1
|
Boitet M, Achek A, Bouchenaki K, Grailhe R. BrightMice: a low-cost do-it-yourself instrument, designed for in vivo fluorescence mouse imaging. Sci Rep 2024; 14:22685. [PMID: 39349676 PMCID: PMC11442974 DOI: 10.1038/s41598-024-73130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
In vivo fluorescent imaging represents a potent means for real-time probe quantification, facilitating insights into disease pathophysiology and therapeutic responses. Nonetheless, accurate signal quantification remains challenging due to inherent factors like light scattering and tissue absorption. Existing imaging systems, though sophisticated, often entail high costs and are typically restricted to well-funded laboratory settings. This study introduces BrightMice, an innovative in vivo fluorescent imaging system that harnesses 3D printing and consumer-grade digital cameras. Tailored for various fluorophores such as EYFP and E2-crimson, the system showcases both adaptability and effectiveness in detecting in vivo fluorescent signals in several reporter mouse strains. Comparative analyses against commercial instruments confirm BrightMice's sensitivity and underscore its potential to democratize in vivo fluorescence imaging. By providing a cost-effective and accessible solution, BrightMice stands to benefit diverse research environments.
Collapse
Affiliation(s)
- Maylis Boitet
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712beon-gil, Bundang-gu, Seongnam-si, 13488, Republic of Korea
- Division of Bio-Medical Science & Technology, Korea University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, Republic of Korea
- Core Technology Platforms, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Asma Achek
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712beon-gil, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | | | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712beon-gil, Bundang-gu, Seongnam-si, 13488, Republic of Korea.
- Division of Bio-Medical Science & Technology, Korea University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, Republic of Korea.
- Smart-MD, Institut Pasteur Korea, Seongnam, Republic of Korea.
| |
Collapse
|
2
|
Chen P, Varghese P J G, Zhao K, Hu J. Mechanical investigation of a Tandem embolization-visualization system for minimally invasive procedures. J Mech Behav Biomed Mater 2024; 160:106739. [PMID: 39276435 DOI: 10.1016/j.jmbbm.2024.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Transcatheter arterial embolization is a minimally invasive intervention process in which the blood supply to a tumor or an abnormal area of tissue is blocked. One of the most commonly used embolic agents in clinics is microsphere (MS). In order to understand the flow behavior of microspheres in arteries, it is essential to study their mechanical properties systematically. In this work, calcium-alginate MSs with varying calcium concentrations were synthesized using a coaxial airflow method. Indocyanine green (ICG) was added as a fluorescent dye. The effect of ICG concentration change on microspheres was investigated by studying morphology, imageability, rheology, and swelling behavior. Then the effect of calcium chloride concentration change on microspheres was studied by conducting rheological tests, atomic force microscopy tests, hemolysis assay, and thrombogenicity assay. Results showed that microspheres with higher ICG concentrations have longer lasting fluorescence and lower storage modulus (G'). Higher concentrations of calcium chloride led to higher G', while the local Young's modulus obtained by AFM test was not significantly affected. The MSs with and without ICG showed good hemocompatibility and thrombogenicity.
Collapse
Affiliation(s)
- Peng Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA, 27695
| | - George Varghese P J
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA, 27695
| | - Keren Zhao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA, 27695
| | - Jingjie Hu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA, 27695.
| |
Collapse
|
3
|
Ozcan BB, Wanniarachchi H, Mason RP, Dogan BE. Current status of optoacoustic breast imaging and future trends in clinical application: is it ready for prime time? Eur Radiol 2024; 34:6092-6107. [PMID: 38308678 PMCID: PMC11297194 DOI: 10.1007/s00330-024-10600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/05/2024]
Abstract
Optoacoustic imaging (OAI) is an emerging field with increasing applications in patients and exploratory clinical trials for breast cancer. Optoacoustic imaging (or photoacoustic imaging) employs non-ionizing, laser light to create thermoelastic expansion in tissues and detect the resulting ultrasonic emission. By combining high optical contrast capabilities with the high spatial resolution and anatomic detail of grayscale ultrasound, OAI offers unique opportunities for visualizing biological function of tissues in vivo. Over the past decade, human breast applications of OAI, including benign/malignant mass differentiation, distinguishing cancer molecular subtype, and predicting metastatic potential, have significantly increased. We discuss the current state of optoacoustic breast imaging, as well as future opportunities and clinical application trends. CLINICAL RELEVANCE STATEMENT: Optoacoustic imaging is a novel breast imaging technique that enables the assessment of breast cancer lesions and tumor biology without the risk of ionizing radiation exposure, intravenous contrast, or radionuclide injection. KEY POINTS: • Optoacoustic imaging (OAI) is a safe, non-invasive imaging technique with thriving research and high potential clinical impact. • OAI has been considered a complementary tool to current standard breast imaging techniques. • OAI combines parametric maps of molecules that absorb light and scatter acoustic waves (like hemoglobin, melanin, lipids, and water) with anatomical images, facilitating scalable and real-time molecular evaluation of tissues.
Collapse
Affiliation(s)
- B Bersu Ozcan
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard MC 8896, Dallas, TX, 75390-8896, USA.
| | - Hashini Wanniarachchi
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard MC 8896, Dallas, TX, 75390-8896, USA
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard MC 8896, Dallas, TX, 75390-8896, USA
| | - Basak E Dogan
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard MC 8896, Dallas, TX, 75390-8896, USA
| |
Collapse
|
4
|
Lv K, Wang H, Fu X, Chen S, Zhang R, Zhou Y, Feng J, Zhang H. An Integrated Nanoplatform via Dual Channel Excitation for Both Precise Fluorescence Imaging and Photodynamic Therapy of Orthotopic Breast Tumor in NIR-II Region. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404007. [PMID: 39140318 DOI: 10.1002/smll.202404007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Although research on photodynamic therapy (PDT) of malignant tumor has made considerable progress in recent years, it is a remaining challenge to extend PDT to the second near-infrared window (NIR-II) along with real-time and accurate NIR-II fluorescence imaging to determine drug enrichment status and achieve high treatment efficacy. In this work, lanthanide nanoparticles (Ln NPs)-based nanoplatform (LCR) equipped with photosensitizer Chlorin e6 (Ce6) and targeting molecular NH2-PEG1000-cRGDfK are developed, which can achieve NIR-II photodynamic therapy (PDT) and NIR-II fluorescence imaging by dual channel excitation. Under 808 nm excitation, Nd3+ in the outer layer can absorb the energy and transfer inward to emit strong NIR-II emissions (1064 and 1525 nm). Due to the low background noise of NIR-II light and the targeting effect of NH2-PEG1000-cRGDfK, LCR can recognize tiny tumor tissue (≈3 mm) and monitor drug distribution in vivo. Under 1530 nm excitation, internal Er3+ can be self-sensitized, generating intense upconversion emission (662 nm) that can effectively activate Ce6 for in vivo PDT due to the deep tissue penetration of NIR-II light. This study provides a paradigm of theranostic nanoplatform for both real-time fluorescence imaging and PDT of orthotopic breast tumor in NIR-II window.
Collapse
Affiliation(s)
- Kehong Lv
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongli Wang
- College of Animal Science, Jilin University, Changchun, Jilin, 130062, P. R. China
| | - Xinyu Fu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shengzhe Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ruohao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yifei Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Nijboer TS, van der Fels CAM, de Wit JG, Keizers B, Huizinga HK, Voskuil FJ, Voskamp MJH, van den Heuvel MC, Witjes MJH, de Jong IJ. Fluorescence-guided surgery using cetuximab-800CW in patients with penile carcinoma. BJU Int 2024; 134:268-275. [PMID: 38659306 DOI: 10.1111/bju.16384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
OBJECTIVE To investigate the feasibility of fluorescence molecular imaging (FMI), using cetuximab-800CW, as an intraoperative tool to determine surgical margins in penile squamous cell carcinoma (PSCC). PATIENTS AND METHODS A total of 11 patients with PSCC received 75 mg cetuximab followed by 15 mg cetuximab-800CW 2 days before surgery. FMI of the whole excision specimen and tissue slices was performed. Fluorescence visualisation was correlated to histopathology. Based on tumour and healthy tissue regions of interest, mean fluorescence intensity was calculated for each individual patient. RESULTS Significant differences between tumour and healthy mean fluorescence intensity were found with tumour-to-background ratios of a median (IQR) of 1.51 (0.99) and a mean (SD) of 1.51 (0.32) in the excision specimen and tissue slices, respectively. One patient showed a high relative fluorescence intensity with a signal-to-background ratio of 1.79, corresponding to a tumour-positive margin on fresh frozen sectioning. CONCLUSION In this Phase I study we showed that cetuximab-800CW seems suitable to discriminate PSCC from background tissue. The tracer was well tolerated, and no false positive spots were seen.
