1
|
Yang Y, Zhong Y, Chen L. EIciRNAs in focus: current understanding and future perspectives. RNA Biol 2025; 22:1-12. [PMID: 39711231 DOI: 10.1080/15476286.2024.2443876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of covalently closed single-stranded RNA molecules that play diverse roles in normal physiology and pathology. Among the major types of circRNA, exon-intron circRNA (EIciRNA) distinguishes itself by its sequence composition and nuclear localization. Recent RNA-seq technologies and computational methods have facilitated the detection and characterization of EIciRNAs, with features like circRNA intron retention (CIR) and tissue-specificity being characterized. EIciRNAs have been identified to exert their functions via mechanisms such as regulating gene transcription, and the physiological relevance of EIciRNAs has been reported. Within this review, we present a summary of the current understanding of EIciRNAs, delving into their identification and molecular functions. Additionally, we emphasize factors regulating EIciRNA biogenesis and the physiological roles of EIciRNAs based on recent research. We also discuss the future challenges in EIciRNA exploration, underscoring the potential for novel functions and functional mechanisms of EIciRNAs for further investigation.
Collapse
Affiliation(s)
- Yan Yang
- Department of Cardiology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Yinchun Zhong
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Iida N, Okada A, Kobayashi Y, Chiba K, Yatabe Y, Shiraishi Y. Systematically developing a registry of splice-site creating variants utilizing massive publicly available transcriptome sequence data. Nat Commun 2025; 16:426. [PMID: 39788962 PMCID: PMC11718197 DOI: 10.1038/s41467-024-55185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Genomic variants causing abnormal splicing play important roles in genetic disorders and cancer development. Among them, variants that cause the formation of novel splice-sites (splice-site creating variants, SSCVs) are particularly difficult to identify and often overlooked in genomic studies. Additionally, these SSCVs are frequently considered promising candidates for treatment with splice-switching antisense oligonucleotides (ASOs). To leverage massive transcriptome sequence data such as those available from the Sequence Read Archive, we develop a novel framework to screen for SSCVs solely using transcriptome data. We apply it to 322,072 publicly available transcriptomes and identify 30,130 SSCVs. Among them, 5121 SSCVs affect disease-causing variants. By utilizing this extensive collection of SSCVs, we reveal the characteristics of Alu exonization via SSCVs, especially the hotspots of SSCVs within Alu sequences and their evolutionary relationships. We discover novel gain-of-function SSCVs in the deep intronic region of the NOTCH1 gene and demonstrate that their activation can be suppressed using splice-switching ASOs. Collectively, we provide a systematic approach for automatically acquiring a registry of SSCVs, which facilitates the elucidation of novel biological mechanisms underlying splicing and serves as a valuable resource for drug discovery. The catalogs of SSCVs identified in this study are accessible on the SSCV DB ( https://sscvdb.io ).
Collapse
Affiliation(s)
- Naoko Iida
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Ai Okada
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshihisa Kobayashi
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasushi Yatabe
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
3
|
Aparicio B, Theunissen P, Hervas-Stubbs S, Fortes P, Sarobe P. Relevance of mutation-derived neoantigens and non-classical antigens for anticancer therapies. Hum Vaccin Immunother 2024; 20:2303799. [PMID: 38346926 PMCID: PMC10863374 DOI: 10.1080/21645515.2024.2303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024] Open
Abstract
Efficacy of cancer immunotherapies relies on correct recognition of tumor antigens by lymphocytes, eliciting thus functional responses capable of eliminating tumor cells. Therefore, important efforts have been carried out in antigen identification, with the aim of understanding mechanisms of response to immunotherapy and to design safer and more efficient strategies. In addition to classical tumor-associated antigens identified during the last decades, implementation of next-generation sequencing methodologies is enabling the identification of neoantigens (neoAgs) arising from mutations, leading to the development of new neoAg-directed therapies. Moreover, there are numerous non-classical tumor antigens originated from other sources and identified by new methodologies. Here, we review the relevance of neoAgs in different immunotherapies and the results obtained by applying neoAg-based strategies. In addition, the different types of non-classical tumor antigens and the best approaches for their identification are described. This will help to increase the spectrum of targetable molecules useful in cancer immunotherapies.
Collapse
Affiliation(s)
- Belen Aparicio
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Patrick Theunissen
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Puri Fortes
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| |
Collapse
|
4
|
Miskalis A, Shirguppe S, Winter J, Elias G, Swami D, Nambiar A, Stilger M, Woods WS, Gosstola N, Gapinske M, Zeballos A, Moore H, Maslov S, Gaj T, Perez-Pinera P. SPLICER: a highly efficient base editing toolbox that enables in vivo therapeutic exon skipping. Nat Commun 2024; 15:10354. [PMID: 39609418 PMCID: PMC11604662 DOI: 10.1038/s41467-024-54529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Exon skipping technologies enable exclusion of targeted exons from mature mRNA transcripts, which have broad applications in medicine and biotechnology. Existing techniques including antisense oligonucleotides, targetable nucleases, and base editors, while effective for specific applications, remain hindered by transient effects, genotoxicity, and inconsistent exon skipping. To overcome these limitations, here we develop SPLICER, a toolbox of next-generation base editors containing near-PAMless Cas9 nickase variants fused to adenosine or cytosine deaminases for the simultaneous editing of splice acceptor (SA) and splice donor (SD) sequences. Synchronized SA and SD editing improves exon skipping, reduces aberrant splicing, and enables skipping of exons refractory to single splice site editing. To demonstrate the therapeutic potential of SPLICER, we target APP exon 17, which encodes amino acids that are cleaved to form Aβ plaques in Alzheimer's disease. SPLICER reduces the formation of Aβ42 peptides in vitro and enables efficient exon skipping in a mouse model of Alzheimer's disease. Overall, SPLICER is a widely applicable and efficient exon skipping toolbox.
Collapse
Affiliation(s)
- Angelo Miskalis
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Shraddha Shirguppe
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jackson Winter
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Gianna Elias
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Devyani Swami
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ananthan Nambiar
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Michelle Stilger
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Wendy S Woods
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nicholas Gosstola
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Michael Gapinske
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alejandra Zeballos
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Hayden Moore
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sergei Maslov
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thomas Gaj
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Pablo Perez-Pinera
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Skhoun H, El Fessikh M, Khattab M, Mchich B, Agadr A, Abilkassem R, Dakka N, Flatters D, Camproux AC, Ouzzif Z, El Baghdadi J. A Novel NRAS Variant Near the Splice Junction in Moroccan Childhood Acute Lymphoblastic Leukemia: A Molecular Dynamics Study. Biochem Genet 2024:10.1007/s10528-024-10968-2. [PMID: 39514082 DOI: 10.1007/s10528-024-10968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The RAS genes are importantly implicated in oncogenesis and are frequently mutated in childhood acute lymphoblastic leukemia. This study is the first to our knowledge, to determine the mutational status of NRAS and KRAS genes in Moroccan pediatric acute lymphoblastic leukemia (ALL). Polymerase chain reaction and Sanger sequencing were performed for 45 ALL samples to explore the coding exons. The functional effect of the mutation was evaluated using in silico prediction tools and molecular modeling. We identified a novel variant c.290 G > C p.Arg97Thr within NRAS gene in a patient with T-ALL, which is a rare missense point mutation affecting the last base of exon 3. Analyses revealed that p.Arg97Thr impairs the adjacent splice site efficiency. Moreover, it leads to structural modifications at local and global levels of the protein through the loss of hydrogen bonds. Additionally, the molecular dynamics (MD) simulation showed that it slightly increases the stability of NRAS protein by locally decreasing the flexibility of the mutated region. No variant was detected within KRAS gene. R97 at NRAS gene is an overlapping splice site residue. Our findings suggest that the NRAS p.Arg97Thr variant may disrupt the splicing machinery and functions of the protein, thus playing a vital role in leukemogenesis. In addition, the highly druggable pocket may possibly be studied for its therapeutic implications.
Collapse
Affiliation(s)
- Hanaa Skhoun
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Meriem El Fessikh
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mohammed Khattab
- Pediatric Hematology and Oncology Center, Children's Hospital, Rabat, Morocco
- Centre of Childhood Care and Prevention, Cheikh Zaid International University Hospital, Rabat, Morocco
| | - Basma Mchich
- Unité de Biologie Fonctionnelle Et Adaptative, Université Paris Cité, CNRS, INSERM, Paris, France
| | - Aomar Agadr
- Department of Pediatrics, Military Hospital Mohammed V, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Rachid Abilkassem
- Department of Pediatrics, Military Hospital Mohammed V, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Nadia Dakka
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Delphine Flatters
- Unité de Biologie Fonctionnelle Et Adaptative, Université Paris Cité, CNRS, INSERM, Paris, France
| | - Anne-Claude Camproux
- Unité de Biologie Fonctionnelle Et Adaptative, Université Paris Cité, CNRS, INSERM, Paris, France
| | - Zohra Ouzzif
- Laboratories Pole, Military Hospital Mohammed V, Rabat, Morocco
| | - Jamila El Baghdadi
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco.
