1
|
Wu S, Ma X, Zhang X, Du K, Shi C, Almaamari AA, Han B, Su S, Liu Y. Knockdown of NDUFAF6 inhibits breast cancer progression via promoting mitophagy and apoptosis. Cancer Biol Ther 2025; 26:2445220. [PMID: 39706687 DOI: 10.1080/15384047.2024.2445220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND While NDUFAF6 is implicated in breast cancer, its specific role remains unclear. METHODS The expression levels and prognostic significance of NDUFAF6 in breast cancer were assessed using The Cancer Genome Atlas, Gene Expression Omnibus, Kaplan-Meier plotter and cBio-Portal databases. We knocked down NDUFAF6 in breast cancer cells using small interfering RNA and investigated its effects on cell proliferation and migration ability. We performed gene expression analysis and validated key findings using protein analysis. We also assessed mitochondrial activity and cellular metabolism. RESULTS NDUFAF6 was highly expressed in breast cancer, which was associated with a poorer prognosis. Knockdown of NDUFAF6 reduced the proliferation and migration ability of breast cancer cells. Transcriptome analysis revealed 2,101 differentially expressed genes enriched in apoptosis and mitochondrial signaling pathways. Western blot results showed NDUFAF6 knockdown enhanced apoptosis. In addition, differential gene enrichment analysis was related to mitochondrial signaling pathways, and western blot results verified that mitophagy was enhanced in NDUFAF6 knockdown breast cancer cells. JC-1 assay also showed that mitochondrial dysfunction and reactive oxygen species content were increased after knocking down NDUFAF6. In addition, basal and maximal mitochondrial oxygen consumption decreased, and intracellular glycogen content increased. CONCLUSIONS Knockdown of NDUFAF6 resulted in apoptosis and mitophagy in breast cancer cells and NDUFAF6 may be a potential molecular target for breast cancer therapy.
Collapse
Affiliation(s)
- Shang Wu
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
| | - Xindi Ma
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
| | - Xiangmei Zhang
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kaiye Du
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
- Radiotherapy Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Shi
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
| | - Ahmed Ali Almaamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Boye Han
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Suwen Su
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yunjiang Liu
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Hebei Medical University, Shijiazhuang, China
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Jin S, Feng C, Wang X. DNA or not DNA -that is the question determining the design of platinum anticancer drugs. Eur J Med Chem 2025; 282:117077. [PMID: 39579471 DOI: 10.1016/j.ejmech.2024.117077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/20/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Platinum drugs are the most widely used chemotherapeutics to treat various tumors. Their primary mode of action is supposed to be inducing apoptosis of cancer cells via covalent binding to DNA. This mechanism has shackled the design of new platinum drugs for many years. Mounting evidence shows that many platinum complexes form non-covalent adducts with DNA or interact with proteins to exhibit significant antitumor activity, thus implying some distinct mechanisms from that of traditional platinum drugs. These unconventional examples indicate that covalent DNA binding is not the precondition for the antitumor activity of platinum complexes, and diversified reactions or interactions with biomolecules, organelles, signal pathways, or immune system could lead to the antitumor activity of platinum complexes. The atypical mechanisms break the classical DNA-only paradigm and structure-activity relationships, thus opening a wide avenue for the design of innovative platinum anticancer drugs.
Collapse
Affiliation(s)
- Suxing Jin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Chenyao Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
3
|
Zhao X, Zhang J, Li C, Kuang W, Deng J, Tan X, Li C, Li S. Mitochondrial mechanisms in Treg cell regulation: Implications for immunotherapy and disease treatment. Mitochondrion 2025; 80:101975. [PMID: 39491776 DOI: 10.1016/j.mito.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Regulatory T cells (Tregs) play a critical role in maintaining immune homeostasis and preventing autoimmune diseases. Recent advances in immunometabolism have revealed the pivotal role of mitochondrial dynamics and metabolism in shaping Treg functionality. Tregs depend on oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) to support their suppressive functions and long-term survival. Mitochondrial processes such as fusion and fission significantly influence Treg activity, with mitochondrial fusion enhancing bioenergetic efficiency and reducing reactive oxygen species (ROS) production, thereby promoting Treg stability. In contrast, excessive mitochondrial fission disrupts ATP synthesis and elevates ROS levels, impairing Treg suppressive capacity. Furthermore, mitochondrial ROS act as critical signaling molecules in Treg regulation, where controlled levels stabilize FoxP3 expression, but excessive ROS leads to mitochondrial dysfunction and immune dysregulation. Mitophagy, as part of mitochondrial quality control, also plays an essential role in preserving Treg function. Understanding the intricate interplay between mitochondrial dynamics and Treg metabolism provides valuable insights for developing novel therapeutic strategies to treat autoimmune disorders and enhance immunotherapy in cancer.
Collapse
Affiliation(s)
- Xiaozhen Zhao
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Junmei Zhang
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Caifeng Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Weiying Kuang
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jianghong Deng
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Tan
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chao Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shipeng Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Klosowski EM, de Souza BTL, Nanami LF, Bizerra PFV, Mito MS, Esquissato GNM, Constantin RP, Joia BM, Menezes PVMDC, Caetano W, Pereira PCDS, Gonçalves RS, Garcia FP, Bidoia DL, Nakamura TU, Nakamura CV, Ishii-Iwamoto EL, Dos Santos WD, Ferrarese-Filho O, Marchiosi R, Constantin RP. Unraveling the intrinsic and photodynamic effects of aluminum chloride phthalocyanine on bioenergetics and oxidative state in rat liver mitochondria. Toxicol Appl Pharmacol 2025; 494:117157. [PMID: 39551162 DOI: 10.1016/j.taap.2024.117157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Previous research has revealed that mitochondria are an important target for photodynamic therapy (PDT), which might be employed as a therapeutic approach for several malignancies, including hepatocellular carcinoma (HCC). In this study, we investigated both intrinsic toxicity and photodynamic effects of the photosensitizer (PS) aluminum chloride phthalocyanine (AlClPc) on mitochondrial functions. Several aspects of mitochondrial bioenergetics, structure, and oxidative state were investigated in the isolated mitochondria obtained from rat liver by differential centrifugation. Additionally, experiments were conducted to demonstrate the intrinsic and photodynamic effects of AlClPc on the viability of HepG2 cells. AlClPc interacted with mitochondria regardless of photostimulation; however, at the maximum utilized concentration (40 μM), photostimulation reduced its interaction with mitochondria. Although AlClPc hindered catalase (CAT) and glutathione reductase (GR) activities intrinsically, it had no discernable capacity to generate oxidative stress or impact bioenergetics in mitochondria without photostimulation, as one would anticipate from an ideal PS. When exposed to light, however, AlClPc had a substantially unfavorable influence on mitochondrial function, strengthening its intrinsic inhibitory action on CAT, producing oxidative stress, and jeopardizing mitochondrial bioenergetics. In terms of oxidative stress parameters, AlClPc induced lipid peroxidation and decreased the level of reduced glutathione (GSH) in mitochondria. Regarding bioenergetics, AlClPc promoted oxidative phosphorylation uncoupling and photodynamic inactivation of complex I, complex II, and the FoF1-ATP synthase complex, lowering mitochondrial ATP production. Lastly, AlClPc exhibited a concentration-dependent decrease in the viability of HepG2 cells, regardless of the presence or absence of photostimulation. While the harmful photodynamic effects of AlClPc on mitochondrial bioenergetics hold promise for treating HCC and other malignancies, the inherent toxic impacts on HepG2 cells underscore the need for caution in its application for this purpose.
Collapse
Affiliation(s)
- Eduardo Makiyama Klosowski
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Byanca Thais Lima de Souza
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Letícia Fernanda Nanami
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Paulo Francisco Veiga Bizerra
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Márcio Shigueaki Mito
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | | | - Renato Polimeni Constantin
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Breno Miguel Joia
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | | | - Wilker Caetano
- Department of Chemistry, Research Nucleus in Photodynamic System, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Paulo Cesar de Souza Pereira
- Department of Chemistry, Research Nucleus in Photodynamic System, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Renato Sonchini Gonçalves
- Department of Chemistry, Research Nucleus in Photodynamic System, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Francielle Pelegrin Garcia
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Danielle Lazarin Bidoia
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Tânia Ueda Nakamura
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Celso Vataru Nakamura
- Department of Basic Health Sciences, Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Emy Luiza Ishii-Iwamoto
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Wanderley Dantas Dos Santos
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Osvaldo Ferrarese-Filho
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Rogério Marchiosi
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| | - Rodrigo Polimeni Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá 87020-900, Paraná, Brazil; Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| |
Collapse
|
5
|
Liu J, Yan Y, Zhang Y, Pan X, Xia H, Zhou J, Wan F, Huang X, Zhang W, Zhang Q, Chen B, Wang Y. Lysosome-Mitochondria Cascade Targeting Nanoparticle Drives Robust Pyroptosis for Cancer Immunotherapy. J Am Chem Soc 2024; 146:34568-34582. [PMID: 39639594 DOI: 10.1021/jacs.4c12264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The subcellular distribution of cargoes plays a crucial role in determining cell fate and therapeutic efficacy. However, achieving the precise delivery of therapeutics to specific intracellular targets remains a significant challenge. Here, we present a trimodular and acid/enzyme-gated nanoplatform (TAEN) that undergoes disassembly within acidic endosomes and then is cleaved by lysosomal cathepsin B to facilitate efficient and targeted transport of released cargoes into mitochondria compartments. By utilizing this nanovehicle, we successfully achieve selective sorting of photosensitizer molecules into mitochondria with a colocalization coefficient of up to 0.98, leading to the generation of reactive oxygen species stress specifically within the mitochondria for potent pyroptosis-based cancer therapy. The induction of mitochondrial stress triggers the intrinsic apoptotic pathway as well as caspase-3/gasdermin-E (GSDME) cascade, resulting in an enhanced cancer cell killing efficacy by nearly 2 orders of magnitude as compared to lysosomal stress. Furthermore, due to its superior capability to stimulate both innate and adaptive immune responses, our mitochondria-sorted nanophotosensitizer exhibits robust antitumor immune efficacy in multiple tumor-bearing mice models. This study not only provides insights into engineering nanomedicines for subcellular targeted delivery but also offers a valuable toolkit for advanced research in the field of nanobiology at subcellular resolution.
Collapse
Affiliation(s)
- Jianxiong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yue Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yimeng Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xingquan Pan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Heming Xia
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiayi Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fangjie Wan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyu Huang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Weiwei Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Binlong Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Chemical Biology Center, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| |
Collapse
|
6
|
Magnitov MD, Maresca M, Alonso Saiz N, Teunissen H, Dong J, Sathyan KM, Braccioli L, Guertin MJ, de Wit E. ZNF143 is a transcriptional regulator of nuclear-encoded mitochondrial genes that acts independently of looping and CTCF. Mol Cell 2024:S1097-2765(24)00956-0. [PMID: 39708805 DOI: 10.1016/j.molcel.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/23/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
Gene expression is orchestrated by transcription factors, which function within the context of a three-dimensional genome. Zinc-finger protein 143 (ZNF143/ZFP143) is a transcription factor that has been implicated in both gene activation and chromatin looping. To study the direct consequences of ZNF143/ZFP143 loss, we generated a ZNF143/ZFP143 depletion system in mouse embryonic stem cells. Our results show that ZNF143/ZFP143 degradation has no effect on chromatin looping. Systematic analysis of ZNF143/ZFP143 occupancy data revealed that a commonly used antibody cross-reacts with CTCF, leading to its incorrect association with chromatin loops. Nevertheless, ZNF143/ZFP143 specifically activates nuclear-encoded mitochondrial genes, and its loss leads to severe mitochondrial dysfunction. Using an in vitro embryo model, we find that ZNF143/ZFP143 is an essential regulator of organismal development. Our results establish ZNF143/ZFP143 as a conserved transcriptional regulator of cell proliferation and differentiation by safeguarding mitochondrial activity.
