putative use for pupal chamber formation in a wood-feeding insect. JOURNAL OF INSECT PHYSIOLOGY 2023:104534. [PMID: 37364813 DOI: 10.1016/j.jinsphys.2023.104534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Cerambycid beetles form a chamber to spend their pupal stages in various forms according to the species. The red-necked longhorn beetle Aromia bungii (Coleoptera: Cerambycidae), which is an invasive pest that severely damages Rosaceae trees, makes a pupal chamber at the end of a tunnel deep in the xylem. Beetle larvae and the closely related species form a calcareous lid at the entrance of a pupal chamber. Previous studies on the closely related species conducted more than century ago suggested that Malpighian tubules (MTs) play a vital role in calcium carbonate accumulation. However, the association between this Ca2+ accumulation and pupal chamber lid formation utilizing the possible calcium compounds stored in MTs have not yet been demonstrated. First, we artificially reared A. bungii larvae from eggs in host branches for 100 days and identified the larval developmental status and pupal chamber formation, using X-ray computed tomography. Second, we collected larvae from the branches and observed the internal organs by direct dissection under a microscope. Finally, we analyzed the elemental distribution, particularly calcium, in the larval gut with MTs, using energy dispersive X-ray fluorescence. The results suggest that immature larvae of A. bungii could accumulate Ca2+ in the MTs through wood tunneling and feeding activities. Ca2+ was stored at the proximal regions in two of the six MTs located posteriorly in the body. Additionally, larvae that formed a calcareous lid at the entrance of pupal chambers in the branches did not store Ca2+ in the MTs, suggesting that the larvae of A. bungii used the stored Ca2+ in their MTs for lid formation.
Collapse
Affiliation(s)
- Yuichi Yamamoto
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, 442, Shakudo, Habikino, Osaka 583-0862, Japan.
| | - Yuko Fujiwara
- Laboratory of Wood Processing Division of Forestry and Biomaterials Science Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 Japan
| |
Collapse
|
5
|
Akouris PP, Chmiel JA, Stuivenberg GA, Kiattiburut W, Bjazevic J, Razvi H, Grohe B, Goldberg HA, Burton JP, Al KF. Osteopontin phosphopeptide mitigates calcium oxalate stone formation in a Drosophila melanogaster model. Urolithiasis 2022; 51:19. [PMID: 36547746 DOI: 10.1007/s00240-022-01395-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Kidney stone disease affects nearly one in ten individuals and places a significant economic strain on global healthcare systems. Despite the high frequency of stones within the population, effective preventative strategies are lacking and disease prevalence continues to rise. Osteopontin (OPN) is a urinary protein that can inhibit the formation of renal calculi in vitro. However, the efficacy of OPN in vivo has yet to be determined. Using an established Drosophila melanogaster model of calcium oxalate urolithiasis, we demonstrated that a 16-residue synthetic OPN phosphopeptide effectively reduced stone burden in vivo. Oral supplementation with this peptide altered crystal morphology of calcium oxalate monohydrate (COM) in a similar manner to previous in vitro studies, and the presence of the OPN phosphopeptide during COM formation and adhesion significantly reduced crystal attachment to mammalian kidney cells. Altogether, this study is the first to show that an OPN phosphopeptide can directly mitigate calcium oxalate urolithiasis formation in vivo by modulating crystal morphology. These findings suggest that OPN supplementation is a promising therapeutic approach and may be clinically useful in the management of urolithiasis in humans.
Collapse
Affiliation(s)
- Polycronis P Akouris
- Canadian Centre for Human Microbiome and Probiotics, London, ON, Canada
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - John A Chmiel
- Canadian Centre for Human Microbiome and Probiotics, London, ON, Canada
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Gerrit A Stuivenberg
- Canadian Centre for Human Microbiome and Probiotics, London, ON, Canada
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Wongsakorn Kiattiburut
- Canadian Centre for Human Microbiome and Probiotics, London, ON, Canada
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Jennifer Bjazevic
- Division of Urology, Department of Surgery, Western University, London, ON, Canada
| | - Hassan Razvi
- Division of Urology, Department of Surgery, Western University, London, ON, Canada
| | - Bernd Grohe
- Canadian Centre for Human Microbiome and Probiotics, London, ON, Canada
| | - Harvey A Goldberg
- Department of Biochemistry, Western University, London, ON, Canada
- School of Dentistry, Western University, London, ON, Canada
| | - Jeremy P Burton
- Canadian Centre for Human Microbiome and Probiotics, London, ON, Canada
- Department of Microbiology and Immunology, Western University, London, ON, Canada
- Division of Urology, Department of Surgery, Western University, London, ON, Canada
| | - Kait F Al
- Canadian Centre for Human Microbiome and Probiotics, London, ON, Canada.
- Department of Microbiology and Immunology, Western University, London, ON, Canada.
| |
Collapse
|
6
|
Van de Perre E, Bazin D, Estrade V, Bouderlique E, Wissing KM, Daudon M, Letavernier E. Randall’s plaque as the origin of idiopathic calcium oxalate stone formation: an update. CR CHIM 2022. [DOI: 10.5802/crchim.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Hilsabeck TAU, Liu-Bryan R, Guo T, Wilson KA, Bose N, Raftery D, Beck JN, Lang S, Jin K, Nelson CS, Oron T, Stoller M, Promislow D, Brem RB, Terkeltaub R, Kapahi P. A fly GWAS for purine metabolites identifies human FAM214 homolog medusa, which acts in a conserved manner to enhance hyperuricemia-driven pathologies by modulating purine metabolism and the inflammatory response. GeroScience 2022; 44:2195-2211. [PMID: 35381951 PMCID: PMC9616999 DOI: 10.1007/s11357-022-00557-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/25/2022] [Indexed: 01/14/2023] Open
Abstract
Elevated serum urate (hyperuricemia) promotes crystalline monosodium urate tissue deposits and gout, with associated inflammation and increased mortality. To identify modifiers of uric acid pathologies, we performed a fly Genome-Wide Association Study (GWAS) on purine metabolites using the Drosophila Genetic Reference Panel strains. We tested the candidate genes using the Drosophila melanogaster model of hyperuricemia and uric acid crystallization ("concretion formation") in the kidney-like Malpighian tubule. Medusa (mda) activity increased urate levels and inflammatory response programming. Conversely, whole-body mda knockdown decreased purine synthesis precursor phosphoribosyl pyrophosphate, uric acid, and guanosine levels; limited formation of aggregated uric acid concretions; and was sufficient to rescue lifespan reduction in the fly hyperuricemia and gout model. Levels of mda homolog FAM214A were elevated in inflammatory M1- and reduced in anti-inflammatory M2-differentiated mouse bone marrow macrophages, and influenced intracellular uric acid levels in human HepG2 transformed hepatocytes. In conclusion, mda/FAM214A acts in a conserved manner to regulate purine metabolism, promotes disease driven by hyperuricemia and associated tissue inflammation, and provides a potential novel target for uric acid-driven pathologies.
Collapse
Affiliation(s)
- Tyler A U Hilsabeck
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA, 90007, USA
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California San Diego, San Diego, CA, 92093, USA
| | - Tracy Guo
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California San Diego, San Diego, CA, 92093, USA
| | - Kenneth A Wilson
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Neelanjan Bose
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer N Beck
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA, 94143, USA
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Christopher S Nelson
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Tal Oron
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Marshall Stoller
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA, 94143, USA
| | - Daniel Promislow
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Rachel B Brem
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA, 90007, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Robert Terkeltaub
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California San Diego, San Diego, CA, 92093, USA
| | - Pankaj Kapahi
- Buck Institute for Research On Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA, 90007, USA.
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Room A-632, San Francisco, CA, 94143, USA.
| |
Collapse
|
8
|
Dow JAT, Simons M, Romero MF. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nat Rev Nephrol 2022; 18:417-434. [PMID: 35411063 DOI: 10.1038/s41581-022-00561-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Although the genetic basis of many kidney diseases is being rapidly elucidated, their experimental study remains problematic owing to the lack of suitable models. The fruitfly Drosophila melanogaster provides a rapid, ethical and cost-effective model system of the kidney. The unique advantages of D. melanogaster include ease and low cost of maintenance, comprehensive availability of genetic mutants and powerful transgenic technologies, and less onerous regulation, as compared with mammalian systems. Renal and excretory functions in D. melanogaster reside in three main tissues - the transporting renal (Malpighian) tubules, the reabsorptive hindgut and the endocytic nephrocytes. Tubules contain multiple cell types and regions and generate a primary urine by transcellular transport rather than filtration, which is then subjected to selective reabsorption in the hindgut. By contrast, the nephrocytes are specialized for uptake of macromolecules and equipped with a filtering slit diaphragm resembling that of podocytes. Many genes with key roles in the human kidney have D. melanogaster orthologues that are enriched and functionally relevant in fly renal tissues. This similarity has allowed investigations of epithelial transport, kidney stone formation and podocyte and proximal tubule function. Furthermore, a range of unique quantitative phenotypes are available to measure function in both wild type and disease-modelling flies.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
9
|
Chaiyarit S, Thongboonkerd V. Oxidized forms of uromodulin promote calcium oxalate crystallization and growth, but not aggregation. Int J Biol Macromol 2022; 214:542-553. [PMID: 35752338 DOI: 10.1016/j.ijbiomac.2022.06.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/19/2022]
Abstract
Roles of an abundant human urinary protein, uromodulin (UMOD), in kidney stone disease were previously controversial. Recently, we have demonstrated that oxidative modification reverses overall modulatory activity of whole urinary proteins, from inhibition to promotion of calcium oxalate (CaOx) stone-forming processes. We thus hypothesized that oxidation is one of the factors causing those previously controversial UMOD data on stone modulation. Herein, we addressed effects of performic-induced oxidation on CaOx crystal modulatory activity of UMOD. Sequence analyses revealed two EGF-like calcium-binding domains (65th-107th and 108th-149th), two other calcium-binding motifs (65th-92nd and 108th-135th), and three oxalate-binding motifs (199th-207th, 361st-368th and 601st-609th) in UMOD molecule. Analysis of tandem mass spectrometric dataset of whole urinary proteins confirmed marked increases in oxidation, dioxidation and trioxidation of UMOD in the performic-modified urine samples. UMOD was then purified from the normal urine and underwent performic-induced oxidative modification, which was confirmed by Oxyblotting. The oxidized UMOD significantly promoted CaOx crystallization and crystal growth, whereas the unmodified native UMOD inhibited CaOx crystal growth. However, the oxidized UMOD did not affect CaOx crystal aggregation. Therefore, our data indicate that oxidized forms of UMOD promote CaOx crystallization and crystal growth, which are the important processes for CaOx kidney stone formation.
