1
|
Skala LE, Philmus B, Mahmud T. Modifications of Protein-Bound Substrates by Trans-Acting Enzymes in Natural Products Biosynthesis. Chembiochem 2024; 25:e202400056. [PMID: 38386898 PMCID: PMC11021167 DOI: 10.1002/cbic.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Enzymatic modifications of small molecules are a common phenomenon in natural product biosynthesis, leading to the production of diverse bioactive compounds. In polyketide biosynthesis, modifications commonly take place after the completion of the polyketide backbone assembly by the polyketide synthases and the mature products are released from the acyl-carrier protein (ACP). However, exceptions to this rule appear to be widespread, as on-line hydroxylation, methyl transfer, and cyclization during polyketide assembly process are common, particularly in trans-AT PKS systems. Many of these modifications are catalyzed by specific domains within the modular PKS systems. However, several of the on-line modifications are catalyzed by stand-alone proteins. Those include the on-line Baeyer-Villiger oxidation, α-hydroxylation, halogenation, epoxidation, and methyl esterification during polyketide assembly, dehydrogenation of ACP-bound short fatty acids by acyl-CoA dehydrogenase-like enzymes, and glycosylation of ACP-bound intermediates by discrete glycosyltransferase enzymes. This review article highlights some of these trans-acting proteins that catalyze enzymatic modifications of ACP-bound small molecules in natural product biosynthesis.
Collapse
Affiliation(s)
- Leigh E Skala
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| |
Collapse
|
2
|
Mabesoone MF, Leopold-Messer S, Minas HA, Chepkirui C, Chawengrum P, Reiter S, Meoded RA, Wolf S, Genz F, Magnus N, Piechulla B, Walker AS, Piel J. Evolution-guided engineering of trans-acyltransferase polyketide synthases. Science 2024; 383:1312-1317. [PMID: 38513027 PMCID: PMC11260071 DOI: 10.1126/science.adj7621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
Bacterial multimodular polyketide synthases (PKSs) are giant enzymes that generate a wide range of therapeutically important but synthetically challenging natural products. Diversification of polyketide structures can be achieved by engineering these enzymes. However, notwithstanding successes made with textbook cis-acyltransferase (cis-AT) PKSs, tailoring such large assembly lines remains challenging. Unlike textbook PKSs, trans-AT PKSs feature an extraordinary diversity of PKS modules and commonly evolve to form hybrid PKSs. In this study, we analyzed amino acid coevolution to identify a common module site that yields functional PKSs. We used this site to insert and delete diverse PKS parts and create 22 engineered trans-AT PKSs from various pathways and in two bacterial producers. The high success rates of our engineering approach highlight the broader applicability to generate complex designer polyketides.
Collapse
Affiliation(s)
- Mathijs F.J. Mabesoone
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Stefan Leopold-Messer
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Hannah A. Minas
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Clara Chepkirui
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Pornsuda Chawengrum
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
- Chemical Biology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Silke Reiter
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Roy A. Meoded
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Sarah Wolf
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Ferdinand Genz
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Nancy Magnus
- Institute for Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Birgit Piechulla
- Institute for Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Allison S. Walker
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37240, United States
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue S, Nashville, Tennesee 37232, United States
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
- Lead contact
| |
Collapse
|
3
|
Dell M, Tran MA, Capper MJ, Sundaram S, Fiedler J, Koehnke J, Hellmich UA, Hertweck C. Trapping of a Polyketide Synthase Module after C-C Bond Formation Reveals Transient Acyl Carrier Domain Interactions. Angew Chem Int Ed Engl 2024; 63:e202315850. [PMID: 38134222 DOI: 10.1002/anie.202315850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023]
Abstract
Modular polyketide synthases (PKSs) are giant assembly lines that produce an impressive range of biologically active compounds. However, our understanding of the structural dynamics of these megasynthases, specifically the delivery of acyl carrier protein (ACP)-bound building blocks to the catalytic site of the ketosynthase (KS) domain, remains severely limited. Using a multipronged structural approach, we report details of the inter-domain interactions after C-C bond formation in a chain-branching module of the rhizoxin PKS. Mechanism-based crosslinking of an engineered module was achieved using a synthetic substrate surrogate that serves as a Michael acceptor. The crosslinked protein allowed us to identify an asymmetric state of the dimeric protein complex upon C-C bond formation by cryo-electron microscopy (cryo-EM). The possible existence of two ACP binding sites, one of them a potential "parking position" for substrate loading, was also indicated by AlphaFold2 predictions. NMR spectroscopy showed that a transient complex is formed in solution, independent of the linker domains, and photochemical crosslinking/mass spectrometry of the standalone domains allowed us to pinpoint the interdomain interaction sites. The structural insights into a branching PKS module arrested after C-C bond formation allows a better understanding of domain dynamics and provides valuable information for the rational design of modular assembly lines.
Collapse
Affiliation(s)
- Maria Dell
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany
| | - Mai Anh Tran
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Michael J Capper
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Srividhya Sundaram
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany
| | - Jonas Fiedler
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany
| | - Jesko Koehnke
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
- Institute of Food Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| | - Ute A Hellmich
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438, Frankfurt am Main, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
4
|
Liao Y, Wang XJ, Ma GL, Candra H, Qiu En SL, Khandelwal S, Liang ZX. Biosynthesis of Octacosamicin A: Uncommon Starter/extender Units and Product Releasing via Intermolecular Amidation. Chembiochem 2024; 25:e202300590. [PMID: 37908177 DOI: 10.1002/cbic.202300590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Octacosamicin A is an antifungal metabolite featuring a linear polyene-polyol chain flanked by N-hydroxyguanidine and glycine moieties. We report here that sub-inhibitory concentrations of streptomycin elicited the production of octacosamicin A in Amycolatopsis azurea DSM 43854T . We identified the biosynthetic gene cluster (oca BGC) that encodes a modular polyketide synthase (PKS) system for assembling the polyene-polyol chain of octacosamicin A. Our analysis suggested that the N-hydroxyguanidine unit originates from a 4-guanidinobutyryl-CoA starter unit, while the PKS incorporates an α-hydroxyketone moiety using a (2R)-hydroxymalonyl-CoA extender unit. The modular PKS system contains a non-canonical terminal module that lacks thioesterase (TE) and acyl carrier protein (ACP) domains, indicating the biosynthesis is likely to employ an unconventional and cryptic off-loading mechanism that attaches glycine to the polyene-polyol chain via an intermolecular amidation reaction.
Collapse
Affiliation(s)
- Yanghui Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Xue-Jiao Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Guang-Lei Ma
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Hartono Candra
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Sean Lee Qiu En
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Srashti Khandelwal
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| |
Collapse
|
5
|
Fage CD, Passmore M, Tatman BP, Smith HG, Jian X, Dissanayake UC, Andrés Cisneros G, Challis GL, Lewandowski JR, Jenner M. Molecular basis for short-chain thioester hydrolysis by acyl hydrolase domains in trans -acyltransferase polyketide synthases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.552765. [PMID: 37609184 PMCID: PMC10441421 DOI: 10.1101/2023.08.11.552765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Polyketide synthases (PKSs) are multi-domain enzymatic assembly lines that biosynthesise a wide selection of bioactive natural products from simple building blocks. In contrast to their cis -acyltransferase (AT) counterparts, trans -AT PKSs rely on stand-alone AT domains to load extender units onto acyl carrier protein (ACP) domains embedded in the core PKS machinery. Trans -AT PKS gene clusters also encode acyl hydrolase (AH) domains, which are predicted to share the overall fold of AT domains, but hydrolyse aberrant acyl chains from ACP domains, thus ensuring efficient polyketide biosynthesis. How such domains specifically target short acyl chains, in particular acetyl groups, tethered as thioesters to the substrate-shuttling ACP domains, with hydrolytic rather than acyl transfer activity, has remained unclear. To answer these questions, we solved the first structure of an AH domain and performed structure-guided activity assays on active site variants. Our results offer key insights into chain length control and selection against coenzyme A-tethered substrates, and clarify how the interaction interface between AH and ACP domains contributes to recognition of cognate and non-cognate ACP domains. Combining our experimental findings with molecular dynamics simulations allowed for the production of a data-driven model of an AH:ACP domain complex. Our results advance the currently incomplete understanding of polyketide biosynthesis by trans -AT PKSs, and provide foundations for future bioengineering efforts.