Collapse
Affiliation(s)
- Mikhail D Magnitov
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Michela Maresca
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Clinical Genetics, Erasmus University MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Noemí Alonso Saiz
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jinhong Dong
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Avenue, Farmington, CT, USA
| | - Kizhakke M Sathyan
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Avenue, Farmington, CT, USA; Department of Genetics and Genome Sciences, University of Connecticut, 400 Farmington Avenue, Farmington, CT, USA
| | - Luca Braccioli
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Avenue, Farmington, CT, USA; Department of Genetics and Genome Sciences, University of Connecticut, 400 Farmington Avenue, Farmington, CT, USA
| | - Elzo de Wit
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Wang Z, Zhao M, Huang X, Wang Y, Li W, Qiao J, Yang X. Therapeutic types and advantages of functionalized nanoparticles in inducing ferroptosis in cancer therapy. Ann Med 2024; 56:2396568. [PMID: 39276361 PMCID: PMC11404394 DOI: 10.1080/07853890.2024.2396568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND The clinical efficacy of cancer treatment protocols remains unsatisfactory; however, the emergence of ferroptosis-driven therapy strategies has renewed hope for tumor treatment, owing to their remarkable tumor suppression effects. Biologically based small-molecule inducers are used in conventional method to induce ferroptosis. Nevertheless, some molecular drugs have limited solubility, poor ability to target cells, and fast metabolism, which hinder their ability to induce ferroptosis over a prolonged period. Fortunately, further investigations of ferroptosis and the development of nanotechnology have demonstrated that nanoparticles (NPs) are more efficient in inducing ferroptosis than drugs alone, which opens up new perspectives for cancer therapy. OBJECTIVE In order to organize a profile of recent advance in NPs for inducing ferroptosis in cancer therapy, and NPs were comprehensively classified in a new light.Materials and methods: We comprehensively searched the databases such as PubMed and Embase. The time limit for searching was from the establishment of the database to 2023.11. All literatures were related to "ferroptosis", "nanoparticles", "nanodelivery systems", "tumors", "cancer". RESULTS We summarized and classified the available NPs from a new perspective. The NPs were classified into six categories based on their properties: (1) iron oxide NPs (2) iron - based conversion NPs (3) core-shell structure (4) organic framework (5) silica NPs (6) lipoprotein NPs. According to the therapeutic types of NPs, they can be divided into categories: (1) NPs induced ferroptosis-related immunotherapy (2) NPs loaded with drugs (3) targeted therapy of NPs (4) multidrug resistance therapy (5) gene therapy with NPs (6) energy conversion therapy. CONCLUSIONS The insights gained from this review can provide ideas for the development of original NPs and nanodelivery systems, pave the way for related nanomaterials application in clinical cancer therapy, and advance the application and development of nanotechnology in the medical field.
Collapse
Affiliation(s)
- Ziying Wang
- School of Nursing, Shandong Second Medical University, Weifang, Shandong, China
| | - Miaomiao Zhao
- Department of Pathology, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaotong Huang
- School of Nursing, Shandong Second Medical University, Weifang, Shandong, China
| | - Yuxin Wang
- School of Pharmacy, Binzhou Medical College, Yantai, Shandong, China
| | - Wentong Li
- Department of Pathology, Shandong Second Medical University, Weifang, Shandong, China
| | - Jianhong Qiao
- Department of Outpatient, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiao Yang
- School of Nursing, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
8
|
Bharathidasan D, Maity C. Organelle-Specific Smart Supramolecular Materials for Bioimaging and Theranostics Application. Top Curr Chem (Cham) 2024; 383:1. [PMID: 39607460 DOI: 10.1007/s41061-024-00483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
In cellular environments, certain synthetic molecules can form nanostructures via self-assembly, impacting molecular imaging, and biomedical applications. Control over the formation of these self-assembled nanostructures in subcellular organelle is challenging. By the action of stimuli, either present in the cellular environment or applied externally, in situ generation of molecular precursors can lead to accumulation and supramolecular nanostructure formation, resulting in efficient bioimaging. Here, we summarize smart fluorophore-based ordered nanostructure preparation at specific organelles for efficient bioimaging and therapeutic application towards cancer theranostics. We also present challenges and an outlook regarding intercellular self-assembly for theranostics application. Altogether, smart nanostructured materials with fluorescence read-outs at specific subcellular compartments would be beneficial in synthetic biology and precision therapeutics.
Collapse
Affiliation(s)
- Dineshkumar Bharathidasan
- (Organic)Material Science and Engineering Laboratory, Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamilnadu, 632014, India
| | - Chandan Maity
- (Organic)Material Science and Engineering Laboratory, Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamilnadu, 632014, India.
| |
Collapse
|
9
|
Duan H, Ren J, Wei S, Yang Z, Li C, Wang Z, Li M, Wei Z, Liu Y, Wang X, Lan H, Zeng Z, Xie M, Xie Y, Wu S, Hu W, Guo C, Zhang X, Liang L, Yu C, Mou Y, Jiang Y, Li H, Sugarman E, Deek RA, Chen Z, Li T, Chen Y, Yao M, Chen L, Liu L, Zhang G, Mou Y. Integrated analyses of multi-omic data derived from paired primary lung cancer and brain metastasis reveal the metabolic vulnerability as a novel therapeutic target. Genome Med 2024; 16:138. [PMID: 39593114 PMCID: PMC11590298 DOI: 10.1186/s13073-024-01410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Lung cancer brain metastases (LC-BrMs) are frequently associated with dismal mortality rates in patients with lung cancer; however, standard of care therapies for LC-BrMs are still limited in their efficacy. A deep understanding of molecular mechanisms and tumor microenvironment of LC-BrMs will provide us with new insights into developing novel therapeutics for treating patients with LC-BrMs. METHODS Here, we performed integrated analyses of genomic, transcriptomic, proteomic, metabolomic, and single-cell RNA sequencing data which were derived from a total number of 154 patients with paired and unpaired primary lung cancer and LC-BrM, spanning four published and two newly generated patient cohorts on both bulk and single cell levels. RESULTS We uncovered that LC-BrMs exhibited a significantly greater intra-tumor heterogeneity. We also observed that mutations in a subset of genes were almost always shared by both primary lung cancers and LC-BrM lesions, including TTN, TP53, MUC16, LRP1B, RYR2, and EGFR. In addition, the genome-wide landscape of somatic copy number alterations was similar between primary lung cancers and LC-BrM lesions. Nevertheless, several regions of focal amplification were significantly enriched in LC-BrMs, including 5p15.33 and 20q13.33. Intriguingly, integrated analyses of transcriptomic, proteomic, and metabolomic data revealed mitochondrial-specific metabolism was activated but tumor immune microenvironment was suppressed in LC-BrMs. Subsequently, we validated our results by conducting real-time quantitative reverse transcription PCR experiments, immunohistochemistry, and multiplexed immunofluorescence staining of patients' paired tumor specimens. Therapeutically, targeting oxidative phosphorylation with gamitrinib in patient-derived organoids of LC-BrMs induced apoptosis and inhibited cell proliferation. The combination of gamitrinib plus anti-PD-1 immunotherapy significantly improved survival of mice bearing LC-BrMs. Patients with a higher expression of mitochondrial metabolism genes but a lower expression of immune genes in their LC-BrM lesions tended to have a worse survival outcome. CONCLUSIONS In conclusion, our findings not only provide comprehensive and integrated perspectives of molecular underpinnings of LC-BrMs but also contribute to the development of a potential, rationale-based combinatorial therapeutic strategy with the goal of translating it into clinical trials for patients with LC-BrMs.
Collapse
Affiliation(s)
- Hao Duan
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jianlan Ren
- Department of Computer Science, Ying Wu College of Computing, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Shiyou Wei
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Yang
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Li
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenning Wang
- Department of Neurosurgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| | - Meichen Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhi Wei
- Department of Computer Science, Ying Wu College of Computing, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Yu Liu
- Faculty of Dentistry, Prince Philip Dental Hospital, the University of Hong Kong, Sai Ying Pun, Hong Kong, China
| | - Xiuqi Wang
- Faculty of Dentistry, Prince Philip Dental Hospital, the University of Hong Kong, Sai Ying Pun, Hong Kong, China
| | - Hongbin Lan
- Faculty of Dentistry, Prince Philip Dental Hospital, the University of Hong Kong, Sai Ying Pun, Hong Kong, China
| | - Zhen Zeng
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maodi Xie
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuan Xie
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Suwen Wu
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wanming Hu
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Chengcheng Guo
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiangheng Zhang
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Lun Liang
- Department of Neurosurgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Chengwei Yu
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-Sen University Lingnan Hospital, Guangzhou, 510530, China
| | - Yanhao Mou
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yu Jiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Houde Li
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Eric Sugarman
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, 19131, USA
| | - Rebecca A Deek
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, China
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaohui Chen
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Maojin Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China.
| | - Likun Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Lunxu Liu
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Gao Zhang
- Faculty of Dentistry, Prince Philip Dental Hospital, the University of Hong Kong, Sai Ying Pun, Hong Kong, China.
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Zuo M, Ye M, Lin H, Liao S, Xing X, Liu J, Wu D, Huang Z, Ren X. Mitochondrial Dysfunction in Environmental Toxicology: Mechanisms, Impacts, and Health Implications. Chem Res Toxicol 2024; 37:1794-1806. [PMID: 39485318 DOI: 10.1021/acs.chemrestox.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondria, pivotal to cellular metabolism, serve as the primary sources of biological energy and are key regulators of intracellular calcium ion storage, crucial for maintaining cellular calcium homeostasis. Dysfunction in these organelles impairs ATP synthesis, diminishing cellular functionality. Emerging evidence implicates mitochondrial dysfunction in the etiology and progression of diverse diseases. Environmental factors that induce mitochondrial dysregulation raise significant public health concerns, necessitating a nuanced comprehension and classification of mitochondrial-related hazards. This review systematically adopts a toxicological perspective to illuminate the biological functions of mitochondria, offering a comprehensive exploration of how toxicants instigate mitochondrial dysfunction. It delves into the disruption of energy metabolism, the initiation of mitochondrial fragility and autophagy, and the induction of mutations in mitochondrial DNA by mutagens. The overarching objective is to enhance our understanding of the repercussions of mitochondrial damage on human health.
Collapse
Affiliation(s)
- Mingyang Zuo
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Mingqi Ye
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Haofeng Lin
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Shicheng Liao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Zhenlie Huang
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
11
|
Zhang J, Liu Z, Zhang Z, Yang H, Wang H, Yang Z, Xu Y, Li S, Yang D. Recent Advances in Silica-Based Nanomaterials for Enhanced Tumor Imaging and Therapy. ACS APPLIED BIO MATERIALS 2024; 7:7133-7169. [PMID: 39495482 DOI: 10.1021/acsabm.4c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Cancer remains a formidable challenge, inflicting profound physical, psychological, and financial burdens on patients. In this context, silica-based nanomaterials have garnered significant attention for their potential in tumor imaging and therapy owing to their exceptional properties, such as biocompatibility, customizable porosity, and versatile functionalization capabilities. This review meticulously examines the latest advancements in the application of silica-based nanomaterials for tumor imaging and therapy. It underscores their potential in enhancing various cancer imaging modalities, including fluorescence imaging, magnetic resonance imaging, computed tomography, positron emission tomography, ultrasound imaging, and multimodal imaging approaches. Moreover, the review delves into their therapeutic efficacy in chemotherapy, radiotherapy, phototherapy, immunotherapy, gas therapy, sonodynamic therapy, chemodynamic therapy, starvation therapy, and gene therapy. Critical evaluations of the biosafety profiles and degradation pathways of these nanomaterials within biological environments are also presented. By discussing the current challenges and prospects, this review aims to provide a nuanced perspective on the clinical translation of silica-based nanomaterials, thereby highlighting their promise in revolutionizing cancer diagnostics, enabling real-time monitoring of therapeutic responses, and advancing personalized medicine.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zilu Liu
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhijing Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhenlu Yang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China
| | - Yunjian Xu
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271000, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Shengke Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
12
|
Zheng G, Chen S, Ma W, Wang Q, Sun L, Zhang C, Chen G, Zhang S, Chen S. Spatial and Single-Cell Transcriptomics Unraveled Spatial Evolution of Papillary Thyroid Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404491. [PMID: 39540244 DOI: 10.1002/advs.202404491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Recurrence and metastasis are the major issues for papillary thyroid cancer (PTC). Current morphological and molecular classification systems are not satisfied for PTC diagnosis due to lacking variant-specific morphological criteria and high signal-to-noise in mutation-based diagnosis, respectively. Importantly, intratumor heterogeneity is largely lost in current molecular classification system, which can be resolved by single cell RNA sequencing (scRNA-seq). However, scRNA-seq loses spatial information and morphological features. Herein, scRNA-seq is integrated and spatially-resolved transcriptomics (SRT) to elaborate the mechanisms underlying the spatial heterogeneity, malignancy and metastasis of PTCs by associating transcriptome and local morphology. This results demonstrated that PTC cells evolved with multiple routes, driven by the enhanced aerobic metabolism and the suppressed mRNA translation and protein synthesis and the involvement of cell-cell interaction. Two curated malignant and metastatic footprints can discriminate PTC cells from normal thyrocytes. Ferroptosis resistance contributed to PTC evolution. This results will advance the knowledge of intratumor spatial heterogeneity and evolution of PTCs at spatial and single-cell levels, and propose better diagnostic strategy.