Collapse
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
10
|
Sun P, Liao SG, Yang RQ, Lu CL, Ji KL, Cao DH, Hu HB, Lu JM, Song XZ, Wu M, Jia HZ, Xiao CF, Ma ZW, Xu YK. Aspidopterys obcordata vine inulin fructan affects urolithiasis by modifying calcium oxalate crystallization. Carbohydr Polym 2022; 294:119777. [DOI: 10.1016/j.carbpol.2022.119777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
|
11
|
Wang S, Ju Y, Gao L, Miao Y, Qiao H, Wang Y. The fruit fly kidney stone models and their application in drug development. Heliyon 2022; 8:e09232. [PMID: 35399385 PMCID: PMC8987614 DOI: 10.1016/j.heliyon.2022.e09232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/18/2022] [Accepted: 03/29/2022] [Indexed: 01/11/2023] Open
Abstract
Kidney stone disease is a global problem affecting about 12% of the world population. Novel treatments to control this disease have a huge demand. Here we argue that the fruit fly, as an emerging kidney stone model, can provide a platform for the discovery of new drugs. The renal system of fruit fly (Malpighian tubules) is similar to the mammalian renal tubules in both function and structure. Different fruit fly models for different types of kidney stones including calcium oxalate (CaOx) stones, xanthine stones, uric acid stone, and calcium phosphate (CaP) stones have been successfully established through dietary or genetic approaches in the last ten years, notably improved our understanding of the formation mechanisms of kidney stone diseases. The fruit fly CaOx stones model, which is mediated by treatment with dietary lithogenic agents, is also one of the most potential models for drug development. Various potential antilithogenic agents have been identified using this model, including new chemical compounds and medicinal plants. The fruit fly kidney stone models also afford opportunities to study the therapeutic mechanism of these drugs in deeper.
Collapse
Affiliation(s)
- Shiyao Wang
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Yingjie Ju
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Lujuan Gao
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China
| | - Huanhuan Qiao
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yiwen Wang
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| |
Collapse
|
12
|
Eickelberg V, Lüersen K, Staats S, Rimbach G. Phenotyping of Drosophila Melanogaster-A Nutritional Perspective. Biomolecules 2022; 12:221. [PMID: 35204721 PMCID: PMC8961528 DOI: 10.3390/biom12020221] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The model organism Drosophila melanogaster was increasingly applied in nutrition research in recent years. A range of methods are available for the phenotyping of D. melanogaster, which are outlined in the first part of this review. The methods include determinations of body weight, body composition, food intake, lifespan, locomotor activity, reproductive capacity and stress tolerance. In the second part, the practical application of the phenotyping of flies is demonstrated via a discussion of obese phenotypes in response to high-sugar diet (HSD) and high-fat diet (HFD) feeding. HSD feeding and HFD feeding are dietary interventions that lead to an increase in fat storage and affect carbohydrate-insulin homeostasis, lifespan, locomotor activity, reproductive capacity and stress tolerance. Furthermore, studies regarding the impacts of HSD and HFD on the transcriptome and metabolome of D. melanogaster are important for relating phenotypic changes to underlying molecular mechanisms. Overall, D. melanogaster was demonstrated to be a valuable model organism with which to examine the pathogeneses and underlying molecular mechanisms of common chronic metabolic diseases in a nutritional context.
Collapse
Affiliation(s)
- Virginia Eickelberg
- Department of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6-8, D-24118 Kiel, Germany; (K.L.); (S.S.); (G.R.)
| | | | | | | |
Collapse
|
13
|
Bell D, Bury N, Gretton S, Corps N, Mortimore D, Greco MK. An X-ray micro-computer tomography study of the Malpighian tubules of the Blue Bottle Blow Fly (Calliphora vomitoria) Diptera: Calliphoridae. ZOOLOGY 2021; 149:125972. [PMID: 34757291 DOI: 10.1016/j.zool.2021.125972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Malpighian tubules are the insect equivalent of mammalian kidneys and normally drain into the gut at the junction between the mid and hind gut. The Malpighian tubules of the fruit fly Drosophila melanogaster are increasingly being used as a model for studying human renal tract development, histology, nephrolithiasis and urolithiasis. In the present study we report when using X-ray micro-computer tomography techniques, the larval, intrapuparial and adult stages of the larger Calliphora vomitoria can contain large amounts of calcium-rich concretions which are tightly packed in the lumen of both anterior Malpighian tubules. We show that it is feasible to utilise these calcium-rich concretions as a form of marking agent to delineate the various developmental stages of the Malpighian tubules including the crucial phase when the Malpighian tubules reconnect with the hind gut. In the majority of cases during the intrapuparial period the ureters of the Malpighian tubules did not start to re-canalise and thus reconnect with the developing hind gut until the 7th day of the 10-11 day. Just prior to ecdysis, virtually all the radio-opaque concretions in the Malpighian tubules had emptied into the hind gut and had then been completely excreted by the time the imago emerged from its puparium. In contrast, we show that in flies developing from larvae previously stained by ingesting Rhodamine B, a known substrate for both the Multi Xenobiotic Resistance and Multi Drug Resistant membrane transport systems, the efficiency with which these calcium-rich concretions are excreted by the imago as it emerges from its intrapuparial period can be significantly impaired. Therefore, it might be useful to include C. vomitoria as a model when studying renal tract development and urolithiasis using X-ray micro-computer tomography.
Collapse
Affiliation(s)
- Duncan Bell
- School of (EAST) Engineering, Arts, Science and Technology, University of Suffolk, James Hehir Building, University Avenue, Ipswich, Suffolk, IP3 0FS, UK
| | - Nic Bury
- School of (EAST) Engineering, Arts, Science and Technology, University of Suffolk, James Hehir Building, University Avenue, Ipswich, Suffolk, IP3 0FS, UK
| | - Svetlana Gretton
- School of (EAST) Engineering, Arts, Science and Technology, University of Suffolk, James Hehir Building, University Avenue, Ipswich, Suffolk, IP3 0FS, UK
| | - Nick Corps
- Bruker UK, Banner Lane, Coventry, CV4 9GH, UK
| | | | - Mark K Greco
- Faculty of Science, Charles Sturt University, Panorama Avenue, Bathurst, NSW, 2795, Australia.
| |
Collapse
|
14
|
Dow JAT, Krause SA, Herzyk P. Updates on ion and water transport by the Malpighian tubule. CURRENT OPINION IN INSECT SCIENCE 2021; 47:31-37. [PMID: 33705976 PMCID: PMC9586879 DOI: 10.1016/j.cois.2021.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 05/29/2023]
Abstract
The Malpighian (renal) tubule is capable of transporting fluid at remarkable rates. This review will focus on recent insights into the mechanisms by which these high rates are achieved and controlled, with particular reference to the tubules of Drosophila melanogaster, in which the combination of physiology and genetics has led to particularly rapid progress. Like many vertebrate epithelia, the Drosophila tubule has specialized cell types, with active cation transport confined to a large, metabolically active principal cell; whereas the smaller intercalated stellate cell controls chloride and water shunts to achieve net fluid secretion. Recently, the genes underlying many of these processes have been identified, functionally validated and localized within the tubule. The imminent arrival of new types of post-genomic data (notably single cell sequencing) will herald an exciting era of new discovery.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Sue Ann Krause
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Pawel Herzyk
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
15
|
Reynolds CJ, Turin DR, Romero MF. Transporters and tubule crystals in the insect Malpighian tubule. CURRENT OPINION IN INSECT SCIENCE 2021; 47:82-89. [PMID: 34044181 PMCID: PMC8487917 DOI: 10.1016/j.cois.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 05/16/2023]
Abstract
The insect renal (Malpighian) tubules are functionally homologous to the mammalian kidney. Accumulating evidence indicates that renal tubule crystals form in a manner similar to mammalian kidney stones. In Drosophila melanogaster, crystals can be induced by diet, toxic substances, or genetic mutations that reflect circumstances influencing or eliciting kidney stones in mammals. Incredibly, many mammalian proteins have distinct homologs in Drosophila, and the function of most homologs have been demonstrated to recapitulate their mammalian and human counterparts. Here, we discuss the present literature establishing Drosophila as a nephrolithiasis model. This insect model may be used to investigate and understand the etiology of kidney stone diseases, especially with regard to calcium oxalate, calcium phosphate and xanthine or urate crystallization.
Collapse
Affiliation(s)
- Carmen J Reynolds
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 First Street SW, Rochester, MN 55905, USA
| | - Daniel R Turin
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 First Street SW, Rochester, MN 55905, USA; University of Minnesota-Rochester, 111 South Broadway, Suite 300, Rochester, MN 55904, USA
| | - Michael F Romero
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 First Street SW, Rochester, MN 55905, USA; Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
16
|
Lipovšek S, Kozel P, Leitinger G, Novak T. Malpighian tubules in harvestmen. PROTOPLASMA 2021; 258:1145-1153. [PMID: 33782782 DOI: 10.1007/s00709-021-01634-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
In arachnids, the Malpighian tubules (MTs), coxal glands and stercoral pockets are capable of collecting and removing excreta from the body. The presence of the MTs among Opiliones was evidenced for the first time in Amilenus aurantiacus in 2015. Individuals undergo a winter diapause subterranean habitats. Here, we provided the morphological and cytological description of the MTs and asked whether their structure and ultrastructure change during the winter diapause. We studied the changes using light and transmission electron microscopy. The MTs consisted of the ureter and a pair of long, lateral blind-ended tubules, forming a long loop in the opisthosoma, and a coiled, terminal ball in the prosoma. The MTs were uniform, composed of a single-cell type, a monolayer of cuboidal epithelial cells, and the basal lamina. The cell ultrastructure was quite comparable to those in other arthropods, except for very long infoldings of the basal membrane protruding close to the nucleus. Except for spherite exploitation, no changes were observed in the ultrastructure of the MT epithelial cells during overwintering. We suggest that the analogous MTs in A. aurantiacus, and the nephron anatomies, along with a single-cell-type MT epithelium, might be of advantage in modelled studies of the nephron.
Collapse
Affiliation(s)
- Saška Lipovšek
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000, Maribor, Slovenia.
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000, Maribor, Slovenia.
- Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, University of Maribor, SI-2000, Maribor, Slovenia.