- Laboratories Pole, Military Hospital Mohammed V, Rabat, Morocco.
| |
Collapse
|
6
|
Biswas J, Boussi L, Stein E, Abdel-Wahab O. Aberrant pre-mRNA processing in cancer. J Exp Med 2024; 221:e20230891. [PMID: 39316554 PMCID: PMC11448470 DOI: 10.1084/jem.20230891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulation of the flow of information from genomic DNA to RNA to protein occurs within all cancer types. In this review, we described the current state of understanding of how RNA processing is dysregulated in cancer with a focus on mutations in the RNA splicing factor machinery that are highly prevalent in hematologic malignancies. We discuss the downstream effects of these mutations highlighting both individual genes as well as common pathways that they perturb. We highlight examples of how alterations in RNA processing have been harnessed for therapeutic intent as well as to promote the selective toxicity of cancer cells.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leora Boussi
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eytan Stein
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
7
|
Sun S, Huang C, Fan W, Wang Z, Li K, Liu X, Wang Z, Zhao T, Zhang G, Li X. FAM136A as a Diagnostic Biomarker in Esophageal Cancer: Insights into Immune Infiltration, m6A Modification, Alternative Splicing, Cuproptosis, and the ceRNA Network. Adv Biol (Weinh) 2024; 8:e2400157. [PMID: 39185769 DOI: 10.1002/adbi.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Indexed: 08/27/2024]
Abstract
FAM136A promotes the progression and metastasis of various tumors. However, there are few studies on the role of FAM136A in esophageal cancer (ESCA). The TCGA, GTEx, and GEO databases are employed to analyze the expression of FAM136A in ESCA, and qPCR and TMA experiments are performed for validation. Enrichment analyzes are performed to investigate the association of FAM136A expression with immune features, m6A modification, alternative splicing, cuproptosis, and the ceRNA network via bioinformatics analysis. FAM136A is highly expressed in ESCA and correlated with lymph node metastasis and overall survival (OS). Bioinformatics analysis suggested that FAM136A may participate in the following processes to promote ESCA development and progression: 1) Promotion of mast cells infiltration to influence the ESCA immune microenvironment, 2) HNRNPC upregulation to regulate m6A modification, 3) ALYREF upregulation to increase the occurrence of retained intron (RI) events, 4) CDK5RAP1 upregulation to achieve inhibition of tumor cell apoptosis, and 5) promotion of ESCA progression through the lncRNA SNHG15/hsa-miR-29c-3p/FAM136A ceRNA network. FAM136A is a potential biomarker for ESCA diagnosis and treatment response evaluation, and the underlying mechanisms may be associated with immune infiltration, m6A modification, alternative splicing, cuproptosis, and the ceRNA regulatory network.
Collapse
Affiliation(s)
- Shaowu Sun
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chunyao Huang
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Wenbo Fan
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhulin Wang
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Kaiyuan Li
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xu Liu
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zelong Wang
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Tianliang Zhao
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Guoqing Zhang
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiangnan Li
- Department of Thoracic Surgery and Lung Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Province Engineering Research Center of molecular pathology and clinical experiment of thoracic diseases, Zhengzhou, Henan, 450052, China
| |
Collapse
|
8
|
Schmeing S, Hart P'. Challenges in Therapeutically Targeting the RNA-Recognition Motif. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1877. [PMID: 39668490 PMCID: PMC11638515 DOI: 10.1002/wrna.1877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
The RNA recognition motif (RRM) is the most common RNA binding domain found in the human proteome. RRM domains provide RNA-binding proteins with sequence specific RNA recognition allowing them to participate in RNA-centric processes such as mRNA maturation, translation initiation, splicing, and RNA degradation. They are drivers of various diseases through overexpression or mutation, making them attractive therapeutic targets and addressing these proteins through their RRM domains with chemical compounds is gaining ever more attention. However, it is still very challenging to find selective and potent RNA-competitors due to the small size of the domain and high structural conservation of its RNA binding interface. Despite these challenges, a selection of compounds has been reported for several RRM containing proteins, but often with limited biophysical evidence and low selectivity. A solution to selectively targeting RRM domains might be through avoiding the RNA-binding surface altogether, but rather look for composite pockets formed with other proteins or for protein-protein interaction sites that regulate the target's activity but are less conserved. Alternative modalities, such as oligonucleotides, peptides, and molecular glues, are exciting new approaches to address these challenging targets and achieve the goal of therapeutic intervention at the RNA regulatory level.
Collapse
Affiliation(s)
- Stefan Schmeing
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Peter 't Hart
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyDortmundGermany
| |
Collapse
|
9
|
Wang Y, Hon GC. Towards functional maps of non-coding variants in cancer. Front Genome Ed 2024; 6:1481443. [PMID: 39544254 PMCID: PMC11560456 DOI: 10.3389/fgeed.2024.1481443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Large scale cancer genomic studies in patients have unveiled millions of non-coding variants. While a handful have been shown to drive cancer development, the vast majority have unknown function. This review describes the challenges of functionally annotating non-coding cancer variants and understanding how they contribute to cancer. We summarize recently developed high-throughput technologies to address these challenges. Finally, we outline future prospects for non-coding cancer genetics to help catalyze personalized cancer therapy.
Collapse
Affiliation(s)
- Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Gary C. Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
10
|
Fan Y, Qin Y, Dong X, Wang Z, Zhou H. Identification and expression patterns of voltage-gated sodium channel genes with intron retentions in different strains of Bactrocera dorsalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106084. [PMID: 39277397 DOI: 10.1016/j.pestbp.2024.106084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/17/2024]
Abstract
Pyrethroid are the primary insecticides used for controlling of Bactricera dorsalis, a highly destructive and invasive fruit pest. Field populations have developed serious resistance, especially to β-cypermethrin. While mutations in the voltage-gated sodium channel (Vgsc) are a common mechanism of pyrethroid resistance, variations in BdVgsc associated with β-cypermethrin resistance remain unclear. Here, we reported the resistance levels of five field populations from China, with resistance ratio ranging from 1.54 to 21.34-fold. Cloning the full length of BdVgsc revealed no specific or known amino acid mutations between the most resistant population and the susceptible strain. However, three types of partial intron retention (IRE4-5, IRE19-f and IREL-24) were identified in BdVgsc transcripts, with these intron retentions containing stop codons. The expression of IRE4-5 transcripts and total BdVgsc showed different trends across developmental stages and tissues. Exposure to β-cypermethrin led to increased expression of IRE4-5. Comparison of genomic and transcriptional sequences reveled that IRE4-5 transcripts had two types (IRE4-5.5 T and IRE4-5.6 T) caused by genomic variations. Both field and congenic strains indicated that homozygotes for IRE4-5.5 T had lower IRE4-5 transcript levels than homozygotes for IRE4-5.6 T. However, congenic and field strains exhibited inconsistent results about the association of expression levels of IRE4-5 transcripts with sensitivity to β-cypermethrin. In summary, this study is the first to identify intron retention transcripts in the Vgsc gene from B. dorsalis and to examine their expression patterns across different developmental stages, tissues, and strains with varying sensitivities to β-cypermethrin. The potential role of the intron retentions of BdVgsc in insecticide toxicity is also discussed.
Collapse
Affiliation(s)
- Yinjun Fan
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China
| | - Yu Qin
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China
| | - Xinyi Dong
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China
| | - Zixuan Wang
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China
| | - Hongxu Zhou
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China.
| |
Collapse
|
11
|
Wang Y, Shu M, Wang T, He T, Yuan J, Yang Y. Comprehensive characterization of somatic mutations associated with chimeric RNAs in human cancers. Int J Cancer 2024; 155:683-696. [PMID: 38613405 DOI: 10.1002/ijc.34955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Chimeric RNAs, which can arise from gene recombination at the DNA level or non-canonical splicing events at the RNA level, have been identified as important roles in human tumors. Dysregulated gene expression caused by somatic mutations and altered splicing patterns of oncogenes or tumor suppressor genes can contribute to the development of tumors. Therefore, investigating the formation mechanism of chimeric RNAs via somatic mutations is critical for understanding tumor pathogenesis. This project is the first to propose studying the association between somatic single nucleotide variants and chimeric RNAs, identifying around 2900 somatic SNVs affecting chimeric RNAs in pan-cancer level. The somatic SNVs on chimeric RNAs were commonly observed in various types of tumor tissues, providing a valuable resource for future study. Additionally, these SNVs show distinct tumor specificity, and those with high frequency had a significant impact on the survival time of patients with tumors. Further research revealed that somatic SNVs associated with chimeric RNA (chiR-SNVs) were typically found within 10 nt of the junction site of chimeric RNAs and had a particularly significant effect on chimeric RNAs from different chromosomes. The enrichment analysis revealed that chiR-SNVs were significantly overrepresented in oncogenes and genes related to RNA binding proteins involved in RNA splicing, which could imply that chiR-SNVs may disrupt the process of RNA splicing and induce the occurrence of chimeric RNAs. This study sheds light on the potential molecular interaction mechanism between somatic SNVs and chimeric RNAs, which opens up a new avenue for researching disease pathway and tumorigenesis development.