Collapse
Affiliation(s)
- Guangzhe Zheng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Shaobo Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100032, China
| | - Wanqi Ma
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Quanshu Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Li Sun
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ge Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100032, China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Shuguang Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100032, China
| |
Collapse
|
13
|
Zhang S, Zhang S, Xia B, Li X, Jiang H, Feng S, Xiang Y, Qiu Y, Zhou S, Luo P. PRMT1-mediated methylation of ME2 promotes hepatocellular carcinoma growth by inhibiting ubiquitination. Cell Death Dis 2024; 15:814. [PMID: 39528487 PMCID: PMC11555414 DOI: 10.1038/s41419-024-07219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The mitochondrial malic enzyme 2 (ME2), which is frequently elevated during carcinogenesis and may be a target for cancer therapy, catalyzes the conversion of malate to pyruvate. The processes controlling ME2 activity, however, remain largely unclear. In this work, we show that human hepatocellular carcinoma (HCC) tissues contain high levels of ME2 and that the methylation of ME2 stimulates the growth and migration of HCC cells. Furthermore, we observed that ME2 interacts with protein arginine methyltransferase 1 (PRMT1) and that ME2 enzymatic activity is activated by mutation of ME2 at lysine 67. Mitochondrial respiration was markedly increased by activated ME2, which promoted cell division and carcinogenesis. Furthermore, a negative prognosis for patients was strongly linked with the expression levels of PRMT1 and ME2 R67K in HCC tissues. These findings imply that hepatocellular carcinoma growth is aided by PRMT1-mediated ME2 methylation, that is an essential signaling event that cancer cells need to continue mitochondrial respiration.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 561113, Guiyang, Guizhou, P.R. China
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Shuling Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 561113, Guiyang, Guizhou, P.R. China
| | - Baijuan Xia
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Guiyang, Guizhou, P.R. China
| | - Xueying Li
- Department of Radiology, Guiyang Public Health Clinical Center, No.6 Daying Road, Yunyan District, 550001, Guiyang, Guizhou, P.R. China
| | - Hongyu Jiang
- Department of Cancer Research Laboratory, The Affiliated Cancer Hospital of Guizhou Medical University, 550000, Guiyang, Guizhou, P.R. China
| | - Su Feng
- Department of Cancer Research Laboratory, The Affiliated Cancer Hospital of Guizhou Medical University, 550000, Guiyang, Guizhou, P.R. China
| | - Yang Xiang
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Guiyang, Guizhou, P.R. China
| | - Ya Qiu
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 561113, Guiyang, Guizhou, P.R. China
| | - Shi Zhou
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China.
| | - Peng Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 561113, Guiyang, Guizhou, P.R. China.
| |
Collapse
|
14
|
Fang K, Xu H, Yuan S, Li X, Chen X, Fan X, Gao X, Zhang L, Sun S, Zhu X. LncRNA mediated metabolic reprogramming: the chief culprits of solid tumor malignant progression: an update review. Nutr Metab (Lond) 2024; 21:89. [PMID: 39516895 PMCID: PMC11549785 DOI: 10.1186/s12986-024-00866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolism reprogramming (MR) is one of the top ten hallmarks of malignant tumors. The aberrant activation of MR has been recognized as a critical contributory factor to the malignant progression of solid tumors. Moreover, various long non-coding RNAs (lncRNAs) are implicated in the aberrant activation of MR in solid tumor cells. Therefore, in this review, we mainly focus on summarizing the functional relevance and molecular mechanistic underpinnings of lncRNAs in modulating MR of solid tumors by targeting glucose metabolism, lipid metabolism, affecting mitochondrial function, and regulating interactions between tumor and non-tumor cells in tumor microenvironment. Besides, we also underscore the potential for constructing lncRNAs-centered tumor metabolic regulation networks and developing novel anti-tumor strategies by targeting lncRNAs and abnormal MR. Ultimately, this review seeks to offer new targets and avenues for the clinical treatment of solid tumors in the future.
Collapse
Affiliation(s)
- Kun Fang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Huizhe Xu
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Shuai Yuan
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiaoxi Li
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiaoyu Chen
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiushi Fan
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiaoxin Gao
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Lu Zhang
- Department of Human Resources, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China.
| | - Shulan Sun
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China.
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China.
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
15
|
Mennuni M, Wilkie SE, Michon P, Alsina D, Filograna R, Lindberg M, Sanin DE, Rosenberger F, Schaaf A, Larsson E, Pearce EL, Larsson NG. High mitochondrial DNA levels accelerate lung adenocarcinoma progression. SCIENCE ADVANCES 2024; 10:eadp3481. [PMID: 39485842 PMCID: PMC11529711 DOI: 10.1126/sciadv.adp3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Lung adenocarcinoma is a common aggressive cancer and a leading cause of mortality worldwide. Here, we report an important in vivo role for mitochondrial DNA (mtDNA) copy number during lung adenocarcinoma progression in the mouse. We found that lung tumors induced by KRASG12D expression have increased mtDNA levels and enhanced mitochondrial respiration. To experimentally assess a possible causative role in tumor progression, we induced lung cancer in transgenic mice with a general increase in mtDNA copy number and found that they developed a larger tumor burden, whereas mtDNA depletion in tumor cells reduced tumor growth. Immune cell populations in the lung and cytokine levels in plasma were not affected by increased mtDNA levels. Analyses of large cancer databases indicate that mtDNA copy number is also important in human lung cancer. Our study thus reports experimental evidence for a tumor-intrinsic causative role for mtDNA in lung cancer progression, which could be exploited for development of future cancer therapies.
Collapse
Affiliation(s)
- Mara Mennuni
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stephen E. Wilkie
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pauline Michon
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - David Alsina
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roberta Filograna
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Markus Lindberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - David E. Sanin
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Florian Rosenberger
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Munich, Germany
| | - Alina Schaaf
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erika L. Pearce
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Quan YY, Pan T, Zhang Z, Wang S, Wang G, Yu L, Wang Y, Zang XF, Zhang F, Ye X, Pan X, Huang ZS. Three-in-One: Molecular Engineering of D-A-π-A Featured Type I and Type II Near-Infrared AIE Photosensitizers for Efficient Photodynamic Cancer Therapy and Bacteria Killing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402854. [PMID: 39087384 DOI: 10.1002/smll.202402854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Bacterial infections are closely correlated with the genesis and progression of cancer, and the elimination of cancer-related bacteria may improve the efficacy of cancer treatment. However, the combinatorial therapy that utilizes two or more chemodrugs will increase potential adverse effects. Image-guided photodynamic therapy is a highly precise and potential therapy to treat tumor and microbial infections. Herein, four donor-acceptor-π-bridge-acceptor (D-A-π-A) featured near-infrared (NIR) aggregation-induced emission luminogens (AIEgens) (TQTPy, TPQTPy, TQTC, and TPQTC) with type I and type II reaction oxygen species (ROS) generation capabilities are synthesized. Notably, TQTPy shows mitochondria targeted capacity, the best ROS production efficiency, long-term tumor retention capacity, and more importantly, the three-in-one fluorescence imaging guided therapy against both tumor and microbial infections. Both in vitro and in vivo results validate that TQTPy performs well in practical biomedical application in terms of NIR-fluorescence imaging-guided photodynamic cancer diagnosis and treatment. Moreover, the amphiphilic and positively charged TQTPy is able to specific and ultrafast discrimination and elimination of Gram-positive (G+) Staphylococcus aureus from Gram-negative (G-) Escherichia coli and normal cells. This investigation provides an instructive way for the construction of three-in-one treatment for image-guided photodynamic cancer therapy and bacteria elimination.
Collapse
Affiliation(s)
- Yun-Yun Quan
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tingting Pan
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Taizhou Traditional Chinese Medicine Hospital, Taizhou, 318001, China
| | - Zhongda Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shihua Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guiyun Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lichao Yu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ye Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xu-Feng Zang
- College of Science, Huzhou University, Huzhou, 313000, China
| | - Fangjun Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaoxia Ye
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuebo Pan
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zu-Sheng Huang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
17
|
Tang GX, Li ML, Zhou C, Huang ZS, Chen SB, Chen XC, Tan JH. Mitochondrial RelA empowers mtDNA G-quadruplex formation for hypoxia adaptation in cancer cells. Cell Chem Biol 2024; 31:1800-1814.e7. [PMID: 38821064 DOI: 10.1016/j.chembiol.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Mitochondrial DNA (mtDNA) G-quadruplexes (G4s) have important regulatory roles in energy metabolism, yet their specific functions and underlying regulatory mechanisms have not been delineated. Using a chemical-genetic screening strategy, we demonstrated that the JAK/STAT3 pathway is the primary regulatory mechanism governing mtDNA G4 dynamics in hypoxic cancer cells. Further proteomic analysis showed that activation of the JAK/STAT3 pathway facilitates the translocation of RelA, a member of the NF-κB family, to the mitochondria, where RelA binds to mtDNA G4s and promotes their folding, resulting in increased mtDNA instability, inhibited mtDNA transcription, and subsequent mitochondrial dysfunction. This binding event disrupts the equilibrium of energy metabolism, catalyzing a metabolic shift favoring glycolysis. Collectively, the results provide insights into a strategy employed by cancer cells to adapt to hypoxia through metabolic reprogramming.
Collapse
Affiliation(s)
- Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mao-Lin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cui Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Shu Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiu-Cai Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Jia-Heng Tan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
18
|
Chen K, Wu Y, Xu L, Wang C, Xue J. Identification of the metabolic protein ATP5MF as a potential therapeutic target of TNBC. J Transl Med 2024; 22:932. [PMID: 39402579 PMCID: PMC11472516 DOI: 10.1186/s12967-024-05692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC), a distinct subtype of breast cancer, is characterized by its high invasiveness, high metastatic potential, proneness to relapse, and poor prognosis. Effective treatment regimens for non-BRCA1/2 mutation TNBC are still lacking. As a result, there is a pressing clinical necessity to develop novel treatment approaches for non-BRCA1/2 mutation TNBC. METHODS For this research, the scRNA data was obtained from the GEO database, while the transcriptome data was obtained from the TCGA and METABRIC databases. Quality control procedures were conducted on single-cell sequencing data. and then annotation and the Copycat algorithm were applied for anlysis. Employing the high dimensional weighted gene coexpression network analysis (hdWGCNA) method, we analyzed the tumor epithelial cells from non-BRCA1/2 mutation TNBC to identify the functional module genes. PPI analysis and survival analysis were further emplyed to identify the key gene. siRNA-NC and siRNA-ATP5MF were transfected into two MDA-MB-231 and BT-549 TNBC cell lines. Cell growth was determined by CCK8 assay, colony formation and migration assay. Electron microscopy was used to examine the structure of mitochondria in cells. JC-1 staining was used to measure the potential of the mitochondrial membrane. A tumor xenograft animal model was established by injecting TNBC cells into nude mice. The animal model was usded to evaluated in vivo tumor response aftering ATP5MF silencing. RESULTS Using hdWGCNA, we have identified 136 genes in module 3. After PPI and survival analysis, we have identified ATP5MF as a potential therapeutic gene. High ATP5MF expression was associated with poor prognosis of non-BRCA1/2 mutation TNBC. The high expression of ATP5MF in TNBC tissues was evaluated using the TCGA database and IHC staining of clinical TNBC specimens. Silencing ATP5MF in two TNBC cell lines reduced the growth and colony formation of TNBC cells in vitro, and hindered the growth of TNBC xenografts in vivo. Additionally, ATP5MF knockdown impaired mitochondrial functions in TNBC cells. CONCLUSION In summary, the metabolic protein ATP5MF plays a crucial role in the non-BRCA1/2 mutation TNBC cells, making it a potential novel diagnostic and therapeutic oncotarget for non-BRCA1/2 mutation TNBC.
Collapse
Affiliation(s)
- Kaiyan Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
- The Graduate School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingchun Wu
- Ultrasonic Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Linfeng Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Changyong Wang
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Jinqiu Xue
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
19
|
Sanz-Villafruela J, Bermejo-Casadesus C, Zafon E, Martínez-Alonso M, Durá G, Heras A, Soriano-Díaz I, Giussani A, Ortí E, Tebar F, Espino G, Massaguer A. Insights into the anticancer photodynamic activity of Ir(III) and Ru(II) polypyridyl complexes bearing β-carboline ligands. Eur J Med Chem 2024; 276:116618. [PMID: 38972079 DOI: 10.1016/j.ejmech.2024.116618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024]
Abstract
Ir(III) and Ru(II) polypyridyl complexes are promising photosensitizers (PSs) for photodynamic therapy (PDT) due to their outstanding photophysical properties. Herein, one series of cyclometallated Ir(III) complexes and two series of Ru(II) polypyridyl derivatives bearing three different thiazolyl-β-carboline N^N' ligands have been synthesized, aiming to evaluate the impact of the different metal fragments ([Ir(C^N)2]+ or [Ru(N^N)2]2+) and N^N' ligands on the photophysical and biological properties. All the compounds exhibit remarkable photostability under blue-light irradiation and are emissive (605 < λem < 720 nm), with the Ru(II) derivatives displaying higher photoluminescence quantum yields and longer excited state lifetimes. The Ir PSs display pKa values between 5.9 and 7.9, whereas their Ru counterparts are less acidic (pKa > 9.3). The presence of the deprotonated form in the Ir-PSs favours the generation of reactive oxygen species (ROS) since, according to theoretical calculations, it features a low-lying ligand-centered triplet excited state (T1 = 3LC) with a long lifetime. All compounds have demonstrated anticancer activity. Ir(III) complexes 1-3 exhibit the highest cytotoxicity in dark conditions, comparable to cisplatin. Their activity is notably enhanced by blue-light irradiation, resulting in nanomolar IC50 values and phototoxicity indexes (PIs) between 70 and 201 in different cancer cell lines. The Ir(III) PSs are also activated by green (with PI between 16 and 19.2) and red light in the case of complex 3 (PI = 8.5). Their antitumor efficacy is confirmed by clonogenic assays and using spheroid models. The Ir(III) complexes rapidly enter cells, accumulating in mitochondria and lysosomes. Upon photoactivation, they generate ROS, leading to mitochondrial dysfunction and lysosomal damage and ultimately cell apoptosis. Additionally, they inhibit cancer cell migration, a crucial step in metastasis. In contrast, Ru(II) complex 6 exhibits moderate mitochondrial activity. Overall, Ir(III) complexes 1-3 show potential for selective light-controlled cancer treatment, providing an alternative mechanism to chemotherapy and the ability to inhibit lethal cancer cell dissemination.