Collapse
|
6
|
Sun Z, Tang Y. No job too small for a giant enzyme. Nat Chem Biol 2023:10.1038/s41589-023-01386-3. [PMID: 37474758 DOI: 10.1038/s41589-023-01386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Affiliation(s)
- Zuodong Sun
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Bonhomme S, Contreras-Martel C, Dessen A, Macheboeuf P. Architecture of a PKS-NRPS hybrid megaenzyme involved in the biosynthesis of the genotoxin colibactin. Structure 2023:S0969-2126(23)00095-3. [PMID: 37059096 DOI: 10.1016/j.str.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/21/2022] [Accepted: 03/20/2023] [Indexed: 04/16/2023]
Abstract
The genotoxin colibactin produced by Escherichia coli is involved in the development of colorectal cancers. This secondary metabolite is synthesized by a multi-protein machinery, mainly composed of non-ribosomal peptide synthetase (NRPS)/polyketide synthase (PKS) enzymes. In order to decipher the function of a PKS-NRPS hybrid enzyme implicated in a key step of colibactin biosynthesis, we conducted an extensive structural characterization of the ClbK megaenzyme. Here we present the crystal structure of the complete trans-AT PKS module of ClbK showing structural specificities of hybrid enzymes. In addition, we report the SAXS solution structure of the full-length ClbK hybrid that reveals a dimeric organization as well as several catalytic chambers. These results provide a structural framework for the transfer of a colibactin precursor through a PKS-NRPS hybrid enzyme and can pave the way for re-engineering PKS-NRPS hybrid megaenzymes to generate diverse metabolites with many applications.
Collapse
Affiliation(s)
- Sarah Bonhomme
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Carlos Contreras-Martel
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Andréa Dessen
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Pauline Macheboeuf
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France.
| |
Collapse
|
8
|
Enzymology of assembly line synthesis by modular polyketide synthases. Nat Chem Biol 2023; 19:401-415. [PMID: 36914860 DOI: 10.1038/s41589-023-01277-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/31/2023] [Indexed: 03/16/2023]
Abstract
Modular polyketide synthases (PKSs) run catalytic reactions over dozens of steps in a highly orchestrated manner. To accomplish this synthetic feat, they form megadalton multienzyme complexes that are among the most intricate proteins on earth. Polyketide products are of elaborate chemistry with molecular weights of usually several hundred daltons and include clinically important drugs such as erythromycin (antibiotic), rapamycin (immunosuppressant) and epothilone (anticancer drug). The term 'modular' refers to a hierarchical structuring of modules and domains within an overall assembly line arrangement, in which PKS organization is colinearly translated into the polyketide structure. New structural information obtained during the past few years provides substantial direct insight into the orchestration of catalytic events within a PKS module and leads to plausible models for synthetic progress along assembly lines. In light of these structural insights, the PKS engineering field is poised to enter a new era of engineering.
Collapse
|
9
|
Wang J, Wang X, Li X, Kong L, Du Z, Li D, Gou L, Wu H, Cao W, Wang X, Lin S, Shi T, Deng Z, Wang Z, Liang J. C-N bond formation by a polyketide synthase. Nat Commun 2023; 14:1319. [PMID: 36899013 PMCID: PMC10006239 DOI: 10.1038/s41467-023-36989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Assembly-line polyketide synthases (PKSs) are molecular factories that produce diverse metabolites with wide-ranging biological activities. PKSs usually work by constructing and modifying the polyketide backbone successively. Here, we present the cryo-EM structure of CalA3, a chain release PKS module without an ACP domain, and its structures with amidation or hydrolysis products. The domain organization reveals a unique "∞"-shaped dimeric architecture with five connected domains. The catalytic region tightly contacts the structural region, resulting in two stabilized chambers with nearly perfect symmetry while the N-terminal docking domain is flexible. The structures of the ketosynthase (KS) domain illustrate how the conserved key residues that canonically catalyze C-C bond formation can be tweaked to mediate C-N bond formation, revealing the engineering adaptability of assembly-line polyketide synthases for the production of novel pharmaceutical agents.
Collapse
Affiliation(s)
- Jialiang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojie Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Department of Molecular Biology, Shanghai Jikaixing Biotech Inc., Shanghai, 200131, China
| | - Xixi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - LiangLiang Kong
- National Facility for Protein Science in Shanghai, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zeqian Du
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lixia Gou
- School of Life Science, North China University of Science and Technology, Tangshan, Hebei, China
| | - Hao Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Guo S, Sang Y, Zheng C, Xue XS, Tang Z, Liu W. Enzymatic α-Ketothioester Decarbonylation Occurs in the Assembly Line of Barbamide for Skeleton Editing. J Am Chem Soc 2023; 145:5017-5028. [PMID: 36821526 DOI: 10.1021/jacs.2c10277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The decarbonylation reaction has been developed significantly in organic chemistry as an effective approach to various synthetic applications, but enzymatic precedents for this reaction are rare. Based on investigations into the hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line of barbamide, we report an on-line α-ketothioester decarbonylation reaction that leads to one-carbon truncation of the elongating skeleton. This enzymatic editing reaction occurs in the first round of lipopeptide extension and modification involving the multienzymes BarE and BarF, which successively house an NRPS module to initiate the biosynthesis and a PKS module to catalyze the first round of chain extension. Starting with processing a leucine-derived α-ketoacyl starter, the ketosynthase domain in BarE displays an unusual dual activity that results in net one-carbon chain elongation. It extrudes carbon monoxide from α-keto-isocaproyl thioester and then mediates decarboxylative condenses of the resultant isovaleryl thioester with malonyl thioester to form a diketide intermediate, followed by BarF-based O-methylation to stabilize the enol form of the β-carbonyl and afford an unusual E-double bond. Biochemical characterization, chemical synthesis, computational analysis, and the experimental outcome of site-directed mutagenesis illustrate the extraordinary catalytic capability of this ketosynthase domain. This work furthers the appreciation of assembly line chemistry and opens the door to new approaches for skeleton editing/engineering of related molecules using synthetic biology approaches.
Collapse
Affiliation(s)
- Shengjie Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yueqian Sang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
11
|
Ueoka R, Sondermann P, Leopold-Messer S, Liu Y, Suo R, Bhushan A, Vadakumchery L, Greczmiel U, Yashiroda Y, Kimura H, Nishimura S, Hoshikawa Y, Yoshida M, Oxenius A, Matsunaga S, Williamson RT, Carreira EM, Piel J. Genome-based discovery and total synthesis of janustatins, potent cytotoxins from a plant-associated bacterium. Nat Chem 2022; 14:1193-1201. [PMID: 36064972 PMCID: PMC7613652 DOI: 10.1038/s41557-022-01020-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Host-associated bacteria are increasingly being recognized as underexplored sources of bioactive natural products with unprecedented chemical scaffolds. A recently identified example is the plant-root-associated marine bacterium Gynuella sunshinyii of the chemically underexplored order Oceanospirillales. Its genome contains at least 22 biosynthetic gene clusters, suggesting a rich and mostly uncharacterized specialized metabolism. Here, in silico chemical prediction of a non-canonical polyketide synthase cluster has led to the discovery of janustatins, structurally unprecedented polyketide alkaloids with potent cytotoxicity that are produced in minute quantities. A combination of MS and two-dimensional NMR experiments, density functional theory calculations of 13C chemical shifts and semiquantitative interpretation of transverse rotating-frame Overhauser effect spectroscopy data were conducted to determine the relative configuration, which enabled the total synthesis of both enantiomers and assignment of the absolute configuration. Janustatins feature a previously unknown pyridodihydropyranone heterocycle and an unusual biological activity consisting of delayed, synchronized cell death at subnanomolar concentrations.
Collapse
Affiliation(s)
- Reiko Ueoka
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Philipp Sondermann
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Stefan Leopold-Messer
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Yizhou Liu
- NMR Structure Elucidation, Process & Analytical Chemistry, Merck & Co. Inc., Rahway, NJ, USA
- Analytical Research & Development, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Rei Suo
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Agneya Bhushan
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Lida Vadakumchery
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Ute Greczmiel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Yoko Yashiroda
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiromi Kimura
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Shinichi Nishimura
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Yojiro Hoshikawa
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Minoru Yoshida
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Annette Oxenius
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Shigeki Matsunaga
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - R Thomas Williamson
- NMR Structure Elucidation, Process & Analytical Chemistry, Merck & Co. Inc., Rahway, NJ, USA
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Erick M Carreira
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland.