Collapse
Affiliation(s)
- Thomas S Nijboer
- Department of Oral and Maxillofacial Surgery, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Jaron G de Wit
- Department of Oral and Maxillofacial Surgery, University Medical Centre Groningen, Groningen, The Netherlands
| | - Bas Keizers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, Groningen, The Netherlands
| | - Henrik K Huizinga
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Floris J Voskuil
- Department of Oral and Maxillofacial Surgery, University Medical Centre Groningen, Groningen, The Netherlands
| | - Maarten J H Voskamp
- Department of Urology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marius C van den Heuvel
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Max J H Witjes
- Department of Oral and Maxillofacial Surgery, University Medical Centre Groningen, Groningen, The Netherlands
| | - Igle Jan de Jong
- Department of Urology, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Schraven S, Brück R, Rosenhain S, Lemainque T, Heines D, Noormohammadian H, Pabst O, Lederle W, Gremse F, Kiessling F. CT- and MRI-Aided Fluorescence Tomography Reconstructions for Biodistribution Analysis. Invest Radiol 2024; 59:504-512. [PMID: 38038691 DOI: 10.1097/rli.0000000000001052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
OBJECTIVES Optical fluorescence imaging can track the biodistribution of fluorophore-labeled drugs, nanoparticles, and antibodies longitudinally. In hybrid computed tomography-fluorescence tomography (CT-FLT), CT provides the anatomical information to generate scattering and absorption maps supporting a 3-dimensional reconstruction from the raw optical data. However, given the CT's limited soft tissue contrast, fluorescence reconstruction and quantification can be inaccurate and not sufficiently detailed. Magnetic resonance imaging (MRI) can overcome these limitations and extend the options for tissue characterization. Thus, we aimed to establish a hybrid CT-MRI-FLT approach for whole-body imaging and compared it with CT-FLT. MATERIALS AND METHODS The MRI-based hybrid imaging approaches were established first by scanning a water and coconut oil-filled phantom, second by quantifying Cy7 concentrations of inserts in dead mice, and finally by analyzing the biodistribution of AF750-labeled immunoglobulins (IgG, IgA) in living SKH1 mice. Magnetic resonance imaging, acquired with a fat-water-separated mDixon sequence, CT, and FLT were co-registered using markers in the mouse holder frame filled with white petrolatum, which was solid, stable, and visible in both modalities. RESULTS Computed tomography-MRI fusion was confirmed by comparing the segmentation agreement using Dice scores. Phantom segmentations showed good agreement, after correction for gradient linearity distortion and chemical shift. Organ segmentations in dead and living mice revealed adequate agreement for fusion. Marking the mouse holder frame and the successful CT-MRI fusion enabled MRI-FLT as well as CT-MRI-FLT reconstructions. Fluorescence tomography reconstructions supported by CT, MRI, or CT-MRI were comparable in dead mice with 60 pmol fluorescence inserts at different locations. Although standard CT-FLT reconstruction only considered general values for soft tissue, skin, lung, fat, and bone scattering, MRI's more versatile soft tissue contrast enabled the additional consideration of liver, kidneys, and brain. However, this did not change FLT reconstructions and quantifications significantly, whereas for extending scattering maps, it was important to accurately segment the organs and the entire mouse body. The various FLT reconstructions also provided comparable results for the in vivo biodistribution analyses with fluorescent immunoglobulins. However, MRI additionally enabled the visualization of gallbladder, thyroid, and brain. Furthermore, segmentations of liver, spleen, and kidney were more reliable due to better-defined contours than in CT. Therefore, the improved segmentations enabled better assignment of fluorescence signals and more differentiated conclusions with MRI-FLT. CONCLUSIONS Whole-body CT-MRI-FLT was implemented as a novel trimodal imaging approach, which allowed to more accurately assign fluorescence signals, thereby significantly improving pharmacokinetic analyses.
Collapse
Affiliation(s)
- Sarah Schraven
- From the Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany (S.S., R.B., S.R., T.L., D.H., W.L., F.G., F.K.); Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany (H.N., O.P.); Gremse-IT GmbH, Aachen, Germany (S.R., F.G.); Department for Diagnostic and Interventional Radiology, RWTH Aachen University, Aachen, Germany (T.L.); Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany (F.K.); and Fraunhofer MEVIS, Institute for Medical Image Computing, Aachen, Germany (F.K.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhao M, Lai W, Li B, Bai T, Liu C, Lin Y, An S, Guo L, Li L, Wang J, Zhang F. NIR-II Fluorescence Sensor Based on Steric Hindrance Regulated Molecular Packing for In Vivo Epilepsy Visualization. Angew Chem Int Ed Engl 2024; 63:e202403968. [PMID: 38637949 DOI: 10.1002/anie.202403968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Fluorescence sensing is crucial to studying biological processes and diagnosing diseases, especially in the second near-infrared (NIR-II) window with reduced background signals. However, it's still a great challenge to construct "off-on" sensors when the sensing wavelength extends into the NIR-II region to obtain higher imaging contrast, mainly due to the difficult synthesis of spectral overlapped quencher. Here, we present a new fluorescence quenching strategy, which utilizes steric hindrance quencher (SHQ) to tune the molecular packing state of fluorophores and suppress the emission signal. Density functional theory (DFT) calculations further reveal that large SHQs can competitively pack with fluorophores and prevent their self-aggregation. Based on this quenching mechanism, a novel activatable "off-on" sensing method is achieved via bio-analyte responsive invalidation of SHQ, namely the Steric Hindrance Invalidation geNerated Emission (SHINE) strategy. As a proof of concept, the ClO--sensitive SHQ lead to the bright NIR-II signal release in epileptic mouse hippocampus under the skull and high photon scattering brain tissue, providing the real-time visualization of ClO- generation process in living epileptic mice.
Collapse
Affiliation(s)
- Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Weiping Lai
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Benhao Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Tianwen Bai
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Chunyan Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Yanfei Lin
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Shixuan An
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Longhua Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Jianbo Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing University, Jiaxing, 314001, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
8
|
Pan Y, Cheng J, Zhu Y, Zhang J, Fan W, Chen X. Immunological nanomaterials to combat cancer metastasis. Chem Soc Rev 2024; 53:6399-6444. [PMID: 38745455 DOI: 10.1039/d2cs00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Junjie Cheng
- Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| |
Collapse
|
9
|
Quindoza GM, Horimoto R, Nakagawa Y, Aida Y, Irawan V, Norimatsu J, Mizuno HL, Anraku Y, Ikoma T. Folic acid-mediated enhancement of the diagnostic potential of luminescent europium-doped hydroxyapatite nanocrystals for cancer biomaging. Colloids Surf B Biointerfaces 2024; 239:113975. [PMID: 38762934 DOI: 10.1016/j.colsurfb.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Early and accurate cancer diagnosis is crucial for improving patient survival rates. Luminescent nanoparticles have emerged as a promising tool in fluorescence bioimaging for cancer diagnosis. To enhance diagnostic accuracy, ligands promoting endocytosis into cancer cells are commonly incorporated onto nanoparticle surfaces. Folic acid (FA) is one such ligand, known to specifically bind to folate receptors (FR) overexpressed in various cancer cells such as cervical and ovarian carcinoma. Therefore, surface modification of luminescent nanoparticles with FA can enhance both luminescence efficiency and diagnostic accuracy. In this study, luminescent europium-doped hydroxyapatite (EuHAp) nanocrystals were prepared via hydrothermal method and subsequently modified with (3-Aminopropyl)triethoxysilane (APTES) followed by FA to target FR-positive human cervical adenocarcinoma cell line (HeLa) cells. The sequential grafting of APTES and then FA formed a robust covalent linkage between the nanocrystals and FA. Rod-shaped FA-modified EuHAp nanocrystals, approximately 100 nm in size, exhibited emission peaks at 589, 615, and 650 nm upon excitation at 397 nm. Despite a reduction in photoluminescence intensity following FA modification, fluorescence microscopy revealed a remarkable 120-fold increase in intensity compared to unmodified EuHAp, attributed to the enhanced uptake of FA-modified EuHAp. Additionally, confocal microscope observations confirmed the specificity and the internalization of FA-modified EuHAp nanocrystals in HeLa cells. In conclusion, the modification of EuHAp nanocrystals with FA presents a promising strategy to enhance the diagnostic potential of cancer bioimaging probes.
Collapse
Affiliation(s)
- Gerardo Martin Quindoza
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Rui Horimoto
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yasuhiro Nakagawa
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuta Aida
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Vincent Irawan
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Jumpei Norimatsu
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hayato Laurence Mizuno
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yasutaka Anraku
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiyuki Ikoma
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
10
|
Xu S, Xiao X, Manshaii F, Chen J. Injectable Fluorescent Neural Interfaces for Cell-Specific Stimulating and Imaging. NANO LETTERS 2024. [PMID: 38606614 DOI: 10.1021/acs.nanolett.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Building on current explorations in chronic optical neural interfaces, it is essential to address the risk of photothermal damage in traditional optogenetics. By focusing on calcium fluorescence for imaging rather than stimulation, injectable fluorescent neural interfaces significantly minimize photothermal damage and improve the accuracy of neuronal imaging. Key advancements including the use of injectable microelectronics for targeted electrical stimulation and their integration with cell-specific genetically encoded calcium indicators have been discussed. These injectable electronics that allow for post-treatment retrieval offer a minimally invasive solution, enhancing both usability and reliability. Furthermore, the integration of genetically encoded fluorescent calcium indicators with injectable bioelectronics enables precise neuronal recording and imaging of individual neurons. This shift not only minimizes risks such as photothermal conversion but also boosts safety, specificity, and effectiveness of neural imaging. Embracing these advancements represents a significant leap forward in biomedical engineering and neuroscience, paving the way for advanced brain-machine interfaces.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Yu Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. Simultaneous photoacoustic and ultrasound imaging: A review. ULTRASONICS 2024; 139:107277. [PMID: 38460216 DOI: 10.1016/j.ultras.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging technique that combines the advantages of optical and ultrasound imaging, enabling the generation of images with both optical resolution and acoustic penetration depth. By leveraging similar signal acquisition and processing methods, the integration of photoacoustic and ultrasound imaging has introduced a novel hybrid imaging modality suitable for clinical applications. Photoacoustic-ultrasound imaging allows for non-invasive, high-resolution, and deep-penetrating imaging, providing a wealth of image information. In recent years, with the deepening research and the expanding biomedical application scenarios of photoacoustic-ultrasound bimodal systems, the immense potential of photoacoustic-ultrasound bimodal imaging in basic research and clinical applications has been demonstrated, with some research achievements already commercialized. In this review, we introduce the principles, technical advantages, and biomedical applications of photoacoustic-ultrasound bimodal imaging techniques, specifically focusing on tomographic, microscopic, and endoscopic imaging modalities. Furthermore, we discuss the future directions of photoacoustic-ultrasound bimodal imaging technology.
Collapse
Affiliation(s)
- Yinshi Yu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Ting Feng
- Academy for Engineering & Technology, Fudan University, Shanghai 200433,China.
| | - Haixia Qiu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Gu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Qian Chen
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Chao Zuo
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| | - Haigang Ma
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
12
|
Meng Y, Gao J, Zhou P, Qin X, Tian M, Wang X, Zhou C, Li K, Huang F, Cao Y. NIR-II Conjugated Electrolytes as Biomimetics of Lipid Bilayers for In Vivo Liposome Tracking. Angew Chem Int Ed Engl 2024; 63:e202318632. [PMID: 38327029 DOI: 10.1002/anie.202318632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Liposomes serve as promising and versatile vehicles for drug delivery. Tracking these nanosized vesicles, particularly in vivo, is crucial for understanding their pharmacokinetics. This study introduces the design and synthesis of three new conjugated electrolyte (CE) molecules, which emit in the second near-infrared window (NIR-II), facilitating deeper tissue penetration. Additionally, these CEs, acting as biomimetics of lipid bilayers, demonstrate superior compatibility with lipid membranes compared to commonly used carbocyanine dyes like DiR. To counteract the aggregation-caused quenching effect, CEs employ a twisted backbone, as such their fluorescence intensities can effectively enhance after a fluorophore multimerization strategy. Notably, a "passive" method was employed to integrate CEs into liposomes during the liposome formation, and membrane incorporation efficiency was significantly promoted to nearly 100%. To validate the in vivo tracking capability, the CE-containing liposomes were functionalized with cyclic arginine-glycine-aspartic acid (cRGD) peptides, serving as tumor-targeting ligands. Clear fluorescent images visualizing tumor site in living mice were captured by collecting the NIR-II emission. Uniquely, these CEs exhibit additional emission peak in visible region, enabling in vitro subcellular analysis using routine confocal microscopy. These results underscore the potential of CEs as a new-generation of membrane-targeting probes to facilitate the liposome-based medicine research.