Collapse
Affiliation(s)
- Juan Sanz-Villafruela
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain
| | - Cristina Bermejo-Casadesus
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003, Girona, Spain
| | - Elisenda Zafon
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003, Girona, Spain
| | - Marta Martínez-Alonso
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain
| | - Gema Durá
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica. Facultad de Químicas, Avda. Camilo J. Cela 10, 13071, Ciudad Real, Spain
| | - Aranzazu Heras
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain
| | - Iván Soriano-Díaz
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Angelo Giussani
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain.
| | - Gustavo Espino
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain.
| | - Anna Massaguer
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003, Girona, Spain.
| |
Collapse
|
20
|
Guo L. F-ATP synthase inhibitory factor 1 and mitochondria-organelle interactions: New insight and implications. Pharmacol Res 2024; 208:107393. [PMID: 39233058 DOI: 10.1016/j.phrs.2024.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitochondria are metabolic hub, and act as primary sites for reactive oxygen species (ROS) and metabolites generation. Mitochondrial Ca2+ uptake contributes to Ca2+ storage. Mitochondria-organelle interactions are important for cellular metabolic adaptation, biosynthesis, redox balance, cell fate. Organelle communications are mediated by Ca2+/ROS signals, vesicle transport and membrane contact sites. The permeability transition pore (PTP) is an unselective channel that provides a release pathway for Ca2+/ROS, mtDNA and metabolites. F-ATP synthase inhibitory factor 1 (IF1) participates in regulation of PTP opening and is required for the translocation of transcriptional factors c-Myc/PGC1α to mitochondria to stimulate metabolic switch. IF1, a mitochondrial specific protein, has been suggested to regulate other organelles including nucleus, endoplasmic reticulum and lysosomes. IF1 may be able to mediate mitochondria-organelle interactions and cellular physiology through regulation of PTP activity.
Collapse
Affiliation(s)
- Lishu Guo
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
21
|
Zhang H, Felthaus O, Eigenberger A, Klein S, Prantl L. Treg Cell Therapeutic Strategies for Breast Cancer: Holistic to Local Aspects. Cells 2024; 13:1526. [PMID: 39329710 PMCID: PMC11429654 DOI: 10.3390/cells13181526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Regulatory T cells (Tregs) play a key role in maintaining immune homeostasis and preventing autoimmunity through their immunosuppressive function. There have been numerous reports confirming that high levels of Tregs in the tumor microenvironment (TME) are associated with a poor prognosis, highlighting their role in promoting an immunosuppressive environment. In breast cancer (BC), Tregs interact with cancer cells, ultimately leading to the suppression of immune surveillance and promoting tumor progression. This review discusses the dual role of Tregs in breast cancer, and explores the controversies and therapeutic potential associated with targeting these cells. Researchers are investigating various strategies to deplete or inhibit Tregs, such as immune checkpoint inhibitors, cytokine antagonists, and metabolic inhibition. However, the heterogeneity of Tregs and the variable precision of treatments pose significant challenges. Understanding the functional diversity of Tregs and the latest advances in targeted therapies is critical for the development of effective therapies. This review highlights the latest approaches to Tregs for BC treatment that both attenuate Treg-mediated immunosuppression in tumors and maintain immune tolerance, and advocates precise combination therapy strategies to optimize breast cancer outcomes.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany (L.P.)
| | | | | | | | | |
Collapse
|
22
|
Kami Reddy KR, Piyarathna DWB, Park JH, Putluri V, Amara CS, Kamal AHM, Xu J, Kraushaar D, Huang S, Jung SY, Eberlin LS, Johnson JR, Kittles RA, Ballester LY, Parsawar K, Siddiqui MM, Gao J, Langer Gramer A, Bollag RJ, Terris MK, Lotan Y, Creighton CJ, Lerner SP, Sreekumar A, Kaipparettu BA, Putluri N. Mitochondrial reprogramming by activating OXPHOS via glutamine metabolism in African American patients with bladder cancer. JCI Insight 2024; 9:e172336. [PMID: 39253977 PMCID: PMC11385078 DOI: 10.1172/jci.insight.172336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Bladder cancer (BLCA) mortality is higher in African American (AA) patients compared with European American (EA) patients, but the molecular mechanism underlying race-specific differences are unknown. To address this gap, we conducted comprehensive RNA-Seq, proteomics, and metabolomics analysis of BLCA tumors from AA and EA. Our findings reveal a distinct metabolic phenotype in AA BLCA characterized by elevated mitochondrial oxidative phosphorylation (OXPHOS), particularly through the activation of complex I. The results provide insight into the complex I activation-driven higher OXPHOS activity resulting in glutamine-mediated metabolic rewiring and increased disease progression, which was also confirmed by [U]13C-glutamine tracing. Mechanistic studies further demonstrate that knockdown of NDUFB8, one of the components of complex I in AA BLCA cells, resulted in reduced basal respiration, ATP production, GLS1 expression, and proliferation. Moreover, preclinical studies demonstrate the therapeutic potential of targeting complex I, as evidenced by decreased tumor growth in NDUFB8-depleted AA BLCA tumors. Additionally, genetic and pharmacological inhibition of GLS1 attenuated mitochondrial respiration rates and tumor growth potential in AA BLCA. Taken together, these findings provide insight into BLCA disparity for targeting GLS1-Complex I for future therapy.
Collapse
Affiliation(s)
| | | | | | - Vasanta Putluri
- Dan L Duncan Comprehensive Cancer Center
- Advanced Technology Cores
| | | | - Abu Hena Mostafa Kamal
- Department of Molecular and Cellular Biology
- Dan L Duncan Comprehensive Cancer Center
- Advanced Technology Cores
| | - Jun Xu
- Department of Molecular and Cellular Biology
- Advanced Technology Cores
| | | | - Shixia Huang
- Department of Molecular and Cellular Biology
- Dan L Duncan Comprehensive Cancer Center
- Advanced Technology Cores
- Huffington Department of Education, Innovation and Technology
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, and
| | - Livia S Eberlin
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Jabril R Johnson
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Rick A Kittles
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Leomar Y Ballester
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Krishna Parsawar
- Analytical and Biological Mass Spectrometry Core, University of Arizona, Tucson, Arizona, USA
| | - M Minhaj Siddiqui
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Roni J Bollag
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Martha K Terris
- Department of Urology, Medical College of Georgia, Augusta, Georgia, USA
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chad J Creighton
- Dan L Duncan Comprehensive Cancer Center
- Department of Medicine and
| | - Seth P Lerner
- Dan L Duncan Comprehensive Cancer Center
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology
- Dan L Duncan Comprehensive Cancer Center
| | | | - Nagireddy Putluri
- Department of Molecular and Cellular Biology
- Dan L Duncan Comprehensive Cancer Center
- Advanced Technology Cores
| |
Collapse
|
23
|
Ramadan FHJ, Koszegi B, Vantus VB, Fekete K, Kiss GN, Rizsanyi B, Bognar R, Gallyas F, Bognar Z. Comparison of Mitochondrial and Antineoplastic Effects of Amiodarone and Desethylamiodarone in MDA-MB-231 Cancer Line. Int J Mol Sci 2024; 25:9781. [PMID: 39337269 PMCID: PMC11432025 DOI: 10.3390/ijms25189781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Previously, we have demonstrated that amiodarone (AM), a widely used antiarrhythmic drug, and its major metabolite desethylamiodarone (DEA) both affect several mitochondrial processes in isolated heart and liver mitochondria. Also, we have established DEA's antitumor properties in various cancer cell lines and in a rodent metastasis model. In the present study, we compared AM's and DEA's mitochondrial and antineoplastic effects in a human triple-negative breast cancer (TNBC) cell line. Both compounds reduced viability in monolayer and sphere cultures and the invasive growth of the MDA-MB-231 TNBC line by inducing apoptosis. They lowered mitochondrial trans-membrane potential, increased Ca2+ influx, induced mitochondrial permeability transition, and promoted mitochondrial fragmentation. In accordance with their mitochondrial effects, both substances massively decreased overall, and even to a greater extent, mitochondrial ATP production decreased, as determined using a Seahorse live cell respirometer. In all these effects, DEA was more effective than AM, indicating that DEA may have higher potential in the therapy of TNBC than its parent compound.
Collapse
Affiliation(s)
- Fadi H J Ramadan
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Balazs Koszegi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Viola B Vantus
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Katalin Fekete
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Gyongyi N Kiss
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Balint Rizsanyi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Rita Bognar
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Zita Bognar
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| |
Collapse
|
24
|
Adu-Amankwaah F, Februarie C, Nyambo K, Maarman G, Tshililo N, Mabasa L, Mavumengwana V, Baatjies L. Cytotoxic properties, glycolytic effects and high-resolution respirometry mitochondrial activities of Eriocephalus racemosus against MDA-MB 231 triple-negative breast cancer. BMC Complement Med Ther 2024; 24:332. [PMID: 39256791 PMCID: PMC11389270 DOI: 10.1186/s12906-024-04615-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) represents a significant global health crisis due to its resistance to conventional therapies and lack of specific molecular targets. This study explored the potential of Eriocephalus racemosus (E. racemosus) as an alternative treatment for TNBC. The cytotoxic properties and high-resolution respirometry mitochondrial activities of E. racemosus against the MDA-MB 231 TNBC cell line were evaluated. METHODS Hexane solvent and bioactive fraction extractions of E. racemosus were performed, while mass spectrometry-based metabolite profiling was used to identify the phytochemical constituents of the extracts. The extracts were further tested against MDA-MB 231 TNBC cells to determine their cytotoxicity. The mode of cell death was determined using flow cytometry. The activities of caspases 3, 8, and 9 were assessed using a multiplex activity assay kit. Glycolytic activity and High-resolution respirometry measurements of mitochondrial function in the MDA-MB 231 cell line were conducted using the Seahorse XFp and Oroboros O2K. RESULTS Metabolite profiling of E. racemosus plant crude extracts identified the presence of coumarins, flavonoids, sesquiterpenoids, triterpenoids, and unknown compounds. The extracts demonstrated promising cytotoxic activities, with a half maximal inhibitory concentration (IC50) of 12.84 µg/mL for the crude hexane extract and 15.49 µg/mL for the bioactive fraction. Further, the crude hexane and bioactive fraction extracts induced apoptosis in the MDA-MB-231 TNBC cells, like the reference drug cisplatin (17.44%, 17.26% and 20.25%, respectively) compared to untreated cells. Caspase 3 activities confirmed the induction of apoptosis in both cisplatin and the plant crude extracts, while caspase 8 and 9 activities confirmed the activation of both the intrinsic and extrinsic apoptosis pathways. Increased levels of glycolytic activity were observed in the hexane crude extract. High-resolution respiratory measurements showed elevated mitochondrial activities in all mitochondrial states except for complex-IV activity. CONCLUSION These findings support further exploration of E. racemosus as a potential therapeutic agent for TNBC, offering a promising avenue for the development of targeted treatments with minimal adverse effects.