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria.
| | - Peter Kozel
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000, Maribor, Slovenia
- ZRC SAZU Karst Research Institute, Novi trg 2, SI-1000, Ljubljana, Slovenia
| | - Gerd Leitinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Tone Novak
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000, Maribor, Slovenia
| |
Collapse
|
17
|
Randall's plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol 2021; 17:417-433. [PMID: 33514941 DOI: 10.1038/s41581-020-00392-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
Idiopathic calcium oxalate (CaOx) stones often develop attached to Randall's plaque present on kidney papillary surfaces. Similar to the plaques formed during vascular calcification, Randall's plaques consist of calcium phosphate crystals mixed with an organic matrix that is rich in proteins, such as inter-α-trypsin inhibitor, as well as lipids, and includes membrane-bound vesicles or exosomes, collagen fibres and other components of the extracellular matrix. Kidney tissue surrounding Randall's plaques is associated with the presence of classically activated, pro-inflammatory macrophages (also termed M1) and downregulation of alternatively activated, anti-inflammatory macrophages (also termed M2). In animal models, crystal deposition in the kidneys has been associated with the production of reactive oxygen species, inflammasome activation and increased expression of molecules implicated in the inflammatory cascade, including osteopontin, matrix Gla protein and fetuin A (also known as α2-HS-glycoprotein). Many of these molecules, including osteopontin and matrix Gla protein, are well known inhibitors of vascular calcification. We propose that conditions of urine supersaturation promote kidney damage by inducing the production of reactive oxygen species and oxidative stress, and that the ensuing inflammatory immune response promotes Randall's plaque initiation and calcium stone formation.
Collapse
|
18
|
Burbridge K, Holcombe J, Weavers H. Metabolically active and polyploid renal tissues rely on graded cytoprotection to drive developmental and homeostatic stress resilience. Development 2021; 148:dev197343. [PMID: 33913484 PMCID: PMC8214761 DOI: 10.1242/dev.197343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/29/2021] [Indexed: 12/26/2022]
Abstract
Body tissues are frequently exposed to stress, from toxic byproducts generated during cellular metabolism through to infection or wounding. Although it is well-established that tissues respond to exogenous injury by rapidly upregulating cytoprotective machinery, how energetically demanding tissues - vulnerable to persistent endogenous insult - withstand stress is poorly understood. Here, we show that the cytoprotective factors Nrf2 and Gadd45 act within a specific renal cell subtype, the energetically and biosynthetically active 'principal' cells, to drive stress resilience during Drosophila renal development and homeostasis. Renal tubules lacking Gadd45 exhibit striking morphogenetic defects (with cell death, inflammatory infiltration and reduced ploidy) and accumulate significant DNA damage in post-embryonic life. In parallel, the transcription factor Nrf2 is active during periods of intense renal physiological activity, where it protects metabolically active renal cells from oxidative damage. Despite its constitutive nature, renal cytoprotective activity must be precisely balanced and sustained at modest sub-injury levels; indeed, further experimental elevation dramatically perturbs renal development and function. We suggest that tissues requiring long-term protection must employ restrained cytoprotective activity, whereas higher levels might only be beneficial if activated transiently pre-emptive to exogenous insult.
Collapse
Affiliation(s)
| | | | - Helen Weavers
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
19
|
Luan S, Xiong H, Muhayimana S, Xu J, Zhang X, Zhang F, Liu X, Chen Y, Huang Q. Accurate Analysis of Tricarboxylic Acid Cycle Metabolites and Anion Components in Hemocytes by IC-CD/ESI-MS for Quantifying Insecticide Impairment on Cellular Immunity in Mythimna separata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1984-1993. [PMID: 33533600 DOI: 10.1021/acs.jafc.0c07481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Insecticides are more broadly known to affect insect cellular immunity, but the components in hemocytes and their response to insecticide stress are still unknown. In this paper, a method based on trifluoroacetic acid extraction, followed by IC-CD/ESI-MS analysis, was developed to simultaneously determine tricarboxylic acid (TCA) cycle metabolites and anion components in hemocytes from Mythimna separata larvae. Validation gave excellent selectivity, recovery (88.7-107.6%), linear correlation (r2 > 0.9961), precision (<3.89%), LOD (0.002-0.006 mg/L), LOQ (0.006-0.020 mg/L), and a short chromatographic run. The method was verified by administration of 4-((3-chloro-4-fluorophenyl)amino)-7-methoxyquinazolin-6-yl 3-(1,3-dioxoiso-indolin-2-yl) propanoate (QDP) or emamectin benzoate (EMB) to hemocytes in vitro and larvae in vivo. TCA metabolites including citrate, α-ketoglutarate, fumarate, malate, and oxaloacetate, and anions including acetate, oxalate, chloride, carbonate, and sulfate were identified and clearly separated. QDP and EMB showed a biphasic dose effect on TCA metabolites, and the contrary hormesis paralleled the different actions of QDP and EMB. The inhibition or improvement of cellular immunity depended on the QDP concentration. In conclusion, a highly sensitive, reliable, and robust method was developed, enabling the monitoring of hemocyte immunity by the quantification of TCA metabolites and anion components in minute hemocyte samples.
Collapse
Affiliation(s)
- Shaorong Luan
- Research Center of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Xiong
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Solange Muhayimana
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiuyong Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xianfei Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fangfang Zhang
- Chromatography & Mass Spectrometry Shanghai Laboratory of Application and Research Center, Thermo Fisher Scientific, Shanghai 201203, China
| | - Xuefeng Liu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yongjun Chen
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
20
|
Khan A, Bashir S, Khan SR. Antiurolithic effects of medicinal plants: results of in vivo studies in rat models of calcium oxalate nephrolithiasis-a systematic review. Urolithiasis 2021; 49:95-122. [PMID: 33484322 DOI: 10.1007/s00240-020-01236-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/17/2020] [Indexed: 11/25/2022]
Abstract
Urolithiasis is one of the oldest diseases affecting humans, while plants are one of our oldest companions providing food, shelter, and medicine. In spite of substantial progress in understanding the pathophysiological mechanisms, treatment options are still limited, often expensive for common people in most parts of the world. As a result, there is a great interest in herbal remedies for the treatment of urinary stone disease as an alternative or adjunct therapy. Numerous in vivo and in vitro studies have been carried out to understand the efficacy of herbs in reducing stone formation. We adopted PRISMA guidelines and systematically reviewed PubMed/Medline for the literature, reporting results of various herbal products on in vivo models of nephrolithiasis/urolithiasis. The Medical Subject Heading Terms (Mesh term) "Urolithiasis" was used with Boolean operator "AND" and other related Mesh Unique terms to search all the available records (July 2019). A total of 163 original articles on in vivo experiments were retrieved from PubMed indexed with the (MeshTerm) "Urolithiasis" AND "Complementary Therapies/Alternative Medicine, "Urolithiasis" AND "Plant Extracts" and "Urolithiasis" AND "Traditional Medicine". Most of the studies used ethylene glycol (EG) to induce hyperoxaluria and nephrolithiasis in rats. A variety of extraction methods including aqueous, alcoholic, hydro-alcoholic of various plant parts ranging from root bark to fruits and seeds, or a combination thereof, were utilized. All the investigations did not study all aspects of nephrolithiasis making it difficult to compare the efficacy of various treatments. Changes in the lithogenic factors and a reduction in calcium oxalate (CaOx) crystal deposition in the kidneys were, however, considered favorable outcomes of the various treatments. Less than 10% of the studies examined antioxidant and diuretic activities of the herbal treatments and concluded that their antiurolithic activities were a result of antioxidant, anti-inflammatory, and/or diuretic effects of the treatments.
Collapse
Affiliation(s)
- Aslam Khan
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Samra Bashir
- Department of Pharmacy, Faculty of Health and Life Sciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
Abstract
Kidney stone disease is a morbid condition that is increasing in prevalence, with few nonsurgical treatment options. The majority of stones are composed of calcium oxalate. Unlike humans, some microbes can break down oxalate, suggesting that microbial therapeutics may provide a novel treatment for kidney stone patients. This study demonstrated that Bacillus subtilis 168 (BS168) decreased stone burden, improved health, and complemented the microbiota in a Drosophila melanogaster urolithiasis model, while not exacerbating calcium oxalate aggregation or adhesion to renal cells in vitro. These results identify this bacterium as a candidate for ameliorating stone formation; given that other strains of B. subtilis are components of fermented foods and are used as probiotics for digestive health, strain 168 warrants testing in humans. With the severe burden that recurrent kidney stone disease imposes on patients and the health care system, this microbial therapeutic approach could provide an inexpensive therapeutic adjunct. Kidney stones affect nearly 10% of the population in North America and are associated with high morbidity and recurrence, yet novel prevention strategies are lacking. Recent evidence suggests that the human gut microbiota can influence the development of nephrolithiasis, although clinical trials have been limited and inconclusive in determining the potential for microbially based interventions. Here, we used an established Drosophila melanogaster model of urolithiasis as a high-throughput screening platform for evaluation of the therapeutic potential of oxalate-degrading bacteria in calcium oxalate (CaOx) nephrolithiasis. The results demonstrated that Bacillus subtilis 168 (BS168) is a promising candidate based on its preferential growth in high oxalate concentrations, its ability to stably colonize the D. melanogaster intestinal tract for as long as 5 days, and its prevention of oxalate-induced microbiota dysbiosis. Single-dose BS168 supplementation exerted beneficial effects on D. melanogaster for as long as 14 days, decreasing stone burden in dissected Malpighian tubules and fecal excreta while increasing survival and behavioral markers of health over those of nonsupplemented lithogenic controls. These findings were complemented by in vitro experiments using the established MDCK renal cell line, which demonstrated that BS168 pretreatment prevented increased CaOx crystal adhesion and aggregation. Taking our results together, this study supports the notion that BS168 can functionally reduce CaOx stone burden in vivo through its capacity for oxalate degradation. Given the favorable safety profile of many B. subtilis strains already used as digestive aids and in fermented foods, these findings suggest that BS168 could represent a novel therapeutic adjunct to reduce the incidence of recurrent CaOx nephrolithiasis in high-risk patients. IMPORTANCE Kidney stone disease is a morbid condition that is increasing in prevalence, with few nonsurgical treatment options. The majority of stones are composed of calcium oxalate. Unlike humans, some microbes can break down oxalate, suggesting that microbial therapeutics may provide a novel treatment for kidney stone patients. This study demonstrated that Bacillus subtilis 168 (BS168) decreased stone burden, improved health, and complemented the microbiota in a Drosophila melanogaster urolithiasis model, while not exacerbating calcium oxalate aggregation or adhesion to renal cells in vitro. These results identify this bacterium as a candidate for ameliorating stone formation; given that other strains of B. subtilis are components of fermented foods and are used as probiotics for digestive health, strain 168 warrants testing in humans. With the severe burden that recurrent kidney stone disease imposes on patients and the health care system, this microbial therapeutic approach could provide an inexpensive therapeutic adjunct.