Collapse
Affiliation(s)
- Yingying Meng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Ji Gao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Peirong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Xudong Qin
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Miao Tian
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Cheng Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Fei Huang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Yong Cao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| |
Collapse
|
13
|
Chen X, Meng Y, Wang L, Zhou W, Chen D, Xie H, Ren S. Highly robust reconstruction framework for three-dimensional optical imaging based on physical model constrained neural networks. Phys Med Biol 2024; 69:075020. [PMID: 38394682 DOI: 10.1088/1361-6560/ad2ca3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
Objective. The reconstruction of three-dimensional optical imaging that can quantitatively acquire the target distribution from surface measurements is a serious ill-posed problem. Traditional regularization-based reconstruction can solve such ill-posed problem to a certain extent, but its accuracy is highly dependent ona priorinformation, resulting in a less stable and adaptable method. Data-driven deep learning-based reconstruction avoids the errors of light propagation models and the reliance on experience and a prior by learning the mapping relationship between the surface light distribution and the target directly from the dataset. However, the acquisition of the training dataset and the training of the network itself are time consuming, and the high dependence of the network performance on the training dataset results in a low generalization ability. The objective of this work is to develop a highly robust reconstruction framework to solve the existing problems.Approach. This paper proposes a physical model constrained neural networks-based reconstruction framework. In the framework, the neural networks are to generate a target distribution from surface measurements, while the physical model is used to calculate the surface light distribution based on this target distribution. The mean square error between the calculated surface light distribution and the surface measurements is then used as a loss function to optimize the neural network. To further reduce the dependence ona prioriinformation, a movable region is randomly selected and then traverses the entire solution interval. We reconstruct the target distribution in this movable region and the results are used as the basis for its next movement.Main Results. The performance of the proposed framework is evaluated with a series of simulations andin vivoexperiment, including accuracy robustness of different target distributions, noise immunity, depth robustness, and spatial resolution. The results collectively demonstrate that the framework can reconstruct targets with a high accuracy, stability and versatility.Significance. The proposed framework has high accuracy and robustness, as well as good generalizability. Compared with traditional regularization-based reconstruction methods, it eliminates the need to manually delineate feasible regions and adjust regularization parameters. Compared with emerging deep learning assisted methods, it does not require any training dataset, thus saving a lot of time and resources and solving the problem of poor generalization and robustness of deep learning methods. Thus, the framework opens up a new perspective for the reconstruction of three-dimension optical imaging.
Collapse
Affiliation(s)
- Xueli Chen
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, People's Republic of China
| | - Yu Meng
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
| | - Lin Wang
- School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, People's Republic of China
| | - Wangting Zhou
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
| | - Duofang Chen
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
| | - Hui Xie
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
| | - Shenghan Ren
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
| |
Collapse
|
14
|
An W, Xu W, Zhou Y, Huang C, Huang W, Huang J. Renal-clearable nanoprobes for optical imaging and early diagnosis of diseases. Biomater Sci 2024; 12:1357-1370. [PMID: 38374725 DOI: 10.1039/d3bm01776a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Optical imaging has played an indispensable role in clinical diagnostics and fundamental biomedical research due to its high sensitivity, high spatiotemporal resolution, cost-effectiveness, and easy accessibility. However, the issues of light scattering and low tissue penetration make them effective only for superficial imaging. To overcome these issues, renal-clearable optical nanoprobes have recently emerged, which are activated by abnormal disease-associated biomarkers and initiate a pharmacokinetic switch by undergoing degradation and eventually releasing signal reporters into urine, for simple imaging and sensitive optical in vitro urinalysis. In this review, we focus on the advancements of renal-clearable organic nanoprobes for optical imaging and remote urinalysis. The versatile design strategies of these nanoprobes are discussed along with their sensing mechanisms toward biomolecules of interest as well as their unique biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation renal-clearable nanoprobes for in vivo imaging and in vitro urinalysis.
Collapse
Affiliation(s)
- Wei An
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weiping Xu
- Department School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Ya Zhou
- Department School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Changwen Huang
- General surgery department, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiaguo Huang
- Department School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Zhang G, Zhang J, Chen Y, Du M, Li K, Su L, Yi H, Zhao F, Cao X. Logarithmic total variation regularization via preconditioned conjugate gradient method for sparse reconstruction of bioluminescence tomography. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107863. [PMID: 37871449 DOI: 10.1016/j.cmpb.2023.107863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND AND OBJECTIVE Bioluminescence Tomography (BLT) is a powerful optical molecular imaging technique that enables the noninvasive investigation of dynamic biological phenomena. It aims to reconstruct the three-dimensional spatial distribution of bioluminescent sources from optical measurements collected on the surface of the imaged object. However, BLT reconstruction is a challenging ill-posed problem due to the scattering effect of light and the limitations in detecting surface photons, which makes it difficult for existing methods to achieve satisfactory reconstruction results. In this study, we propose a novel method for sparse reconstruction of BLT based on a preconditioned conjugate gradient with logarithmic total variation regularization (PCG-logTV). METHOD This PCG-logTV method incorporates the sparsity of overlapping groups and enhances the sparse structure of these groups using logarithmic functions, which can preserve edge features and achieve more stable reconstruction results in BLT. To accelerate the convergence of the algorithm solution, we use the preconditioned conjugate gradient iteration method on the objective function and obtain the reconstruction results. We demonstrate the performance of our proposed method through numerical simulations and in vivo experiment. RESULTS AND CONCLUSIONS The results show that the PCG-logTV method obtains the most accurate reconstruction results, and the minimum position error (LE) is 0.254mm, which is 26%, 31% and 34% of the FISTA (0.961), IVTCG (0.81) and L1-TV (0.739) methods, and the root mean square error (RMSE) and relative intensity error (RIE) are the smallest, indicating that it is closest to the real light source. In addition, compared with the other three methods, the PCG-logTV method also has the highest DICE similarity coefficient, which is 0.928, which means that this method can effectively reconstruct the three-dimensional spatial distribution of bioluminescent light sources, has higher resolution and robustness, and is beneficial to the preclinical and clinical studies of BLT.
Collapse
Affiliation(s)
- Gege Zhang
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Jun Zhang
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Yi Chen
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Mengfei Du
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Kang Li
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Linzhi Su
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Huangjian Yi
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Fengjun Zhao
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Xin Cao
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
16
|
Shimizu K. Near-Infrared Transillumination for Macroscopic Functional Imaging of Animal Bodies. BIOLOGY 2023; 12:1362. [PMID: 37997961 PMCID: PMC10668962 DOI: 10.3390/biology12111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The classical transillumination technique has been revitalized through recent advancements in optical technology, enhancing its applicability in the realm of biomedical research. With a new perspective on near-axis scattered light, we have harnessed near-infrared (NIR) light to visualize intricate internal light-absorbing structures within animal bodies. By leveraging the principle of differentiation, we have extended the applicability of the Beer-Lambert law even in cases of scattering-dominant media, such as animal body tissues. This approach facilitates the visualization of dynamic physiological changes occurring within animal bodies, thereby enabling noninvasive, real-time imaging of macroscopic functionality in vivo. An important challenge inherent to transillumination imaging lies in the image blur caused by pronounced light scattering within body tissues. By extracting near-axis scattered components from the predominant diffusely scattered light, we have achieved cross-sectional imaging of animal bodies. Furthermore, we have introduced software-based techniques encompassing deconvolution using the point spread function and the application of deep learning principles to counteract the scattering effect. Finally, transillumination imaging has been elevated from two-dimensional to three-dimensional imaging. The effectiveness and applicability of these proposed techniques have been validated through comprehensive simulations and experiments involving human and animal subjects. As demonstrated through these studies, transillumination imaging coupled with emerging technologies offers a promising avenue for future biomedical applications.
Collapse
Affiliation(s)
- Koichi Shimizu
- School of Optoelectronic Engineering, Xidian University, Xi’an 710071, China;
- IPS Research Center, Waseda University, Kitakyushu 808-0135, Japan
| |
Collapse
|
17
|
Zhang J, Zhang G, Chen Y, Li K, Zhao F, Yi H, Su L, Cao X. Regularized reconstruction based on joint smoothly clipped absolute deviation regularization and graph manifold learning for fluorescence molecular tomography. Phys Med Biol 2023; 68:195004. [PMID: 37647921 DOI: 10.1088/1361-6560/acf55a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Objective.Fluorescence molecular tomography (FMT) is an optical imaging modality that provides high sensitivity and low cost, which can offer the three-dimensional distribution of biomarkers by detecting the fluorescently labeled probe noninvasively. In the field of preclinical cancer diagnosis and treatment, FMT has gained significant traction. Nonetheless, the current FMT reconstruction results suffer from unsatisfactory morphology and location accuracy of the fluorescence distribution, primarily due to the light scattering effect and the ill-posed nature of the inverse problem.Approach.To address these challenges, a regularized reconstruction method based on joint smoothly clipped absolute deviation regularization and graph manifold learning (SCAD-GML) for FMT is presented in this paper. The SCAD-GML approach combines the sparsity of the fluorescent sources with the latent manifold structure of fluorescent source distribution to achieve more accurate and sparse reconstruction results. To obtain the reconstruction results efficiently, the non-convex gradient descent iterative method is employed to solve the established objective function. To assess the performance of the proposed SCAD-GML method, a comprehensive evaluation is conducted through numerical simulation experiments as well asin vivoexperiments.Main results.The results demonstrate that the SCAD-GML method outperforms other methods in terms of both location and shape recovery of fluorescence biomarkers distribution.Siginificance.These findings indicate that the SCAD-GML method has the potential to advance the application of FMT inin vivobiological research.