Collapse
Affiliation(s)
- Francis Adu-Amankwaah
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Candice Februarie
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health Science, CARMA: Centre for Cardio-Metabolic Research in Africa, Stellenbosch University, Cape Town, 8000, South Africa
| | - Kudakwashe Nyambo
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerald Maarman
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health Science, CARMA: Centre for Cardio-Metabolic Research in Africa, Stellenbosch University, Cape Town, 8000, South Africa
| | - Ndivhuwo Tshililo
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform (BRIP), Medical Research Council, Tygerberg, Cape Town, South Africa
| | - Vuyo Mavumengwana
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Biomedical Research and Innovation Platform (BRIP), Medical Research Council, Tygerberg, Cape Town, South Africa
| | - Lucinda Baatjies
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
- Biomedical Research and Innovation Platform (BRIP), Medical Research Council, Tygerberg, Cape Town, South Africa.
| |
Collapse
|
25
|
Li M, Zhang Z, He L, Wang X, Yin J, Wang X, You Y, Qian X, Ge X, Shi Z. SMYD2 induced PGC1α methylation promotes stemness maintenance of glioblastoma stem cells. Neuro Oncol 2024; 26:1587-1601. [PMID: 38721826 PMCID: PMC11376450 DOI: 10.1093/neuonc/noae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND The high fatality rate of glioblastoma (GBM) is attributed to glioblastoma stem cells (GSCs), which exhibit heterogeneity and therapeutic resistance. Metabolic plasticity of mitochondria is the hallmark of GSCs. Targeting mitochondrial biogenesis of GSCs is crucial for improving clinical prognosis in GBM patients. METHODS SMYD2-induced PGC1α methylation and followed nuclear export are confirmed by co-immunoprecipitation, cellular fractionation, and immunofluorescence. The effects of SMYD2/PGC1α/CRM1 axis on GSCs mitochondrial biogenesis are validated by oxygen consumption rate, ECAR, and intracranial glioma model. RESULTS PGC1α methylation causes the disabled mitochondrial function to maintain the stemness, thereby enhancing the radio-resistance of GSCs. SMYD2 drives PGC1α K224 methylation (K224me), which is essential for promoting the stem-like characteristics of GSCs. PGC1α K224me is preferred binding with CRM1, accelerating PGC1α nuclear export and subsequent dysfunction. Targeting PGC1α methylation exhibits significant radiotherapeutic efficacy and prolongs patient survival. CONCLUSIONS These findings unveil a novel regulatory pathway involving mitochondria that govern stemness in GSCs, thereby emphasizing promising therapeutic strategies targeting PGC1α and mitochondria for the treatment of GBM.
Collapse
Affiliation(s)
- Mengdie Li
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhixiang Zhang
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Liuguijie He
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiefeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianxing Yin
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Yu F, Li X, Sheng C, Li L. DNA Nanotechnology Targeting Mitochondria: From Subcellular Molecular Imaging to Tailor-Made Therapeutics. Angew Chem Int Ed Engl 2024; 63:e202409351. [PMID: 38872505 DOI: 10.1002/anie.202409351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/15/2024]
Abstract
Mitochondria, one of the most important organelles, represent a crucial subcellular target for fundamental research and biomedical applications. Despite significant advances in the design of DNA nanotechnologies for a variety of bio-applications, the dearth of strategies that enable mitochondria targeting for subcellular molecular imaging and therapy remains an outstanding challenge in this field. In this Minireview, we summarize the recent progresses on the emerging design and application of DNA nanotechnology for mitochondria-targeted molecular imaging and tumor treatment. We first highlight the engineering of mitochondria-localized DNA nanosensors for in situ detection and imaging of diverse key molecules that are essential to maintain mitochondrial functions, including mitochondrial DNA and microRNA, enzymes, small molecules, and metal ions. Then, we compile the developments of DNA nanotechnologies for mitochondria-targeted anti-tumor therapy, including modularly designed DNA nanodevices for subcellular delivery of therapeutic agents, and programmed DNA assembly for mitochondrial interference. We will place an emphasis on clarification of the chemical principles of how DNA nanobiotechnology can be designed to target mitochondria for various biomedical applications. Finally, the remaining challenges and future directions in this emerging field will be discussed, hoping to inspire further development of advanced DNA toolkits for both academic and clinical research regarding mitochondria.
Collapse
Affiliation(s)
- Fangzhi Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangfei Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuangui Sheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Kong Q, Zhu Q, Yang Y, Wang W, Qian J, Chen Y. Current status and trend of mitochondrial research in lung cancer: A bibliometric and visualization analysis. Heliyon 2024; 10:e34442. [PMID: 39144972 PMCID: PMC11320136 DOI: 10.1016/j.heliyon.2024.e34442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
This study summarizes and analyzes the relationship between mitochondria and the pathogenesis of lung cancer. The related articles in the Web of Science core literature database are searched and collected, and the data are processed by R software, Citespace, VOSviewer, and Excel. A total of 4476 related papers were retrieved, 4476 articles from 20162 co-authors of 3968 institutions in 84 countries and published in 951 journals. Through various bibliometric analysis tools, the relationship between mitochondria and the pathogenesis of lung cancer was analyzed, the previous research results were summarized, and the potential research direction was found.
Collapse
Affiliation(s)
- Qing Kong
- Functional Examination Department, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, PR China
| | - Qingyong Zhu
- Functional Examination Department, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, PR China
| | - Yuxia Yang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, PR China
| | - Wei Wang
- Clinical Medical College, Weifang Medical University, Weifang, 261053, PR China
| | - Juan Qian
- Functional Examination Department, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, PR China
| | - Yong Chen
- Functional Examination Department, Northern Jiangsu People's Hospital, Affiliated to Yangzhou University, Yangzhou, 225001, PR China
| |
Collapse
|
28
|
Xu Y, Baylink DJ, Xiao J, Tran L, Nguyen V, Park B, Valladares I, Lee S, Codorniz K, Tan L, Chen CS, Abdel-Azim H, Reeves ME, Mirshahidi H, Marcucci G, Cao H. Discovery of NFκB2-Coordinated Dual Regulation of Mitochondrial and Nuclear Genomes Leads to an Effective Therapy for Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:8532. [PMID: 39126100 PMCID: PMC11313218 DOI: 10.3390/ijms25158532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Acute myeloid leukemia (AML) has a poor survival rate for both pediatric and adult patients due to its frequent relapse. To elucidate the bioenergetic principle underlying AML relapse, we investigated the transcriptional regulation of mitochondrial-nuclear dual genomes responsible for metabolic plasticity in treatment-resistant blasts. Both the gain and loss of function results demonstrated that NFκB2, a noncanonical transcription factor (TF) of the NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) family, can control the expression of TFAM (mitochondrial transcription factor A), which is known to be essential for metabolic biogenesis. Furthermore, genetic tracking and promoter assays revealed that NFκB2 is in the mitochondria and can bind the specific "TTGGGGGGTG" region of the regulatory D-loop domain to activate the light-strand promoter (LSP) and heavy-strand promoter 1 (HSP1), promoters of the mitochondrial genome. Based on our discovery of NFκB2's novel function of regulating mitochondrial-nuclear dual genomes, we explored a novel triplet therapy including inhibitors of NFκB2, tyrosine kinase, and mitochondrial ATP synthase that effectively eliminated primary AML blasts with mutations of the FMS-related receptor tyrosine kinase 3 (FLT3) and displayed minimum toxicity to control cells ex vivo. As such, effective treatments for AML must include strong inhibitory actions on the dual genomes mediating metabolic plasticity to improve leukemia prognosis.
Collapse
Affiliation(s)
- Yi Xu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.-S.C.)
- Division Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - David J. Baylink
- Division Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jeffrey Xiao
- Division Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Lily Tran
- Division Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Vinh Nguyen
- Division Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Brandon Park
- Division Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ismael Valladares
- Division Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Scott Lee
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Kevin Codorniz
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Laren Tan
- Division of Pulmonary, Critical Care, Hyperbaric and Sleep Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Chien-Shing Chen
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.-S.C.)
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hisham Abdel-Azim
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.-S.C.)
- Division of Transplant and Cell Therapy, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
- Division of Hematology and Oncology, Department of Pediatrics, Loma Linda University, Loma Linda, CA 92354, USA
| | - Mark E. Reeves
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.-S.C.)
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hamid Mirshahidi
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.-S.C.)
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA 91010, USA
| | - Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.-S.C.)
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
29
|
Zunica ERM, Axelrod CL, Gilmore LA, Gnaiger E, Kirwan JP. The bioenergetic landscape of cancer. Mol Metab 2024; 86:101966. [PMID: 38876266 PMCID: PMC11259816 DOI: 10.1016/j.molmet.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Bioenergetic remodeling of core energy metabolism is essential to the initiation, survival, and progression of cancer cells through exergonic supply of adenosine triphosphate (ATP) and metabolic intermediates, as well as control of redox homeostasis. Mitochondria are evolutionarily conserved organelles that mediate cell survival by conferring energetic plasticity and adaptive potential. Mitochondrial ATP synthesis is coupled to the oxidation of a variety of substrates generated through diverse metabolic pathways. As such, inhibition of the mitochondrial bioenergetic system by restricting metabolite availability, direct inhibition of the respiratory Complexes, altering organelle structure, or coupling efficiency may restrict carcinogenic potential and cancer progression. SCOPE OF REVIEW Here, we review the role of bioenergetics as the principal conductor of energetic functions and carcinogenesis while highlighting the therapeutic potential of targeting mitochondrial functions. MAJOR CONCLUSIONS Mitochondrial bioenergetics significantly contribute to cancer initiation and survival. As a result, therapies designed to limit oxidative efficiency may reduce tumor burden and enhance the efficacy of currently available antineoplastic agents.
Collapse
Affiliation(s)
- Elizabeth R M Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
30
|
Yu JF, Li J, Li M. An Intramolecular Rotor-Bridged Dimeric Cyanine Photothermal Transducer for Efficient Near-Infrared II Fluorescence Imaging-Guided Mitochondria-Targeted Phototherapy. ACS Sens 2024; 9:3581-3593. [PMID: 38958530 DOI: 10.1021/acssensors.4c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Near-infrared (NIR) heptamethine cyanine (HCy) dyes are promising photothermal transducers for image-guided cancer treatment owing to their prominent photophysical properties and high photothermal conversion ability. However, HCy photothermal transducers usually have poor photostability due to degradation induced by the self-generated reactive oxygen species. Herein, a novel mitochondria-targeting dimeric HCy dye, named dimeric oBHCy, is rationally designed, exhibiting strong near-infrared II (NIR-II) fluorescence emission, high photothermal conversion efficiency (PCE), and excellent photostability. The large π-conjugation and drastic intramolecular motion of the diphenol rotor in the dimeric oBHCy enhance the nonradiative energy dissipation and suppress the intersystem crossing process, thereby achieving a high PCE (49.2%) and improved photostability. Impressively, dimeric oBHCy can precisely target mitochondria and induce mitochondrial damage upon NIR light irradiation. Under the guidance of in vivo NIR-II fluorescence imaging, efficient NIR light-activated photothermal therapy of 4T1 breast tumors is accomplished with a tumor inhibitory rate of 96% following a single injection of the dimeric oBHCy. This work offers an innovative strategy for designing cyanine photothermal transducers with integrated NIR-II fluorescence and photothermal properties for efficient cancer theranostics.
Collapse
Affiliation(s)
- Jin-Feng Yu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jialian Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 PR China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
31
|
Hajihassani O, Zarei M, Roichman A, Loftus A, Boutros CS, Hue J, Naji P, Boyer J, Tahan S, Gallagher P, Beegan W, Choi J, Lei S, Kim C, Rathore M, Nakazzi F, Shah I, Lebo K, Cheng H, Mudigonda A, Alibeckoff S, Ji K, Graor H, Miyagi M, Vaziri-Gohar A, Brunengraber H, Wang R, Lund PJ, Rothermel LD, Rabinowitz JD, Winter JM. A Ketogenic Diet Sensitizes Pancreatic Cancer to Inhibition of Glutamine Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604377. [PMID: 39211182 PMCID: PMC11361133 DOI: 10.1101/2024.07.19.604377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pancreatic cancer is the third leading cause of cancer death in the United States, and while conventional chemotherapy remains the standard treatment, responses are poor. Safe and alternative therapeutic strategies are urgently needed 1 . A ketogenic diet has been shown to have anti-tumor effects across diverse cancer types but will unlikely have a significant effect alone. However, the diet shifts metabolism in tumors to create new vulnerabilities that can be targeted (1). Modulators of glutamine metabolism have shown promise in pre-clinical models but have failed to have a marked impact against cancer in the clinic. We show that a ketogenic diet increases TCA and glutamine-associated metabolites in murine pancreatic cancer models and under metabolic conditions that simulate a ketogenic diet in vitro. The metabolic shift leads to increased reliance on glutamine-mediated anaplerosis to compensate for low glucose abundance associated with a ketogenic diet. As a result, glutamine metabolism inhibitors, such as DON and CB839 in combination with a ketogenic diet had robust anti-cancer effects. These findings provide rationale to study the use of a ketogenic diet with glutamine targeted therapies in a clinical context.
Collapse
|
32
|
Kim J, Park SH, Kim DY, Ryu HW, Jun HS. Molecular Mechanisms of Anticarcinogenic Potential of Hydrocotyle umbellata and Its Major Components. Nutr Cancer 2024; 76:1018-1030. [PMID: 38994559 DOI: 10.1080/01635581.2024.2377344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Despite the development of several anticancer treatments, there remains a need for new drugs that can overcome resistance and reduce side effects. While the medicinal herb Hydrocotyle umbellata (H. umbellata) has been used to relieve pain and inflammation, its antitumor properties have not yet been explored. In this study, we investigated the anticarcinogenic potential of H. umbellata extract (HUE) and its major components, as well as the underlying molecular mechanisms. Our results showed that HUE inhibited the growth of various tumor cell lines, including B16F10, without affecting non-cancer cells. Furthermore, HUE was effective in treating and preventing tumor growth in mice. Our mechanistic studies revealed that HUE inhibited cellular respiration, thereby reducing tumor cell proliferation. When combined with 2-deoxy-D-glucose, HUE demonstrated an enhanced anticancer effect by increasing the rate apoptosis. Analysis of the ethyl acetate and n-butanol fractions of HUE identified 1,3,4-trihydroxy-2-butanyl-α-d-glucopyranoside and caffeoylquinic acid derivatives as the major components responsible for the observed anticancer effects. In conclusion, our findings suggest that HUE and its two major components have the potential to be developed as effective therapeutic agents for a wide range of tumors by targeting cancer cell metabolism.