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland.
| |
Collapse
|
12
|
Tittes YU, Herbst DA, Martin SFX, Munoz-Hernandez H, Jakob RP, Maier T. The structure of a polyketide synthase bimodule core. SCIENCE ADVANCES 2022; 8:eabo6918. [PMID: 36129979 PMCID: PMC9491710 DOI: 10.1126/sciadv.abo6918] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Polyketide synthases (PKSs) are predominantly microbial biosynthetic enzymes. They assemble highly potent bioactive natural products from simple carboxylic acid precursors. The most versatile families of PKSs are organized as assembly lines of functional modules. Each module performs one round of precursor extension and optional modification, followed by directed transfer of the intermediate to the next module. While enzymatic domains and even modules of PKSs are well understood, the higher-order modular architecture of PKS assembly lines remains elusive. Here, we visualize a PKS bimodule core using cryo-electron microscopy and resolve a two-dimensional meshwork of the bimodule core formed by homotypic interactions between modules. The sheet-like organization provides the framework for efficient substrate transfer and for sequestration of trans-acting enzymes required for polyketide production.
Collapse
|
13
|
The Natural Product Domain Seeker version 2 (NaPDoS2) webtool relates ketosynthase phylogeny to biosynthetic function. J Biol Chem 2022; 298:102480. [PMID: 36108739 PMCID: PMC9582728 DOI: 10.1016/j.jbc.2022.102480] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
The Natural Product Domain Seeker (NaPDoS) webtool detects and classifies ketosynthase (KS) and condensation domains from genomic, metagenomic, and amplicon sequence data. Unlike other tools, a phylogeny-based classification scheme is used to make broader predictions about the polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes in which these domains are found. NaPDoS is particularly useful for the analysis of incomplete biosynthetic genes or gene clusters, as are often observed in poorly assembled genomes and metagenomes, or when loci are not clustered, as in eukaryotic genomes. To help support the growing interest in sequence-based analyses of natural product biosynthetic diversity, here we introduce version 2 of the webtool, NaPDoS2, available at http://napdos.ucsd.edu/napdos2. This update includes the addition of 1417 KS sequences, representing a major expansion of the taxonomic and functional diversity represented in the webtool database. The phylogeny-based KS classification scheme now recognizes 41 class and subclass assignments, including new type II PKS subclasses. Workflow modifications accelerate run times, allowing larger datasets to be analyzed. In addition, default parameters were established using statistical validation tests to maximize KS detection and classification accuracy while minimizing false positives. We further demonstrate the applications of NaPDoS2 to assess PKS biosynthetic potential using genomic, metagenomic, and PCR amplicon datasets. These examples illustrate how NaPDoS2 can be used to predict biosynthetic potential and detect genes involved in the biosynthesis of specific structure classes or new biosynthetic mechanisms.
Collapse
|
14
|
Zhu HJ, Zhang B, Wei W, Liu SH, Xiang L, Zhu J, Jiao RH, Igarashi Y, Bashiri G, Liang Y, Tan RX, Ge HM. AvmM catalyses macrocyclization through dehydration/Michael-type addition in alchivemycin A biosynthesis. Nat Commun 2022; 13:4499. [PMID: 35922406 PMCID: PMC9349299 DOI: 10.1038/s41467-022-32088-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
Macrocyclization is an important process that affords morphed scaffold in biosynthesis of bioactive natural products. Nature has adapted diverse biosynthetic strategies to form macrocycles. In this work, we report the identification and characterization of a small enzyme AvmM that can catalyze the construction of a 16-membered macrocyclic ring in the biosynthesis of alchivemycin A (1). We show through in vivo gene deletion, in vitro biochemical assay and isotope labelling experiments that AvmM catalyzes tandem dehydration and Michael-type addition to generate the core scaffold of 1. Mechanistic studies by crystallography, DFT calculations and MD simulations of AvmM reveal that the reactions are achieved with assistance from the special tenuazonic acid like moiety of substrate. Our results thus uncover an uncharacterized macrocyclization strategy in natural product biosynthesis. Macrocyclization is an important process in bioactive natural product synthesis. Here, the authors report on the study of a macrocyclic ring constructing enzyme in the biosynthesis of alchivemycin A and using gene deletion, biochemical assays and isotope labelling show the enzyme catalyses tandem dehydration and Michael-type addition.
Collapse
Affiliation(s)
- Hong Jie Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Centre, Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Centre, Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wanqing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuang He Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Centre, Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Centre, Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiapeng Zhu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Centre, Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, 939-0398, Japan
| | - Ghader Bashiri
- Laboratory of Molecular and Microbial Biochemistry, School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Centre, Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Centre, Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
15
|
Feng Y, Yang X, Ji H, Deng Z, Lin S, Zheng J. The Streptomyces viridochromogenes product template domain represents an evolutionary intermediate between dehydratase and aldol cyclase of type I polyketide synthases. Commun Biol 2022; 5:508. [PMID: 35618872 PMCID: PMC9135731 DOI: 10.1038/s42003-022-03477-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/10/2022] [Indexed: 01/08/2023] Open
Abstract
The product template (PT) domains act as an aldol cyclase to control the regiospecific aldol cyclization of the extremely reactive poly-β-ketone intermediate assembled by an iterative type I polyketide synthases (PKSs). Up to now, only the structure of fungal PksA PT that mediates the first-ring cyclization via C4–C9 aldol cyclization is available. We describe here the structural and computational characterization of a bacteria PT domain that controls C2–C7 cyclization in orsellinic acid (OSA) synthesis. Mutating the catalytic H949 of the PT abolishes production of OSA and results in a tetraacetic acid lactone (TTL) generated by spontaneous O-C cyclization of the acyl carrier protein (ACP)-bound tetraketide intermediate. Crystal structure of the bacterial PT domain closely resembles dehydrase (DH) domains of modular type I PKSs in the overall fold, dimerization interface and His-Asp catalytic dyad organization, but is significantly different from PTs of fungal iterative type I PKSs. QM/MM calculation suggests that the catalytic H949 abstracts a proton from C2 and transfers it to C7 carbonyl to mediate the cyclization reaction. According to structural similarity to DHs and functional similarity to fungal PTs, we propose that the bacterial PT represents an evolutionary intermediate between the two tailoring domains of type I PKSs. Structural analyses of a Streptomyces viridochromogenes product template (PT) domain suggests molecular and functional similarities with known fungal PTs involved in polyketide synthase activity.
Collapse
Affiliation(s)
- Yuanyuan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huining Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China. .,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
Stierle SA, Li SM. Biosynthesis of Xylariolide D in Penicillium crustosum Implies a Chain Branching Reaction Catalyzed by a Highly Reducing Polyketide Synthase. J Fungi (Basel) 2022; 8:jof8050493. [PMID: 35628749 PMCID: PMC9147667 DOI: 10.3390/jof8050493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
Fungi are important sources for the discovery of natural products. During the last decades, technological progress and the increasing number of sequenced genomes facilitated the exploration of new secondary metabolites. Among those, polyketides represent a structurally diverse group with manifold biological activities. In this study, we successfully used genome mining and genetic manipulation for functional proof of a polyketide biosynthetic gene cluster from the filamentous fungus Penicillium crustosum. Gene activation in the native host and heterologous expression in Aspergillus nidulans led to the identification of the xil cluster, being responsible for the formation of the 6-methyl-2-pyrone derivative xylariolide D. Feeding with 13C-labeled precursors supported the hypothesis of chain branching during the backbone formation catalyzed by a highly reducing fungal polyketide synthase. A cytochrome P450-catalyzed hydroxylation converts the PKS product to the final metabolite. This proved that just two enzymes are required for the biosynthesis of xylariolide D.
Collapse
|
17
|
Hemmerling F, Meoded RA, Fraley AE, Minas HA, Dieterich CL, Rust M, Ueoka R, Jensen K, Helfrich EJN, Bergande C, Biedermann M, Magnus N, Piechulla B, Piel J. Modular Halogenation, α-Hydroxylation, and Acylation by a Remarkably Versatile Polyketide Synthase. Angew Chem Int Ed Engl 2022; 61:e202116614. [PMID: 35020279 DOI: 10.1002/anie.202116614] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/14/2022]
Abstract
Bacterial multimodular polyketide synthases (PKSs) are large enzymatic assembly lines that synthesize many bioactive natural products of therapeutic relevance. While PKS catalysis is mostly based on fatty acid biosynthetic principles, polyketides can be further diversified by post-PKS enzymes. Here, we characterized a remarkably versatile trans-acyltransferase (trans-AT) PKS from Serratia that builds structurally complex macrolides via more than ten functionally distinct PKS modules. In the oocydin PKS, we identified a new oxygenation module that α-hydroxylates polyketide intermediates, a halogenating module catalyzing backbone γ-chlorination, and modular O-acetylation by a thioesterase-like domain. These results from a single biosynthetic assembly line highlight the expansive biochemical repertoire of trans-AT PKSs and provide diverse modular tools for engineered biosynthesis from a close relative of E. coli.