Collapse
Affiliation(s)
- Yuting Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Meng Shu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tianqiang Wang
- Neurosurgery Department II Ward, Yidu Central Hospital of Weifang, Shandong, China
| | - Tongxin He
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiapei Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yang Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
12
|
Mariano A, Ammendola S, Migliorini A, Leopizzi M, Raimondo D, Scotto d'Abusco A. Intron retention in PI-PLC γ1 mRNA as a key mechanism affecting MMP expression in human primary fibroblast-like synovial cells. Cell Biochem Funct 2024; 42:e4091. [PMID: 38973151 DOI: 10.1002/cbf.4091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
The intron retention (IR) is a phenomenon utilized by cells to allow diverse fates at the same mRNA, leading to a different pattern of synthesis of the same protein. In this study, we analyzed the modulation of phosphoinositide-specific phospholipase C (PI-PLC) enzymes by Harpagophytum procumbens extract (HPE) in synoviocytes from joins of osteoarthritis (OA) patients. In some samples, the PI-PLC γ1 isoform mature mRNA showed the IR and, in these synoviocytes, the HPE treatment increased the phenomenon. Moreover, we highlighted that as a consequence of IR, a lower amount of PI-PLC γ1 was produced. The decrease of PI-PLC γ1 was associated with the decrease of metalloprotease-3 (MMP-3), and MMP-13, and ADAMTS-5 after HPE treatment. The altered expression of MMPs is a hallmark of the onset and progression of OA, thus substances able to decrease their expression are very desirable. The interesting outcomes of this study are that 35% of analyzed synovial tissues showed the IR phenomenon in the PI-PLC γ1 mRNA and that the HPE treatment increased this phenomenon. For the first time, we found that the decrease of PI-PLC γ1 protein in synoviocytes interferes with MMP production, thus affecting the pathways involved in the MMP expression. This finding was validated by the silencing of PI-PLC γ1 in synoviocytes where the IR phenomenon was not present. Our results shed new light on the biochemical mechanisms involved in the degrading enzyme production in the joint of OA patients, suggesting a new therapeutic target and highlighting the importance of personalized medicine.
Collapse
Affiliation(s)
- Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, Roma, Italy
| | | | - Arianna Migliorini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Domenico Raimondo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
13
|
Wu Q, Liao R, Miao C, Hasnat M, Li L, Sun L, Wang X, Yuan Z, Jiang Z, Zhang L, Yu Q. Oncofetal SNRPE promotes HCC tumorigenesis by regulating the FGFR4 expression through alternative splicing. Br J Cancer 2024; 131:77-89. [PMID: 38796598 PMCID: PMC11231362 DOI: 10.1038/s41416-024-02689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Due to insufficient knowledge about key molecular events, Hepatocellular carcinoma (HCC) lacks effective treatment targets. Spliceosome-related genes were significantly altered in HCC. Oncofetal proteins are ideal tumor therapeutic targets. Screening of differentially expressed Spliceosome-related oncofetal protein in embryonic liver development and HCC helps discover effective therapeutic targets for HCC. METHODS Differentially expressed spliceosome genes were analysis in fetal liver and HCC through bioinformatics analysis. Small nuclear ribonucleoprotein polypeptide E (SNRPE) expression was detected in fetal liver, adult liver and HCC tissues. The role of SNRPE in HCC was performed multiple assays in vitro and in vivo. SNRPE-regulated alternative splicing was recognized by RNA-Seq and confirmed by multiple assays. RESULTS We herein identified SNRPE as a crucial oncofetal splicing factor, significantly associated with the adverse prognosis of HCC. SOX2 was identified as the activator for SNRPE reactivation. Efficient knockdown of SNRPE resulted in the complete cessation of HCC tumorigenesis and progression. Mechanistically, SNRPE knockdown reduced FGFR4 mRNA expression by triggering nonsense-mediated RNA decay. A partial inhibition of SNRPE-induced malignant progression of HCC cells was observed upon FGFR4 knockdown. CONCLUSIONS Our findings highlight SNRPE as a novel oncofetal splicing factor and shed light on the intricate relationship between oncofetal splicing factors, splicing events, and carcinogenesis. Consequently, SNRPE emerges as a potential therapeutic target for HCC treatment. Model of oncofetal SNRPE promotes HCC tumorigenesis by regulating the AS of FGFR4 pre-mRNA.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Alternative Splicing
- Carcinogenesis/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Mice, Nude
- Prognosis
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
Collapse
Affiliation(s)
- Qipeng Wu
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Ruyan Liao
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Chunmeng Miao
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Muhammad Hasnat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Pakistan
| | - Le Li
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Lixin Sun
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Xinru Wang
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenzhou Jiang
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China.
| | - Luyong Zhang
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Qinwei Yu
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
14
|
Sun L, Liu Y, Guo X, Cui T, Wu C, Tao J, Cheng C, Chu Q, Ji C, Li X, Guo H, Liang S, Zhou H, Zhou S, Ma K, Zhang N, Wang J, Liu Y, Liu L. Acetylation-dependent regulation of core spliceosome modulates hepatocellular carcinoma cassette exons and sensitivity to PARP inhibitors. Nat Commun 2024; 15:5209. [PMID: 38890388 PMCID: PMC11189467 DOI: 10.1038/s41467-024-49573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Despite the importance of spliceosome core components in cellular processes, their roles in cancer development, including hepatocellular carcinoma (HCC), remain poorly understood. In this study, we uncover a critical role for SmD2, a core component of the spliceosome machinery, in modulating DNA damage in HCC through its impact on BRCA1/FANC cassette exons and expression. Our findings reveal that SmD2 depletion sensitizes HCC cells to PARP inhibitors, expanding the potential therapeutic targets. We also demonstrate that SmD2 acetylation by p300 leads to its degradation, while HDAC2-mediated deacetylation stabilizes SmD2. Importantly, we show that the combination of Romidepsin and Olaparib exhibits significant therapeutic potential in multiple HCC models, highlighting the promise of targeting SmD2 acetylation and HDAC2 inhibition alongside PARP inhibitors for HCC treatment.
Collapse
Affiliation(s)
- Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, Anhui, China
| | - Yufeng Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, Anhui, China
| | - Xinyu Guo
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, Anhui, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Jie Tao
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Cheng Cheng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Qi Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Xianying Li
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Hongrui Guo
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, Anhui, China
| | - Shuhang Liang
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Huanran Zhou
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shuo Zhou
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Kun Ma
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, Anhui, China
| | - Ning Zhang
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, Anhui, China.
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, Anhui, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, Anhui, China.
| |
Collapse
|
15
|
Kashyap MK, Karathia H, Kumar D, Vera Alvarez R, Forero-Forero JV, Moreno E, Lujan JV, Amaya-Chanaga CI, Vidal NM, Yu Z, Ghia EM, Lengerke-Diaz PA, Achinko D, Choi MY, Rassenti LZ, Mariño-Ramírez L, Mount SM, Hannenhalli S, Kipps TJ, Castro JE. Aberrant spliceosome activity via elevated intron retention and upregulation and phosphorylation of SF3B1 in chronic lymphocytic leukemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102202. [PMID: 38846999 PMCID: PMC11154714 DOI: 10.1016/j.omtn.2024.102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Splicing factor 3b subunit 1 (SF3B1) is the largest subunit and core component of the spliceosome. Inhibition of SF3B1 was associated with an increase in broad intron retention (IR) on most transcripts, suggesting that IR can be used as a marker of spliceosome inhibition in chronic lymphocytic leukemia (CLL) cells. Furthermore, we separately analyzed exonic and intronic mapped reads on annotated RNA-sequencing transcripts obtained from B cells (n = 98 CLL patients) and healthy volunteers (n = 9). We measured intron/exon ratio to use that as a surrogate for alternative RNA splicing (ARS) and found that 66% of CLL-B cell transcripts had significant IR elevation compared with normal B cells (NBCs) and that correlated with mRNA downregulation and low expression levels. Transcripts with the highest IR levels belonged to biological pathways associated with gene expression and RNA splicing. A >2-fold increase of active pSF3B1 was observed in CLL-B cells compared with NBCs. Additionally, when the CLL-B cells were treated with macrolides (pladienolide-B), a significant decrease in pSF3B1, but not total SF3B1 protein, was observed. These findings suggest that IR/ARS is increased in CLL, which is associated with SF3B1 phosphorylation and susceptibility to SF3B1 inhibitors. These data provide additional support to the relevance of ARS in carcinogenesis and evidence of pSF3B1 participation in this process.