Collapse
Affiliation(s)
- Jun Zhang
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
- National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, People's Republic of China
| | - Gege Zhang
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
- National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, People's Republic of China
| | - Yi Chen
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
- National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, People's Republic of China
| | - Kang Li
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
- National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, People's Republic of China
| | - Fengjun Zhao
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Huangjian Yi
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Linzhi Su
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
- National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, People's Republic of China
| | - Xin Cao
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
- National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, People's Republic of China
| |
Collapse
|
18
|
Sowmiya P, Dhas TS, Inbakandan D, Anandakumar N, Nalini S, Suganya KSU, Remya RR, Karthick V, Kumar CMV. Optically active organic and inorganic nanomaterials for biological imaging applications: A review. Micron 2023; 172:103486. [PMID: 37262930 DOI: 10.1016/j.micron.2023.103486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Recent advancements in the field of nanotechnology have enabled targeted delivery of drug agents in vivo with minimal side effects. The use of nanoparticles for bio-imaging has revolutionized the field of nanomedicine by enabling non-invasive targeting and selective delivery of active drug moieties in vivo. Various inorganic nanomaterials like mesoporous silica nanoparticles, gold nanoparticles, magnetite nanoparticles graphene-based nanomaterials etc., have been created for multimodal therapies with varied multi-imaging modalities. These nanomaterials enable us to overcome the disadvantages of conventional imaging contrast agents (organic dyes) such as lack of stability in vitro and in vivo, high reactivity, low-quantum yield and poor photo stability. Inorganic nanomaterials can be easily fabricated, functionalised and modified as per requirements. Recently, advancements in synthesis techniques, such as the ability to generate molecules and construct supramolecular structures for specific functionalities, have boosted the usage of engineered nanomaterials. Their intrinsic physicochemical properties are unique and they possess excellent biocompatibility. Inorganic nanomaterial research has developed as the most actively booming research fields in biotechnology and biomedicine. Inorganic nanomaterials like gold nanoparticles, magnetic nanoparticles, mesoporous silica nanoparticles, graphene-based nanomaterials and quantum dots have shown excellent use in bioimaging, targeted drug delivery and cancer therapies. Biocompatibility of nanomaterials is an important aspect for the evolution of nanomaterials in the bench to bedside transition. The conduction of thorough and meticulous study for safety and efficacy in well-designed clinical trials is absolutely necessary to determine the functional and structural relationship between the engineered nanomaterial and its toxicity. In this article an attempt is made to throw some light on the current scenario and developments made in the field of nanomaterials in bioimaging.
Collapse
Affiliation(s)
- P Sowmiya
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - T Stalin Dhas
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India.
| | - D Inbakandan
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - N Anandakumar
- Department of Education, The Gandhigram Rural Institute, Dindigul 624302, Tamil Nadu, India
| | - S Nalini
- Department of Microbiology, Shree Rahavendra Arts and Science College, Keezhamoongiladi, Chidambaram 608102, Tamil Nadu, India
| | - K S Uma Suganya
- Department of Biotechnology and Biochemical Engineering, Sree Chitra Thirunal College of Engineering, Pappanamcode, Thiruvananthapuram 695018, Kerala, India
| | - R R Remya
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, Tamil Nadu, India
| | - V Karthick
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - C M Vineeth Kumar
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| |
Collapse
|
19
|
Sastry K, Zhang Y, Hu P, Luo Y, Tong X, Na S, Wang LV. A method for the geometric calibration of ultrasound transducer arrays with arbitrary geometries. PHOTOACOUSTICS 2023; 32:100520. [PMID: 37425221 PMCID: PMC10329181 DOI: 10.1016/j.pacs.2023.100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Geometric calibration of ultrasound transducer arrays is critical to optimizing the performance of photoacoustic computed tomography (PACT) systems. We present a geometric calibration method that is applicable to a wide range of PACT systems. We obtain the speed of sound and point source locations using surrogate methods, which results in a linear problem in the transducer coordinates. We characterize the estimation error, which informs our choice of the point source arrangement. We demonstrate our method in a three-dimensional PACT system and show that our method improves the contrast-to-noise ratio, the size, and the spread of point source reconstructions by 80 ± 19 % , 19 ± 3 % , and 7 ± 1 % , respectively. We reconstruct the images of a healthy human breast before and after calibration and find that the calibrated image reveals vasculatures that were previously invisible. Our work introduces a method for geometric calibration in PACT and paves the way for improving PACT image quality.
Collapse
Affiliation(s)
- Karteekeya Sastry
- Caltech Optical Imaging Laboratory, Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Yang Zhang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Peng Hu
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Yilin Luo
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Xin Tong
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Shuai Na
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
20
|
Naser SS, Singh D, Preetam S, Kishore S, Kumar L, Nandi A, Simnani FZ, Choudhury A, Sinha A, Mishra YK, Suar M, Panda PK, Malik S, Verma SK. Posterity of nanoscience as lipid nanosystems for Alzheimer's disease regression. Mater Today Bio 2023; 21:100701. [PMID: 37415846 PMCID: PMC10320624 DOI: 10.1016/j.mtbio.2023.100701] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Alzheimer's disease (AD) is a type of dementia that affects a vast number of people around the world, causing a great deal of misery and death. Evidence reveals a relationship between the presence of soluble Aβ peptide aggregates and the severity of dementia in Alzheimer's patients. The BBB (Blood Brain Barrier) is a key problem in Alzheimer's disease because it prevents therapeutics from reaching the desired places. To address the issue, lipid nanosystems have been employed to deliver therapeutic chemicals for anti-AD therapy in a precise and targeted manner. The applicability and clinical significance of lipid nanosystems to deliver therapeutic chemicals (Galantamine, Nicotinamide, Quercetin, Resveratrol, Curcumin, HUPA, Rapamycin, and Ibuprofen) for anti-AD therapy will be discussed in this review. Furthermore, the clinical implications of the aforementioned therapeutic compounds for anti-AD treatment have been examined. Thus, this review will pave the way for researchers to fashion therodiagnostics approaches based on nanomedicine to overcome the problems of delivering therapeutic molecules across the blood brain barrier (BBB).
Collapse
Affiliation(s)
- Shaikh Sheeran Naser
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Dibyangshee Singh
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, 59053 Ulrika, Sweden
| | - Shristi Kishore
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Aditya Nandi
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Faizan Zarreen Simnani
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Sumira Malik
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| |
Collapse
|
21
|
Kalva SK, Deán-Ben XL, Reiss M, Razansky D. Spiral volumetric optoacoustic tomography for imaging whole-body biodynamics in small animals. Nat Protoc 2023; 18:2124-2142. [PMID: 37208409 DOI: 10.1038/s41596-023-00834-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/20/2023] [Indexed: 05/21/2023]
Abstract
Fast tracking of biological dynamics across multiple murine organs using the currently commercially available whole-body preclinical imaging systems is hindered by their limited contrast, sensitivity and spatial or temporal resolution. Spiral volumetric optoacoustic tomography (SVOT) provides optical contrast, with an unprecedented level of spatial and temporal resolution, by rapidly scanning a mouse using spherical arrays, thus overcoming the current limitations in whole-body imaging. The method enables the visualization of deep-seated structures in living mammalian tissues in the near-infrared spectral window, while further providing unrivalled image quality and rich spectroscopic optical contrast. Here, we describe the detailed procedures for SVOT imaging of mice and provide specific details on how to implement a SVOT system, including component selection, system arrangement and alignment, as well as the image processing methods. The step-by-step guide for the rapid panoramic (360°) head-to-tail whole-body imaging of a mouse includes the rapid visualization of contrast agent perfusion and biodistribution. The isotropic spatial resolution possible with SVOT can reach 90 µm in 3D, while alternative steps enable whole-body scans in less than 2 s, unattainable with other preclinical imaging modalities. The method further allows the real-time (100 frames per second) imaging of biodynamics at the whole-organ level. The multiscale imaging capacity provided by SVOT can be used for visualizing rapid biodynamics, monitoring responses to treatments and stimuli, tracking perfusion, and quantifying total body accumulation and clearance dynamics of molecular agents and drugs. Depending on the imaging procedure, the protocol requires 1-2 h to complete by users trained in animal handling and biomedical imaging.
Collapse
Affiliation(s)
- Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Wang J, Sheng Z, Guo J, Wang HY, Sun X, Liu Y. Near-Infrared Fluorescence Probes for Monitoring and Diagnosing Nephron-Urological Diseases. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
23
|
Zhang Y, Li F, Cui Z, Li K, Guan J, Tian L, Wang Y, Liu N, Wu W, Chai Z, Wang S. A Radioluminescent Metal-Organic Framework for Monitoring 225Ac in Vivo. J Am Chem Soc 2023. [PMID: 37366004 DOI: 10.1021/jacs.3c02325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
225Ac is considered as one of the most promising radioisotopes for alpha-therapy because its emitted high-energy α-particles can efficiently damage tumor cells. However, it also represents a significant threat to healthy tissues owing to extremely high radiotoxicity if targeted therapy fails. This calls for a pressing requirement of monitoring the biodistribution of 225Ac in vivo during the treatment of tumors. However, the lack of imageable photons or positrons from therapeutic doses of 225Ac makes this task currently quite challenging. We report here a nanoscale luminescent europium-organic framework (EuMOF) that allows for fast, simple, and efficient labeling of 225Ac in its crystal structure with sufficient 225Ac-retention stability based on similar coordination behaviors between Ac3+ and Eu3+. After labeling, the short distance between 225Ac and Eu3+ in the structure leads to exceedingly efficient energy transduction from225Ac-emitted α-particles to surrounding Eu3+ ions, which emits red luminescence through a scintillation process and produces sufficient photons for clearcut imaging. The in vivo intensity distribution of radioluminescence signal originating from the 225Ac-labeled EuMOF is consistent with the dose of 225Ac dispersed among the various organs determined by the radioanalytical measurement ex vivo, certifying the feasibility of in vivo directly monitoring 225Ac using optical imaging for the first time. In addition, 225Ac-labeled EuMOF displays notable efficiency in treating the tumor. These results provide a general design principle for fabricating 225Ac-labeled radiopharmaceuticals with imaging photons and propose a simple way to in vivo track radionuclides with no imaging photons, including but not limited to 225Ac.
Collapse
Affiliation(s)
- Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Zhencun Cui
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Kai Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jingwen Guan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Longlong Tian
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Wangsuo Wu
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
24
|
Gadallah MT, Mohamed AEA, Hefnawy A, Zidan H, El-banby G, Badawy SM. A Mathematical Model for Simulating Photoacoustic Signal Generation Process in Biological Tissues.. [DOI: 10.21203/rs.3.rs-2928563/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Background: Biomedical photoacoustic imaging (PAI) is a hybrid imaging modality based on the laser-generated ultrasound waves due to the photoacoustic (PA) effect physical phenomenon that has been reported firstly by A. G. Bell in 1880. Numerical modeling-based simulation for the PA signal generation process in biological tissues helps researchers for decreasing error trials in-vitro and hence decreasing error rates for in-vivo experiments. Numerical modeling methods help in obtaining a rapid modeling procedure comparable to pure mathematics. However, if a proper simplified mathematical model can be founded before applying numerical modeling techniques, it will be a great advantage for the overall numerical model. Most scientific theories, equations, and assumptions, been proposed to mathematically model the complete PA signal generation and propagation process in biological tissues, are so complicated. Hence, the researchers, especially the beginners, will find a hard difficulty to explore and obtain a proper simplified mathematical model describing the process. That’s why this paper is introduced.