Collapse
Affiliation(s)
- Franziska Hemmerling
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Roy A Meoded
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Amy E Fraley
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Hannah A Minas
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Cora L Dieterich
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Michael Rust
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Reiko Ueoka
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.,School of Marine Bioscience, Kitasato University, 1-15-1, Kitazato, Minami-ku, Sagamirhara-shi Kanagawa, 252-0373, Japan
| | - Katja Jensen
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Eric J N Helfrich
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.,Institute of Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.,LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Cedric Bergande
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Maurice Biedermann
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Nancy Magnus
- Institute for Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Birgit Piechulla
- Institute for Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| |
Collapse
|
18
|
Modular Halogenation, α‐Hydroxylation, and Acylation by a Remarkably Versatile Polyketide Synthase. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Rees GJ, Pitak MB, Lari A, Day SP, Yates JR, Gierth P, Barnsley K, Smith ME, Coles SJ, Hanna JV, Wallis JD. Mapping of N−C Bond Formation from a Series of Crystalline Peri‐Substituted Naphthalenes by Charge Density and Solid‐State NMR Methodologies. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gregory J. Rees
- Department of Physics University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Department of Materials University of Oxford Parks Rd Oxford OX1 3PH UK
| | - Mateusz B. Pitak
- School of Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - Alberth Lari
- School of Science and Technology Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Stephen P. Day
- Department of Physics University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Jonathan R. Yates
- Department of Materials University of Oxford Parks Rd Oxford OX1 3PH UK
| | | | - Kristian Barnsley
- Department of Physics University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Mark E. Smith
- Vice-Chancellor's Office University of Southampton Highfield Southampton SO17 1BJ UK
| | - Simon J. Coles
- School of Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | - John V. Hanna
- Department of Physics University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - John D. Wallis
- School of Science and Technology Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| |
Collapse
|
20
|
Rees GJ, Pitak MB, Lari A, Day SP, Yates JR, Gierth P, Barnsley K, Smith ME, Coles SJ, Hanna JV, Wallis JD. Mapping of N-C Bond Formation from a Series of Crystalline Peri-Substituted Naphthalenes by Charge Density and Solid-State NMR Methodologies. Angew Chem Int Ed Engl 2021; 60:23878-23884. [PMID: 34464506 PMCID: PMC8596510 DOI: 10.1002/anie.202111100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 11/21/2022]
Abstract
A combination of charge density studies and solid state nuclear magnetic resonance (NMR) 1 JNC coupling measurements supported by periodic density functional theory (DFT) calculations is used to characterise the transition from an n-π* interaction to bond formation between a nucleophilic nitrogen atom and an electrophilic sp2 carbon atom in a series of crystalline peri-substituted naphthalenes. As the N⋅⋅⋅C distance reduces there is a sharp decrease in the Laplacian derived from increasing charge density between the two groups at ca. N⋅⋅⋅C = 1.8 Å, with the periodic DFT calculations predicting, and heteronuclear spin-echo NMR measurements confirming, the 1 JNC couplings of ≈3-6 Hz for long C-N bonds (1.60-1.65 Å), and 1 JNC couplings of <1 Hz for N⋅⋅⋅C >2.1 Å.
Collapse
Affiliation(s)
- Gregory J. Rees
- Department of PhysicsUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
- Department of MaterialsUniversity of OxfordParks RdOxfordOX1 3PHUK
| | - Mateusz B. Pitak
- School of ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Alberth Lari
- School of Science and TechnologyNottingham Trent UniversityClifton LaneNottinghamNG11 8NSUK
| | - Stephen P. Day
- Department of PhysicsUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | | | | | - Kristian Barnsley
- Department of PhysicsUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Mark E. Smith
- Vice-Chancellor's OfficeUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Simon J. Coles
- School of ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - John V. Hanna
- Department of PhysicsUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - John D. Wallis
- School of Science and TechnologyNottingham Trent UniversityClifton LaneNottinghamNG11 8NSUK
| |
Collapse
|
21
|
Miyazawa T, Fitzgerald BJ, Keatinge-Clay AT. Preparative production of an enantiomeric pair by engineered polyketide synthases. Chem Commun (Camb) 2021; 57:8762-8765. [PMID: 34378565 DOI: 10.1039/d1cc03073f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Using the updated module boundary of polyketide assembly lines, modules from the pikromycin synthase were recombined into engineered synthases that furnish an enantiomeric pair of 2-stereocenter triketide lactones at >99% ee with yields up to 0.39 g per liter of E. coli K207-3 in shake flasks.
Collapse
Affiliation(s)
- Takeshi Miyazawa
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th St., Austin, TX 78712, USA.
| | | | | |
Collapse
|
22
|
Amiri Moghaddam J, Jautzus T, Alanjary M, Beemelmanns C. Recent highlights of biosynthetic studies on marine natural products. Org Biomol Chem 2021; 19:123-140. [PMID: 33216100 DOI: 10.1039/d0ob01677b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Marine bacteria are excellent yet often underexplored sources of structurally unique bioactive natural products. In this review we cover the diversity of marine bacterial biomolecules and highlight recent studies on structurally novel natural products. We include different compound classes and discuss the latest progress related to their biosynthetic pathway analysis and engineering: examples range from fatty acids over terpenes to PKS, NRPS and hybrid PKS-NRPS biomolecules.
Collapse
Affiliation(s)
- Jamshid Amiri Moghaddam
- Junior Research Group Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany.
| | | | | | | |
Collapse
|
23
|
Smith HG, Beech MJ, Lewandowski JR, Challis GL, Jenner M. Docking domain-mediated subunit interactions in natural product megasynth(et)ases. J Ind Microbiol Biotechnol 2021; 48:6152290. [PMID: 33640957 PMCID: PMC9113145 DOI: 10.1093/jimb/kuab018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) multienzymes produce numerous high value metabolites. The protein subunits which constitute these megasynth(et)ases must undergo ordered self-assembly to ensure correct organisation of catalytic domains for the biosynthesis of a given natural product. Short amino acid regions at the N- and C-termini of each subunit, termed docking domains (DDs), often occur in complementary pairs, which interact to facilitate substrate transfer and maintain pathway fidelity. This review details all structurally characterised examples of NRPS and PKS DDs to date and summarises efforts to utilise DDs for the engineering of biosynthetic pathways.
Collapse
Affiliation(s)
- Helen G Smith
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Matthew J Beech
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | | | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, VIC 3800, Australia
| | - Matthew Jenner
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
24
|
Yun T, Zhang M, Zhou D, Jing T, Zang X, Qi D, Chen Y, Li K, Zhao Y, Tang W, Huang J, Wang W, Xie J. Anti-Foc RT4 Activity of a Newly Isolated Streptomyces sp. 5-10 From a Medicinal Plant ( Curculigo capitulata). Front Microbiol 2021; 11:610698. [PMID: 33552022 PMCID: PMC7862724 DOI: 10.3389/fmicb.2020.610698] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/21/2020] [Indexed: 01/25/2023] Open
Abstract
Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense (Foc) is a disastrous soil-borne fungal disease. Foc tropical race 4 (Foc TR4) can infect almost all banana cultivars. Until now, there is a shortage of safety and effective control methods and commercial banana cultivars with a resistance against Foc TR4. Biocontrol using environmentally friendly microbes is a promising strategy for the management of Foc TR4. Here, a strain 5-10, newly isolated from a medicinal plant (Curculigo capitulata), exhibited a high antifungal activity against Foc TR4. Combing the morphological characteristics and molecular identification, strain 5-10 was classified as a Streptomyces genus. The sequenced genome revealed that more than 39 gene clusters were involved in the biosynthesis of secondary metabolites. Some multidrug resistance gene clusters were also identified such as mdtD, vatB, and vgaE. To improve the anti-Foc TR4 activity of the strain 5-10 extracts, an optimization method of fermentation broth was established. Antifungal activity increased by 72.13% under the fermentation system containing 2.86 g/L of NaCl and 11.57% of inoculation amount. After being treated with the strain 5-10 extracts, the Foc TR4 hyphae shrinked, deformed, and ruptured. The membrane integrity and cell ultrastructure incurred irreversible damage. Streptomyces sp. 5-10 extracts play a fungicidal role in Foc TR4. Hence, Streptomyces sp. 5-10 will be a potential biocontrol agent to manage fungal diseases by exploring the microbial fertilizer.