Collapse
Affiliation(s)
- Manoj Kumar Kashyap
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram (HR) 122413, India
| | - Hiren Karathia
- Advanced Biomedical Computational Science and National Center for Advancing Translational Sciences, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Greenwood Genetic Center, Greenwood, SC, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Deepak Kumar
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
| | - Roberto Vera Alvarez
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Eider Moreno
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Juliana Velez Lujan
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
| | | | - Newton Medeiros Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Zhe Yu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
| | - Emanuela M. Ghia
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Novel Therapeutics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Paula A. Lengerke-Diaz
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Daniel Achinko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Michael Y. Choi
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Novel Therapeutics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Laura Z. Rassenti
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Novel Therapeutics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Leonardo Mariño-Ramírez
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Stephen M. Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J. Kipps
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Novel Therapeutics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Januario E. Castro
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
16
|
Duman ET, Sitte M, Conrads K, Mackay A, Ludewig F, Ströbel P, Ellenrieder V, Hessmann E, Papantonis A, Salinas G. A single-cell strategy for the identification of intronic variants related to mis-splicing in pancreatic cancer. NAR Genom Bioinform 2024; 6:lqae057. [PMID: 38800828 PMCID: PMC11127633 DOI: 10.1093/nargab/lqae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
Most clinical diagnostic and genomic research setups focus almost exclusively on coding regions and essential splice sites, thereby overlooking other non-coding variants. As a result, intronic variants that can promote mis-splicing events across a range of diseases, including cancer, are yet to be systematically investigated. Such investigations would require both genomic and transcriptomic data, but there currently exist very few datasets that satisfy these requirements. We address this by developing a single-nucleus full-length RNA-sequencing approach that allows for the detection of potentially pathogenic intronic variants. We exemplify the potency of our approach by applying pancreatic cancer tumor and tumor-derived specimens and linking intronic variants to splicing dysregulation. We specifically find that prominent intron retention and pseudo-exon activation events are shared by the tumors and affect genes encoding key transcriptional regulators. Our work paves the way for the assessment and exploitation of intronic mutations as powerful prognostic markers and potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Emre Taylan Duman
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Maren Sitte
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Karly Conrads
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| | - Adi Mackay
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Fabian Ludewig
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Philipp Ströbel
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Volker Ellenrieder
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Comprehensive Cancer Center Lower Saxony (CCC-N), Göttingen, Germany
| | - Elisabeth Hessmann
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Comprehensive Cancer Center Lower Saxony (CCC-N), Göttingen, Germany
| | - Argyris Papantonis
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Pathology, University Medical Center, Göttingen, Germany
- Comprehensive Cancer Center Lower Saxony (CCC-N), Göttingen, Germany
| | - Gabriela Salinas
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
| |
Collapse
|
17
|
Lang F, Sorn P, Suchan M, Henrich A, Albrecht C, Köhl N, Beicht A, Riesgo-Ferreiro P, Holtsträter C, Schrörs B, Weber D, Löwer M, Sahin U, Ibn-Salem J. Prediction of tumor-specific splicing from somatic mutations as a source of neoantigen candidates. BIOINFORMATICS ADVANCES 2024; 4:vbae080. [PMID: 38863673 PMCID: PMC11165244 DOI: 10.1093/bioadv/vbae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
Motivation Neoantigens are promising targets for cancer immunotherapies and might arise from alternative splicing. However, detecting tumor-specific splicing is challenging because many non-canonical splice junctions identified in tumors also appear in healthy tissues. To increase tumor-specificity, we focused on splicing caused by somatic mutations as a source for neoantigen candidates in individual patients. Results We developed the tool splice2neo with multiple functionalities to integrate predicted splice effects from somatic mutations with splice junctions detected in tumor RNA-seq and to annotate the resulting transcript and peptide sequences. Additionally, we provide the tool EasyQuant for targeted RNA-seq read mapping to candidate splice junctions. Using a stringent detection rule, we predicted 1.7 splice junctions per patient as splice targets with a false discovery rate below 5% in a melanoma cohort. We confirmed tumor-specificity using independent, healthy tissue samples. Furthermore, using tumor-derived RNA, we confirmed individual exon-skipping events experimentally. Most target splice junctions encoded neoepitope candidates with predicted major histocompatibility complex (MHC)-I or MHC-II binding. Compared to neoepitope candidates from non-synonymous point mutations, the splicing-derived MHC-I neoepitope candidates had lower self-similarity to corresponding wild-type peptides. In conclusion, we demonstrate that identifying mutation-derived, tumor-specific splice junctions can lead to additional neoantigen candidates to expand the target repertoire for cancer immunotherapies. Availability and implementation The R package splice2neo and the python package EasyQuant are available at https://github.com/TRON-Bioinformatics/splice2neo and https://github.com/TRON-Bioinformatics/easyquant, respectively.
Collapse
Affiliation(s)
- Franziska Lang
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Patrick Sorn
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Martin Suchan
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Alina Henrich
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Christian Albrecht
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Nina Köhl
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Aline Beicht
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Pablo Riesgo-Ferreiro
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Christoph Holtsträter
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Barbara Schrörs
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - David Weber
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Martin Löwer
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Ugur Sahin
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
- BioNTech SE, Mainz 55131, Germany
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz 55131, Germany
| | - Jonas Ibn-Salem
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| |
Collapse
|
18
|
Szelest M, Giannopoulos K. Biological relevance of alternative splicing in hematologic malignancies. Mol Med 2024; 30:62. [PMID: 38760666 PMCID: PMC11100220 DOI: 10.1186/s10020-024-00839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024] Open
Abstract
Alternative splicing (AS) is a strictly regulated process that generates multiple mRNA variants from a single gene, thus contributing to proteome diversity. Transcriptome-wide sequencing studies revealed networks of functionally coordinated splicing events, which produce isoforms with distinct or even opposing functions. To date, several mechanisms of AS are deregulated in leukemic cells, mainly due to mutations in splicing and/or epigenetic regulators and altered expression of splicing factors (SFs). In this review, we discuss aberrant splicing events induced by mutations affecting SFs (SF3B1, U2AF1, SRSR2, and ZRSR2), spliceosome components (PRPF8, LUC7L2, DDX41, and HNRNPH1), and epigenetic modulators (IDH1 and IDH2). Finally, we provide an extensive overview of the biological relevance of aberrant isoforms of genes involved in the regulation of apoptosis (e. g. BCL-X, MCL-1, FAS, and c-FLIP), activation of key cellular signaling pathways (CASP8, MAP3K7, and NOTCH2), and cell metabolism (PKM).
Collapse
Affiliation(s)
- Monika Szelest
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| |
Collapse
|
19
|
Kaisrlikova M, Kundrat D, Koralkova P, Trsova I, Lenertova Z, Votavova H, Merkerova MD, Krejcik Z, Vesela J, Vostry M, Simeckova R, Markova MS, Lauermannova M, Jonasova A, Cermak J, Divoky V, Belickova M. Attenuated cell cycle and DNA damage response transcriptome signatures and overrepresented cell adhesion processes imply accelerated progression in patients with lower-risk myelodysplastic neoplasms. Int J Cancer 2024; 154:1652-1668. [PMID: 38180088 DOI: 10.1002/ijc.34834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Patients with myelodysplastic neoplasms (MDS) are classified according to the risk of acute myeloid leukemia transformation. Some lower-risk MDS patients (LR-MDS) progress rapidly despite expected good prognosis. Using diagnostic samples, we aimed to uncover the mechanisms of this accelerated progression at the transcriptome level. RNAseq was performed on CD34+ ribodepleted RNA samples from 53 LR-MDS patients without accelerated progression (stMDS) and 8 who progressed within 20 months (prMDS); 845 genes were differentially expressed (ІlogFCІ > 1, FDR < 0.01) between these groups. stMDS CD34+ cells exhibited transcriptional signatures of actively cycling, megakaryocyte/erythrocyte lineage-primed progenitors, with upregulation of cell cycle checkpoints and stress pathways, which presumably form a tumor-suppressing barrier. Conversely, cell cycle, DNA damage response (DDR) and energy metabolism-related pathways were downregulated in prMDS samples, whereas cell adhesion processes were upregulated. Also, prMDS samples showed high levels of aberrant splicing and global lncRNA expression that may contribute to the attenuation of DDR pathways. We observed overexpression of multiple oncogenes and diminished differentiation in prMDS; the expression of ZEB1 and NEK3, genes not previously associated with MDS prognosis, might serve as potential biomarkers for LR-MDS progression. Our 19-gene DDR signature showed a significant predictive power for LR-MDS progression. In validation samples (stMDS = 3, prMDS = 4), the key markers and signatures retained their significance. Collectively, accelerated progression of LR-MDS appears to be associated with transcriptome patterns of a quiescent-like cell state, reduced lineage differentiation and suppressed DDR, inherent to CD34+ cells. The attenuation of DDR-related gene-expression signature may refine risk assessment in LR-MDS patients.
Collapse
Affiliation(s)
| | - David Kundrat
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Pavla Koralkova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Iva Trsova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Zuzana Lenertova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Votavova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Zdenek Krejcik
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jitka Vesela
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Martin Vostry
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Radka Simeckova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | | | - Anna Jonasova
- First Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jaroslav Cermak
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Vladimir Divoky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Monika Belickova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Institute of Clinical and Experimental Hematology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
20
|
Jin J, Nguyen LTG, Wassef A, Sadek R, Schmitt TM, Guo GL, Rasmussen TP, Zhong XB. Identification and Functional Characterization of Alternative Transcripts of LncRNA HNF1A-AS1 and Their Impacts on Cell Growth, Differentiation, Liver Diseases, and in Response to Drug Induction. Noncoding RNA 2024; 10:28. [PMID: 38668386 PMCID: PMC11053763 DOI: 10.3390/ncrna10020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
The long non-coding RNA (lncRNA) hepatocyte nuclear factor-1 alpha (HNF1A) antisense RNA 1 (HNF1A-AS1) is an important lncRNA for liver growth, development, cell differentiation, and drug metabolism. Like many lncRNAs, HNF1A-AS1 has multiple annotated alternative transcripts in the human genome. Several fundamental biological questions are still not solved: (1) How many transcripts really exist in biological samples, such as liver samples and liver cell lines? (2) What are the expression patterns of different alternative HNF1A-AS1 transcripts at different conditions, including during cell growth and development, after exposure to xenobiotics (such as drugs), and in disease conditions, such as metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD) cirrhosis, and obesity? (3) Does the siRNA used in previous studies knock down one or multiple transcripts? (4) Do different transcripts have the same or different functions for gene regulation? The presented data confirm the existence of several annotated HNF1A-AS1 transcripts in liver samples and cell lines, but also identify some new transcripts, which are not annotated in the Ensembl genome database. Expression patterns of the identified HNF1A-AS1 transcripts are highly correlated with the cell differentiation of matured hepatocyte-like cells from human embryonic stem cells (hESC), growth and differentiation of HepaRG cells, in response to rifampicin induction, and in various liver disease conditions. The expression levels of the HNF1A-AS1 transcripts are also highly correlated to the expression of cytochrome P450 enzymes, such as CYP3A4, during HepaRG growth, differentiation, and in response to rifampicin induction.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (J.J.); (L.T.G.N.); (T.P.R.)