Methods: In this paper we have tried to simplify understanding for the biomedical PA wave’s generation and propagation process, deducing a simplified mathematical model for the whole process. The proposed deduced model is based on three steps: a- pulsed laser irradiance, b- diffusion of light through biological tissue, and c- acoustic pressure wave generation and propagation from the target tissue to the ultrasound transducer surface. COMSOL Multiphysics, which is founded due to the finite element method (FEM) numerical modeling principle, has been utilized to validate the proposed deduced mathematical model on a simulated biological tissue including a tumor inside.
Results and Conclusion: The time-dependent study been applied by COMSOL has assured that the proposed deduced mathematical model may be considered as a simplified, easy, and fast startup base for scientific researchers to numerically model and simulate biomedical PA signals’ generation and propagation process utilizing any proper software like COMSOL.
Collapse
|
25
|
Li Q, Hou Y, Cao P, Bi R, Zhu S. Near-Infrared Light-Activated Mesoporous Polydopamine for Temporomandibular Joint Osteoarthritis Combined Photothermal-Chemo Therapy. Int J Mol Sci 2023; 24:ijms24109055. [PMID: 37240401 DOI: 10.3390/ijms24109055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The treatments generally employed for temporomandibular joint osteoarthritis (TMJOA) involve physical therapy and chemotherapy, etc., whose therapeutic efficacies are impaired by the side effects and suboptimal stimulus responsiveness. Although the intra-articular drug delivery system (DDS) has shown effectiveness in addressing osteoarthritis, there is currently little reported research regarding the use of stimuli-responsive DDS in managing TMJOA. Herein, we prepared a novel near-infrared (NIR) light-sensitive DDS (DS-TD/MPDA) by using mesoporous polydopamine nanospheres (MPDA) as NIR responders and drug carriers; diclofenac sodium (DS) as the anti-inflammatory medication; and 1-tetradecanol (TD) with a phase-inversion temperature of 39 °C as the drug administrator. Upon exposure to 808 nm NIR laser, DS-TD/MPDA could raise the temperature up to the melting point of TD through photothermal conversion, and intelligently trigger DS release. The resultant nanospheres exhibited an excellent photothermal effect and effectively controlled the release of DS through laser irradiation to accommodate the multifunctional therapeutic effect. More importantly, the biological evaluation of DS-TD/MPDA for TMJOA treatment was also performed for the first time. The experiments' results demonstrated that DS-TD/MPDA displayed a good biocompatibility in vitro and in vivo during metabolism. After injection into the TMJ of rats afflicted with TMJOA induced by unilateral anterior crossbite for 14 days, DS-TD/MPDA could alleviate the deterioration of TMJ cartilage, thus ameliorating osteoarthritis. Therefore, DS-TD/MPDA could be a promising candidate for photothermal-chemotherapy for TMJOA.
Collapse
Affiliation(s)
- Qianli Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Hou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Pinyin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Gadallah MT, Mohamed AEA, Hefnawy A, Zidan H, El-banby G, Badawy SM. A Mathematical Model for Simulating Photoacoustic Signal Generation Process in Biological Tissues.. [DOI: 10.21203/rs.3.rs-2928563/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Background
Biomedical photoacoustic imaging (PAI) is a hybrid imaging modality based on the laser-generated ultrasound waves due to the photoacoustic (PA) effect physical phenomenon that has been reported firstly by A. G. Bell in 1880. Numerical modeling based simulation for PA signal generation process in biological tissues helps researchers for decreasing error trials in-vitro and hence decreasing error rates for in-vivo experiments. Numerical modeling methods help in obtaining a rapid modeling procedure comparable to pure mathematics. However, if a proper simplified mathematical model can be founded before applying numerical modeling techniques, it will be a great advantage for the overall numerical model. More scientific theories, equations, and assumptions through the biomedical PA imaging research literature have been proposed trying to mathematically model the complete PA signal generation and propagation process in biological tissues. However, most of them have so complicated details. Hence, the researchers, especially the beginners, will find a hard difficulty to explore and obtain a proper simplified mathematical model describing the process. That’s why this paper is introduced.
Methods
In this paper we have tried to simplify understanding for the biomedical PA wave’s generation and propagation process, deducing a simplified mathematical model for the whole process. The proposed deduced model is based on three steps: a- pulsed laser irradiance, b- diffusion of light through biological tissue, and c- acoustic pressure wave generation and propagation from the target tissue to the ultrasound transducer surface.
Collapse
|
27
|
Cardoso MA, Gonçalves HMR, Davis F. Reactive oxygen species in biological media are they friend or foe? Major In vivo and In vitro sensing challenges. Talanta 2023; 260:124648. [PMID: 37167678 DOI: 10.1016/j.talanta.2023.124648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/07/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
The role of Reactive Oxygen Species (ROS) on biological media has been shifting over the years, as the knowledge on the complex mechanism that lies in underneath their production and overall results has been growing. It has been known for some time that these species are associated with a number of health conditions. However, they also participate in the immunoactivation cascade process, and can have an active role in theranostics. Macrophages, for example, react to the presence of pathogens through ROS production, potentially allowing the development of new therapeutic strategies. However, their short lifetime and limited spatial distribution of ROS have been limiting factors to the development and understanding of this phenomenon. Even though, ROS have shown successful theranostic applications, e.g., photodynamic therapy, their wide applicability has been hampered by the lack of effective tools for monitoring these processes in real time. Thus the development of innovative sensing strategies for in vivo monitoring of the balance between ROS concentration and the resultant immune response is of the utmost relevance. Such knowledge could lead to major breakthroughs towards the development of more effective treatments for neurodegenerative diseases. Within this review we will present the current understanding on the interaction mechanisms of ROS with biological systems and their overall effect. Additionally, the most promising sensing tools developed so far, for both in vivo and in vitro tracking will be presented along with their main limitations and advantages. This review focuses on the four main ROS that have been studied these are: singlet oxygen species, hydrogen peroxide, hydroxyl radical and superoxide anion.
Collapse
Affiliation(s)
- Marita A Cardoso
- REQUIMTE, Instituto Superior de Engenharia Do Porto, 4200-072, Porto, Portugal
| | - Helena M R Gonçalves
- REQUIMTE, Instituto Superior de Engenharia Do Porto, 4200-072, Porto, Portugal; Biosensor NTech - Nanotechnology Services, Lda, Avenida da Liberdade, 249, 1° Andar, 1250-143, Lisboa, Portugal.
| | - Frank Davis
- Department of Engineering and Applied Design University of Chichester, Bognor Regis, West Sussex, PO21 1HR, UK
| |
Collapse
|
28
|
De Rosa L, Hawala I, Di Stasi R, Stefania R, Capozza M, Nava D, D’Andrea LD. A Chemical Strategy for the Preparation of Multimodified Peptide Imaging Probes. J Org Chem 2023; 88:4546-4553. [PMID: 36988421 PMCID: PMC10088022 DOI: 10.1021/acs.joc.3c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Indexed: 03/30/2023]
Abstract
Multimodality probes appear of great interest for innovative imaging applications in disease diagnosis. Herein, we present a chemical strategy enabling site-specific double-modification and cyclization of a peptide probe exploiting native chemical ligation (NCL) and thiol-maleimide addition. The synthetic strategy is straightforward and of general applicability for the development of double-labeled peptide multimodality probes.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto
di Biostrutture e Bioimmagini, Consiglio
Nazionale Delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Ivan Hawala
- Centro
di Imaging Molecolare, Dipartimento di Biotecnologie Molecolari e
Scienze per La Salute, Università
di Torino, via Nizza
52, 10126 Torino, Italy
| | - Rossella Di Stasi
- Istituto
di Biostrutture e Bioimmagini, Consiglio
Nazionale Delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Rachele Stefania
- Centro
di Imaging Molecolare, Dipartimento di Biotecnologie Molecolari e
Scienze per La Salute, Università
di Torino, via Nizza
52, 10126 Torino, Italy
| | - Martina Capozza
- Centro
di Imaging Molecolare, Dipartimento di Biotecnologie Molecolari e
Scienze per La Salute, Università
di Torino, via Nizza
52, 10126 Torino, Italy
| | - Donatella Nava
- Dipartimento
di Scienze Farmaceutiche, Università
di Milano, Via Venezian
21, 20133 Milano, Italy
| | - Luca Domenico D’Andrea
- Istituto
di Scienze e Tecnologie Chimiche “G. Natta”, Consiglio Nazionale Delle Ricerche, Via M. Bianco 9, 20131 Milano, Italy
| |
Collapse
|
29
|
Ma J, Dai L, Yu J, Cao H, Bao Y, Hu J, Zhou L, Yang J, Sofia A, Chen H, Wu F, Xie Z, Qian W, Zhan R. Tumor microenvironment targeting system for glioma treatment via fusion cell membrane coating nanotechnology. Biomaterials 2023; 295:122026. [PMID: 36731366 DOI: 10.1016/j.biomaterials.2023.122026] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The tumor microenvironment (TME), comprising cancer cells and stroma, plays a significant role in determining clinical outcomes, which makes targeting cancer cells in the TME an important area of research. One way in which cancer cells in the TME can be specifically targeted is by coating drug-encapsulated nanoparticles (NPs) with homotypic cancer cell membranes. However, incomplete targeting is inevitable for biomimetic nanoformulations coated with only cancer cell membranes because of the inherent heterogeneity of the TME. After observing the structural connection between glioma-associated stromal cells (GASCs) and glioma cells from a clinic, we designed a novel drug delivery system that targets the TME by coating polylactic-co-glycolic acid (PLGA) NPs with GASC-glioma cell fusion cell (SG cell) membranes. The resulting SGNPs inherited membrane proteins from both the glioma membrane and GASC membrane, significantly enhancing the tumor targeting efficiency compared to nanoformulations coated with cancer cell membranes alone. We further demonstrated that encapsulation of temozolomide (TMZ) improved the therapeutic efficacy of TMZ in both heterotopic and orthotopic glioma mouse models. Owing to its significant efficacy, our TME-targeting nanoplatform has potential for clinical applications in the treatment of various cancers.