Collapse
|
22
|
Chen SJ, Chiu KY, Chen HY, Lin WY, Chen YH, Chen WC. Animal Models for Studying Stone Disease. Diagnostics (Basel) 2020; 10:diagnostics10070490. [PMID: 32708380 PMCID: PMC7400259 DOI: 10.3390/diagnostics10070490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/18/2022] Open
Abstract
Animals have stone disease too. There are several animal models for the research of human stone disease. Rodents are the most frequently used for stone research, although they are not prone to forming crystals in the kidneys. Ethylene glycol (EG), sodium oxalate and l-hydroxyproline are common lithogenic agents. Dogs and pigs were also reported as a study animal for stone disease. However, the breeding costs and body size are too high. The most-used genetic study animal for stone disease was the mouse, but it was high-cost. Calcium oxalate (CaOx) crystals can also be light microscopically observed in the Malphigian tubules of Drosophila melanogaster, induced by adding EG to the food. Genetic studies of flies can be done by cross-breeding, and this has a lower cost than using mice. The fly model also has several advantages, including minimal breeding equipment, the fact that it is easier to reach larger numbers in a short time with flies, that crystals can be observed under microscopy, and that they allow genetic study. We suggest the fly will be an ideal animal model for stone research in the future.
Collapse
Affiliation(s)
- Szu-Ju Chen
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (S.-J.C.); (K.-Y.C.)
| | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (S.-J.C.); (K.-Y.C.)
| | - Huey-Yi Chen
- Departments of Obstetrics and Gynecology, Medical Research, and Urology, China Medical University Hospital, Taichung 404332, Taiwan;
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Yung-Hsiang Chen
- Departments of Obstetrics and Gynecology, Medical Research, and Urology, China Medical University Hospital, Taichung 404332, Taiwan;
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan;
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 413305, Taiwan
- Correspondence: (Y.-H.C.); (W.-C.C.)
| | - Wen-Chi Chen
- Departments of Obstetrics and Gynecology, Medical Research, and Urology, China Medical University Hospital, Taichung 404332, Taiwan;
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan;
- Correspondence: (Y.-H.C.); (W.-C.C.)
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Studies of the genetic model organism, Drosophila melanogaster, have unraveled molecular pathways relevant to human physiology and disease. The Malpighian tubule, the Drosophila renal epithelium, is described here, including tools available to study transport; conserved transporters, channels, and the signaling pathways regulating them; and fly models of kidney stone disease. RECENT FINDINGS Tools to measure Malpighian tubule transport continue to advance, including use of a transgenic sensor to quantify intracellular pH and proton fluxes. A recent study generated an RNA-sequencing-based atlas of tissue-specific gene expression, with resulting insights into Malpighian tubule gene expression of transporters and channels. Advances have been made in understanding the molecular physiology of the With No Lysine kinase-Ste20-related proline/alanine rich kinase/oxidative stress response kinase cascade that regulates epithelial ion transport in flies and mammals. New studies in Drosophila kidney stone models have characterized zinc transporters and used Malpighian tubules to study the efficacy of a plant metabolite in decreasing stone burden. SUMMARY Study of the Drosophila Malpighian tubule affords opportunities to better characterize the molecular physiology of epithelial transport mechanisms relevant to mammalian renal physiology.
Collapse
|
24
|
Cohen E, Sawyer JK, Peterson NG, Dow JAT, Fox DT. Physiology, Development, and Disease Modeling in the Drosophila Excretory System. Genetics 2020; 214:235-264. [PMID: 32029579 PMCID: PMC7017010 DOI: 10.1534/genetics.119.302289] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell-based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.
Collapse
Affiliation(s)
| | - Jessica K Sawyer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | | | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, G12 8QQ, United Kingdom
| | - Donald T Fox
- Department of Cell Biology and
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| |
Collapse
|
25
|
Ram KR, Chowdhuri DK. Drosophila: a model for biotechnologist. Anim Biotechnol 2020. [DOI: 10.1016/b978-0-12-811710-1.00001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
A conserved role of the insulin-like signaling pathway in diet-dependent uric acid pathologies in Drosophila melanogaster. PLoS Genet 2019; 15:e1008318. [PMID: 31415568 PMCID: PMC6695094 DOI: 10.1371/journal.pgen.1008318] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
Elevated uric acid (UA) is a key risk factor for many disorders, including metabolic syndrome, gout and kidney stones. Despite frequent occurrence of these disorders, the genetic pathways influencing UA metabolism and the association with disease remain poorly understood. In humans, elevated UA levels resulted from the loss of the of the urate oxidase (Uro) gene around 15 million years ago. Therefore, we established a Drosophila melanogaster model with reduced expression of the orthologous Uro gene to study the pathogenesis arising from elevated UA. Reduced Uro expression in Drosophila resulted in elevated UA levels, accumulation of concretions in the excretory system, and shortening of lifespan when reared on diets containing high levels of yeast extract. Furthermore, high levels of dietary purines, but not protein or sugar, were sufficient to produce the same effects of shortened lifespan and concretion formation in the Drosophila model. The insulin-like signaling (ILS) pathway has been shown to respond to changes in nutrient status in several species. We observed that genetic suppression of ILS genes reduced both UA levels and concretion load in flies fed high levels of yeast extract. Further support for the role of the ILS pathway in modulating UA metabolism stems from a human candidate gene study identifying SNPs in the ILS genes AKT2 and FOXO3 being associated with serum UA levels or gout. Additionally, inhibition of the NADPH oxidase (NOX) gene rescued the reduced lifespan and concretion phenotypes in Uro knockdown flies. Thus, components of the ILS pathway and the downstream protein NOX represent potential therapeutic targets for treating UA associated pathologies, including gout and kidney stones, as well as extending human healthspan.
Collapse
|
27
|
Ghimire S, Terhzaz S, Cabrero P, Romero MF, Davies SA, Dow JAT. Targeted renal knockdown of Na +/H + exchanger regulatory factor Sip1 produces uric acid nephrolithiasis in Drosophila. Am J Physiol Renal Physiol 2019; 317:F930-F940. [PMID: 31364377 DOI: 10.1152/ajprenal.00551.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nephrolithiasis is one of the most common kidney diseases, with poorly understood pathophysiology, but experimental study has been hindered by lack of experimentally tractable models. Drosophila melanogaster is a useful model organism for renal diseases because of genetic and functional similarities of Malpighian (renal) tubules with the human kidney. Here, we demonstrated function of the sex-determining region Y protein-interacting protein-1 (Sip1) gene, an ortholog of human Na+/H+ exchanger regulatory factor (NHERF1), in Drosophila Malpighian tubules and its impact on nephrolithiasis. Abundant birefringent calculi were observed in Sip1 mutant flies, and the phenotype was also observed in renal stellate cell-specific RNA interference Sip1 knockdown in otherwise normal flies, confirming a renal etiology. This phenotype was abolished in rosy mutant flies (which model human xanthinuria) and by the xanthine oxidase inhibitor allopurinol, suggesting that the calculi were of uric acid. This was confirmed by direct biochemical assay for urate. Stones rapidly dissolved when the tubule was bathed in alkaline media, suggesting that Sip1 knockdown was acidifying the tubule. SIP1 was shown to collocate with Na+/H+ exchanger isoform 2 (NHE2) and with moesin in stellate cells. Knockdown of NHE2 specifically to the stellate cells also increased renal uric acid stone formation, and so a model was developed in which SIP1 normally regulates NHE2 activity and luminal pH, ultimately leading to uric acid stone formation. Drosophila renal tubules may thus offer a useful model for urate nephrolithiasis.
Collapse
Affiliation(s)
- Saurav Ghimire
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Selim Terhzaz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Pablo Cabrero
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Shireen A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
28
|
Rose E, Lee D, Xiao E, Zhao W, Wee M, Cohen J, Bergwitz C. Endocrine regulation of MFS2 by branchless controls phosphate excretion and stone formation in Drosophila renal tubules. Sci Rep 2019; 9:8798. [PMID: 31217461 PMCID: PMC6584732 DOI: 10.1038/s41598-019-45269-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
How inorganic phosphate (Pi) homeostasis is regulated in Drosophila is currently unknown. We here identify MFS2 as a key Pi transporter in fly renal (Malpighian) tubules. Consistent with its role in Pi excretion, we found that dietary Pi induces MFS2 expression. This results in the formation of Malpighian calcium-Pi stones, while RNAi-mediated knockdown of MFS2 increases blood (hemolymph) Pi and decreases formation of Malpighian tubule stones in flies cultured on high Pi medium. Conversely, microinjection of adults with the phosphaturic human hormone fibroblast growth factor 23 (FGF23) induces tubule expression of MFS2 and decreases blood Pi. This action of FGF23 is blocked by genetic ablation of MFS2. Furthermore, genetic overexpression of the fly FGF branchless (bnl) in the tubules induces expression of MFS2 and increases Malpighian tubule stones suggesting that bnl is the endogenous phosphaturic hormone in adult flies. Finally, genetic ablation of MFS2 increased fly life span, suggesting that Malpighian tubule stones are a key element whereby high Pi diet reduces fly longevity previously reported by us. In conclusion, MFS2 mediates excretion of Pi in Drosophila, which is as in higher species under the hormonal control of FGF-signaling.
Collapse
Affiliation(s)
- Emily Rose
- Section Endocrinology, Yale School of Medicine, New Haven, CT, USA
| | - Daniela Lee
- Section Endocrinology, Yale School of Medicine, New Haven, CT, USA
| | - Emily Xiao
- Section Endocrinology, Yale School of Medicine, New Haven, CT, USA
| | - Wenzhen Zhao
- Section Endocrinology, Yale School of Medicine, New Haven, CT, USA
| | - Mark Wee
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan Cohen
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Clemens Bergwitz
- Section Endocrinology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
29
|
Han S, Zhao C, Pokhrel G, Sun X, Chen Z, Xu H. Hydroxycitric Acid Tripotassium Inhibits Calcium Oxalate Crystal Formation in the Drosophila Melanogaster Model of Hyperoxaluria. Med Sci Monit 2019; 25:3662-3667. [PMID: 31099342 PMCID: PMC6540651 DOI: 10.12659/msm.913637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background Hydroxycitric acid is a potential lithontriptic agent for calcium oxalate (CaOx) stones in the kidneys. This study aimed to evaluate the safety and efficiency of hydroxycitric acid tripotassium (K-HCA) against CaOx crystal formation using Drosophila melanogaster hyperoxaluria models. Material/Methods Wild-type D. melanogaster were fed standard medium with ethylene glycol or sodium oxalate added to induce hyperoxaluria. Their Malpighian tubules were dissected and observed under a microscope every 3 days. Crystal deposit score of each Malpighian tubule were evaluated under a magnification of ×200. Using hyperoxaluria Drosophila models, we investigated the inhibitory efficiency of hydroxycitrate acid tripotassium and citric acid tripotassium (K-CA) against CaOx crystal formation. The survival rate of each group was also assessed. Results When fed with 0.05% NaOx, the CaOx formation in Malpighian tubules increased significantly, without reduction of life span. Therefore, we selected 0.05% NaOx-induced hyperoxaluria models for the further investigations. After treatment, the stone scores showed that K-CA and K-HCA both significantly inhibit the formation of CaOx crystals in a dose-dependent manner, and with smaller dosage (0.01%), K-HCA was more efficient than K-CA. Moreover, after treatment of K-CA or K-HCA, the life span in different groups did not change, reflecting the safety to life. Conclusions The hyperoxaluria Drosophila models fed on 0.05% NaOx diet might be a useful tool to screen novel agents for the management of CaOx stones. K-HCA may be a promising agent for the prevention CaOx stones, with satisfying efficiency and acceptable safety.