| | - Le Tra Giang Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (J.J.); (L.T.G.N.); (T.P.R.)
| | - Andrew Wassef
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08901, USA;
- Center of Excellence for Pharmaceutical Translational Research and Education, Rutgers University, Piscataway, NJ 08901, USA
- Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, NJ 08901, USA;
| | - Ragui Sadek
- Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, NJ 08901, USA;
| | - Timothy M. Schmitt
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Ernst Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08901, USA;
| | - Theodore P. Rasmussen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (J.J.); (L.T.G.N.); (T.P.R.)
| | - Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; (J.J.); (L.T.G.N.); (T.P.R.)
| |
Collapse
|
21
|
Niu R, Guo Y, Shang X. GLIMS: A two-stage gradual-learning method for cancer genes prediction using multi-omics data and co-splicing network. iScience 2024; 27:109387. [PMID: 38510118 PMCID: PMC10951990 DOI: 10.1016/j.isci.2024.109387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Identifying cancer genes is vital for cancer diagnosis and treatment. However, because of the complexity of cancer occurrence and limited cancer genes knowledge, it is hard to identify cancer genes accurately using only a few omics data, and the overall performance of existing methods is being called for further improvement. Here, we introduce a two-stage gradual-learning strategy GLIMS to predict cancer genes using integrative features from multi-omics data. Firstly, it uses a semi-supervised hierarchical graph neural network to predict the initial candidate cancer genes by integrating multi-omics data and protein-protein interaction (PPI) network. Then, it uses an unsupervised approach to further optimize the initial prediction by integrating the co-splicing network in post-transcriptional regulation, which plays an important role in cancer development. Systematic experiments on multi-omics cancer data demonstrated that GLIMS outperforms the state-of-the-art methods for the identification of cancer genes and it could be a useful tool to help advance cancer analysis.
Collapse
Affiliation(s)
- Rui Niu
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China
| | - Yang Guo
- School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
22
|
Miskalis A, Shirguppe S, Winter J, Elias G, Swami D, Nambiar A, Stilger M, Woods WS, Gosstola N, Gapinske M, Zeballos A, Moore H, Maslov S, Gaj T, Perez-Pinera P. SPLICER: A Highly Efficient Base Editing Toolbox That Enables In Vivo Therapeutic Exon Skipping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587650. [PMID: 38883727 PMCID: PMC11178003 DOI: 10.1101/2024.04.01.587650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Exon skipping technologies enable exclusion of targeted exons from mature mRNA transcripts, which has broad applications in molecular biology, medicine, and biotechnology. Existing exon skipping techniques include antisense oligonucleotides, targetable nucleases, and base editors, which, while effective for specific applications at some target exons, remain hindered by shortcomings, including transient effects for oligonucleotides, genotoxicity for nucleases and inconsistent exon skipping for base editors. To overcome these limitations, we created SPLICER, a toolbox of next-generation base editors consisting of near-PAMless Cas9 nickase variants fused to adenosine or cytosine deaminases for the simultaneous editing of splice acceptor (SA) and splice donor (SD) sequences. Synchronized SA and SD editing with SPLICER improves exon skipping, reduces aberrant outcomes, including cryptic splicing and intron retention, and enables skipping of exons refractory to single splice-site editing. To demonstrate the therapeutic potential of SPLICER, we targeted APP exon 17, which encodes the amino acid residues that are cleaved to form the Aβ plaques in Alzheimer's disease. SPLICER reduced the formation of Aβ42 peptides in vitro and enabled efficient exon skipping in a mouse model of Alzheimer's disease. Overall, SPLICER is a widely applicable and efficient toolbox for exon skipping with broad therapeutic applications.
Collapse
|
23
|
Yang L, Wang M, Wang Y, Zhu Y, Wang J, Wu M, Guo Q, Han X, Pandey V, Wu Z, Lobie PE, Zhu T. LINC00460-FUS-MYC feedback loop drives breast cancer metastasis and doxorubicin resistance. Oncogene 2024; 43:1249-1262. [PMID: 38418543 DOI: 10.1038/s41388-024-02972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/01/2024]
Abstract
Therapeutic resistance and metastasis largely contribute to mortality from breast cancer and therefore understanding the underlying mechanisms of such remains an urgent challenge. By cross-analysis of TCGA and GEO databases, LINC00460 was identified as an oncogenic long non-coding RNA, highly expressed in Doxorubicin resistant breast cancer. LINC00460 was further demonstrated to promote stem cell-like and epithelial-mesenchymal transition (EMT) characteristics in breast cancer cells. LINC00460 interacts with FUS protein with consequent enhanced stabilization, which further promotes MYC mRNA maturation. LINC00460 expression was transcriptionally enhanced by c-MYC protein, forming a positive feedback loop to promote metastasis and Doxorubicin resistance. LINC00460 depletion in Doxorubicin-resistant breast cancer cells restored sensitivity to Doxorubicin and increased the efficacy of c-MYC inhibitor therapy. Collectively, these findings implicate LINC00460 as a promising prognostic biomarker and potential therapeutic target to overcome Doxorubicin resistance in breast cancer.
Collapse
Affiliation(s)
- Leiyan Yang
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Miaomiao Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Ya Wang
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
| | - Jiarui Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Mingming Wu
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Qianying Guo
- Department of Pathology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinghua Han
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhengsheng Wu
- Department of Pathology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Tao Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
24
|
Chen Z, Wang G, Wang W, Wang X, Huang Y, Jia J, Gao Q, Xu H, Xu Y, Ma Z, He L, Cheng J, Li C. PDE9A polymorphism and association analysis with growth performance and gastrointestinal weight of Hu sheep. Gene 2024; 900:148137. [PMID: 38184018 DOI: 10.1016/j.gene.2024.148137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/26/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Phosphodiesterase 9A (PDE9A) plays a crucial role in activating the cGMP-dependent signaling pathway and may have important effects on the growth and development of the gastrointestinal tract in Hu sheep. In this study, we analyzed the single nucleotide polymorphisms of PDE9A in 988 Hu sheep and their correlation with growth performance, feed efficiency, and gastrointestinal development. Additionally, we examined the expression level of different PDE9A genotypes in the gastrointestinal tract of Hu sheep by using fluorescence quantitative PCR. The results revealed a moderate level of polymorphism (0.25 < PIC < 0.50) at the g.286248617 T > C mutation site located in the first intron of PDE9A in Hu sheep, with three genotypes: CC, CT, and TT. The weights of the omasum, colon, and cecum were significantly greater in the CC genotype than in the TT genotype (P < 0.05), and the expression level of PDE9A in the tissues of the rumen, ileum, cecum, and colon was notably lower in the CC genotype individuals (P < 0.05). These findings suggest that the polymorphism of PDE9A affects the weight of the stomach, colon, and cecum in Hu sheep through expression regulation. Overall, the results of this study suggest that the g.286248617 T > C mutation site in the first intron of PDE9A can serve as a potential molecular marker for breeding practices related to the gastrointestinal weight of Hu sheep.
Collapse
Affiliation(s)
- Zhanyu Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Guoxiu Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiale Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Qihao Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Haoyu Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yunfei Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Lijuan He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiangbo Cheng
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
25
|
Wang D, Tang M, Zhang P, Yang K, Huang L, Wu M, Shen Q, Yue J, Wang W, Gong Y, Warner M, Dai L, He H, Yang Z, Gustafsson JA, Zhou S. Activation of ERβ hijacks the splicing machinery to trigger R-loop formation in triple-negative breast cancer. Proc Natl Acad Sci U S A 2024; 121:e2306814121. [PMID: 38513102 PMCID: PMC10990146 DOI: 10.1073/pnas.2306814121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/23/2024] [Indexed: 03/23/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with aggressive behavior and poor prognosis. Current therapeutic options available for TNBC patients are primarily chemotherapy. With our evolving understanding of this disease, novel targeted therapies, including poly ADP-ribose polymerase (PARP) inhibitors, antibody-drug conjugates, and immune-checkpoint inhibitors, have been developed for clinical use. Previous reports have demonstrated the essential role of estrogen receptor β (ERβ) in TNBC, but the detailed molecular mechanisms downstream ERβ activation in TNBC are still far from elucidated. In this study, we demonstrated that a specific ERβ agonist, LY500307, potently induces R-loop formation and DNA damage in TNBC cells. Subsequent interactome experiments indicated that the residues 151 to 165 of U2 small nuclear RNA auxiliary factor 1 (U2AF1) and the Trp439 and Lys443 of ERβ were critical for the binding between U2AF1 and ERβ. Combined RNA sequencing and ribosome sequencing analysis demonstrated that U2AF1-regulated downstream RNA splicing of 5-oxoprolinase (OPLAH) could affect its enzymatic activity and is essential for ERβ-induced R-loop formation and DNA damage. In clinical samples including 115 patients from The Cancer Genome Atlas (TCGA) and 32 patients from an in-house cohort, we found a close correlation in the expression of ESR2 and U2AF1 in TNBC patients. Collectively, our study has unraveled the molecular mechanisms that explain the therapeutic effects of ERβ activation in TNBC, which provides rationale for ERβ activation-based single or combined therapy for patients with TNBC.