Collapse
Affiliation(s)
- Junning Ma
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China; School of Medicine Zhejiang University, China.
| | - Lisi Dai
- Department of Pathology& Pathophysiology, and Department of Surgical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, China; School of Basic Medical Sciences Zhejiang University, China.
| | - Jianbo Yu
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Hui Cao
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Youmei Bao
- Department of Neurosurgery, School of Medicine, Yale University, USA
| | - JiaJia Hu
- Department of Nuclear Medicine, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Lihui Zhou
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Jiqi Yang
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Adame Sofia
- School of Medicine Zhejiang University, China
| | - Hongwei Chen
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Fan Wu
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Zhikai Xie
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Wenqi Qian
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Renya Zhan
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China.
| |
Collapse
|
30
|
Valverde-Pozo J, Paredes JM, Widmann TJ, Griñan-Lison C, Ceccarelli G, Gioiello A, Garcia-Rubiño ME, Marchal JA, Alvarez-Pez JM, Talavera EM. Ratiometric Two-Photon Near-Infrared Probe to Detect DPP IV in Human Plasma, Living Cells, Human Tissues, and Whole Organisms Using Zebrafish. ACS Sens 2023; 8:1064-1075. [PMID: 36847549 PMCID: PMC10043939 DOI: 10.1021/acssensors.2c02025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
DPP IV, otherwise known as CD26 lymphocyte T surface antigen, is a transmembrane glycoprotein also found in circulation in the blood. It plays an important role in several processes like glucose metabolism and T-cell stimulation. Moreover, it is overexpressed in renal, colon, prostate, and thyroid human carcinoma tissues. It can also serve as a diagnostic in patients with lysosomal storage diseases. The biological and clinical importance of having readouts for the activity of this enzyme, in physiological and disease conditions, has led us to design a near-infrared (NIR) fluorimetric probe that also has the characteristics of being ratiometric and excitable by two simultaneous NIR photons. The probe consists of assembling an enzyme recognition group (Gly-Pro) (Mentlein, 1999; Klemann et al., 2016) on the two-photon (TP) fluorophore (derivative of dicyanomethylene-4H-pyran, DCM-NH2) disturbing its NIR characteristic internal charge transfer (ICT) emission spectrum. When the dipeptide group is released by the DPP IV-specific enzymatic action, the donor-acceptor DCM-NH2 is restored, forming a system that shows high ratiometric fluorescence output. With this new probe, we have been able to detect, quickly and efficiently, the enzymatic activity of DPP IV in living cells, human tissues, and whole organisms, using zebrafish. In addition, due to the possibility of being excited by two photons, we can avoid the autofluorescence and subsequent photobleaching that the raw plasma has when it is excited by visible light, achieving detection of the activity of DPP IV in that medium without interference.
Collapse
Affiliation(s)
- Javier Valverde-Pozo
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - Jose M Paredes
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - Thomas J Widmann
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
| | - Carmen Griñan-Lison
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Giada Ceccarelli
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Antimo Gioiello
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - M Eugenia Garcia-Rubiño
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - Juan A Marchal
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Jose M Alvarez-Pez
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - Eva M Talavera
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| |
Collapse
|
31
|
Schraven S, Rosenhain S, Brueck R, Wiechmann TM, Pola R, Etrych T, Lederle W, Lammers T, Gremse F, Kiessling F. Dye labeling for optical imaging biases drug carriers' biodistribution and tumor uptake. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102650. [PMID: 36623712 DOI: 10.1016/j.nano.2023.102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/08/2023]
Abstract
Biodistribution analyses of nanocarriers are often performed with optical imaging. Though dye tags can interact with transporters, e.g., organic anion transporting polypeptides (OATPs), their influence on biodistribution was hardly studied. Therefore, this study compared tumor cell uptake and biodistribution (in A431 tumor-bearing mice) of four near-infrared fluorescent dyes (AF750, IRDye750, Cy7, DY-750) and dye-labeled poly(N-(2-hydroxypropyl)methacrylamide)-based nanocarriers (dye-pHPMAs). Tumor cell uptake of hydrophobic dyes (Cy7, DY-750) was higher than that of hydrophilic dyes (AF750, IRDye750), and was actively mediated but not related to OATPs. Free dyes' elimination depended on their hydrophobicity, and tumor uptake correlated with blood circulation times. Dye-pHPMAs circulated longer and accumulated stronger in tumors than free dyes. Dye labeling significantly influenced nanocarriers' tumor accumulation and biodistribution. Therefore, low-interference dyes and further exploration of dye tags are required to achieve the most unbiased results possible. In our assessment, AF750 and IRDye750 best qualified for labeling hydrophilic nanocarriers.
Collapse
Affiliation(s)
- Sarah Schraven
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Stefanie Rosenhain
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany; Gremse-IT GmbH, Dennewartstrasse 25, 52068 Aachen, Germany
| | - Ramona Brueck
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Tim Marvin Wiechmann
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Robert Pola
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Wiltrud Lederle
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany; Gremse-IT GmbH, Dennewartstrasse 25, 52068 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Fraunhofer MEVIS, Institute for Medical Image Computing, Aachen, Germany.
| |
Collapse
|
32
|
Optimizing Axial and Peripheral Substitutions in Si-Centered Naphthalocyanine Dyes for Enhancing Aqueous Solubility and Photoacoustic Signal Intensity. Int J Mol Sci 2023; 24:ijms24032241. [PMID: 36768560 PMCID: PMC9916426 DOI: 10.3390/ijms24032241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Photoacoustic imaging using external contrast agents is emerging as a powerful modality for real-time molecular imaging of deep-seated tumors. There are several chromophores, such as indocyanine green and IRDye800, that can potentially be used for photoacoustic imaging; however, their use is limited due to several drawbacks, particularly photostability. There is, therefore, an urgent need to design agents to enhance contrast in photoacoustic imaging. Naphthalocyanine dyes have been demonstrated for their use as photoacoustic contrast agents; however, their low solubility in aqueous solvents and high aggregation propensity limit their application. In this study, we report the synthesis and characterization of silicon-centered naphthalocyanine dyes with high aqueous solubility and near infra-red (NIR) absorption in the range of 850-920 nm which make them ideal candidates for photoacoustic imaging. A series of Silicon-centered naphthalocyanine dyes were developed with varying axial and peripheral substitutions, all in an attempt to enhance their aqueous solubility and improve photophysical properties. We demonstrate that axial incorporation of charged ammonium mesylate group enhances water solubility. Moreover, the incorporation of peripheral 2-methoxyethoxy groups at the α-position modulates the electronic properties by altering the π-electron delocalization and enhancing photoacoustic signal amplitude. In addition, all the dyes were synthesized to incorporate an N-hydroxysuccinimidyl group to enable further bioconjugation. In summary, we report the synthesis of water-soluble silicon-centered naphthalocyanine dyes with a high photoacoustic signal amplitude that can potentially be used as contrast agents for molecular photoacoustic imaging.
Collapse
|
33
|
Luo J, Liu Y, Wu D, Xu X, Shao L, Feng Y, Pan J, Zhao J, Shen Y, Li Z. High-speed single-exposure time-reversed ultrasonically encoded optical focusing against dynamic scattering. SCIENCE ADVANCES 2022; 8:eadd9158. [PMID: 36525498 DOI: 10.1126/sciadv.add9158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Focusing light deep inside live scattering tissue promises to revolutionize biophotonics by enabling deep tissue noninvasive optical imaging, manipulation, and therapy. By combining with guide stars, wavefront shaping is emerging as a powerful tool to make scattering media optically transparent. However, for in vivo biomedical applications, the speeds of existing techniques are still too slow to accommodate the fast speckle decorrelation of live tissue. To address this key bottleneck, we develop a quaternary phase encoding scheme to enable single-exposure time-reversed ultrasonically encode optical focusing with full-phase modulations. Specifically, we focus light inside dynamic scattering media with an average mode time down to 29 ns, which indicates that more than 104 effective spatial modes can be controlled within 1 millisecond. With this technique, we demonstrate in vivo light focusing in between a highly opaque adult zebrafish of 5.1 millimeters in thickness and a ground glass diffuser. Our work presents an important step toward in vivo deep tissue applications of wavefront shaping.
Collapse
Affiliation(s)
- Jiawei Luo
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Yan Liu
- School of Optometry, Indiana University, Bloomington, IN, USA
| | - Daixuan Wu
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Xiao Xu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lijie Shao
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yuanhua Feng
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jingshun Pan
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Jiayu Zhao
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Yuecheng Shen
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
| | - Zhaohui Li
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
34
|
Campisciano G, Biffi S. Microbiota in vivo imaging approaches to study host-microbe interactions in preclinical and clinical setting. Heliyon 2022; 8:e12511. [PMID: 36593827 PMCID: PMC9803719 DOI: 10.1016/j.heliyon.2022.e12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/14/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
In vivo imaging in preclinical and clinical settings can enhance knowledge of the host-microbiome interactions. Imaging techniques are a crucial node between findings at the molecular level and clinical implementation in diagnostics and therapeutics. The purpose of this study was to review existing knowledge on the microbiota in the field of in vivo imaging and provide guidance for future research, emphasizing the critical role that molecular imaging plays in increasing understanding of the host-microbe interaction. Preclinical microbiota animal models lay the foundation for the clinical translatability of novel microbiota-based therapeutics. Adopting animal models in which factors such as host genetic landscape, microbiota profile, and diet can be controlled enables investigating how the microbiota contributes to immunological dysregulation and inflammatory disorders. Current preclinical imaging of gut microbiota relies on models where the bacteria can be isolated, labelled, and re-administered. In vivo, optical imaging, ultrasound and magnetic resonance imaging define the bacteria's biodistribution in preclinical models, whereas nuclear imaging investigates bacterial metabolic activity. For the clinical investigation of microbe-host interactions, molecular nuclear imaging is increasingly becoming a promising approach. Future microbiota research should develop selective imaging probes to investigate in vivo microbiota profiles and individual strains of specific microbes. Preclinical knowledge can be translated into the molecular imaging field with great opportunities for studying the microbiome.
Collapse
Affiliation(s)
- Giuseppina Campisciano
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo Via dell'Istria 65/1, 34137, Trieste, Italy
| | - Stefania Biffi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo Via dell'Istria 65/1, 34137, Trieste, Italy
| |
Collapse
|
35
|
Kang T, Cho Y, Yuk KM, Yu CY, Choi SH, Byun KM. Fabrication and Characterization of Novel Silk Fiber-Optic SERS Sensor with Uniform Assembly of Gold Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2022; 22:9012. [PMID: 36433605 PMCID: PMC9692301 DOI: 10.3390/s22229012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Biocompatible optical fibers and waveguides are gaining attention as promising platforms for implantable biophotonic devices. Recently, the distinct properties of silk fibroin were extensively explored because of its unique advantages, including flexibility, process compatibility, long-term biosafety, and controllable biodegradability for in vitro and in vivo biomedical applications. In this study, we developed a novel silk fiber for a sensitive optical sensor based on surface-enhanced Raman spectroscopy (SERS). In contrast to conventional plasmonic nanostructures, which employ expensive and time-consuming fabrication processes, gold nanoparticles were uniformly patterned on the top surface of the fiber employing a simple and cost-effective convective self-assembly technique. The fabricated silk fiber-optic SERS probe presented a good performance in terms of detection limit, sensitivity, and linearity. In particular, the uniform pattern of gold nanoparticles contributed to a highly linear sensing feature compared to the commercial multi-mode fiber sample with an irregular and aggregated distribution of gold nanoparticles. Through further optimization, silk-based fiber-optic probes can function as useful tools for highly sensitive, cost-effective, and easily tailored biophotonic platforms, thereby offering new capabilities for future implantable SERS devices.