Collapse
Affiliation(s)
- Shanfu Han
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Chenming Zhao
- Department of Urology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Gaurab Pokhrel
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Xifeng Sun
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Hua Xu
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
30
|
Chen WC, Chou TY, Chen HY, Yang YR, Man KM, Tsai MY, Chen YH. Salvia miltiorrhiza Bunge (Danshen) for Treatment and Prevention of Urolithiasis: A Drosophila Animal Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:1408979. [PMID: 30800166 PMCID: PMC6360610 DOI: 10.1155/2019/1408979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/05/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022]
Abstract
Traditional Chinese medicine (TCM) has been prescribed for the treatment of stone disease for thousands of years. Salvia miltiorrhiza (Danshen) was previously shown to have potential for treatment of stone disease in animal and clinical studies. In this study, we further studied the antiurolithiasis effect of Danshen in a fly model. Wild-type male Drosophila melanogaster CS flies were used in this study, with 0.25% ethylene glycol (EG) as a lithogenic agent. 2% potassium citrate (K-citrate) was the positive control agent for prevention (all agents added at the start of experiment) and treatment (drugs added after 2-week addition of lithogenic agent) studies compared with 15, 30, and 60 μg/ml of Danshen extract. In the prevention study, both 2% K-citrate and Danshen (30 and 60 μg/ml) significantly inhibited EG-induced calcium oxalate (CaOx) crystal formation. In the treatment study, only 2% K-citrate and high-dose of Danshen (60 μg/ml) significantly inhibited EG-induced CaOx crystal formation. Survival analysis for EG with Danshen was compared with that for EG with K-citrate. The mean lifespan was significantly reduced by administration of EG, and the results in the Danshen group were similar to those in the control group. In conclusion, Danshen revealed both preventive and treatment effects on CaOx crystal formation in a fly model.
Collapse
Affiliation(s)
- Wen-Chi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Departments of Urology, Obstetrics and Gynecology, and Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Tzu-Yang Chou
- Department of Chinese Medicine, Kaohsiung Municipal Gangshan Hospital, Kaohsiung, Taiwan
| | - Huey-Yi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Departments of Urology, Obstetrics and Gynecology, and Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - You-Rong Yang
- Departments of Urology, Obstetrics and Gynecology, and Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Kee-Ming Man
- Department of Medicinal Botanicals and Health Applications, Da Yeh University, Changhua, Taiwan
- Department of Anesthesiology, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Ming-Yen Tsai
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Departments of Urology, Obstetrics and Gynecology, and Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
31
|
Wang S, Li X, Bao J, Chen S. Protective potential of Angelica sinensis polysaccharide extract against ethylene glycol-induced calcium oxalate urolithiasis. Ren Fail 2018; 40:618-627. [PMID: 30396308 PMCID: PMC6225371 DOI: 10.1080/0886022x.2018.1496935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose: To evaluate a Angelica sinensis polysaccharide aqueous extract as a preventive agent in experimentally induced urolithiasis using in- vitro and vivo models. Material and methods:Angelica sinensis polysaccharide was investigated in vitro to determine its antilithiatic effects on the formation and morphology of calcium oxalate (CaOx) crystals and was analyzed in vivo to determine its ability to prevent CaOx urolithiasis in rats subjected to ethylene glycol-induced urolithiasis. Potassium citrate administration was used in the positive control group. The urolithiasis-related biochemical parameters were evaluated in the rats urine, serum and kidney homogenates. Kidney sections were subjected to histopathological and immunohistochemical analyses, and urolithiasis-related phospho-c-Jun NH2-terminal protein kinase and kidney injury molecule-1proteins were evaluated by Western blot analyses. Results:Angelica sinensis polysaccharide exhibited concentration-dependent inhibition of CaOx crystal formation. The in vitro assay revealed significant inhibition of crystal formation (6.99 ± 1.07) in the group treated with 4.0 mg/mL Angelica sinensis polysaccharide extract compared with the control group (58.38 ± 5.63; p < .05). In vivo, after treatment with ethylene glycol for 28 days, urinary oxidative stress, oxalate, creatinine, urea and urolithiasis-related protein were significantly increased (p < .05), except for serum oxidative stress (p > .05). The rats administered the extract of Angelica sinensis polysaccharide showed significantly decreased pathological change and CaOx deposition (p < .05) compared with the urolithiatic rats. Significantly reduced levels of urinary oxidative stress, oxalate, creatinine, urea and urolithiasis-related protein were observed in the Angelica sinensis polysaccharide treatment groups (p < .05) compared with the nephrolithic rats. Conclusion: The results presented here suggest that Angelica sinensis polysaccharide has the potential to inhibit CaOx crystallization in vitro and may present anti-urolithiatic effects in vivo.
Collapse
Affiliation(s)
- Shengbao Wang
- a The Emergency Center, Gansu Nephro-Urological Clinical Center, Lanzhou University Second Hospital , Lanzhou China
| | - Xiaoran Li
- a The Emergency Center, Gansu Nephro-Urological Clinical Center, Lanzhou University Second Hospital , Lanzhou China
| | - Junsheng Bao
- a The Emergency Center, Gansu Nephro-Urological Clinical Center, Lanzhou University Second Hospital , Lanzhou China
| | - Siyu Chen
- a The Emergency Center, Gansu Nephro-Urological Clinical Center, Lanzhou University Second Hospital , Lanzhou China
| |
Collapse
|
32
|
Yang H, Male M, Li Y, Wang N, Zhao C, Jin S, Hu J, Chen Z, Ye Z, Xu H. Efficacy of Hydroxy-L-proline (HYP) analogs in the treatment of primary hyperoxaluria in Drosophila Melanogaster. BMC Nephrol 2018; 19:167. [PMID: 29980178 PMCID: PMC6035412 DOI: 10.1186/s12882-018-0980-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/28/2018] [Indexed: 12/11/2022] Open
Abstract
Background Substrate reduction therapy with analogs reduces the accumulation of substrates by inhibiting the metabolic pathways involved in their biosynthesis, providing new treatment options for patients with primary hyperoxalurias (PHs) that often progress to end-stage renal disease (ESRD). This research aims to evaluate the inhibition efficacy of Hydroxy-L-proline (HYP) analogs against calcium oxalate (CaOx) crystal formation in the Drosophila Melanogaster (D. Melanogaster) by comparing them with Pyridoxine (Vitamin B6). Methods Three stocks of Drosophila Melanogaster (W118, CG3926 RNAi, and Act5C-GAL4/CyO) were utilized. Two stocks (CG3926 RNAi and Act5C-GAL4 /CyO) were crossed to generate the Act5C > dAGXT RNAi recombinant line (F1 generation) of D. Melanogaster which was used to compare the efficacy of Hydroxy-L-proline (HYP) analogs inhibiting CaOx crystal formation with Vitamin B6 as the traditional therapy for primary hyperoxaluria. Results Nephrolithiasis model was successfully constructed by downregulating the function of the dAGXT gene in D. Melanogaster (P-Value = 0.0045). Furthermore, the efficacy of Hydroxy-L-proline (HYP) analogs against CaOx crystal formation was demonstrated in vivo using D. Melanogaster model; the results showed that these L-Proline analogs were better in inhibiting stone formation at very low concentrations than Vitamin B6 (IC50 = 0.6 and 1.8% for standard and dietary salt growth medium respectively) compared to N-acetyl-L-Hydroxyproline (IC50 = 0.1% for both standard and dietary salt growth medium) and Baclofen (IC50 = 0.06 and 0.1% for standard and dietary salt growth medium respectively). Analysis of variance (ANOVA) also showed that Hydroxy-L-proline (HYP) analogs were better alternatives for CaOx inhibition at very low concentration especially when both genetics and environmental factors are intertwined (p < 0.0008) for the dietary salt growth medium and (P < 0.063) for standard growth medium. Conclusion Addition of Hydroxy-L-Proline analogs to growth medium resulted in the reduction of CaOx crystals formation. These analogs show promise as potential inhibitors for oxalate reduction in Primary Hyperoxaluria.
Collapse
Affiliation(s)
- Huan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jie Fang Avenue, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Musa Male
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jie Fang Avenue, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- College of Life Sciences, Hubei University, Wuhan, China
| | - Ning Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jie Fang Avenue, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Zhao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jie Fang Avenue, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Jin
- College of Life Sciences, Hubei University, Wuhan, China
| | - Juncheng Hu
- College of Life Sciences, Hubei University, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jie Fang Avenue, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jie Fang Avenue, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jie Fang Avenue, Wuhan, 430030, China. .,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
33
|
Chen HY, Wu JS, Chang YF, Sun ZJ, Chang CJ, Lu FH, Yang YC. Increased amount and duration of tea consumption may be associated with decreased risk of renal stone disease. World J Urol 2018; 37:379-384. [PMID: 29967945 DOI: 10.1007/s00345-018-2394-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/22/2018] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Previous studies have looked into the association between tea consumption and renal stone disease, but the impact of tea consumption over time has not yet been fully clarified. Our study aimed to examine the amount and duration of tea consumption concomitantly in relation to the risk of renal stone disease. METHODS A total of 13,842 subjects who underwent health check-ups were recruited. Average tea consumption per day was defined as the amount of tea consumption per day multiplied by the frequency per week divided by seven. A "cup" was defined as 120 mL for each Chinese traditional teapot," and "cup-year" was calculated by multiplying the number of daily cups and the years of tea consumption to express the cumulative dose of tea consumption over time. The diagnosis of renal stone disease was established based on the results of abdominal sonography. RESULTS The amount of daily tea consumption was 119.2 ± 306.8 and 131.7 ± 347.3 mL in groups with and without renal stone disease. After adjusting for other clinical variables, daily tea consumption ≥ 240 mL vs. none was related to lower risk of renal stone disease (OR = 0.84, CI 0.71-0.99, p = 0.037). In another model, the associated risk of renal stone disease decreased significantly with tea consumption ≥ 20 cup-year (OR = 0.79, CI 0.66-0.94, p = 0.008), but not < 20 cup-year (OR = 0.92, CI 0.78-1.09, p = 0.34). CONCLUSIONS Daily tea consumption ≥ 240 mL (two cups) was associated with a lower risk of renal stone disease. Tea consumption ≥ 20 cup-year also had a decreased associated risk of renal stone disease.