Collapse
Affiliation(s)
- Tianyan Yun
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Miaoyi Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Dengbo Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Tao Jing
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaoping Zang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dengfeng Qi
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Yufeng Chen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Kai Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Yankun Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Wen Tang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Jiaquan Huang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| |
Collapse
|
25
|
An Unconventional Melanin Biosynthesis Pathway in Ustilago maydis. Appl Environ Microbiol 2021; 87:AEM.01510-20. [PMID: 33218994 DOI: 10.1128/aem.01510-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/05/2020] [Indexed: 11/20/2022] Open
Abstract
Ustilago maydis is a phytopathogenic fungus responsible for corn smut disease. Although it is a very well-established model organism for the study of plant-microbe interactions, its potential to produce specialized metabolites, which might contribute to this interaction, has not been studied in detail. By analyzing the U. maydis genome, we identified a biosynthetic gene cluster whose activation led to the production of a black melanin pigment. Single deletion mutants of the cluster genes revealed that five encoded enzymes are required for the accumulation of the black pigment, including three polyketide synthases (pks3, pks4, and pks5), a cytochrome P450 monooxygenase (cyp4), and a protein with similarity to versicolorin B synthase (vbs1). Metabolic profiles of deletion mutants in this gene cluster suggested that Pks3 and Pks4 act in concert as heterodimers to generate orsellinic acid (OA), which is reduced to the corresponding aldehyde by Pks5. The OA-aldehyde can then react with triacetic acid lactone (TAL), also derived from Pks3/Pks4 heterodimers to form larger molecules, including novel coumarin derivatives. Our findings suggest that U. maydis synthesizes a novel type of melanin based on coumarin and pyran-2-one intermediates, while most fungal melanins are derived from 1,8-dihydroxynaphthalene (DHN) or l-3,4-dihydroxyphenylalanine (l-DOPA). Along with these observations, this work also provides insight into the mechanisms of polyketide synthases in this filamentous fungus.IMPORTANCE The fungus Ustilago maydis represents one of the major threats to maize plants since it is responsible for corn smut disease, which generates considerable economical losses around the world. Therefore, contributing to a better understanding of the biochemistry of defense mechanisms used by U. maydis to protect itself against harsh environments, such as the synthesis of melanin, could provide improved biological tools for tackling the problem and protect the crops. In addition, the fact that this fungus synthesizes melanin in an unconventional way, requiring more than one polyketide synthase for producing melanin precursors, gives a different perspective on the complexity of these multidomain enzymes and their evolution in the fungal kingdom.
Collapse
|
26
|
Walker PD, Weir ANM, Willis CL, Crump MP. Polyketide β-branching: diversity, mechanism and selectivity. Nat Prod Rep 2021; 38:723-756. [PMID: 33057534 DOI: 10.1039/d0np00045k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2008 to August 2020 Polyketides are a family of natural products constructed from simple building blocks to generate a diverse range of often complex chemical structures with biological activities of both pharmaceutical and agrochemical importance. Their biosynthesis is controlled by polyketide synthases (PKSs) which catalyse the condensation of thioesters to assemble a functionalised linear carbon chain. Alkyl-branches may be installed at the nucleophilic α- or electrophilic β-carbon of the growing chain. Polyketide β-branching is a fascinating biosynthetic modification that allows for the conversion of a β-ketone into a β-alkyl group or functionalised side-chain. The overall transformation is catalysed by a multi-protein 3-hydroxy-3-methylglutaryl synthase (HMGS) cassette and is reminiscent of the mevalonate pathway in terpene biosynthesis. The first step most commonly involves the aldol addition of acetate to the electrophilic carbon of the β-ketothioester catalysed by a 3-hydroxy-3-methylglutaryl synthase (HMGS). Subsequent dehydration and decarboxylation selectively generates either α,β- or β,γ-unsaturated β-alkyl branches which may be further modified. This review covers 2008 to August 2020 and summarises the diversity of β-branch incorporation and the mechanistic details of each catalytic step. This is extended to discussion of polyketides containing multiple β-branches and the selectivity exerted by the PKS to ensure β-branching fidelity. Finally, the application of HMGS in data mining, additional β-branching mechanisms and current knowledge of the role of β-branches in this important class of biologically active natural products is discussed.
Collapse
Affiliation(s)
- P D Walker
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - A N M Weir
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - C L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - M P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
27
|
Niehs SP, Kumpfmüller J, Dose B, Little RF, Ishida K, Flórez LV, Kaltenpoth M, Hertweck C. Insect-Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non-Canonical Polyketide Chain Termination. Angew Chem Int Ed Engl 2020; 59:23122-23126. [PMID: 32588959 PMCID: PMC7756420 DOI: 10.1002/anie.202005711] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Indexed: 12/17/2022]
Abstract
Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioassays led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont, which are highly active against the entomopathogenic fungus Purpureocillium lilacinum. By mutational analyses, isotope labeling, and computational analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins derives from an unprecedented polyketide chain termination reaction involving a glycerol-derived C3 building block. The key role of an A-factor synthase (AfsA)-like offloading domain was corroborated by CRISPR-Cas-mediated gene editing, which facilitated precise excision within a PKS domain.
Collapse
Affiliation(s)
- Sarah P. Niehs
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Jana Kumpfmüller
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Benjamin Dose
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Rory F. Little
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Keishi Ishida
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Laura V. Flórez
- Department for Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg University MainzHanns-Dieter-Hüsch-Weg 1555128MainzGermany
| | - Martin Kaltenpoth
- Department for Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg University MainzHanns-Dieter-Hüsch-Weg 1555128MainzGermany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
28
|
Motoyama T. Secondary Metabolites of the Rice Blast Fungus Pyricularia oryzae: Biosynthesis and Biological Function. Int J Mol Sci 2020; 21:E8698. [PMID: 33218033 PMCID: PMC7698770 DOI: 10.3390/ijms21228698] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Plant pathogenic fungi produce a wide variety of secondary metabolites with unique and complex structures. However, most fungal secondary metabolism genes are poorly expressed under laboratory conditions. Moreover, the relationship between pathogenicity and secondary metabolites remains unclear. To activate silent gene clusters in fungi, successful approaches such as epigenetic control, promoter exchange, and heterologous expression have been reported. Pyricularia oryzae, a well-characterized plant pathogenic fungus, is the causal pathogen of rice blast disease. P. oryzae is also rich in secondary metabolism genes. However, biosynthetic genes for only four groups of secondary metabolites have been well characterized in this fungus. Biosynthetic genes for two of the four groups of secondary metabolites have been identified by activating secondary metabolism. This review focuses on the biosynthesis and roles of the four groups of secondary metabolites produced by P. oryzae. These secondary metabolites include melanin, a polyketide compound required for rice infection; pyriculols, phytotoxic polyketide compounds; nectriapyrones, antibacterial polyketide compounds produced mainly by symbiotic fungi including endophytes and plant pathogens; and tenuazonic acid, a well-known mycotoxin produced by various plant pathogenic fungi and biosynthesized by a unique NRPS-PKS enzyme.
Collapse
Affiliation(s)
- Takayuki Motoyama
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| |
Collapse
|
29
|
Nakou IT, Jenner M, Dashti Y, Romero‐Canelón I, Masschelein J, Mahenthiralingam E, Challis GL. Genomics-Driven Discovery of a Novel Glutarimide Antibiotic from Burkholderia gladioli Reveals an Unusual Polyketide Synthase Chain Release Mechanism. Angew Chem Int Ed Engl 2020; 59:23145-23153. [PMID: 32918852 PMCID: PMC7756379 DOI: 10.1002/anie.202009007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Indexed: 11/07/2022]
Abstract
A gene cluster encoding a cryptic trans‐acyl transferase polyketide synthase (PKS) was identified in the genomes of Burkholderia gladioli BCC0238 and BCC1622, both isolated from the lungs of cystic fibrosis patients. Bioinfomatics analyses indicated the PKS assembles a novel member of the glutarimide class of antibiotics, hitherto only isolated from Streptomyces species. Screening of a range of growth parameters led to the identification of gladiostatin, the metabolic product of the PKS. NMR spectroscopic analysis revealed that gladiostatin, which has promising activity against several human cancer cell lines and inhibits tumor cell migration, contains an unusual 2‐acyl‐4‐hydroxy‐3‐methylbutenolide in addition to the glutarimide pharmacophore. An AfsA‐like domain at the C‐terminus of the PKS was shown to catalyze condensation of 3‐ketothioesters with dihydroxyacetone phosphate, thus indicating it plays a key role in polyketide chain release and butenolide formation.