Collapse
Affiliation(s)
- Dongfang Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Muya Tang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Peidong Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH44106
| | - Liang Huang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Mengrui Wu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Qiuhong Shen
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Jing Yue
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Wei Wang
- Department of Gynecology, Biomedical Big Data Center, Huzhou Maternity and Child Health Care Hospital, Huzhou, Zhejiang313000, People’s Republic of China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Margaret Warner
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX77204
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Haihuai He
- Department of Neurosurgery, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Zhengnan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| | - Jan-Ake Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX77204
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge14157, Sweden
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu610041, People’s Republic of China
| |
Collapse
|
26
|
Lynn N, Tuller T. Detecting and understanding meaningful cancerous mutations based on computational models of mRNA splicing. NPJ Syst Biol Appl 2024; 10:25. [PMID: 38453965 PMCID: PMC10920900 DOI: 10.1038/s41540-024-00351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Cancer research has long relied on non-silent mutations. Yet, it has become overwhelmingly clear that silent mutations can affect gene expression and cancer cell fitness. One fundamental mechanism that apparently silent mutations can severely disrupt is alternative splicing. Here we introduce Oncosplice, a tool that scores mutations based on models of proteomes generated using aberrant splicing predictions. Oncosplice leverages a highly accurate neural network that predicts splice sites within arbitrary mRNA sequences, a greedy transcript constructor that considers alternate arrangements of splicing blueprints, and an algorithm that grades the functional divergence between proteins based on evolutionary conservation. By applying this tool to 12M somatic mutations we identify 8K deleterious variants that are significantly depleted within the healthy population; we demonstrate the tool's ability to identify clinically validated pathogenic variants with a positive predictive value of 94%; we show strong enrichment of predicted deleterious mutations across pan-cancer drivers. We also achieve improved patient survival estimation using a proposed set of novel cancer-involved genes. Ultimately, this pipeline enables accelerated insight-gathering of sequence-specific consequences for a class of understudied mutations and provides an efficient way of filtering through massive variant datasets - functionalities with immediate experimental and clinical applications.
Collapse
Affiliation(s)
- Nicolas Lynn
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, 69978, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, 69978, Israel.
| |
Collapse
|
27
|
Sudhakaran M, Navarrete TG, Mejía-Guerra K, Mukundi E, Eubank TD, Grotewold E, Arango D, Doseff AI. Transcriptome reprogramming through alternative splicing triggered by apigenin drives cell death in triple-negative breast cancer. Cell Death Dis 2023; 14:824. [PMID: 38092740 PMCID: PMC10719380 DOI: 10.1038/s41419-023-06342-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Triple-negative breast cancer (TNBC) is characterized by its aggressiveness and resistance to cancer-specific transcriptome alterations. Alternative splicing (AS) is a major contributor to the diversification of cancer-specific transcriptomes. The TNBC transcriptome landscape is characterized by aberrantly spliced isoforms that promote tumor growth and resistance, underscoring the need to identify approaches that reprogram AS circuitry towards transcriptomes, favoring a delay in tumorigenesis or responsiveness to therapy. We have previously shown that flavonoid apigenin is associated with splicing factors, including heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2). Here, we showed that apigenin reprograms TNBC-associated AS transcriptome-wide. The AS events affected by apigenin were statistically enriched in hnRNPA2 substrates. Comparative transcriptomic analyses of human TNBC tumors and non-tumor tissues showed that apigenin can switch cancer-associated alternative spliced isoforms (ASI) to those found in non-tumor tissues. Apigenin preferentially affects the splicing of anti-apoptotic and proliferation factors, which are uniquely observed in cancer cells, but not in non-tumor cells. Apigenin switches cancer-associated aberrant ASI in vivo in TNBC xenograft mice by diminishing proliferation and increasing pro-apoptotic ASI. In accordance with these findings, apigenin increased apoptosis and reduced tumor proliferation, thereby halting TNBC growth in vivo. Our results revealed that apigenin reprograms transcriptome-wide TNBC-specific AS, thereby inducing apoptosis and hindering tumor growth. These findings underscore the impactful effects of nutraceuticals in altering cancer transcriptomes, offering new options to influence outcomes in TNBC treatments.
Collapse
Affiliation(s)
- Meenakshi Sudhakaran
- Molecular, Cellular, and Integrative Physiology Graduate Program, Michigan State University, East Lansing, MI, USA
| | - Tatiana García Navarrete
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | | | - Eric Mukundi
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Timothy D Eubank
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Daniel Arango
- Department of Pharmacology and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Andrea I Doseff
- Department of Physiology and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
28
|
Dwivedi SL, Quiroz LF, Reddy ASN, Spillane C, Ortiz R. Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. Int J Mol Sci 2023; 24:15205. [PMID: 37894886 PMCID: PMC10607462 DOI: 10.3390/ijms242015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, SE, Sweden
| |
Collapse
|
29
|
Wang Z, Ding J, Xiao Y, Xiao K, Su P, Dong Z, Zhang Y. Serum extracellular vesicles with NSD1 and FBXO7 mRNA as novel biomarkers for gastric cancer. Clin Biochem 2023; 120:110653. [PMID: 37742869 DOI: 10.1016/j.clinbiochem.2023.110653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Messenger RNAs (mRNAs) in serum extracellular vesicles (EVs) are effective non-invasive biomarkers for various types of cancer, however, their role as biomarkers for gastric cancer is yet to be investigated. Therefore, the current study was designed to explore their potential as novel biomarkers for gastric cancer. METHODS The mRNAs in serum EVs from four patients with gastric cancer and four healthy controls were investigated. mRNAs in serum EVs were extracted for high-throughput RNA sequencing (RNA-seq). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to predict cancer-related genes. Candidate mRNAs were validated using reverse transcription-quantitative polymerase chain reaction. The diagnostic and prognostic values of mRNAs for gastric cancer were evaluated by receiver operating characteristic (ROC) curves and Kaplan-Meier analysis, respectively. RESULTS RNA-seq revealed 13,229 upregulated and 7,079 downregulated mRNAs in serum EVs. GO and KEGG analyses showed that certain mRNAs were associated with tumorigenesis and progression. From these, 10 were selected according to our criteria (|Fold Change| > 10, P < 0.05). NSD1 was upregulated and FBXO7 was downregulated in patients with gastric cancer compared with the healthy controls. The area under the ROC curves of these two mRNAs combined was 0.84, with a sensitivity of 78 % and a specificity of 92 %. NSD1 and FBXO7 were also associated with tumor size, distal metastasis, and TNM stage. Furthermore, NSD1 expression was strongly associated with prognosis, as revealed from our follow-up studies and online database analysis. However, FBXO7 was only significantly associated with prognosis in our follow-up data. CONCLUSIONS NSD1 and FBXO7 in serum EVs have important roles in gastric cancer and may be useful biomarkers for its diagnosis and prognosis.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - Juan Ding
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng 252000, Shandong, China
| | - Ke Xiao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - Ping Su
- National Administration of Health Data, Jinan 250000, Shandong, China
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhuaxi Road, Jinan 250012, Shandong, China.
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhuaxi Road, Jinan 250012, Shandong, China.
| |
Collapse
|
30
|
Duan C, Zhang Y, Li L, Liu K, Yao X, Wu X, Li B, Mao X, Wu H, Liu H, Zeng J, Li S, Gong Y, Hu Z, Xu H. Identification of alternative splicing associated with clinical features: from pan-cancers to genitourinary tumors. Front Oncol 2023; 13:1249932. [PMID: 37810965 PMCID: PMC10557043 DOI: 10.3389/fonc.2023.1249932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 10/10/2023] Open
Abstract
Background Alternative splicing events (ASEs) are vital causes of tumor heterogeneity in genitourinary tumors and many other cancers. However, the clinicopathological relevance of ASEs in cancers has not yet been comprehensively characterized. Methods By analyzing splicing data from the TCGA SpliceSeq database and phenotype data for all TCGA samples from the UCSC Xena database, we identified differential clinical feature-related ASEs in 33 tumors. CIBERSORT immune cell infiltration data from the TIMER2.0 database were used for differential clinical feature-related immune cell infiltration analysis. Gene function enrichment analysis was used to analyze the gene function of ASEs related to different clinical features in tumors. To reveal the regulatory mechanisms of ASEs, we integrated race-related ASEs and splicing quantitative trait loci (sQTLs) data in kidney renal clear cell carcinoma (KIRC) to comprehensively assess the impact of SNPs on ASEs. In addition, we predicted regulatory RNA binding proteins in bladder urothelial carcinoma (BLCA) based on the enrichment of motifs around alternative exons for ASEs. Results Alternative splicing differences were systematically analyzed between different groups of 58 clinical features in 33 cancers, and 30 clinical features in 24 cancer types were identified to be associated with more than 50 ASEs individually. The types of immune cell infiltration were found to be significantly different between subgroups of primary diagnosis and disease type. After integrating ASEs with sQTLs data, we found that 63 (58.9%) of the race-related ASEs were significantly SNP-correlated ASEs in KIRC. Gene function enrichment analyses showed that metastasis-related ASEs in KIRC mainly enriched Rho GTPase signaling pathways. Among those ASEs associated with metastasis, alternative splicing of GIT2 and TUBB3 might play key roles in tumor metastasis in KIRC patients. Finally, we identified several RNA binding proteins such as PCBP2, SNRNP70, and HuR, which might contribute to splicing differences between different groups of neoplasm grade in BLCA. Conclusion We demonstrated the significant clinical relevance of ASEs in multiple cancer types. Furthermore, we identified and validated alternative splicing of TUBB3 and RNA binding proteins such as PCBP2 as critical regulators in the progression of urogenital cancers.