Collapse
Affiliation(s)
- Hung-Yu Chen
- The Department of Family Medicine, National Cheng Kung University Hospital, No.138, Sheng Li Road, Tainan, 70403, Taiwan
| | - Jin-Shang Wu
- The Department of Family Medicine, National Cheng Kung University Hospital, No.138, Sheng Li Road, Tainan, 70403, Taiwan.,The Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yin-Fan Chang
- The Department of Family Medicine, National Cheng Kung University Hospital, No.138, Sheng Li Road, Tainan, 70403, Taiwan
| | - Zih-Jie Sun
- The Department of Family Medicine, National Cheng Kung University Hospital, No.138, Sheng Li Road, Tainan, 70403, Taiwan.,The Division of Family Medicine, National Cheng Kung University Hospital Dou-Liou Branch, Douliu, Taiwan
| | - Chih-Jen Chang
- The Department of Family Medicine, National Cheng Kung University Hospital, No.138, Sheng Li Road, Tainan, 70403, Taiwan.,The Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Feng-Hwa Lu
- The Department of Family Medicine, National Cheng Kung University Hospital, No.138, Sheng Li Road, Tainan, 70403, Taiwan. .,The Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yi-Ching Yang
- The Department of Family Medicine, National Cheng Kung University Hospital, No.138, Sheng Li Road, Tainan, 70403, Taiwan. .,The Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
34
|
Modeling Renal Disease "On the Fly". BIOMED RESEARCH INTERNATIONAL 2018; 2018:5697436. [PMID: 29955604 PMCID: PMC6000847 DOI: 10.1155/2018/5697436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Detoxification is a fundamental function for all living organisms that need to excrete catabolites and toxins to maintain homeostasis. Kidneys are major organs of detoxification that maintain water and electrolyte balance to preserve physiological functions of vertebrates. In insects, the renal function is carried out by Malpighian tubules and nephrocytes. Due to differences in their circulation, the renal systems of mammalians and insects differ in their functional modalities, yet carry out similar biochemical and physiological functions and share extensive genetic and molecular similarities. Evolutionary conservation can be leveraged to model specific aspects of the complex mammalian kidney function in the genetic powerhouse Drosophila melanogaster to study how genes interact in diseased states. Here, we compare the human and Drosophila renal systems and present selected fly disease models.
Collapse
|
35
|
Treatment of Urolithiasis with Medicinal Plant Salvia miltiorrhiza: A Nationwide Cohort Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8403648. [PMID: 29849729 PMCID: PMC5924994 DOI: 10.1155/2018/8403648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/09/2018] [Accepted: 03/01/2018] [Indexed: 01/09/2023]
Abstract
Salvia miltiorrhiza Bunge (Danshen), a common medicinal plant in traditional Chinese medicine, has been tested effectively to prevent urolithiasis in animals; nevertheless, the clinical application for urolithiasis remains unclear. We thus investigated the clinical effect of Danshen by analyzing the database from the Taiwan National Institute of Health. The cohort "Danshen-users" was prescribed Chinese herb medicine Danshen after the initial diagnosis of calculus. The control group (non-Danshen-users) was not given Danshen after the initial diagnosis of calculus. The date of first using Danshen after new diagnosis date of calculus was considered as index date. The outcome variables were categorized into two categories: the first category included calculus surgical treatment, including extracorporeal shock wave lithotripsy, ureteroscopy, percutaneous nephrostomy with fragmentation, and ureterolithotomy; the second category included any bleeding disorders, including gastrointestinal bleeding, intracranial hemorrhage, and blood transfusions. The incidence of calculus surgical treatment in the Danshen-users was less than that in the non-Danshen-users: 1.071% in 1,000 person-years (200 people followed up for 5 years) and 3.142% in 1,000 person-years, respectively. The adjusted hazard ratio for calculus surgical treatment in the Danshen-users was 0.34 (95% confidence intervals: 0.31-0.38) as compared to the non-Danshen-users. When stratified by sex, the incidence of calculus surgical treatment in Danshen-users was 0.685% in 1,000 person-years and 1.575% in 1,000 person-years for women and men, respectively, which was lower than that in non-Danshen-users. Danshen decreased the ratio of subsequent stone treatment after the first treatment in the study population; there was no increased bleeding risk due to long-term Danshen use.
Collapse
|
36
|
Abd El-Salam M, Bastos JK, Han JJ, Previdi D, Coelho EB, Donate PM, Romero MF, Lieske J. The Synthesized Plant Metabolite 3,4,5-Tri-O-Galloylquinic Acid Methyl Ester Inhibits Calcium Oxalate Crystal Growth in a Drosophila Model, Downregulates Renal Cell Surface Annexin A1 Expression, and Decreases Crystal Adhesion to Cells. J Med Chem 2018; 61:1609-1621. [PMID: 29406740 DOI: 10.1021/acs.jmedchem.7b01566] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohamed Abd El-Salam
- Department
of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
- Department
of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, United States
- Department
of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, United States
| | - Jairo Kenupp Bastos
- Department
of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Jing Jing Han
- Department
of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, United States
| | - Daniel Previdi
- Department
of Chemistry, Faculty of Philosophy, Arts and Sciences, University of São Paulo, Ribeirão Preto, São
Paulo 14040-901, Brazil
| | - Eduardo B. Coelho
- Department
of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São
Paulo 14040-900, Brazil
| | - Paulo M. Donate
- Department
of Chemistry, Faculty of Philosophy, Arts and Sciences, University of São Paulo, Ribeirão Preto, São
Paulo 14040-901, Brazil
| | - Michael F. Romero
- Department
of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, United States
| | - John Lieske
- Department
of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, United States
| |
Collapse
|
37
|
The role of zinc in urinary stone disease. Int Urol Nephrol 2018; 50:879-883. [PMID: 29344880 DOI: 10.1007/s11255-017-1784-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/29/2017] [Indexed: 01/26/2023]
Abstract
In recent years, the role of trace elements in lithogenesis has received steadily increasing attention. It is well documented that some trace elements can influence the morphology and speed of the crystallization process. Zinc has been found in significant amounts in calcium stones relative or organic stones (uric acid and cystine), probably substituting calcium in crystals because of their similarity in charge and size. High Zn levels are present in carbapatite of Randal's plaques suggesting that zinc could promote calcium phosphate deposition in the medullar interstitium. Large-scale epidemiological studies have found an association of increased dietary zinc intake with increased risk of nephrolithiasis in adults but not in adolescents. Most studies examining urinary zinc levels in adults have reported increased urinary Zn excretion in stone formers. In an experimental model of organic crystal formation produced by silencing xanthine dehydrogenase in Drosophila fly, maneuvers that reduce Zn excretion have shown to reduce crystal formation in the lumen of the Malpighian tubules. This is curious because this is not a model of calcium stone formation. Finally, zinc supplementation has been associated with increased admissions for urinary lithiasis in men, but no change in calcium stone formation in children. Perhaps, some of these contradicting findings can be explained in part by the in vitro effect of zinc on the type and amount of calcium phosphate formed: At low concentrations, Zn inhibited the crystal growth of dicalcium phosphate dihydrate, octacalcium phosphate, and apatite, and at higher concentrations, it promoted the formation of amorphous calcium phosphate. Thus, further studies are needed to see whether manipulation of Zn metabolism can inhibit calcium stone formation.
Collapse
|
38
|
Chung VY, Turney BW. A Drosophila genetic model of nephrolithiasis: transcriptional changes in response to diet induced stone formation. BMC Urol 2017; 17:109. [PMID: 29183349 PMCID: PMC5706311 DOI: 10.1186/s12894-017-0292-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 10/30/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Urolithiasis is a significant healthcare issue but the pathophysiology of stone disease remains poorly understood. Drosophila Malpighian tubules were known to share similar physiological function to human renal tubules. We have used Drosophila as a genetic model to study the transcriptional response to stone formation secondary to dietary manipulation. METHODS Wild-type male flies were raised on standard medium supplemented with lithogenic agents: control, sodium oxalate (NaOx) and ethylene glycol (EG). At 2 weeks, Malpighian tubules were dissected under polarized microscope to visualize crystals. The parallel group was dissected for RNA extraction and subsequent next-generation RNA sequencing. RESULTS Crystal formation was visualized in 20%(±2.2) of flies on control diet, 73%(±3.6) on NaOx diet and 84%(±2.2) on EG diet. Differentially expressed genes were identified in flies fed with NaOx and EG diet comparing with the control group. Fifty-eight genes were differentially expressed (FDR <0.05, p < 0.05) in NaOx diet and 20 genes in EG diet. The molecular function of differentially expressed genes were assessed. Among these, Nervana 3, Eaat1 (Excitatory amino acid transporter 1), CG7912, CG5404, CG3036 worked as ion transmembrane transporters, which were possibly involved in stone pathogenesis. CONCLUSIONS We have shown that by dietary modification, stone formation can be manipulated and visualized in Drosophila Malpighian tubules. This genetic model could be potentially used to identify the candidate genes that influence stone risk hence providing more insight to the pathogenesis of human stone disease.
Collapse
Affiliation(s)
- Vera Y. Chung
- Oxford Stone Group, Department of Urology, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Benjamin W. Turney
- Oxford Stone Group, Department of Urology, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Chen WC, Chen HY, Liao PC, Wang SJ, Tsai MY, Chen YH, Lin WY. Toward a new insight of calcium oxalate stones in Drosophila by micro-computerized tomography. Urolithiasis 2017; 46:149-155. [DOI: 10.1007/s00240-017-0967-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/04/2017] [Indexed: 01/22/2023]
|
40
|
Gautam NK, Verma P, Tapadia MG. Drosophila Malpighian Tubules: A Model for Understanding Kidney Development, Function, and Disease. Results Probl Cell Differ 2017; 60:3-25. [PMID: 28409340 DOI: 10.1007/978-3-319-51436-9_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Malpighian tubules of insects are structurally simple but functionally important organs, and their integrity is important for the normal excretory process. They are functional analogs of human kidneys which are important physiological organs as they maintain water and electrolyte balance in the blood and simultaneously help the body to get rid of waste and toxic products after various metabolic activities. In addition, it receives early indications of insults to the body such as immune challenge and other toxic components and is essential for sustaining life. According to National Vital Statistics Reports 2016, renal dysfunction has been ranked as the ninth most abundant cause of death in the USA. This chapter provides detailed descriptions of Drosophila Malpighian tubule development, physiology, immune function and also presents evidences that Malpighian tubules can be used as a model organ system to address the fundamental questions in developmental and functional disorders of the kidney.