Collapse
Affiliation(s)
- Ioanna T. Nakou
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Matthew Jenner
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
| | - Yousef Dashti
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Current Address: The Centre for Bacterial Cell Biology, Biosciences InstituteMedical SchoolNewcastle UniversityNewcastle upon TyneNE2 4AXUK
| | - Isolda Romero‐Canelón
- Institute of Clinical SciencesSchool of PharmacyUniversity of BirminghamBirminghamB15 2TTUK
| | - Joleen Masschelein
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Current Address: Laboratory for Biomolecular Discovery &, EngineeringVIB-KU Leuven Center for MicrobiologyDepartment of BiologyKU Leuven3001LeuvenBelgium
| | - Eshwar Mahenthiralingam
- Organisms and Environment DivisionCardiff School of BiosciencesCardiff UniversityCardiffCF10 3ATUK
| | - Gregory L. Challis
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
- Department of Biochemistry and Molecular BiologyARC Centre of Excellence for Innovations in Peptide and Protein ScienceMonash UniversityVictoria3800Australia
| |
Collapse
|
30
|
Nakou IT, Jenner M, Dashti Y, Romero‐Canelón I, Masschelein J, Mahenthiralingam E, Challis GL. Genomics‐Driven Discovery of a Novel Glutarimide Antibiotic from
Burkholderia gladioli
Reveals an Unusual Polyketide Synthase Chain Release Mechanism. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ioanna T. Nakou
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Matthew Jenner
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre University of Warwick Coventry CV4 7AL UK
| | - Yousef Dashti
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Current Address: The Centre for Bacterial Cell Biology, Biosciences Institute Medical School Newcastle University Newcastle upon Tyne NE2 4AX UK
| | - Isolda Romero‐Canelón
- Institute of Clinical Sciences School of Pharmacy University of Birmingham Birmingham B15 2TT UK
| | - Joleen Masschelein
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Current Address: Laboratory for Biomolecular Discovery &, Engineering VIB-KU Leuven Center for Microbiology Department of Biology KU Leuven 3001 Leuven Belgium
| | - Eshwar Mahenthiralingam
- Organisms and Environment Division Cardiff School of Biosciences Cardiff University Cardiff CF10 3AT UK
| | - Gregory L. Challis
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre University of Warwick Coventry CV4 7AL UK
- Department of Biochemistry and Molecular Biology ARC Centre of Excellence for Innovations in Peptide and Protein Science Monash University Victoria 3800 Australia
| |
Collapse
|
31
|
Niehs SP, Kumpfmüller J, Dose B, Little RF, Ishida K, Flórez LV, Kaltenpoth M, Hertweck C. Insect‐Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non‐Canonical Polyketide Chain Termination. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah P. Niehs
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Jana Kumpfmüller
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Benjamin Dose
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Rory F. Little
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
| | - Laura V. Flórez
- Department for Evolutionary Ecology Institute of Organismic and Molecular Evolution Johannes Gutenberg University Mainz Hanns-Dieter-Hüsch-Weg 15 55128 Mainz Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology Institute of Organismic and Molecular Evolution Johannes Gutenberg University Mainz Hanns-Dieter-Hüsch-Weg 15 55128 Mainz Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstr. 11a 07745 Jena Germany
- Faculty of Biological Sciences Friedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
32
|
Yun CS, Nishimoto K, Motoyama T, Shimizu T, Hino T, Dohmae N, Nagano S, Osada H. Unique features of the ketosynthase domain in a nonribosomal peptide synthetase-polyketide synthase hybrid enzyme, tenuazonic acid synthetase 1. J Biol Chem 2020; 295:11602-11612. [PMID: 32565425 DOI: 10.1074/jbc.ra120.013105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/18/2020] [Indexed: 11/06/2022] Open
Abstract
Many microbial secondary metabolites are produced by multienzyme complexes comprising nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). The ketosynthase (KS) domains of polyketide synthase normally catalyze the decarboxylative Claisen condensation of acyl and malonyl blocks to extend the polyketide chain. However, the terminal KS domain in tenuazonic acid synthetase 1 (TAS1) from the fungus Pyricularia oryzae conducts substrate cyclization. Here, we report on the unique features of the KS domain in TAS1. We observed that this domain is monomeric, not dimeric as is typical for KSs. Analysis of a 1.68-Å resolution crystal structure suggests that the substrate cyclization is triggered via proton abstraction from the active methylene moiety in the substrate by a catalytic His-322 residue. Additionally, we show that TAS1 KS promiscuously accepts aminoacyl substrates and that this promiscuity can be increased by a single amino acid substitution in the substrate-binding pocket of the enzyme. These findings provide insight into a KS domain that accepts the amino acid-containing substrate in an NRPS-PKS hybrid enzyme and provide hints to the substrate cyclization mechanism performed by the KS domain in the biosynthesis of the mycotoxin tenuazonic acid.
Collapse
Affiliation(s)
- Choong-Soo Yun
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama, Japan
| | - Kazuki Nishimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Takayuki Motoyama
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama, Japan
| | - Takeshi Shimizu
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama, Japan
| | - Tomoya Hino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama, Japan
| | - Shingo Nagano
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama, Japan
| |
Collapse
|
33
|
Hollmann T, Berkhan G, Wagner L, Sung KH, Kolb S, Geise H, Hahn F. Biocatalysts from Biosynthetic Pathways: Enabling Stereoselective, Enzymatic Cycloether Formation on a Gram Scale. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tim Hollmann
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Gesche Berkhan
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Lisa Wagner
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Kwang Hoon Sung
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Protein Facility, ILAb Co., Ltd. NP513, The Catholic University of Korea, 420-743 Bucheon, Republic of Korea
| | - Simon Kolb
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Hendrik Geise
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Frank Hahn
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
34
|
Katsuyama Y. Mining novel biosynthetic machineries of secondary metabolites from actinobacteria. Biosci Biotechnol Biochem 2019; 83:1606-1615. [DOI: 10.1080/09168451.2019.1606700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Secondary metabolites produced by actinobacteria have diverse structures and important biological activities, making them a useful source of drug development. Diversity of the secondary metabolites indicates that the actinobacteria exploit various chemical reactions to construct a structural diversity. Thus, studying the biosynthetic machinery of these metabolites should result in discovery of various enzymes catalyzing interesting and useful reactions. This review summarizes our recent studies on the biosynthesis of secondary metabolites from actinobacteria, including the biosynthesis of nonproteinogenic amino acids used as building blocks of nonribosomal peptides, the type II polyketide synthase catalyzing polyene scaffold, the nitrous acid biosynthetic pathway involved in secondary metabolite biosynthesis and unique cytochrome P450 catalyzing nitrene transfer. These findings expand the knowledge of secondary metabolite biosynthesis machinery and provide useful tools for future bioengineering.
Collapse
Affiliation(s)
- Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
35
|
Kosol S, Jenner M, Lewandowski JR, Challis GL. Protein-protein interactions in trans-AT polyketide synthases. Nat Prod Rep 2019; 35:1097-1109. [PMID: 30280735 DOI: 10.1039/c8np00066b] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to 2018 The construction of polyketide natural products by type I modular polyketide synthases (PKSs) requires the coordinated action of several protein subunits to ensure biosynthetic fidelity. This is particularly the case for trans-AT PKSs, which in contrast to most cis-AT PKSs, contain split modules and employ several trans-acting catalytic domains. This article summarises recent advances in understanding the protein-protein interactions underpinning subunit assembly and intra-subunit communication in such systems and highlights potential avenues and approaches for future research.
Collapse
Affiliation(s)
- Simone Kosol
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | | | | | | |
Collapse
|
36
|
Helfrich EJN, Ueoka R, Dolev A, Rust M, Meoded RA, Bhushan A, Califano G, Costa R, Gugger M, Steinbeck C, Moreno P, Piel J. Automated structure prediction of trans-acyltransferase polyketide synthase products. Nat Chem Biol 2019; 15:813-821. [PMID: 31308532 PMCID: PMC6642696 DOI: 10.1038/s41589-019-0313-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/23/2019] [Indexed: 12/01/2022]
Abstract
Bacterial trans-acyltransferase polyketide synthases (trans-AT PKSs) are among the most complex known enzymes from secondary metabolism and are responsible for the biosynthesis of highly diverse bioactive polyketides. However, most of these metabolites remain uncharacterized, since trans-AT PKSs frequently occur in poorly studied microbes and feature a remarkable array of non-canonical biosynthetic components with poorly understood functions. As a consequence, genome-guided natural product identification has been challenging. To enable de novo structural predictions for trans-AT PKS-derived polyketides, we developed the trans-AT PKS polyketide predictor (TransATor). TransATor is a versatile bio- and chemoinformatics web application that suggests informative chemical structures for even highly aberrant trans-AT PKS biosynthetic gene clusters, thus permitting hypothesis-based, targeted biotechnological discovery and biosynthetic studies. We demonstrate the applicative scope in several examples, including the characterization of new variants of bioactive natural products as well as structurally new polyketides from unusual bacterial sources.