Collapse
Affiliation(s)
- Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangjun Zhang
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Li
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Kai Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiangyang Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiongmin Mao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huahui Wu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haoran Liu
- Department of Urology, Stanford University School of Medicine, Stanford, CA, United States
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Sheng Li
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Gong
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Xu
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
31
|
Moreno RY, Juetten KJ, Panina SB, Butalewicz JP, Floyd BM, Venkat Ramani MK, Marcotte EM, Brodbelt JS, Zhang YJ. Distinctive interactomes of RNA polymerase II phosphorylation during different stages of transcription. iScience 2023; 26:107581. [PMID: 37664589 PMCID: PMC10470302 DOI: 10.1016/j.isci.2023.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
During eukaryotic transcription, RNA polymerase II undergoes dynamic post-translational modifications on the C-terminal domain (CTD) of the largest subunit, generating an information-rich PTM landscape that transcriptional regulators bind. The phosphorylation of Ser5 and Ser2 of CTD heptad occurs spatiotemporally with the transcriptional stages, recruiting different transcriptional regulators to Pol II. To delineate the protein interactomes at different transcriptional stages, we reconstructed phosphorylation patterns of the CTD at Ser5 and Ser2 in vitro. Our results showed that distinct protein interactomes are recruited to RNA polymerase II at different stages of transcription by the phosphorylation of Ser2 and Ser5 of the CTD heptads. In particular, we characterized calcium homeostasis endoplasmic reticulum protein (CHERP) as a regulator bound by phospho-Ser2 heptad. Pol II association with CHERP recruits an accessory splicing complex whose loss results in broad changes in alternative splicing events. Our results shed light on the PTM-coded recruitment process that coordinates transcription.
Collapse
Affiliation(s)
| | - Kyle J. Juetten
- Department of Chemistry, University of Texas, Austin, TX, USA
| | - Svetlana B. Panina
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | | | - Brendan M. Floyd
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | | | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | | | - Y. Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| |
Collapse
|
32
|
Han N, Liu Z. Targeting alternative splicing in cancer immunotherapy. Front Cell Dev Biol 2023; 11:1232146. [PMID: 37635865 PMCID: PMC10450511 DOI: 10.3389/fcell.2023.1232146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Tumor immunotherapy has made great progress in cancer treatment but still faces several challenges, such as a limited number of targetable antigens and varying responses among patients. Alternative splicing (AS) is an essential process for the maturation of nearly all mammalian mRNAs. Recent studies show that AS contributes to expanding cancer-specific antigens and modulating immunogenicity, making it a promising solution to the above challenges. The organoid technology preserves the individual immune microenvironment and reduces the time/economic costs of the experiment model, facilitating the development of splicing-based immunotherapy. Here, we summarize three critical roles of AS in immunotherapy: resources for generating neoantigens, targets for immune-therapeutic modulation, and biomarkers to guide immunotherapy options. Subsequently, we highlight the benefits of adopting organoids to develop AS-based immunotherapies. Finally, we discuss the current challenges in studying AS-based immunotherapy in terms of existing bioinformatics algorithms and biological technologies.
Collapse
Affiliation(s)
- Nan Han
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Liu
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Lock IC, Leisenring NH, Floyd W, Xu ES, Luo L, Ma Y, Mansell EC, Cardona DM, Lee CL, Kirsch DG. Mis-splicing Drives Loss of Function of p53 E224D Point Mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551439. [PMID: 37577531 PMCID: PMC10418211 DOI: 10.1101/2023.08.01.551439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background Tp53 is the most commonly mutated gene in cancer. Canonical Tp53 DNA damage response pathways are well characterized and classically thought to underlie the tumor suppressive effect of Tp53. Challenging this dogma, mouse models have revealed that p53 driven apoptosis and cell cycle arrest are dispensable for tumor suppression. Here, we investigated the inverse context of a p53 mutation predicted to drive expression of canonical targets, but is detected in human cancer. Methods We established a novel mouse model with a single base pair mutation (GAG>GAC, p53E221D) in the DNA-Binding domain that has wild-type function in screening assays, but is paradoxically found in human cancer in Li-Fraumeni syndrome. Using mouse p53E221D and the analogous human p53E224D mutant, we evaluated expression, transcriptional activation, and tumor suppression in vitro and in vivo. Results Expression of human p53E224D from cDNA translated to a fully functional p53 protein. However, p53E221D/E221D RNA transcribed from the endogenous locus is mis-spliced resulting in nonsense mediated decay. Moreover, fibroblasts derived from p53E221D/E221D mice do not express a detectable protein product. Mice homozygous for p53E221D exhibited increased tumor penetrance and decreased life expectancy compared to p53 WT animals. Conclusions Mouse p53E221D and human p53E224D mutations lead to splice variation and a biologically relevant p53 loss of function in vitro and in vivo.
Collapse
Affiliation(s)
- Ian C. Lock
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nathan H. Leisenring
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA
| | - Warren Floyd
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eric S. Xu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erin C. Mansell
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Diana M. Cardona
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Chang-Lung Lee
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - David G. Kirsch
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
34
|
Bonner EA, Lee SC. Therapeutic Targeting of RNA Splicing in Cancer. Genes (Basel) 2023; 14:1378. [PMID: 37510283 PMCID: PMC10379351 DOI: 10.3390/genes14071378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
RNA splicing is a key regulatory step in the proper control of gene expression. It is a highly dynamic process orchestrated by the spliceosome, a macro-molecular machinery that consists of protein and RNA components. The dysregulation of RNA splicing has been observed in many human pathologies ranging from neurodegenerative diseases to cancer. The recent identification of recurrent mutations in the core components of the spliceosome in hematologic malignancies has advanced our knowledge of how splicing alterations contribute to disease pathogenesis. This review article will discuss our current understanding of how aberrant RNA splicing regulation drives tumor initiation and progression. We will also review current therapeutic modalities and highlight emerging technologies designed to target RNA splicing for cancer treatment.
Collapse
Affiliation(s)
- Elizabeth A. Bonner
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA;
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Stanley C. Lee
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
35
|
Debès C, Papadakis A, Grönke S, Karalay Ö, Tain LS, Mizi A, Nakamura S, Hahn O, Weigelt C, Josipovic N, Zirkel A, Brusius I, Sofiadis K, Lamprousi M, Lu YX, Huang W, Esmaillie R, Kubacki T, Späth MR, Schermer B, Benzing T, Müller RU, Antebi A, Partridge L, Papantonis A, Beyer A. Ageing-associated changes in transcriptional elongation influence longevity. Nature 2023; 616:814-821. [PMID: 37046086 PMCID: PMC10132977 DOI: 10.1038/s41586-023-05922-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/07/2023] [Indexed: 04/14/2023]
Abstract
Physiological homeostasis becomes compromised during ageing, as a result of impairment of cellular processes, including transcription and RNA splicing1-4. However, the molecular mechanisms leading to the loss of transcriptional fidelity are so far elusive, as are ways of preventing it. Here we profiled and analysed genome-wide, ageing-related changes in transcriptional processes across different organisms: nematodes, fruitflies, mice, rats and humans. The average transcriptional elongation speed (RNA polymerase II speed) increased with age in all five species. Along with these changes in elongation speed, we observed changes in splicing, including a reduction of unspliced transcripts and the formation of more circular RNAs. Two lifespan-extending interventions, dietary restriction and lowered insulin-IGF signalling, both reversed most of these ageing-related changes. Genetic variants in RNA polymerase II that reduced its speed in worms5 and flies6 increased their lifespan. Similarly, reducing the speed of RNA polymerase II by overexpressing histone components, to counter age-associated changes in nucleosome positioning, also extended lifespan in flies and the division potential of human cells. Our findings uncover fundamental molecular mechanisms underlying animal ageing and lifespan-extending interventions, and point to possible preventive measures.
Collapse
Affiliation(s)
- Cédric Debès
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Antonios Papadakis
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Özlem Karalay
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Luke S Tain
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Athanasia Mizi
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Shuhei Nakamura
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Oliver Hahn
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Carina Weigelt
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Natasa Josipovic
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anne Zirkel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Isabell Brusius
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Konstantinos Sofiadis
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Mantha Lamprousi
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Yu-Xuan Lu
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Wenming Huang
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Reza Esmaillie
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Torsten Kubacki
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin R Späth
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Bernhard Schermer
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Adam Antebi
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Linda Partridge
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, UCL, London, UK.
| | - Argyris Papantonis
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Andreas Beyer
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
36
|
Park J, Park J, Chung YJ. Alternative splicing: a new breakthrough for understanding tumorigenesis and potential clinical applications. Genes Genomics 2023; 45:393-400. [PMID: 36656436 DOI: 10.1007/s13258-023-01365-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Alternative splicing (AS) is a post-transcriptional process that produces transcript variants, thus leading to transcriptome complexity. Recently, the scope of AS studies has been greatly expanded toward clinical applications owing to the abundance of RNA sequencing data. OBJECTIVE This review consists of two parts. We first summarize bioinformatic resources that are useful for large-scale cancer-related AS studies. We then highlight the research efforts to utilize AS events for predicting clinical outcomes and planning therapeutic strategies. RESULTS Computational approaches to interrogate AS events have been reviewed under three categories: (1) databases to provide functional and clinical annotation of AS events, (2) analytical tools to identify cancer-associated AS event, and (3) methods to identify splicing-related DNA variants and splicing-derived neoantigens. We also present the recent progress in exploring the clinical utility of AS under four categories: (1) identification of AS events for cancer prognosis, (2) utilization of AS events in molecular classification of various cancers, (3) regulatory mechanisms of AS underlying drug resistance, and (4) potential use of AS in cancer therapy. CONCLUSION This review will be helpful for understanding the biological implications of AS in cancer and facilitate the development of AS markers for cancer prognosis and treatment. We anticipate that future studies will lead to the application of genome-wide AS profiles in cancer precision medicine.