Collapse
Affiliation(s)
- Jaeyong Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Sang Hyuk Park
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk-do, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk-do, Republic of Korea
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| |
Collapse
|
33
|
Wang X, Liu H, Fei Y, Song Z, Meng X, Yu J, Liu X, Li L, Qiu L, Qian Z, Zhou S, Wang X, Zhang H. Metabolic pathway-based subtyping reveals distinct microenvironmental states associated with diffuse large B-cell lymphoma outcomes. Hematol Oncol 2024; 42:e3279. [PMID: 38819002 DOI: 10.1002/hon.3279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/22/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a biologically and clinically heterogeneous disease that requires personalized clinical treatment. Assigning patients to different risk categories and cytogenetic abnormality and genetic mutation groups has been widely applied for prognostic stratification of DLBCL. Increasing evidence has demonstrated that dysregulated metabolic processes contribute to the initiation and progression of DLBCL. Metabolic competition within the tumor microenvironment is also known to influence immune cell metabolism. However, metabolism- and immune-related stratification has not been established. Here, 1660 genes involved in 84 metabolic pathways were selected and tested to establish metabolic clusters (MECs) of DLBCL. MECs established based on independent lymphoma datasets distinguished different survival outcomes. The CIBERSORT algorithm and EcoTyper were applied to quantify the relative abundance of immune cell types and identify variation in cell states for 13 lineages comprising the tumor micro environment among different MECs, respectively. Functional characterization showed that MECs were an indicator of the immune microenvironment and correlated with distinctive mutational characteristics and oncogenic signaling pathways. The novel immune-related MECs exhibited promising clinical prognostic value and potential for informing DLBCL treatment decisions.
Collapse
Affiliation(s)
- Xiaohui Wang
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Hengqi Liu
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Yue Fei
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Zheng Song
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Xiangrui Meng
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Jingwei Yu
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Xia Liu
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Lanfang Li
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Lihua Qiu
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Zhengzi Qian
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Shiyong Zhou
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Xianhuo Wang
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Huilai Zhang
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine and Department of Lymphoma, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, The Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| |
Collapse
|
34
|
Zhang Y, Yan H, Wei Y, Wei X. Decoding mitochondria's role in immunity and cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189107. [PMID: 38734035 DOI: 10.1016/j.bbcan.2024.189107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The functions of mitochondria, including energy production and biomolecule synthesis, have been known for a long time. Given the rising incidence of cancer, the role of mitochondria in cancer has become increasingly popular. Activated by components released by mitochondria, various pathways interact with each other to induce immune responses to protect organisms from attack. However, mitochondria play dual roles in the progression of cancer. Abnormalities in proteins, which are the elementary structures of mitochondria, are closely linked with oncogenesis. Both the aberrant accumulation of intermediates and mutations in enzymes result in the generation and progression of cancer. Therefore, targeting mitochondria to treat cancer may be a new strategy. Several drugs aimed at inhibiting mutated enzymes and accumulated intermediates have been tested clinically. Here, we discuss the current understanding of mitochondria in cancer and the interactions between mitochondrial functions, immune responses, and oncogenesis. Furthermore, we discuss mitochondria as hopeful targets for cancer therapy, providing insights into the progression of future therapeutic strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China
| | - Hong Yan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China.
| |
Collapse
|
35
|
Khadka P, Young CKJ, Sachidanandam R, Brard L, Young MJ. Our current understanding of the biological impact of endometrial cancer mtDNA genome mutations and their potential use as a biomarker. Front Oncol 2024; 14:1394699. [PMID: 38993645 PMCID: PMC11236604 DOI: 10.3389/fonc.2024.1394699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Endometrial cancer (EC) is a devastating and common disease affecting women's health. The NCI Surveillance, Epidemiology, and End Results Program predicted that there would be >66,000 new cases in the United States and >13,000 deaths from EC in 2023, and EC is the sixth most common cancer among women worldwide. Regulation of mitochondrial metabolism plays a role in tumorigenesis. In proliferating cancer cells, mitochondria provide the necessary building blocks for biosynthesis of amino acids, lipids, nucleotides, and glucose. One mechanism causing altered mitochondrial activity is mitochondrial DNA (mtDNA) mutation. The polyploid human mtDNA genome is a circular double-stranded molecule essential to vertebrate life that harbors genes critical for oxidative phosphorylation plus mitochondrial-derived peptide genes. Cancer cells display aerobic glycolysis, known as the Warburg effect, which arises from the needs of fast-dividing cells and is characterized by increased glucose uptake and conversion of glucose to lactate. Solid tumors often contain at least one mtDNA substitution. Furthermore, it is common for cancer cells to harbor mixtures of wild-type and mutant mtDNA genotypes, known as heteroplasmy. Considering the increase in cancer cell energy demand, the presence of functionally relevant carcinogenesis-inducing or environment-adapting mtDNA mutations in cancer seems plausible. We review 279 EC tumor-specific mtDNA single nucleotide variants from 111 individuals from different studies. Many transition mutations indicative of error-prone DNA polymerase γ replication and C to U deamination events were present. We examine the spectrum of mutations and their heteroplasmy and discuss the potential biological impact of recurrent, non-synonymous, insertion, and deletion mutations. Lastly, we explore current EC treatments, exploiting cancer cell mitochondria for therapy and the prospect of using mtDNA variants as an EC biomarker.
Collapse
Affiliation(s)
- Pabitra Khadka
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Carolyn K J Young
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | | | - Laurent Brard
- Obstetrics & Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Simmons Cancer Institute, Springfield, IL, United States
| | - Matthew J Young
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
- Simmons Cancer Institute, Springfield, IL, United States
| |
Collapse
|
36
|
Huang XQ, Wu RC, Liang JM, Zhou Z, Qin QP, Liang H. Anticancer activity of 8-hydroxyquinoline-triphenylphosphine rhodium(III) complexes targeting mitophagy pathways. Eur J Med Chem 2024; 272:116478. [PMID: 38718624 DOI: 10.1016/j.ejmech.2024.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/27/2024]
Abstract
Metallodrugs exhibiting distinct mechanisms of action compared with cisplatin hold promise for overcoming cisplatin resistance and improving the efficacy of anticancer drugs. In this study, a new series of rhodium (Rh)(III) complexes containing tris(triphenylphosphine)rhodium(I) chloride [(TPP)3RhCl] (TPP = triphenylphosphine, TPP=O = triphenylphosphine oxide) and 8-hydroxyquinoline derivatives (H-XR1-H-XR4), namely [Rh(XR1)2(TPP)Cl]·(TPP=O) (Yulin Normal University-1a [YNU-1a]), [Rh(XR2)2(TPP)Cl] (YNU-1b), [Rh(XR3)2(TPP)Cl] (YNU-1c), and [Rh(XR4)2(TPP)Cl] (YNU-1d), was synthesized and characterized via X-ray diffraction, mass spectrometry and IR. The cytotoxicity of the compounds YNU-1a-YNU-1d in Hep-G2 and HCC1806 human cancer cell lines and normal HL-7702 cell line was evaluated. YNU-1c exhibited cytotoxicity and selectivity in HCC1806 cells (IC50 = 0.13 ± 0.06 μM, selectivity factor (SF) = 384.6). The compounds YNU-1b and YNU-1c, which were selected for mechanistic studies, induced the activation of apoptotic pathways and mitophagy. In addition, these compounds released cytochrome c, cleaved caspase-3/pro-caspase-3 and downregulated the levels of mitochondrial respiratory chain complexes I/IV (M1 and M4) and ATP. The compound YNU-1c, which was selected for in vivo experiments, exhibited tumor growth inhibition (58.9 %). Importantly, hematoxylin and eosin staining and TUNEL revealed that HCC1806 tumor tissues exhibited significant apoptotic characteristics. YNU-1a-YNU-1d compounds are promising drug candidates that can be used to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Xiao-Qiong Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Run-Chun Wu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Jian-Min Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Zhen Zhou
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| |
Collapse
|
37
|
Liu L, Zhao Q, Xiong D, Li D, Du J, Huang Y, Yang Y, Chen R. Suppressing mitochondrial inner membrane protein (IMMT) inhibits the proliferation of breast cancer cells through mitochondrial remodeling and metabolic regulation. Sci Rep 2024; 14:12766. [PMID: 38834715 PMCID: PMC11150385 DOI: 10.1038/s41598-024-63427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Metabolic reprogramming is widely recognized as a hallmark of malignant tumors, and the targeting of metabolism has emerged as an appealing approach for cancer treatment. Mitochondria, as pivotal organelles, play a crucial role in the metabolic regulation of tumor cells, and their morphological and functional alterations are intricately linked to the biological characteristics of tumors. As a key regulatory subunit of mitochondria, mitochondrial inner membrane protein (IMMT), plays a vital role in degenerative diseases, but its role in tumor is almost unknown. The objective of this research was to investigate the roles that IMMT play in the development and progression of breast cancer (BC), as well as to elucidate the underlying biological mechanisms that drive these effects. In this study, it was confirmed that the expression of IMMT in BC tissues was significantly higher than that in normal tissues. The analysis of The Cancer Genome Atlas (TCGA) database revealed that IMMT can serve as an independent prognostic factor for BC patients. Additionally, verification in clinical specimens of BC demonstrated a positive association between high IMMT expression and larger tumor size (> 2 cm), Ki-67 expression (> 15%), and HER-2 status. Furthermore, in vitro experiments have substantiated that the suppression of IMMT expression resulted in a reduction in cell proliferation and alterations in mitochondrial cristae, concomitant with the liberation of cytochrome c, but it did not elicit mitochondrial apoptosis. Through Gene Set Enrichment Analysis (GSEA) analysis, we have predicted the associated metabolic genes and discovered that IMMT potentially modulates the advancement of BC through its interaction with 16 metabolic-related genes, and the changes in glycolysis related pathways have been validated in BC cell lines after IMMT inhibition. Consequently, this investigation furnishes compelling evidence supporting the classification of IMMT as prognostic marker in BC, and underscoring its prospective utility as a novel target for metabolic therapy.
Collapse
Affiliation(s)
- Li Liu
- Clinical Medical College, Zunyi Medical University, Zunyi, China
| | - Qingqing Zhao
- Clinical Medical College, Zunyi Medical University, Zunyi, China
| | - Daigang Xiong
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dan Li
- Clinical Medical College, Zunyi Medical University, Zunyi, China
| | - Jie Du
- Department of Laboratory Medicine, Affiliated Hospital of ZunYi Medical University, Zunyi, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, China
| | - Yunfei Huang
- Department of Laboratory Medicine, Affiliated Hospital of ZunYi Medical University, Zunyi, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, China
| | - Yan Yang
- Department of Laboratory Medicine, Affiliated Hospital of ZunYi Medical University, Zunyi, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, China.