Collapse
Affiliation(s)
- Eric J N Helfrich
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Reiko Ueoka
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Alon Dolev
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Michael Rust
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Roy A Meoded
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Agneya Bhushan
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Gianmaria Califano
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Rodrigo Costa
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Muriel Gugger
- Institut Pasteur, Collection des Cyanobactéries, Paris, France
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität Jena, Jena, Germany
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton Cambridge, UK
| | - Pablo Moreno
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton Cambridge, UK.
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland.
| |
Collapse
|
37
|
Abstract
Burkholderia bacteria are multifaceted organisms that are ecologically and metabolically diverse. The Burkholderia genus has gained prominence because it includes human pathogens; however, many strains are nonpathogenic and have desirable characteristics such as beneficial plant associations and degradation of pollutants. The diversity of the Burkholderia genus is reflected within the large genomes that feature multiple replicons. Burkholderia genomes encode a plethora of natural products with potential therapeutic relevance and biotechnological applications. This review highlights Burkholderia as an emerging source of natural products. An overview of the taxonomy of the Burkholderia genus, which is currently being revised, is provided. We then present a curated compilation of natural products isolated from Burkholderia sensu lato and analyze their characteristics in terms of biosynthetic class, discovery method, and bioactivity. Finally, we describe and discuss genome characteristics and highlight the biosynthesis of a select number of natural products that are encoded in unusual biosynthetic gene clusters. The availability of >1000 Burkholderia genomes in public databases provides an opportunity to realize the genetic potential of this underexplored taxon for natural product discovery.
Collapse
Affiliation(s)
- Sylvia Kunakom
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S. Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
38
|
Sato K, Katsuyama Y, Yokota K, Awakawa T, Tezuka T, Ohnishi Y. Involvement of β‐Alkylation Machinery and Two Sets of Ketosynthase‐Chain‐Length Factors in the Biosynthesis of Fogacin Polyketides in
Actinoplanes missouriensis. Chembiochem 2019; 20:1039-1050. [DOI: 10.1002/cbic.201800640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Kei Sato
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| | - Yohei Katsuyama
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| | - Kousuke Yokota
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| | - Takayoshi Awakawa
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| | - Takeaki Tezuka
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| | - Yasuo Ohnishi
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
39
|
Abstract
Enzymes that catalyze a Michael-type addition in polyketide biosynthesis are summarized and discussed.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| |
Collapse
|
40
|
Abstract
Covering: up to mid of 2018 Type I fatty acid synthases (FASs) are giant multienzymes catalyzing all steps of the biosynthesis of fatty acids from acetyl- and malonyl-CoA by iterative precursor extension. Two strikingly different architectures of FAS evolved in yeast (as well as in other fungi and some bacteria) and metazoans. Yeast-type FAS (yFAS) assembles into a barrel-shaped structure of more than 2 MDa molecular weight. Catalytic domains of yFAS are embedded in an extensive scaffolding matrix and arranged around two enclosed reaction chambers. Metazoan FAS (mFAS) is a 540 kDa X-shaped dimer, with lateral reaction clefts, minimal scaffolding and pronounced conformational variability. All naturally occurring yFAS are strictly specialized for the production of saturated fatty acids. The yFAS architecture is not used for the biosynthesis of any other secondary metabolite. On the contrary, mFAS is related at the domain organization level to major classes of polyketide synthases (PKSs). PKSs produce a variety of complex and potent secondary metabolites; they either act iteratively (iPKS), or are linked via directed substrate transfer into modular assembly lines (modPKSs). Here, we review the architectures of yFAS, mFAS, and iPKSs. We rationalize the evolution of the yFAS assembly, and provide examples for re-engineering of yFAS. Recent studies have provided novel insights into the organization of iPKS. A hybrid crystallographic model of a mycocerosic acid synthase-like Pks5 yielded a comprehensive visualization of the organization and dynamics of fully-reducing iPKS. Deconstruction experiments, structural and functional studies of specialized enzymatic domains, such as the product template (PT) and the starter-unit acyltransferase (SAT) domain have revealed functional principles of non-reducing iterative PKS (NR-PKSs). Most recently, a six-domain loading region of an NR-PKS has been visualized at high-resolution together with cryo-EM studies of a trapped loading intermediate. Altogether, these data reveal the related, yet divergent architectures of mFAS, iPKS and also modPKSs. The new insights highlight extensive dynamics, and conformational coupling as key features of mFAS and iPKS and are an important step towards collection of a comprehensive series of snapshots of PKS action.
Collapse
Affiliation(s)
- Dominik A Herbst
- Department Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
41
|
Sundaram S, Kim HJ, Bauer R, Thongkongkaew T, Heine D, Hertweck C. On-Line Polyketide Cyclization into Diverse Medium-Sized Lactones by a Specialized Ketosynthase Domain. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Srividhya Sundaram
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology-; Hans Knöll Institute; Beutenbergstrasse 11a 07745 Jena Germany
| | - Hak Joong Kim
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology-; Hans Knöll Institute; Beutenbergstrasse 11a 07745 Jena Germany
| | - Ruth Bauer
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology-; Hans Knöll Institute; Beutenbergstrasse 11a 07745 Jena Germany
| | - Tawatchai Thongkongkaew
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology-; Hans Knöll Institute; Beutenbergstrasse 11a 07745 Jena Germany
| | - Daniel Heine
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology-; Hans Knöll Institute; Beutenbergstrasse 11a 07745 Jena Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology-; Hans Knöll Institute; Beutenbergstrasse 11a 07745 Jena Germany
- Chair for Natural Product Chemistry; Friedrich Schiller University; Jena Germany
| |
Collapse
|
42
|
Sundaram S, Kim HJ, Bauer R, Thongkongkaew T, Heine D, Hertweck C. On-Line Polyketide Cyclization into Diverse Medium-Sized Lactones by a Specialized Ketosynthase Domain. Angew Chem Int Ed Engl 2018; 57:11223-11227. [PMID: 29897642 DOI: 10.1002/anie.201804991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Indexed: 12/15/2022]
Abstract
Ketosynthase (KS) domains of modular type I polyketide synthases (PKSs) typically catalyze the Claisen condensation of acyl and malonyl units to form linear chains. In stark contrast, the KS of the rhizoxin PKS branching module mediates a Michael addition, which sets the basis for a pharmacophoric δ-lactone moiety. The precise role of the KS was evaluated by site-directed mutagenesis, chemical probes, and biotransformations. Biochemical and kinetic analyses helped to dissect branching and lactonization reactions and unequivocally assign the entire sequence to the KS. Probing the range of accepted substrates with diverse synthetic surrogates in vitro, we found that the KS tolerates defined acyl chain lengths to produce five- to seven-membered lactones. These results show that the KS is multifunctional, as it catalyzes β-branching and lactonization. Information on the increased product portfolio of the unusual, TE-independent on-line cyclization is relevant for synthetic biology approaches.
Collapse
Affiliation(s)
- Srividhya Sundaram
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-, Hans Knöll Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Hak Joong Kim
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-, Hans Knöll Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Ruth Bauer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-, Hans Knöll Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Tawatchai Thongkongkaew
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-, Hans Knöll Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Daniel Heine
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-, Hans Knöll Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-, Hans Knöll Institute, Beutenbergstrasse 11a, 07745, Jena, Germany.,Chair for Natural Product Chemistry, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
43
|
Khan RA. Natural products chemistry: The emerging trends and prospective goals. Saudi Pharm J 2018; 26:739-753. [PMID: 29991919 PMCID: PMC6036106 DOI: 10.1016/j.jsps.2018.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/05/2018] [Indexed: 01/01/2023] Open
Abstract
The role and contributions of natural products chemistry in advancements of the physical and biological sciences, its interdisciplinary domains, and emerging of new avenues by providing novel applications, constructive inputs, thrust, comprehensive understanding, broad perspective, and a new vision for future is outlined. The developmental prospects in bio-medical, health, nutrition, and other interrelated sciences along with some of the emerging trends in the subject area are also discussed as part of the current review of the basic and core developments, innovation in techniques, advances in methodology, and possible applications with their effects on the sciences in general and natural products chemistry in particular. The overview of the progress and ongoing developments in broader areas of the natural products chemistry discipline, its role and concurrent economic and scientific implications, contemporary objectives, future prospects as well as impending goals are also outlined. A look at the natural products chemistry in providing scientific progress in various disciplines is deliberated upon.