Collapse
Affiliation(s)
- Naveen Kumar Gautam
- Embryotoxicology Laboratory, Environmental Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Puja Verma
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Madhu G Tapadia
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
41
|
Tzou DT, Taguchi K, Chi T, Stoller ML. Animal models of urinary stone disease. Int J Surg 2016; 36:596-606. [PMID: 27840313 DOI: 10.1016/j.ijsu.2016.11.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 01/29/2023]
Abstract
The etiology of stone disease remains unknown despite the major technological advances in the treatment of urinary calculi. Clinically, urologists have relied on 24-h urine collections for the last 30-40 years to help direct medical therapy in hopes of reducing stone recurrence; yet little progress has been made in preventing stone disease. As such, there is an urgent need to develop reliable animal models to study the pathogenesis of stone formation and to assess novel interventions. A variety of vertebrate and invertebrate models have been used to help understand stone pathogenesis. Genetic knockout and exogenous induction models are described. Surrogates for an endpoint of stone formation have been urinary crystals on histologic examination and/or urinalyses. Other models are able to actually develop true stones. It is through these animal models that real breakthroughs in the management of urinary stone disease will become a reality.
Collapse
Affiliation(s)
- David T Tzou
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Suite Box 0738, San Francisco, CA 94143, USA.
| | - Kazumi Taguchi
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Suite Box 0738, San Francisco, CA 94143, USA; Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Japan.
| | - Thomas Chi
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Suite Box 0738, San Francisco, CA 94143, USA.
| | - Marshall L Stoller
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Suite Box 0738, San Francisco, CA 94143, USA.
| |
Collapse
|
42
|
Farkaš R, Pečeňová L, Mentelová L, Beňo M, Beňová-Liszeková D, Mahmoodová S, Tejnecký V, Raška O, Juda P, Svidenská S, Hornáček M, Chase BA, Raška I. Massive excretion of calcium oxalate from late prepupal salivary glands of Drosophila melanogaster demonstrates active nephridial-like anion transport. Dev Growth Differ 2016; 58:562-74. [PMID: 27397870 DOI: 10.1111/dgd.12300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 04/24/2016] [Accepted: 05/16/2016] [Indexed: 02/01/2023]
Abstract
The Drosophila salivary glands (SGs) were well known for the puffing patterns of their polytene chromosomes and so became a tissue of choice to study sequential gene activation by the steroid hormone ecdysone. One well-documented function of these glands is to produce a secretory glue, which is released during pupariation to fix the freshly formed puparia to the substrate. Over the past two decades SGs have been used to address specific aspects of developmentally-regulated programmed cell death (PCD) as it was thought that they are doomed for histolysis and after pupariation are just awaiting their fate. More recently, however, we have shown that for the first 3-4 h after pupariation SGs undergo tremendous endocytosis and vacuolation followed by vacuole neutralization and membrane consolidation. Furthermore, from 8 to 10 h after puparium formation (APF) SGs display massive apocrine secretion of a diverse set of cellular proteins. Here, we show that during the period from 11 to 12 h APF, the prepupal glands are very active in calcium oxalate (CaOx) extrusion that resembles renal or nephridial excretory activity. We provide genetic evidence that Prestin, a Drosophila homologue of the mammalian electrogenic anion exchange carrier SLC26A5, is responsible for the instantaneous production of CaOx by the late prepupal SGs. Its positive regulation by the protein kinases encoded by fray and wnk lead to increased production of CaOx. The formation of CaOx appears to be dependent on the cooperation between Prestin and the vATPase complex as treatment with bafilomycin A1 or concanamycin A abolishes the production of detectable CaOx. These data demonstrate that prepupal SGs remain fully viable, physiologically active and engaged in various cellular activities at least until early pupal period, that is, until moments prior to the execution of PCD.
Collapse
Affiliation(s)
- Robert Farkaš
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505, Bratislava, Slovakia
| | - Ludmila Pečeňová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505, Bratislava, Slovakia.,Department of Genetics, Comenius University, Mlynská dolina B-1, 84215, Bratislava, Slovakia
| | - Lucia Mentelová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505, Bratislava, Slovakia.,Department of Genetics, Comenius University, Mlynská dolina B-1, 84215, Bratislava, Slovakia
| | - Milan Beňo
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505, Bratislava, Slovakia
| | - Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505, Bratislava, Slovakia
| | - Silvia Mahmoodová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505, Bratislava, Slovakia.,Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Malá Hora 4, 03601, Martin, Slovakia
| | - Václav Tejnecký
- Faculty of Agrobiology, Food and Natural Resources, Czech Agricultural University, Kamýcká 129, 16521, Prague 6, Czech Republic
| | - Otakar Raška
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 12800, Prague, Czech Republic
| | - Pavel Juda
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 12800, Prague, Czech Republic
| | - Silvie Svidenská
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 12800, Prague, Czech Republic
| | - Matúš Hornáček
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 12800, Prague, Czech Republic
| | - Bruce A Chase
- Department of Biology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, Nebraska, 68182-0040, USA
| | - Ivan Raška
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 12800, Prague, Czech Republic
| |
Collapse
|
43
|
Chung VY, Konietzny R, Charles P, Kessler B, Fischer R, Turney BW. Proteomic changes in response to crystal formation in Drosophila Malpighian tubules. Fly (Austin) 2016; 10:91-100. [PMID: 27064297 DOI: 10.1080/19336934.2016.1171947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Kidney stone disease is a major health burden with a complex and poorly understood pathophysiology. Drosophila Malpighian tubules have been shown to resemble human renal tubules in their physiological function. Herein, we have used Drosophila as a model to study the proteomic response to crystal formation induced by dietary manipulation in Malpighian tubules. Wild-type male flies were reared in parallel groups on standard medium supplemented with lithogenic agents: control, Sodium Oxalate (NaOx) and Ethylene Glycol (EG). Malpighian tubules were dissected after 2 weeks to visualize crystals with polarized light microscopy. The parallel group was dissected for protein extraction. A new method of Gel Assisted Sample Preparation (GASP) was used for protein extraction. Differentially abundant proteins (p<0.05) were identified by label-free quantitative proteomic analysis in flies fed with NaOx and EG diet compared with control. Their molecular functions were further screened for transmembrane ion transporter, calcium or zinc ion binder. Among these, 11 candidate proteins were shortlisted in NaOx diet and 16 proteins in EG diet. We concluded that GASP is a proteomic sample preparation method that can be applied to individual Drosophila Malpighian tubules. Our results may further increase the understanding of the pathophysiology of human kidney stone disease.
Collapse
Affiliation(s)
- Vera Y Chung
- a Oxford Stone Group, Department of Urology, Nuffield Department of Surgical Sciences, University of Oxford , UK
| | - Rebecca Konietzny
- b Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , UK
| | - Philip Charles
- b Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , UK
| | - Benedikt Kessler
- b Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , UK
| | - Roman Fischer
- b Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , UK
| | - Benjamin W Turney
- a Oxford Stone Group, Department of Urology, Nuffield Department of Surgical Sciences, University of Oxford , UK
| |
Collapse
|
44
|
Liu PL, Chong IW, Lee YC, Tsai JR, Wang HM, Hsieh CC, Kuo HF, Liu WL, Chen YH, Chen HL. Anti-inflammatory Effects of Resveratrol on Hypoxia/Reoxygenation-Induced Alveolar Epithelial Cell Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9480-9487. [PMID: 26466890 DOI: 10.1021/acs.jafc.5b01168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Reducing oxidative stress is crucial to prevent hypoxia-reoxygenation (H/R)-induced lung injury. Resveratrol has excellent antioxidant and anti-inflammatory effects, and this study investigated its role in H/R-induced type II pneumocyte dysfunction. H/R conditions increased expression of inflammatory cytokines including interleukin (IL)-1β (142.3 ± 21.2%, P < 0.05) and IL-6 (301.9 ± 35.1%, P < 0.01) in a type II alveolar epithelial cell line (A549), while the anti-inflammatory cytokine IL-10 (64.6 ± 9.8%, P < 0.05) and surfactant proteins (SPs) decreased. However, resveratrol treatment effectively inhibited these effects. H/R significantly activated an inflammatory transcription factor, nuclear factor (NF)-κB, while resveratrol significantly inhibited H/R-induced NF-κB transcription activities. To the best of our knowledge, this is the first study showing resveratrol-mediated reversal of H/R-induced inflammatory responses and dysfunction of type II pneumocyte cells in vitro. The effects of resveratrol were partially mediated by promoting SP expression and inhibiting inflammation with NF-κB pathway involvement. Therefore, our study provides new insights into mechanisms underlying the action of resveratrol in type II pneumocyte dysfunction.
Collapse
Affiliation(s)
- Po-Len Liu
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Inn-Wen Chong
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pediatrics, Department of Internal Medicine, Department of Chest Surgery, Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital , Kaohsiung 807, Taiwan
| | - Yi-Chen Lee
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Jong-Rung Tsai
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pediatrics, Department of Internal Medicine, Department of Chest Surgery, Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital , Kaohsiung 807, Taiwan
| | - Hui-Min Wang
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Chong-Chao Hsieh
- Department of Pediatrics, Department of Internal Medicine, Department of Chest Surgery, Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital , Kaohsiung 807, Taiwan
| | - Hsuan-Fu Kuo
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University , Kaohsiung 801, Taiwan
| | - Wei-Lun Liu
- Department of Intensive Care Medicine, Chi Mei Medical Center , Tainan 736, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University , Taichung 404, Taiwan
- Department of Medical Research, China Medical University Hospital , Taichung 404, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University , Taichung 413, Taiwan
| | - Hsiu-Lin Chen
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pediatrics, Department of Internal Medicine, Department of Chest Surgery, Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital , Kaohsiung 807, Taiwan
| |
Collapse
|
45
|
Landry GM, Hirata T, Anderson JB, Cabrero P, Gallo CJR, Dow JAT, Romero MF. Sulfate and thiosulfate inhibit oxalate transport via a dPrestin (Slc26a6)-dependent mechanism in an insect model of calcium oxalate nephrolithiasis. Am J Physiol Renal Physiol 2015; 310:F152-9. [PMID: 26538444 DOI: 10.1152/ajprenal.00406.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/30/2015] [Indexed: 11/22/2022] Open
Abstract
Nephrolithiasis is one of the most common urinary tract disorders, with the majority of kidney stones composed of calcium oxalate (CaOx). Given its prevalence (US occurrence 10%), it is still poorly understood, lacking progress in identifying new therapies because of its complex etiology. Drosophila melanogaster (fruitfly) is a recently developed model of CaOx nephrolithiasis. Effects of sulfate and thiosulfate on crystal formation were investigated using the Drosophila model, as well as electrophysiological effects on both Drosophila (Slc26a5/6; dPrestin) and mouse (mSlc26a6) oxalate transporters utilizing the Xenopus laevis oocyte heterologous expression system. Results indicate that both transport thiosulfate with a much higher affinity than sulfate Additionally, both compounds were effective at decreasing CaOx crystallization when added to the diet. However, these results were not observed when compounds were applied to Malpighian tubules ex vivo. Neither compound affected CaOx crystallization in dPrestin knockdown animals, indicating a role for principal cell-specific dPrestin in luminal oxalate transport. Furthermore, thiosulfate has a higher affinity for dPrestin and mSlc26a6 compared with oxalate These data indicate that thiosulfate's ability to act as a competitive inhibitor of oxalate via dPrestin, can explain the decrease in CaOx crystallization seen in the presence of thiosulfate, but not sulfate. Overall, our findings predict that thiosulfate or oxalate-mimics may be effective as therapeutic competitive inhibitors of CaOx crystallization.