| | - Rui Chen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
38
|
Lopes EC, Shi F, Sawant A, Ibrahim M, Gomez-Jenkins M, Hu Z, Manchiraju P, Bhatt V, Wang W, Hinrichs CS, Wallace DC, Su X, Rabinowitz JD, Chan CS, Guo JY, Ganesan S, Lattime EC, White E. RESPIRATION DEFECTS LIMIT SERINE SYNTHESIS REQUIRED FOR LUNG CANCER GROWTH AND SURVIVAL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596339. [PMID: 38853873 PMCID: PMC11160605 DOI: 10.1101/2024.05.28.596339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mitochondrial function is important for both energetic and anabolic metabolism. Pathogenic mitochondrial DNA (mtDNA) mutations directly impact these functions, resulting in the detrimental consequences seen in human mitochondrial diseases. The role of pathogenic mtDNA mutations in human cancers is less clear; while pathogenic mtDNA mutations are observed in some cancer types, they are almost absent in others. We report here that the proofreading mutant DNA polymerase gamma ( PolG D256A ) induced a high mtDNA mutation burden in non-small-cell lung cancer (NSCLC), and promoted the accumulation of defective mitochondria, which is responsible for decreased tumor cell proliferation and viability and increased cancer survival. In NSCLC cells, pathogenic mtDNA mutations increased glycolysis and caused dependence on glucose. The glucose dependency sustained mitochondrial energetics but at the cost of a decreased NAD+/NADH ratio that inhibited de novo serine synthesis. Insufficient serine synthesis, in turn, impaired the downstream synthesis of GSH and nucleotides, leading to impaired tumor growth that increased cancer survival. Unlike tumors with intact mitochondrial function, NSCLC with pathogenic mtDNA mutations were sensitive to dietary serine and glycine deprivation. Thus, mitochondrial function in NSCLC is required specifically to sustain sufficient serine synthesis for nucleotide production and redox homeostasis to support tumor growth, explaining why these cancers preserve functional mtDNA. In brief High mtDNA mutation burden in non-small-cell lung cancer (NSCLC) leads to the accumulation of respiration-defective mitochondria and dependency on glucose and glycolytic metabolism. Defective respiratory metabolism causes a massive accumulation of cytosolic nicotinamide adenine dinucleotide + hydrogen (NADH), which impedes serine synthesis and, thereby, glutathione (GSH) and nucleotide synthesis, leading to impaired tumor growth and increased survival. Highlights Proofreading mutations in Polymerase gamma led to a high burden of mitochondrial DNA mutations, promoting the accumulation of mitochondria with respiratory defects in NSCLC.Defective respiration led to reduced proliferation and viability of NSCLC cells increasing survival to cancer.Defective respiration caused glucose dependency to fuel elevated glycolysis.Altered glucose metabolism is associated with high NADH that limits serine synthesis, leading to impaired GSH and nucleotide production.Mitochondrial respiration defects sensitize NSCLC to dietary serine/glycine starvation, further increasing survival. Abstract Figure
Collapse
|
39
|
Hoogstraten CA, Schirris TJJ, Russel FGM. Unlocking mitochondrial drug targets: The importance of mitochondrial transport proteins. Acta Physiol (Oxf) 2024; 240:e14150. [PMID: 38666512 DOI: 10.1111/apha.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/02/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
A disturbed mitochondrial function contributes to the pathology of many common diseases. These organelles are therefore important therapeutic targets. On the contrary, many adverse effects of drugs can be explained by a mitochondrial off-target effect, in particular, due to an interaction with carrier proteins in the inner membrane. Yet this class of transport proteins remains underappreciated and understudied. The aim of this review is to provide a deeper understanding of the role of mitochondrial carriers in health and disease and their significance as drug targets. We present literature-based evidence that mitochondrial carrier proteins are associated with prevalent diseases and emphasize their potential as drug (off-)target sites by summarizing known mitochondrial drug-transporter interactions. Studying these carriers will enhance our knowledge of mitochondrial drug on- and off-targets and provide opportunities to further improve the efficacy and safety of drugs.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom J J Schirris
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans G M Russel
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
40
|
Wang TY, Zhu XY, Jia HR, Zhu YX, Zhou YX, Li YH, Gao CZ, Pan GY, Wu FG. Devastating the Supply Wagons: Multifaceted Liposomes Capable of Exhausting Tumor to Death via Triple Energy Depletion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308861. [PMID: 38372029 DOI: 10.1002/smll.202308861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/08/2024] [Indexed: 02/20/2024]
Abstract
The anabolism of tumor cells can not only support their proliferation, but also endow them with a steady influx of exogenous nutrients. Therefore, consuming metabolic substrates or limiting access to energy supply can be an effective strategy to impede tumor growth. Herein, a novel treatment paradigm of starving-like therapy-triple energy-depleting therapy-is illustrated by glucose oxidase (GOx)/dc-IR825/sorafenib liposomes (termed GISLs), and such a triple energy-depleting therapy exhibits a more effective tumor-killing effect than conventional starvation therapy that only cuts off one of the energy supplies. Specifically, GOx can continuously consume glucose and generate toxic H2O2 in the tumor microenvironment (including tumor cells). After endocytosis, dc-IR825 (a near-infrared cyanine dye) can precisely target mitochondria and exert photodynamic and photothermal activities upon laser irradiation to destroy mitochondria. The anti-angiogenesis effect of sorafenib can further block energy and nutrition supply from blood. This work exemplifies a facile and safe method to exhaust the energy in a tumor from three aspects and starve the tumor to death and also highlights the importance of energy depletion in tumor treatment. It is hoped that this work will inspire the development of more advanced platforms that can combine multiple energy depletion therapies to realize more effective tumor treatment.
Collapse
Affiliation(s)
- Tian-Yu Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Xiao-Yu Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Yong-Xi Zhou
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Yan-Hong Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Cheng-Zhe Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Guang-Yu Pan
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541100, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| |
Collapse
|
41
|
Sheng X, Wang MM, Zhang GD, Su Y, Fang HB, Yu ZH, Su Z. Dual inhibition of oxidative phosphorylation and glycolysis to enhance cancer therapy. Bioorg Chem 2024; 147:107325. [PMID: 38583247 DOI: 10.1016/j.bioorg.2024.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/07/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Dual suppression of oxidative phosphorylation (OXPHOS) and glycolysis can disrupt metabolic adaption of cancer cells, inhibiting energy supply and leading to successful cancer therapy. Herein, we have developed an α-tocopheryl succinate (α-TOS)-functionalized iridium(III) complex Ir2, a highly lipophilic mitochondria targeting anticancer molecule, could inhibit both oxidative phosphorylation (OXPHOS) and glycolysis, resulting in the energy blockage and cancer growth suppression. Mechanistic studies reveal that complex Ir2 induces reactive oxygen species (ROS) elevation and mitochondrial depolarization, and triggers DNA oxidative damage. These damages could evoke the cancer cell death with the mitochondrial-relevant apoptosis and autophagy. 3D tumor spheroids experiment demonstrates that Ir2 owned superior antiproliferation performance, as the potent anticancer agent in vivo. This study not only provided a new path for dual inhibition of both mitochondrial OXPHOS and glycolytic metabolisms with a novel α-TOS-functionalized metallodrug, but also further demonstrated that the mitochondrial-relevant therapy could be effective in enhancing the anticancer performance.
Collapse
Affiliation(s)
- Xi Sheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Guan-Dong Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| | - Hong-Bao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zheng-Hong Yu
- Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
42
|
XIA ZHIGANG, TIAN MENGYAO, CHENG YUCAI, YI WENFANG, DU ZEFAN, LI TIANWEN, WEN YUCHEN, LI LINDI, LIU YONG, CHEN CHUN. Preclinical evaluation of cyclophosphamide and fludarabine combined with CD19 CAR-T in the treatment of B-cell hematologic malignancies in vivo. Oncol Res 2024; 32:1109-1118. [PMID: 38827326 PMCID: PMC11136684 DOI: 10.32604/or.2024.049792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 06/04/2024] Open
Abstract
Background Chimeric antigen receptor T (CAR-T) cell therapy has achieved marked therapeutic success in ameliorating hematological malignancies. However, there is an extant void in the clinical guidelines concerning the most effective chemotherapy regimen prior to chimeric antigen receptor T (CAR-T) cell therapy, as well as the optimal timing for CAR-T cell infusion post-chemotherapy. Materials and Methods We employed cell-derived tumor xenograft (CDX) murine models to delineate the optimal pre-conditioning chemotherapy regimen and timing for CAR-T cell treatment. Furthermore, transcriptome sequencing was implemented to identify the therapeutic targets and elucidate the underlying mechanisms governing the treatment regimen. Results Our preclinical in vivo evaluation determined that a combination of cyclophosphamide and fludarabine, followed by the infusion of CD19 CAR-T cells five days subsequent to the chemotherapy, exerts the most efficacious therapeutic effect in B-cell hematological malignancies. Concurrently, RNA-seq data indicated that the therapeutic efficacy predominantly perturbs tumor cell metabolism, primarily through the inhibition of key mitochondrial targets, such as C-Jun Kinase enzyme (C-JUN). Conclusion In summary, the present study offers critical clinical guidance and serves as an authoritative reference for the deployment of CD19 CAR-T cell therapy in the treatment of B-cell hematological malignancies.
Collapse
Affiliation(s)
- ZHIGANG XIA
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - MENGYAO TIAN
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - YUCAI CHENG
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - WENFANG YI
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - ZEFAN DU
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - TIANWEN LI
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - YUCHEN WEN
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - LINDI LI
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - YONG LIU
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - CHUN CHEN
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
43
|
Liu J, Zhang J, Zhang Y, Wei W, Zhan M, Zhang Z, Liu B, Hu X, He W. A mitochondria-targeting heptamethine cyanine-chlorambucil formulated polymeric nanoparticle to potentiate native tumor chemotherapeutic efficacy. Biomater Sci 2024; 12:2614-2625. [PMID: 38591255 DOI: 10.1039/d4bm00003j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Chlorambucil (Cbl) is a DNA alkylating drug in the nitrogen mustard family, but the clinical applications of nitrogen mustard antitumor drugs are frequently limited by their poor aqueous solubility, poor cellular uptake, lack of targeting, and severe side effects. Additionally, mitochondria are the energy factories for cells, and tumor cells are more susceptible to mitochondrial dysfunction than some healthy cells, thus making mitochondria an important target for tumor therapy. As a proof-of-concept, direct delivery of Cbl to tumor cells' mitochondria will probably bring about new opportunities for the nitrogen mustard family. Furthermore, IR775 chloride is a small-molecule lipophilic cationic heptamethine cyanine dye with potential advantages of mitochondria targeting, near-infrared (NIR) fluorescence imaging, and preferential internalization towards tumor cells. Here, an amphiphilic drug conjugate was facilely prepared by covalently coupling chlorambucil with IR775 chloride and further self-assembly to form a carrier-free self-delivery theranostic system, in which the two components are both functional units aimed at theranostic improvement. The theranostic IR775-Cbl potentiated typical "1 + 1 > 2" tumor inhibition through specific accumulation in mitochondria, which triggered a remarkable decrease in mitochondrial membrane potential and ATP generation. In vivo biodistribution and kinetic monitoring were achieved by real-time NIR fluorescence imaging to observe its transport inside a living body. Current facile mitochondria-targeting modification with clinically applied drugs was promising for endowing traditional drugs with targeting, imaging, and improved potency in disease theranostics.
Collapse
Affiliation(s)
- Jing Liu
- College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, Guangdong, China.
| | - Yongteng Zhang
- Key Laboratory of Precision and Intelligent Chemistry, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, and School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026 Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123 Suzhou, China
| | - Wei Wei
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, Guangdong, China.
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, Guangdong, China.
| | - Zhiren Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, Guangdong, China.
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, Guangdong, China.
| | - Xianglong Hu
- Key Laboratory of Precision and Intelligent Chemistry, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, and School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026 Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123 Suzhou, China
| | - Weiling He
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China.
| |
Collapse
|
44
|
Li L, Li M. Modular Engineering of Aptamer-Based Nanobiotechnology for Conditional Control of ATP Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302972. [PMID: 38009471 DOI: 10.1002/adma.202302972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/24/2023] [Indexed: 11/29/2023]
Abstract
Dynamic changes of intracellular, extracellular, and subcellular adenosine triphosphates (ATPs) have fundamental interdependence with the physio-pathological states of cells. Spatially selective in situ imaging of such ATP dynamics offers valuable mechanistic insights into the related biological activities. Despite significant advances in the design of aptamer sensors for ATP detection, the dearth of methods that enable precise ATP imaging in specific cellular locations remains a challenge in this field. This review focuses on the modular engineering of regulatable sensing technology via the integration of aptamer probe designs with advanced functional nanomaterials, allowing conditional control of ATP sensing and imaging with high spatial precision from subcellular organelles to living animals. Highlighting the recent advances in the design of photo-triggered nanosensors for spatiotemporally controlled ATP imaging, endogenously-triggered ATP sensing in a cell-selective manner, and spatially-controlled nanodevices for ATP imaging in specific organelles and extracellular microenvironments. Emphasis will be put on elucidating the principles of how nanotechnology can be applied to regulate the spatial precision of aptamer-based ATP sensing activities. The authors envision that this perspective provides insights into the engineering of aptamer-based nanobiotechnology for opening new frontiers in precise molecular sensing and other bio-applications.