Collapse
Affiliation(s)
- Riaz A. Khan
- Department of Medicinal Chemistry, Qassim University, Qassim 51452, Saudi Arabia
- Manav Rachna International University, National Capital Region, Faridabad, HR 121 004, India
| |
Collapse
|
44
|
Wagner DT, Zhang Z, Meoded RA, Cepeda AJ, Piel J, Keatinge-Clay AT. Structural and Functional Studies of a Pyran Synthase Domain from a trans-Acyltransferase Assembly Line. ACS Chem Biol 2018; 13:975-983. [PMID: 29481043 DOI: 10.1021/acschembio.8b00049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
trans-Acyltransferase assembly lines possess enzymatic domains often not observed in their better characterized cis-acyltransferase counterparts. Within this repertoire of largely unexplored biosynthetic machinery is a class of enzymes called the pyran synthases that catalyze the formation of five- and six-membered cyclic ethers from diverse polyketide chains. The 1.55 Å resolution crystal structure of a pyran synthase domain excised from the ninth module of the sorangicin assembly line highlights the similarity of this enzyme to the ubiquitous dehydratase domain and provides insight into the mechanism of ring formation. Functional assays of point mutants reveal the central importance of the active site histidine that is shared with the dehydratases as well as the supporting role of a neighboring semiconserved asparagine.
Collapse
Affiliation(s)
- Drew T. Wagner
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhicheng Zhang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Roy A. Meoded
- Institut für Mikrobiologie, Eidgenössiche Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Alexis J. Cepeda
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jörn Piel
- Institut für Mikrobiologie, Eidgenössiche Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Adrian T. Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
45
|
Hemmerling F, Lebe KE, Wunderlich J, Hahn F. An Unusual Fatty Acyl:Adenylate Ligase (FAAL)-Acyl Carrier Protein (ACP) Didomain in Ambruticin Biosynthesis. Chembiochem 2018. [DOI: 10.1002/cbic.201800084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Franziska Hemmerling
- Professur für Organische Chemie (Lebensmittelchemie); Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstrasse 30 95447 Bayreuth Germany
- Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 38 30167 Hannover Germany
| | - Karen E. Lebe
- Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 38 30167 Hannover Germany
| | - Johannes Wunderlich
- Professur für Organische Chemie (Lebensmittelchemie); Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstrasse 30 95447 Bayreuth Germany
| | - Frank Hahn
- Professur für Organische Chemie (Lebensmittelchemie); Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstrasse 30 95447 Bayreuth Germany
- Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 38 30167 Hannover Germany
| |
Collapse
|
46
|
Robertson AW, MacLeod JM, MacIntyre LW, Forget SM, Hall SR, Bennett LG, Correa H, Kerr RG, Goralski KB, Jakeman DL. Post Polyketide Synthase Carbon–Carbon Bond Formation in Type-II PKS-Derived Natural Products from Streptomyces venezuelae. J Org Chem 2018; 83:1876-1890. [DOI: 10.1021/acs.joc.7b02823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | | | - Hebelin Correa
- Department
of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Russell G. Kerr
- Department
of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | | | | |
Collapse
|
47
|
Scherlach K, Hertweck C. Mediators of mutualistic microbe–microbe interactions. Nat Prod Rep 2018; 35:303-308. [DOI: 10.1039/c7np00035a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This viewpoint summarizes recent advances in understanding the role of natural products as regulators of mutualistic microbial interactions.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry
- Leibniz Institute for Natural Product Chemistry
- Infection Biology (HKI)
- 07745 Jena
- Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry
- Leibniz Institute for Natural Product Chemistry
- Infection Biology (HKI)
- 07745 Jena
- Germany
| |
Collapse
|
48
|
Niehs SP, Scherlach K, Hertweck C. Genomics-driven discovery of a linear lipopeptide promoting host colonization by endofungal bacteria. Org Biomol Chem 2018; 16:8345-8352. [DOI: 10.1039/c8ob01515e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The linear lipopeptide holrhizin is an important mediator of the Burkholderia-Rhizopus interaction that promotes bacterial colonization of the fungal host.
Collapse
Affiliation(s)
- Sarah P. Niehs
- Department of Biomolecular Chemistry
- Leibniz Institute for Natural Product Research and Infection Biology (HKI)
- 07745 Jena
- Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry
- Leibniz Institute for Natural Product Research and Infection Biology (HKI)
- 07745 Jena
- Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry
- Leibniz Institute for Natural Product Research and Infection Biology (HKI)
- 07745 Jena
- Germany
- Friedrich Schiller University Jena
| |
Collapse
|
49
|
Sung KH, Berkhan G, Hollmann T, Wagner L, Blankenfeldt W, Hahn F. Einblicke in die duale Aktivität einer bifunktionalen Dehydratase-Cyclase-Domäne. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kwang Hoon Sung
- Helmholtz-Zentrum für Infektionsforschung GmbH; Inhoffenstraße 7 38124 Braunschweig Deutschland
- Institut für Biochemie, Biotechnologie und Bioinformatik; Technische Universität Braunschweig; Spielmannstraße 7 38106 Braunschweig Deutschland
| | - Gesche Berkhan
- Professur für Organische Chemie, Lebensmittelchemie, Fachgruppe Chemie, Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstraße 30 95447 Bayreuth Deutschland
- Zentrum für Biomolekulare Wirkstoffe, BMWZ; Leibniz Universität Hannover; Schneiderberg 38 30167 Hannover Deutschland
| | - Tim Hollmann
- Professur für Organische Chemie, Lebensmittelchemie, Fachgruppe Chemie, Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstraße 30 95447 Bayreuth Deutschland
| | - Lisa Wagner
- Professur für Organische Chemie, Lebensmittelchemie, Fachgruppe Chemie, Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstraße 30 95447 Bayreuth Deutschland
| | - Wulf Blankenfeldt
- Helmholtz-Zentrum für Infektionsforschung GmbH; Inhoffenstraße 7 38124 Braunschweig Deutschland
- Institut für Biochemie, Biotechnologie und Bioinformatik; Technische Universität Braunschweig; Spielmannstraße 7 38106 Braunschweig Deutschland
| | - Frank Hahn
- Professur für Organische Chemie, Lebensmittelchemie, Fachgruppe Chemie, Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstraße 30 95447 Bayreuth Deutschland
- Zentrum für Biomolekulare Wirkstoffe, BMWZ; Leibniz Universität Hannover; Schneiderberg 38 30167 Hannover Deutschland
| |
Collapse
|
50
|
Sung KH, Berkhan G, Hollmann T, Wagner L, Blankenfeldt W, Hahn F. Insights into the Dual Activity of a Bifunctional Dehydratase-Cyclase Domain. Angew Chem Int Ed Engl 2017; 57:343-347. [PMID: 29084363 DOI: 10.1002/anie.201707774] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Indexed: 01/12/2023]
Abstract
Oxygen-containing heterocycles are a common structural motif in polyketide natural products and contribute significantly to their biological activity. Here, we report structural and mechanistic investigations on AmbDH3, a polyketide synthase domain with dual activity as dehydratase (DH) and pyran-forming cyclase in ambruticin biosynthesis. AmbDH3 is similar to monofunctional DH domains, using H51 and D215 for dehydration. V173 was confirmed as a diagnostic residue for cyclization activity by a mutational study and enzymatic in vitro experiments. Similar motifs were observed in the seemingly monofunctional AmbDH2, which also shows an unexpected cyclase activity. Our results pave the way for mining of hidden cyclases in biosynthetic pathways. They also open interesting prospects for the generation of novel biocatalysts for chemoenzymatic synthesis and pyran-polyketides by combinatorial biosynthesis.
Collapse
Affiliation(s)
- Kwang Hoon Sung
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - Gesche Berkhan
- Professur für Organische Chemie, Lebensmittelchemie, Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany.,Centre for Biomolecular Drug Research, BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Tim Hollmann
- Professur für Organische Chemie, Lebensmittelchemie, Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Lisa Wagner
- Professur für Organische Chemie, Lebensmittelchemie, Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Wulf Blankenfeldt
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - Frank Hahn
- Professur für Organische Chemie, Lebensmittelchemie, Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany.,Centre for Biomolecular Drug Research, BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| |
Collapse
|