Collapse
Affiliation(s)
- Greg M Landry
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota; Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota; O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Taku Hirata
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota; O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Jacob B Anderson
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Pablo Cabrero
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christopher J R Gallo
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Julian A T Dow
- O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota; and Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael F Romero
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota; Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota; O'Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| |
Collapse
|
46
|
A Drosophila model identifies a critical role for zinc in mineralization for kidney stone disease. PLoS One 2015; 10:e0124150. [PMID: 25970330 PMCID: PMC4430225 DOI: 10.1371/journal.pone.0124150] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
Ectopic calcification is a driving force for a variety of diseases, including kidney stones and atherosclerosis, but initiating factors remain largely unknown. Given its importance in seemingly divergent disease processes, identifying fundamental principal actors for ectopic calcification may have broad translational significance. Here we establish a Drosophila melanogaster model for ectopic calcification by inhibiting xanthine dehydrogenase whose deficiency leads to kidney stones in humans and dogs. Micro X-ray absorption near edge spectroscopy (μXANES) synchrotron analyses revealed high enrichment of zinc in the Drosophila equivalent of kidney stones, which was also observed in human kidney stones and Randall's plaques (early calcifications seen in human kidneys thought to be the precursor for renal stones). To further test the role of zinc in driving mineralization, we inhibited zinc transporter genes in the ZnT family and observed suppression of Drosophila stone formation. Taken together, genetic, dietary, and pharmacologic interventions to lower zinc confirm a critical role for zinc in driving the process of heterogeneous nucleation that eventually leads to stone formation. Our findings open a novel perspective on the etiology of urinary stones and related diseases, which may lead to the identification of new preventive and therapeutic approaches.
Collapse
|
47
|
Hu H, Chen W, Ding J, Jia M, Yin J, Guo Z. Fasudil prevents calcium oxalate crystal deposit and renal fibrogenesis in glyoxylate-induced nephrolithic mice. Exp Mol Pathol 2015; 98:277-85. [PMID: 25697583 DOI: 10.1016/j.yexmp.2015.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 01/30/2023]
Abstract
Nephrolithiasis is a common kidney disease and one of the major causes of chronic renal insufficiency. We develop and utilize a glyoxylate induced mouse model of kidney calcium oxalate crystal deposition for studying the pharmacological effects of fasudil, a Rho associated protein kinase (ROCK) specific inhibitor, on the kidney injury and fibrosis caused by calcium oxalate crystallization and deposition. Glyoxylate was administrated intraperitoneally to C57BL/6J mice for five consecutive days to establish a mouse model of kidney calcium oxalate crystal formation and deposition. The results showed that the protein expression levels of E-cad and Pan-ck were lower, and the protein expression levels of α-SMA and Vim were higher, in the kidney tissue of the glyoxylate induced model mice compared with the control mice. The changes in protein expression were weakened when the animals were pretreated with fasudil before glyoxylate administration. Expression of ROCK, PAI-1, and p-Smad proteins in the kidney tissue increased in response to glyoxylate treatment, and the increase was eased when the animals were pretreated with fasudil. Expression of Smad2 and Smad3 in the kidney tissue remained unchanged after glyoxylate administration. Cell apoptosis and proliferation in the kidney cortex and medulla were enhanced in response to the glyoxylate induced calcium oxalate crystal formation and deposition, and fasudil pre-treatment was able to attenuate the enhancement. The results suggest that Fasudil reduces the glyoxylate induced kidney calcium crystal formation and deposition and slows down the kidney fibrogenesis caused by calcium crystal deposition. The possible mechanism may be related the regulatory effects on Rho/ROCK signal transduction and epithelial-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Haiyan Hu
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Jiarong Ding
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Meng Jia
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Jingjing Yin
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
48
|
Saha S, Verma RJ. Antinephrolithiatic and antioxidative efficacy of Dolichos biflorus seeds in a lithiasic rat model. PHARMACEUTICAL BIOLOGY 2015; 53:16-30. [PMID: 25243879 DOI: 10.3109/13880209.2014.909501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Dolichos biflorus sensu auct non L. (Fabaceae) is widely used for the treatment of kidney stones, leucorrhoea, urinary disorders, and menstrual troubles, and is known for its antioxidant activity. OBJECTIVES To evaluate the preventive effect of hydro-alcoholic extract of Dolichos biflorus seeds (DBE) in ethylene glycol induced nephrolithiasis. MATERIALS AND METHODS In vitro antioxidative capacity of DBE was estimated in terms of reducing power, superoxide radical, 2,2- diphenyl-1-picrylhydrazyl radical, and nitric oxide scavenging activity. A validated HPLC method was used for standardization using quercetin as a marker. Adult female Wistar rats were administered with DBE (150 and 300 mg/kg body weight/day) along with ethylene glycol (0.75%, v/v) for 28 d. The various biochemical parameters were measured in urine, serum, and kidney followed by histochemistry. RESULTS Ethylene glycol caused a significant increase in calcium, oxalate, phosphate, and total protein in urine as well as in kidney whereas decrease in calcium, sodium, and magnesium in serum was observed (p < 0.001). Ethylene glycol also caused a significant increase in lipid peroxidation and concurrent decrease in activities of antioxidant enzymes in kidney (p < 0.001). However, the seed extract of D. biflorus caused significant restoration of all these parameters (p < 0.001). Histopathological and histochemical studies also showed the reduced calcifications in kidney of seed extract treated rats. DISCUSSION AND CONCLUSION These results indicated that seeds of D. biflorus have significant prophylactic effect in preventing the nephrolithiasis, which might be due to the antioxidant activity of the active compounds of the plant.
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Zoology, University School of Sciences, Gujarat University , Ahmedabad, Gujarat , India
| | | |
Collapse
|
49
|
Effect of Flos carthami Extract and α 1-Adrenergic Antagonists on the Porcine Proximal Ureteral Peristalsis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:437803. [PMID: 25170340 PMCID: PMC4120800 DOI: 10.1155/2014/437803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 11/20/2022]
Abstract
Traditional Chinese medicine (TCM) has been proposed to prevent urolithiasis. In China, Flos carthami (FC, also known as Carthamus tinctorius) (Safflower; Chinese name: Hong Hua/紅花) has been used to treat urological diseases for centuries. We previously performed a screening and confirmed the in vivo antilithic effect of FC extract. Here, ex vivo organ bath experiment was further performed to study the effect of FC extract on the inhibition of phenylepinephrine (PE) (10−4 and 10−3 M) ureteral peristalsis of porcine ureters with several α1-adrenergic antagonists (doxazosin, tamsulosin, and terazosin) as experimental controls. The results showed that doxazosin, tamsulosin, and terazosin dose (approximately 4.5 × 10−6 − 4.5 × 10−1
μg/mL) dependently inhibited both 10−4 and 10−3 M PE-induced ureteral peristalsis. FC extract achieved 6.2% ± 10.1%, 21.8% ± 6.8%, and 24.0% ± 5.6% inhibitions of 10−4 M PE-induced peristalsis at doses of 5 × 103, 1 × 104, and 2 × 104
μg/mL, respectively, since FC extract was unable to completely inhibit PE-induced ureteral peristalsis, suggesting the antilithic effect of FC extract is related to mechanisms other than modulation of ureteral peristalsis.
Collapse
|
50
|
Wu SY, Shen JL, Man KM, Lee YJ, Chen HY, Chen YH, Tsai KS, Tsai FJ, Lin WY, Chen WC. An emerging translational model to screen potential medicinal plants for nephrolithiasis, an independent risk factor for chronic kidney disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:972958. [PMID: 25097661 PMCID: PMC4109113 DOI: 10.1155/2014/972958] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 12/13/2022]
Abstract
Pharmacological therapy for urolithiasis using medicinal plants has been increasingly adopted for the prevention of its recurrence. A Drosophila melanogaster model developed for translational research of urolithiasis was applied to evaluate agents with potential antilithic effects and calcium oxalate (CaOx) formation. Potential antilithic herbs were prepared in a mixture of food in a diluted concentration of 5,000 from the original extract with 0.5% ethylene glycol (EG) as the lithogenic agent. The control group was fed with food only. After 3 weeks, flies (n ≥ 150 for each group) were killed using CO2 narcotization, and the Malpighian tubules were dissected, removed, and processed for polarized light microscopy examination of the crystals. The crystal formation rate in the EG group was 100.0%. In the study, 16 tested herbal drugs reached the crystal formation rate of 0.0%, including Salviae miltiorrhizae, Paeonia lactiflora, and Carthami flos. Scutellaria baicalensis enhanced CaOx crystal formation. Two herbal drugs Commiphora molmol and Natrii sulfas caused the death of all flies. Our rapid screening methods provided evidence that some medicinal plants have potential antilithic effects. These useful medicinal plants can be further studied using other animal or human models to verify their effects.
Collapse
Affiliation(s)
- San-Yuan Wu
- School of Chinese Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40402, Taiwan
| | - Jui-Lung Shen
- Center for General Education, Feng Chia University, Taichung 40724, Taiwan
- Department of Dermatology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Kee-Ming Man
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua 51591, Taiwan
- Department of Anesthesiology, Tungs' Taichung Harbor Hospital, Taichung 43304, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
- Graduate Institute of Geriatric Medicine, Anhui Medical University, Hefei 230032, China
| | - Yuan-Ju Lee
- Department of Urology, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Huey-Yi Chen
- School of Chinese Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40402, Taiwan
- Departments of Medical Research, Obstetrics and Gynecology, Dermatology, and Urology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yung-Hsiang Chen
- School of Chinese Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40402, Taiwan
- Departments of Medical Research, Obstetrics and Gynecology, Dermatology, and Urology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Kao-Sung Tsai
- School of Chinese Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40402, Taiwan
- Departments of Medical Research, Obstetrics and Gynecology, Dermatology, and Urology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40402, Taiwan
- Departments of Medical Research, Obstetrics and Gynecology, Dermatology, and Urology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Wei-Yong Lin
- School of Chinese Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40402, Taiwan
- Departments of Medical Research, Obstetrics and Gynecology, Dermatology, and Urology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Wen-Chi Chen
- School of Chinese Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40402, Taiwan
- Departments of Medical Research, Obstetrics and Gynecology, Dermatology, and Urology, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|