Collapse
Affiliation(s)
- Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
45
|
Cheng YW, Lee JH, Chang CH, Tseng TT, Chai CY, Lieu AS, Kwan AL. High PGC-1α Expression as a Poor Prognostic Indicator in Intracranial Glioma. Biomedicines 2024; 12:979. [PMID: 38790941 PMCID: PMC11117502 DOI: 10.3390/biomedicines12050979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Gliomas are the most common primary brain tumors in adults. Despite multidisciplinary treatment approaches, the survival rates for patients with malignant glioma have only improved marginally, and few prognostic biomarkers have been identified. Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) is a crucial regulator of cancer metabolism, playing a vital role in cancer cell adaptation to fluctuating energy demands. In this study, the clinicopathological roles of PGC-1α in gliomas were evaluated. Employing immunohistochemistry, cell culture, siRNA transfection, cell viability assays, western blot analyses, and in vitro and in vivo invasion and migration assays, we explored the functions of PGC-1α in glioma progression. High PGC-1α expression was significantly associated with an advanced pathological stage in patients with glioma and with poorer overall survival. The downregulation of PGC-1α inhibited glioma cell proliferation, invasion, and migration and altered the expression of oncogenic markers. These results conclusively demonstrated that PGC-1α plays a critical role in maintaining the malignant phenotype of glioma cells and indicated that targeting PGC-1α could be an effective strategy to curb glioma progression and improve patient survival outcomes.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung 807, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jia-Hau Lee
- National Institute of Cancer Research, National Health Research Institutes, Tainan 701, Taiwan;
| | - Chih-Hui Chang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.C.); (T.-T.T.)
| | - Tzu-Ting Tseng
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.C.); (T.-T.T.)
| | - Chee-Yin Chai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ann-Shung Lieu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.C.); (T.-T.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Aij-Lie Kwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.C.); (T.-T.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 23806, USA
| |
Collapse
|
46
|
Zhang X, Bai M, Ge L, Yao Y. Electrochemical control of the morphological evolution of PEDOT on a Ni-Co(OH) 2/carbon cloth surface to modulate the performance of wearable H 2O 2 sensors. NANOSCALE 2024; 16:8162-8176. [PMID: 38572710 DOI: 10.1039/d3nr06503k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The slow redox rate of hydrogen peroxide (H2O2) in neutral environments makes the H2O2 sensor inadequate for the detection of low levels of signalling molecules. The aim of this study is to fabricate a flexible sensing electrode by hydrothermally loading micro-nanometer Ni and Co(OH)2 on carbon cloth (CC) and electrochemically depositing poly(3,4-ethylenedioxythiophene) (PEDOT) on the surface of the electrode. The sensor presented high sensitivity (10.43 mA mM-1 cm-2), a wide detection range (0.033-120.848 mM), a low detection limit (0.92 nM), high stability, and excellent anti-interference performance in neutral solutions. Ni-Co(OH)2 provides abundant active sites while CC solves their agglomeration phenomenon and conductivity. The PEDOT film offers heightened conductivity, hydrophilicity, interfacial stability, and an electrochemically active surface area (ECSA). The side area of the chrysanthemum petal like PEDOT is 39 ± 7 times the bottom area, and PEDOT increases the ECSA of the composite to six times that of CC. Electrochemical precise control of PEDOT morphology to improve sensor performance provides a new strategy for the application of PEDOT in sensors.
Collapse
Affiliation(s)
- Xinmeng Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Mingyue Bai
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Lei Ge
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Yuanyuan Yao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
47
|
Ma Y, Jin J, Xue Z, Zhao J, Cai W, Zhang W. Integrated multi-omics analysis and machine learning developed a prognostic model based on mitochondrial function in a large multicenter cohort for Gastric Cancer. J Transl Med 2024; 22:381. [PMID: 38654380 PMCID: PMC11040813 DOI: 10.1186/s12967-024-05109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common and aggressive type of cancer worldwide. Despite recent advancements in its treatment, the prognosis for patients with GC remains poor. Understanding the mechanisms of cell death in GC, particularly those related to mitochondrial function, is crucial for its development and progression. However, more research is needed to investigate the significance of the interaction between mitochondrial function and GC cell death. METHODS We employed a robust computational framework to investigate the role of mitochondria-associated proteins in the progression of GC in a cohort of 1,199 GC patients. Ten machine learning algorithms were utilized and combined into 101 unique combinations. Ultimately, we developed a Mitochondrial-related-Score (MitoScore) using the machine learning model that exhibited the best performance. We observed the upregulation of LEMT2 and further explored its function in tumor progression. Mitochondrial functions were assessed by measuring mitochondrial ATP, mitochondrial membrane potential, and levels of lactate, pyruvate, and glucose. RESULTS MitoScore showed significant correlations with GC immune and metabolic functions. The higher MitoScore subgroup exhibited enriched metabolic pathways and higher immune activity. Overexpression of LETM2 (leucine zipper and EF-hand containing transmembrane protein 2) significantly enhanced tumor proliferation and metastasis. LETM2 plays a role in promoting GC cell proliferation by activating the mTOR pathway, maintaining mitochondrial homeostasis, and promoting glycolysis. CONCLUSION The powerful machine learning framework highlights the significant potential of MitoScore in providing valuable insights and accurate assessments for individuals with GC. This study also enhances our understanding of LETM2 as an oncogene signature in GC. LETM2 may promote tumor progression by maintaining mitochondrial health and activating glycolysis, offering potential targets for diagnosis, treatment, and prognosis of GC.
Collapse
Affiliation(s)
- Yimeng Ma
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Jin
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Zixuan Xue
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jungang Zhao
- Department of Urology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Weiyang Cai
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wanli Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
48
|
Guo L, Zhang B, Zhang W, Xie Y, Chen X, Sun X, Watt DS, Liu C, Spielmann HP, Liu X. Inhibition of Carbohydrate Metabolism Potentiated by the Therapeutic Effects of Oxidative Phosphorylation Inhibitors in Colon Cancer Cells. Cancers (Basel) 2024; 16:1399. [PMID: 38611076 PMCID: PMC11010912 DOI: 10.3390/cancers16071399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer cells undergo a significant level of "metabolic reprogramming" or "remodeling" to ensure an adequate supply of ATP and "building blocks" for cell survival and to facilitate accelerated proliferation. Cancer cells preferentially use glycolysis for ATP production (the Warburg effect); however, cancer cells, including colorectal cancer (CRC) cells, also depend on oxidative phosphorylation (OXPHOS) for ATP production, a finding that suggests that both glycolysis and OXPHOS play significant roles in facilitating cancer progression and proliferation. Our prior studies identified a semisynthetic isoflavonoid, DBI-1, that served as an AMPK activator targeting mitochondrial complex I. Furthermore, DBI-1 and a glucose transporter 1 (GLUT1) inhibitor, BAY-876, synergistically inhibited CRC cell growth in vitro and in vivo. We now report a study of the structure-activity relationships (SARs) in the isoflavonoid family in which we identified a new DBI-1 analog, namely, DBI-2, with promising properties. Here, we aimed to explore the antitumor mechanisms of DBIs and to develop new combination strategies by targeting both glycolysis and OXPHOS. We identified DBI-2 as a novel AMPK activator using an AMPK phosphorylation assay as a readout. DBI-2 inhibited mitochondrial complex I in the Seahorse assays. We performed proliferation and Western blotting assays and conducted studies of apoptosis, necrosis, and autophagy to corroborate the synergistic effects of DBI-2 and BAY-876 on CRC cells in vitro. We hypothesized that restricting the carbohydrate uptake with a KD would mimic the effects of GLUT1 inhibitors, and we found that a ketogenic diet significantly enhanced the therapeutic efficacy of DBI-2 in CRC xenograft mouse models, an outcome that suggested a potentially new approach for combination cancer therapy.
Collapse
Affiliation(s)
- Lichao Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Baochen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Wen Zhang
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Yanqi Xie
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Xi Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Xueke Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - David S. Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - H. Peter Spielmann
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
49
|
Bibbò F, Asadzadeh F, Boccia A, Sorice C, Bianco O, Saccà CD, Majello B, Donofrio V, Bifano D, De Martino L, Quaglietta L, Cristofano A, Covelli EM, Cinalli G, Ferrucci V, De Antonellis P, Zollo M. Targeting Group 3 Medulloblastoma by the Anti-PRUNE-1 and Anti-LSD1/KDM1A Epigenetic Molecules. Int J Mol Sci 2024; 25:3917. [PMID: 38612726 PMCID: PMC11011515 DOI: 10.3390/ijms25073917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Medulloblastoma (MB) is a highly malignant childhood brain tumor. Group 3 MB (Gr3 MB) is considered to have the most metastatic potential, and tailored therapies for Gr3 MB are currently lacking. Gr3 MB is driven by PRUNE-1 amplification or overexpression. In this paper, we found that PRUNE-1 was transcriptionally regulated by lysine demethylase LSD1/KDM1A. This study aimed to investigate the therapeutic potential of inhibiting both PRUNE-1 and LSD1/KDM1A with the selective inhibitors AA7.1 and SP-2577, respectively. We found that the pharmacological inhibition had a substantial efficacy on targeting the metastatic axis driven by PRUNE-1 (PRUNE-1-OTX2-TGFβ-PTEN) in Gr3 MB. Using RNA seq transcriptomic feature data in Gr3 MB primary cells, we provide evidence that the combination of AA7.1 and SP-2577 positively affects neuronal commitment, confirmed by glial fibrillary acidic protein (GFAP)-positive differentiation and the inhibition of the cytotoxic components of the tumor microenvironment and the epithelial-mesenchymal transition (EMT) by the down-regulation of N-Cadherin protein expression. We also identified an impairing action on the mitochondrial metabolism and, consequently, oxidative phosphorylation, thus depriving tumors cells of an important source of energy. Furthermore, by overlapping the genomic mutational signatures through WES sequence analyses with RNA seq transcriptomic feature data, we propose in this paper that the combination of these two small molecules can be used in a second-line treatment in advanced therapeutics against Gr3 MB. Our study demonstrates that the usage of PRUNE-1 and LSD1/KDM1A inhibitors in combination represents a novel therapeutic approach for these highly aggressive metastatic MB tumors.
Collapse
Affiliation(s)
- Francesca Bibbò
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Fatemeh Asadzadeh
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
- SEMM European School of Molecular Medicine, 20139 Milan, Italy
| | - Angelo Boccia
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Carmen Sorice
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Orazio Bianco
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Carmen Daniela Saccà
- Department of Biology, University Federico II of Naples, 80138 Naples, Italy; (C.D.S.); (B.M.)
| | - Barbara Majello
- Department of Biology, University Federico II of Naples, 80138 Naples, Italy; (C.D.S.); (B.M.)
| | - Vittoria Donofrio
- Department of Pathology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (V.D.); (D.B.)
| | - Delfina Bifano
- Department of Pathology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (V.D.); (D.B.)
| | - Lucia De Martino
- Pediatric Neuro-Oncology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (L.D.M.); (L.Q.)
| | - Lucia Quaglietta
- Pediatric Neuro-Oncology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (L.D.M.); (L.Q.)
| | - Adriana Cristofano
- Pediatric Neuroradiology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (A.C.); (E.M.C.)
| | - Eugenio Maria Covelli
- Pediatric Neuroradiology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (A.C.); (E.M.C.)
| | - Giuseppe Cinalli
- Pediatric Neurosurgery, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy;
| | - Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Pasqualino De Antonellis
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
- DAI Medicina di Laboratorio e Trasfusionale, ‘AOU Federico II Policlinico’, 80131 Naples, Italy
| |
Collapse
|
50
|
Melones-Herrero J, Alcalá S, Ruiz-Cañas L, Benítez-Buelga C, Batres-Ramos S, Calés C, Lorenzo O, Perona R, Quiroga AG, Sainz B, Sánchez-Pérez I. Platinum iodido drugs show potential anti-tumor activity, affecting cancer cell metabolism and inducing ROS and senescence in gastrointestinal cancer cells. Commun Biol 2024; 7:353. [PMID: 38519773 PMCID: PMC10959927 DOI: 10.1038/s42003-024-06052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Cisplatin-based chemotherapy has associated clinical disadvantages, such as high toxicity and resistance. Thus, the development of new antitumor metallodrugs able to overcome different clinical barriers is a public healthcare priority. Here, we studied the mechanism of action of the isomers trans and cis-[PtI2(isopropylamine)2] (I5 and I6, respectively) against gastrointestinal cancer cells. We demonstrate that I5 and I6 modulate mitochondrial metabolism, decreasing OXPHOS activity and negatively affecting ATP-linked oxygen consumption rate. Consequently, I5 and I6 generated Reactive Oxygen Species (ROS), provoking oxidative damage and eventually the induction of senescence. Thus, herein we propose a loop with three interconnected processes modulated by these iodido agents: (i) mitochondrial dysfunction and metabolic disruptions; (ii) ROS generation and oxidative damage; and (iii) cellular senescence. Functionally, I5 reduces cancer cell clonogenicity and tumor growth in a pancreatic xenograft model without systemic toxicity, highlighting a potential anticancer complex that warrants additional pre-clinical studies.
Collapse
Affiliation(s)
- Jorge Melones-Herrero
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sonia Alcalá
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Laura Ruiz-Cañas
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carlos Benítez-Buelga
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
| | - Sandra Batres-Ramos
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmela Calés
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, Instituto de Investigaciones Sanitarias-Fundación Jimenez Díaz, CIBERDEM, UAM, Madrid, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Rare Diseases, CIBERER, ISCIII, Madrid, Spain
- Instituto de Salud Carlos III, Madrid, Spain
| | - Adoración G Quiroga
- Department of Inorganic Chemistry, School of Sciences, IAdChem, UAM, Madrid, Spain
| | - Bruno Sainz
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, Spain.
| | - Isabel Sánchez-Pérez
- Department of Biochemistry. School of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Investigación Biomédica en Red, Área Rare Diseases, CIBERER, ISCIII, Madrid, Spain.
- Unidad Asociada de Biomedicina UCLM-CSIC, Madrid, Spain.
| |
Collapse
|