Collapse
Affiliation(s)
- Taeyoung Kang
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yongjun Cho
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Kyeong Min Yuk
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Chan Yeong Yu
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Seung Ho Choi
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Kyung Min Byun
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
36
|
Nouizi F, Brooks J, Zuro DM, Hui SK, Gulsen G. Development of a theranostic preclinical fluorescence molecular tomography/cone beam CT-guided irradiator platform. BIOMEDICAL OPTICS EXPRESS 2022; 13:6100-6112. [PMID: 36733750 PMCID: PMC9872876 DOI: 10.1364/boe.469559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 05/11/2023]
Abstract
Image-guided small animal radiation research platforms allow more precise radiation treatment. Commercially available small animal X-ray irradiators are often equipped with a CT/cone-beam CT (CBCT) component for target guidance. Besides having poor soft-tissue contrast, CBCT unfortunately cannot provide molecular information due to its low sensitivity. Hence, there are extensive efforts to incorporate a molecular imaging component besides CBCT on these radiation therapy platforms. As an extension of these efforts, here we present a theranostic fluorescence tomography/CBCT-guided irradiator platform that provides both anatomical and molecular guidance, which can overcome the limitations of stand-alone CBCT. The performance of our hybrid system is validated using both tissue-like phantoms and mice ex vivo. Both studies show that fluorescence tomography can provide much more accurate quantitative results when CBCT-derived structural information is used to constrain the inverse problem. The error in the recovered fluorescence absorbance reduces nearly 10-fold for all cases, from approximately 60% down to 6%. This is very significant since high quantitative accuracy in molecular information is crucial to the correct assessment of the changes in tumor microenvironment related to radiation therapy.
Collapse
Affiliation(s)
- Farouk Nouizi
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, CA 92697, USA
| | - Jamison Brooks
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Darren M. Zuro
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Susanta K. Hui
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Gultekin Gulsen
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, CA 92697, USA
| |
Collapse
|
37
|
Li P, Wang D, Hu J, Yang X. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv Drug Deliv Rev 2022; 189:114447. [PMID: 35863515 DOI: 10.1016/j.addr.2022.114447] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/27/2022] [Accepted: 07/06/2022] [Indexed: 01/24/2023]
Abstract
Nanomedicines overcome the pharmacokinetic limitations of traditional drug formulations and have promising prospect in cancer treatment. However, nanomedicine delivery in vivo is still facing challenges from the complex physiological environment. For the purpose of effective tumor therapy, they should be designed to guarantee the five features principle, including long blood circulation, efficient tumor accumulation, deep matrix penetration, enhanced cell internalization and accurate drug release. To ensure the excellent performance of the designed nanomedicine, it would be better to monitor the drug delivery process as well as the therapeutic effects by real-time imaging. In this review, we summarize strategies in developing nanomedicines for efficiently meeting the five features of drug delivery, and the role of several imaging modalities (fluorescent imaging (FL), magnetic resonance imaging (MRI), computed tomography (CT), photoacoustic imaging (PAI), positron emission tomography (PET), and electron microscopy) in tracing drug delivery and therapeutic effect in vivo based on five features principle.
Collapse
Affiliation(s)
- Puze Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongdong Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
38
|
Lew B, George M, Blair S, Zhu Z, Liang Z, Ludwig J, Kim CY, Kim KK, Gruev V, Choi H. Protease-activated indocyanine green nanoprobes for intraoperative NIR fluorescence imaging of primary tumors. NANOSCALE ADVANCES 2022; 4:4041-4050. [PMID: 36285222 PMCID: PMC9514568 DOI: 10.1039/d2na00276k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/25/2022] [Indexed: 05/17/2023]
Abstract
Tumor-targeted fluorescent probes in the near-infrared spectrum can provide invaluable information about the location and extent of primary and metastatic tumors during intraoperative procedures to ensure no residual tumors are left in the patient's body. Even though the first fluorescence-guided surgery was performed more than 50 years ago, it is still not accepted as a standard of care in part due to the lack of efficient and non-toxic targeted probes approved by regulatory agencies around the world. Herein, we report protease-activated cationic gelatin nanoparticles encapsulating indocyanine green (ICG) for the detection of primary breast tumors in murine models with high tumor-to-background ratios. Upon intravenous administration, these nanoprobes remain optically silent due to the energy resonance transfer among the bound ICG molecules. As the nanoprobes extravasate and are exposed to the acidic tumor microenvironment, their positive surface charges increase, facilitating cellular uptake. The internalized nanoprobes are activated upon proteolytic degradation of gelatin to allow high contrast between the tumor and normal tissue. Since both gelatin and ICG are FDA-approved for intravenous administration, this activatable nanoprobe can lead to quick clinical adoption and improve the treatment of patients undergoing image-guided cancer surgery.
Collapse
Affiliation(s)
- Benjamin Lew
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
| | - Mebin George
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
| | - Steven Blair
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
| | - Zhongmin Zhu
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
| | - Zuodong Liang
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
| | - Jamie Ludwig
- Division of Animal Resources, University of Illinois Urbana IL 61801 USA
| | - Celeste Y Kim
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
| | - Kyekyoon Kevin Kim
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
- Department of Bioengineering, University of Illinois Urbana IL 61801 USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana IL 61801 USA
| | - Viktor Gruev
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana IL 61801 USA
- Carle Illinois College of Medicine, University of Illinois Urbana IL 61801 USA
| | - Hyungsoo Choi
- Department of Electrical and Computer Engineering, University of Illinois Urbana IL 61801 USA
| |
Collapse
|
39
|
Zhu X, Wang X, Zhang H, Zhang F. Luminescence Lifetime Imaging Based on Lanthanide Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202209378. [DOI: 10.1002/anie.202209378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xinyan Zhu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Xiaohan Wang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Hongxin Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| |
Collapse
|
40
|
Deng Z, Xu X, Iordachita I, Dehghani H, Zhang B, Wong JW, Wang KKH. Mobile bioluminescence tomography-guided system for pre-clinical radiotherapy research. BIOMEDICAL OPTICS EXPRESS 2022; 13:4970-4989. [PMID: 36187243 PMCID: PMC9484421 DOI: 10.1364/boe.460737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
Due to low imaging contrast, a widely-used cone-beam computed tomography-guided small animal irradiator is less adept at localizing in vivo soft tissue targets. Bioluminescence tomography (BLT), which combines a model of light propagation through tissue with an optimization algorithm, can recover a spatially resolved tomographic volume for an internal bioluminescent source. We built a novel mobile BLT system for a small animal irradiator to localize soft tissue targets for radiation guidance. In this study, we elaborate its configuration and features that are indispensable for accurate image guidance. Phantom and in vivo validations show the BLT system can localize targets with accuracy within 1 mm. With the optimal choice of threshold and margin for target volume, BLT can provide a distinctive opportunity for investigators to perform conformal biology-guided irradiation to malignancy.
Collapse
Affiliation(s)
- Zijian Deng
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21287, USA
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- These authors contributed equally to this work
| | - Xiangkun Xu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21287, USA
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- These authors contributed equally to this work
| | - Iulian Iordachita
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Hamid Dehghani
- School of Computer Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Bin Zhang
- School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - John W Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Ken Kang-Hsin Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21287, USA
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
41
|
Abeywickrama CS. Large Stokes shift benzothiazolium cyanine dyes with improved intramolecular charge transfer (ICT) for cell imaging applications. Chem Commun (Camb) 2022; 58:9855-9869. [PMID: 35983738 DOI: 10.1039/d2cc03880c] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular Charge Transfer (ICT) is a crucial photophysical phenomenon that can be used to improve the Stokes' shift in fluorescent dyes. The introduction of molecular asymmetry is a promising approach to mitigate significant drawbacks of the symmetric cyanine dyes due to their narrow Stokes' shifts (Δλ < 20 nm). In this feature article, we discuss recent progress towards improving the Stokes' shift (Δλ > 100 nm) in benzothiazolium-based fluorophore systems via efficient ICT and recent discoveries related to potentially useful live cell imaging applications of these asymmetric cyanine dyes. This article explores three interesting asymmetric benzothiazolium dye designs (D-π-A, π-A and D-π-2A) in detail while discussing their optical properties. The key advantage of these probes is the synthetic tunability of the probe's photophysical properties and cellular selectivity by simply modifying the donor (D) or the acceptor (A) group in the structure. These new asymmetric ICT fluorophore systems exhibit large Stokes' shifts, high biocompatibility, wash-free staining, red to NIR emission and facile excitation with commercially available laser wavelengths.
Collapse
Affiliation(s)
- Chathura S Abeywickrama
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
42
|
Zhu X, Wang X, Zhang H, Zhang F. Luminescence Lifetime Imaging Based on Lanthanide Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinyan Zhu
- Fudan University chemistry department Room 631, Advanced materials lab,2205 songhu road, yangpu district,Shanghai 200438 Shanghai CHINA
| | | | | | - Fan Zhang
- Fudan University Chemistry 2205 Songhu Road 200438 Shanghai CHINA
| |
Collapse
|
43
|
Ko J, Lucas K, Kohler R, Halabi EA, Wilkovitsch M, Carlson JCT, Weissleder R. In Vivo Click Chemistry Enables Multiplexed Intravital Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200064. [PMID: 35750648 PMCID: PMC9405492 DOI: 10.1002/advs.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Indexed: 05/14/2023]
Abstract
The ability to observe cells in live organisms is essential for understanding their function in complex in vivo milieus. A major challenge today has been the limited ability to perform higher multiplexing beyond four to six colors to define cell subtypes in vivo. Here, a click chemistry-based strategy is presented for higher multiplexed in vivo imaging in mouse models. The method uses a scission-accelerated fluorophore exchange (SAFE), which exploits a highly efficient bioorthogonal mechanism to completely remove fluorescent signal from antibody-labeled cells in vivo. It is shown that the SAFE-intravital microscopy imaging method allows 1) in vivo staining of specific cell types in dorsal and cranial window chambers of mice, 2) complete un-staining in minutes, 3) in vivo click chemistries at lower (µm) and thus non-toxic concentrations, and 4) the ability to perform in vivo cyclic imaging. The potential utility of the method is demonstrated by 12 color imaging of immune cells in live mice.
Collapse
Affiliation(s)
- Jina Ko
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Kilean Lucas
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Rainer Kohler
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Elias A. Halabi
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Martin Wilkovitsch
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Jonathan C. T. Carlson
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Department of MedicineMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Department of Systems BiologyHarvard Medical School200 Longwood AveBostonMA02115USA
| |
Collapse
|
44
|
Shimizu K, Xian S, Guo J. Reconstructing a Deblurred 3D Structure in a Turbid Medium from a Single Blurred 2D Image—For Near-Infrared Transillumination Imaging of a Human Body. SENSORS 2022; 22:s22155747. [PMID: 35957303 PMCID: PMC9370914 DOI: 10.3390/s22155747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
To provide another modality for three-dimensional (3D) medical imaging, new techniques were developed to reconstruct a 3D structure in a turbid medium from a single blurred 2D image obtained using near-infrared transillumination imaging. One technique uses 1D information of a curvilinear absorber, or the intensity profile across the absorber image. Profiles in different conditions are calculated by convolution with the depth-dependent point spread function (PSF) of the transillumination image. In databanks, profiles are stored as lookup tables to connect the contrast and spread of the profile to the absorber depth. One-to-one correspondence from the contrast and spread to the absorber depth and thickness were newly found. Another technique uses 2D information of the transillumination image of a volumetric absorber. A blurred 2D image is deconvolved with the depth-dependent PSF, thereby producing many images with points of focus on different parts. The depth of the image part can be estimated by searching the deconvolved images for the image part in the best focus. To suppress difficulties of high-spatial-frequency noise, we applied a noise-robust focus stacking method. Experimentation verified the feasibility of the proposed techniques, and suggested their applicability to curvilinear and volumetric absorbers such as blood vessel networks and cancerous lesions in tissues.
Collapse
Affiliation(s)
- Koichi Shimizu
- Graduate School of Information, Production and Systems, Waseda University, Kitakyushu 808-0135, Japan
- School of Optoelectronic Engineering, Xidian University, Xi’an 710071, China
- Correspondence:
| | - Sihan Xian
- Graduate School of Information, Production and Systems, Waseda University, Kitakyushu 808-0135, Japan
| | - Jiekai Guo
- Graduate School of Information, Production and Systems, Waseda University, Kitakyushu 808-0135, Japan
| |
Collapse
|
45
|
Li B, Zhao M, Lin J, Huang P, Chen X. Management of fluorescent organic/inorganic nanohybrids for biomedical applications in the NIR-II region. Chem Soc Rev 2022; 51:7692-7714. [PMID: 35861173 DOI: 10.1039/d2cs00131d] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomedical fluorescence imaging in the second near-infrared (NIR-II, 100-1700 nm) window provides great potential for visualizing physiological and pathological processes, owing to the reduced tissue absorption, scattering, and autofluorescence. Various types of NIR-II probes have been reported in the past decade. Among them, NIR-II organic/inorganic nanohybrids have attracted widespread attention due to their unique properties by integrating the advantages of both organic and inorganic species. Versatile organic/inorganic nanohybrids provide the possibility of realizing a combination of functions, controllable size, and multiple optical features. This tutorial review summarizes the reported organic and inorganic species in nanohybrids, and their biomedical applications in NIR-II fluorescence and lifetime imaging. Finally, the challenges and outlook of organic/inorganic nanohybrids in biomedical applications are discussed.
Collapse
Affiliation(s)
- Benhao Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China. .,Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Mengyao Zhao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
46
|
Peterson HM, Chin LK, Iwamoto Y, Oh J, Carlson JCT, Lee H, Im H, Weissleder R. Integrated Analytical System for Clinical Single-Cell Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200415. [PMID: 35508767 PMCID: PMC9284190 DOI: 10.1002/advs.202200415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/31/2022] [Indexed: 05/23/2023]
Abstract
High-dimensional analyses of cancers can potentially be used to better define cancer subtypes, analyze the complex tumor microenvironment, and perform cancer cell pathway analyses for drug trials. Unfortunately, integrated systems that allow such analyses in serial fine needle aspirates within a day or at point-of-care currently do not exist. To achieve this, an integrated immunofluorescence single-cell analyzer (i2SCAN) for deep profiling of directly harvested cells is developed. By combining a novel cellular imaging system, highly cyclable bioorthogonal FAST antibody panels, and integrated computational analysis, it is shown that same-day analysis is possible in thousands of harvested cells. It is demonstrated that the i2SCAN approach allows comprehensive analysis of breast cancer samples obtained by fine needle aspiration or core tissues. The method is a rapid, robust, and low-cost solution to high-dimensional analysis of scant clinical specimens.
Collapse
Affiliation(s)
- Hannah M. Peterson
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Lip Ket Chin
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Yoshi Iwamoto
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Juhyun Oh
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Jonathan C. T. Carlson
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Cancer CenterMassachusetts General HospitalBostonMA02114USA
| | - Hakho Lee
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Hyungsoon Im
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Cancer CenterMassachusetts General HospitalBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
- Department of Systems BiologyHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
47
|
Brown EL, Lefebvre TL, Sweeney PW, Stolz BJ, Gröhl J, Hacker L, Huang Z, Couturier DL, Harrington HA, Byrne HM, Bohndiek SE. Quantification of vascular networks in photoacoustic mesoscopy. PHOTOACOUSTICS 2022; 26:100357. [PMID: 35574188 PMCID: PMC9095888 DOI: 10.1016/j.pacs.2022.100357] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature. The visual or semi-quantitative 2D measurements typically applied to mesoscopic PAI data fail to capture the 3D vessel network complexity and lack robust ground truths for assessment of accuracy. Here, we developed a pipeline for quantifying 3D vascular networks captured using mesoscopic PAI and tested the preservation of blood volume and network structure with topological data analysis. Ground truth data of in silico synthetic vasculatures and a string phantom indicated that learning-based segmentation best preserves vessel diameter and blood volume at depth, while rule-based segmentation with vesselness image filtering accurately preserved network structure in superficial vessels. Segmentation of vessels in breast cancer patient-derived xenografts (PDXs) compared favourably to ex vivo immunohistochemistry. Furthermore, our findings underscore the importance of validating segmentation methods when applying mesoscopic PAI as a tool to evaluate vascular networks in vivo.
Collapse
Affiliation(s)
- Emma L. Brown
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Thierry L. Lefebvre
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Paul W. Sweeney
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Bernadette J. Stolz
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Janek Gröhl
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Lina Hacker
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Ziqiang Huang
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | | | | | - Helen M. Byrne
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
48
|
Wu J, Zhang Y, Jiang K, Wang X, Blum NT, Zhang J, Jiang S, Lin J, Huang P. Enzyme-Engineered Conjugated Polymer Nanoplatform for Activatable Companion Diagnostics and Multistage Augmented Synergistic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200062. [PMID: 35243699 DOI: 10.1002/adma.202200062] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Companion diagnostics (CDx) provides critical information for precision medicine. However, current CDx is mostly limited to in vitro tests, which cannot accurately evaluate the disease progression and treatment response in real time. To overcome this challenge, herein a glucose oxidase (GOx)-engineered conjugated polymer (polyaniline, PANI) nanoplatform (denoted as PANITG) is reported for activatable imaging-based CDx and multistage augmented photothermal/starvation synergistic therapy. PANITG comprises a pH-activatable conjugated polymer as a photothermal convertor and photoacoustic (PA) emitter, a GOx as a cancer starvation inducer as well as a H2 O2 and acid producer, and a H2 O2 -cleavable linker as a "switch" for GOx activity. The in vivo PA imaging and photothermal therapy abilities are activated by acidic tumor microenvironment and self-augmented by the reaction between GOx and glucose. Meanwhile, the photothermal effect will enhance the GOx activity in turn. Such multistage augmentation of the therapeutic effects will facilitate effective cancer management. In addition, the in vivo PA imaging with PANITG reveals the tumor pH level which is correlated to the efficiency of the photothermal therapy and to the catalytic activity of GOx at each stage, enabling real-time activatable CDx.
Collapse
Affiliation(s)
- Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yafei Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Kejia Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoyu Wang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Zhang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
49
|
Voskuil FJ, Vonk J, van der Vegt B, Kruijff S, Ntziachristos V, van der Zaag PJ, Witjes MJH, van Dam GM. Intraoperative imaging in pathology-assisted surgery. Nat Biomed Eng 2022; 6:503-514. [PMID: 34750537 DOI: 10.1038/s41551-021-00808-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
The pathological assessment of surgical specimens during surgery can reduce the incidence of positive resection margins, which otherwise can result in additional surgeries or aggressive therapeutic regimens. To improve patient outcomes, intraoperative spectroscopic, fluorescence-based, structural, optoacoustic and radiological imaging techniques are being tested on freshly excised tissue. The specific clinical setting and tumour type largely determine whether endogenous or exogenous contrast is to be detected and whether the tumour specificity of the detected biomarker, image resolution, image-acquisition times or penetration depth are to be prioritized. In this Perspective, we describe current clinical standards for intraoperative tissue analysis and discuss how intraoperative imaging is being implemented. We also discuss potential implementations of intraoperative pathology-assisted surgery for clinical decision-making.
Collapse
Affiliation(s)
- Floris J Voskuil
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jasper Vonk
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Schelto Kruijff
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vasilis Ntziachristos
- Chair for Biological Imaging, Center for Translational Cancer Research, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Pieter J van der Zaag
- Phillips Research Laboratories, Eindhoven, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Molecular Biophysics, Zernike Institute, University of Groningen, Groningen, The Netherlands
| | - Max J H Witjes
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gooitzen M van Dam
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. .,AxelaRx/TRACER BV, Groningen, The Netherlands.
| |
Collapse
|
50
|
Abstract
The aim of this review paper is to concentrate on the use and application of photonics in dentistry. More than one hundred review and research articles were comprehensively analysed in terms of applications of photonics in dentistry, including surgical applications, as well as dental biomaterials, diagnosis and treatments. In biomedical engineering, various fields, such as biology, chemistry, material and physics, come together in to tackle a disease/disorder either as a diagnostic tool or an option for treatment. Engineers believe that biophotonics is the application of photonics in medicine, whereas photonics is simply a technology for creating and connecting packets of light energy, known as photons. This review paper provides a comprehensive discussion of its main elements, such as photoelasticity, interferometry techniques, optical coherence tomography, different types of lasers, carbon nanotubes, graphene and quantum dots.
Collapse
|