Collapse
Affiliation(s)
- Jiyeon Park
- Precision Medicine Research Center, Seoul, Republic of Korea
- Integrated Research Center for Genome Polymorphism,, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, Seoul, Republic of Korea
| | - Joonhyuck Park
- Department of Biomedicine & Health Sciences, Graduate School, Seoul, Republic of Korea.
- 4Department of Medical Life science, Seoul, Republic of Korea.
- Department of Medical Life science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, Republic of Korea.
| | - Yeun-Jun Chung
- Precision Medicine Research Center, Seoul, Republic of Korea.
- Integrated Research Center for Genome Polymorphism,, Seoul, Republic of Korea.
- Department of Biomedicine & Health Sciences, Graduate School, Seoul, Republic of Korea.
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Abstract
Alternative splicing (AS) of mRNAs is an essential regulatory mechanism in eukaryotic gene expression. AS misregulation, caused by either dysregulation or mutation of splicing factors, has been shown to be involved in cancer development and progression, making splicing factors suitable targets for cancer therapy. In recent years, various types of pharmacological modulators, such as small molecules and oligonucleotides, targeting distinct components of the splicing machinery, have been under development to treat multiple disorders. Although these approaches have promise, targeting the core spliceosome components disrupts the early stages of spliceosome assembly and can lead to nonspecific and toxic effects. New research directions have been focused on targeting specific splicing factors for a more precise effect. In this Perspective, we will highlight several approaches for targeting splicing factors and their functions and suggest ways to improve their specificity.
Collapse
Affiliation(s)
- Ariel Bashari
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| |
Collapse
|
38
|
García-Ruiz S, Zhang D, Gustavsson EK, Rocamora-Perez G, Grant-Peters M, Fairbrother-Browne A, Reynolds RH, Brenton JW, Gil-Martínez AL, Chen Z, Rio DC, Botia JA, Guelfi S, Collado-Torres L, Ryten M. Splicing accuracy varies across human introns, tissues and age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534370. [PMID: 37034741 PMCID: PMC10081249 DOI: 10.1101/2023.03.29.534370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigated mis-splicing using RNA-sequencing data from ~14K control samples and 42 human body sites, focusing on split reads partially mapping to known transcripts in annotation. We show that mis-splicing occurs at different rates across introns and tissues and that these splicing inaccuracies are primarily affected by the abundance of core components of the spliceosome assembly and its regulators. Using publicly available data on short-hairpin RNA-knockdowns of numerous spliceosomal components and related regulators, we found support for the importance of RNA-binding proteins in mis-splicing. We also demonstrated that age is positively correlated with mis-splicing, and it affects genes implicated in neurodegenerative diseases. This in-depth characterisation of mis-splicing can have important implications for our understanding of the role of splicing inaccuracies in human disease and the interpretation of long-read RNA-sequencing data.
Collapse
Affiliation(s)
- S García-Ruiz
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - D Zhang
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - E K Gustavsson
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - G Rocamora-Perez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - M Grant-Peters
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A Fairbrother-Browne
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - R H Reynolds
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - J W Brenton
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A L Gil-Martínez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Z Chen
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - D C Rio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - J A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - S Guelfi
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Verge Genomics, South San Francisco, CA, 94080, USA
| | - L Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA , 21205
| | - M Ryten
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
39
|
Ullah F, Jabeen S, Salton M, Reddy ASN, Ben-Hur A. Evidence for the role of transcription factors in the co-transcriptional regulation of intron retention. Genome Biol 2023; 24:53. [PMID: 36949544 PMCID: PMC10031921 DOI: 10.1186/s13059-023-02885-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/16/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Alternative splicing is a widespread regulatory phenomenon that enables a single gene to produce multiple transcripts. Among the different types of alternative splicing, intron retention is one of the least explored despite its high prevalence in both plants and animals. The recent discovery that the majority of splicing is co-transcriptional has led to the finding that chromatin state affects alternative splicing. Therefore, it is plausible that transcription factors can regulate splicing outcomes. RESULTS We provide evidence for the hypothesis that transcription factors are involved in the regulation of intron retention by studying regions of open chromatin in retained and excised introns. Using deep learning models designed to distinguish between regions of open chromatin in retained introns and non-retained introns, we identified motifs enriched in IR events with significant hits to known human transcription factors. Our model predicts that the majority of transcription factors that affect intron retention come from the zinc finger family. We demonstrate the validity of these predictions using ChIP-seq data for multiple zinc finger transcription factors and find strong over-representation for their peaks in intron retention events. CONCLUSIONS This work opens up opportunities for further studies that elucidate the mechanisms by which transcription factors affect intron retention and other forms of splicing. AVAILABILITY Source code available at https://github.com/fahadahaf/chromir.
Collapse
Affiliation(s)
- Fahad Ullah
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - Saira Jabeen
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - Maayan Salton
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Anireddy S N Reddy
- Biochemistry and Molecular Biology Department, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
40
|
Cotto KC, Feng YY, Ramu A, Richters M, Freshour SL, Skidmore ZL, Xia H, McMichael JF, Kunisaki J, Campbell KM, Chen THP, Rozycki EB, Adkins D, Devarakonda S, Sankararaman S, Lin Y, Chapman WC, Maher CA, Arora V, Dunn GP, Uppaluri R, Govindan R, Griffith OL, Griffith M. Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer. Nat Commun 2023; 14:1589. [PMID: 36949070 PMCID: PMC10033906 DOI: 10.1038/s41467-023-37266-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
Somatic mutations within non-coding regions and even exons may have unidentified regulatory consequences that are often overlooked in analysis workflows. Here we present RegTools ( www.regtools.org ), a computationally efficient, free, and open-source software package designed to integrate somatic variants from genomic data with splice junctions from bulk or single cell transcriptomic data to identify variants that may cause aberrant splicing. We apply RegTools to over 9000 tumor samples with both tumor DNA and RNA sequence data. RegTools discovers 235,778 events where a splice-associated variant significantly increases the splicing of a particular junction, across 158,200 unique variants and 131,212 unique junctions. To characterize these somatic variants and their associated splice isoforms, we annotate them with the Variant Effect Predictor, SpliceAI, and Genotype-Tissue Expression junction counts and compare our results to other tools that integrate genomic and transcriptomic data. While many events are corroborated by the aforementioned tools, the flexibility of RegTools also allows us to identify splice-associated variants in known cancer drivers, such as TP53, CDKN2A, and B2M, and other genes.
Collapse
Affiliation(s)
- Kelsy C Cotto
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Yang-Yang Feng
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Avinash Ramu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan Richters
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Sharon L Freshour
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Zachary L Skidmore
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Huiming Xia
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua F McMichael
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason Kunisaki
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie M Campbell
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy Hung-Po Chen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily B Rozycki
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Douglas Adkins
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Siddhartha Devarakonda
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sumithra Sankararaman
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yiing Lin
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - William C Chapman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Maher
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Vivek Arora
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gavin P Dunn
- Department of Neurosurgery, Mass General Hospital, Boston, MA, USA
- Center for Brain Tumor Immunology and Immunotherapy, Mass General Hospital, Boston, MA, USA
| | - Ravindra Uppaluri
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Obi L Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
41
|
Abstract
Dysregulated RNA splicing is a molecular feature that characterizes almost all tumour types. Cancer-associated splicing alterations arise from both recurrent mutations and altered expression of trans-acting factors governing splicing catalysis and regulation. Cancer-associated splicing dysregulation can promote tumorigenesis via diverse mechanisms, contributing to increased cell proliferation, decreased apoptosis, enhanced migration and metastatic potential, resistance to chemotherapy and evasion of immune surveillance. Recent studies have identified specific cancer-associated isoforms that play critical roles in cancer cell transformation and growth and demonstrated the therapeutic benefits of correcting or otherwise antagonizing such cancer-associated mRNA isoforms. Clinical-grade small molecules that modulate or inhibit RNA splicing have similarly been developed as promising anticancer therapeutics. Here, we review splicing alterations characteristic of cancer cell transcriptomes, dysregulated splicing's contributions to tumour initiation and progression, and existing and emerging approaches for targeting splicing for cancer therapy. Finally, we discuss the outstanding questions and challenges that must be addressed to translate these findings into the clinic.
Collapse
Affiliation(s)
- Robert K Bradley
- Computational Biology Program, Public Health Sciences Division and Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
42
|
Ogiya D, Chyra Z, Verselis SJ, O'Keefe M, Cobb J, Abiatari I, Talluri S, Sithara AA, Hideshima T, Chu MP, Hájek R, Dorfman DM, Pilarski LM, Anderson KC, Adamia S. Identification of disease-related aberrantly spliced transcripts in myeloma and strategies to target these alterations by RNA-based therapeutics. Blood Cancer J 2023; 13:23. [PMID: 36737429 PMCID: PMC9898564 DOI: 10.1038/s41408-023-00791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/17/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Novel drug discoveries have shifted the treatment paradigms of most hematological malignancies, including multiple myeloma (MM). However, this plasma cell malignancy remains incurable, and novel therapies are therefore urgently needed. Whole-genome transcriptome analyses in a large cohort of MM patients demonstrated that alterations in pre-mRNA splicing (AS) are frequent in MM. This manuscript describes approaches to identify disease-specific alterations in MM and proposes RNA-based therapeutic strategies to eradicate such alterations. As a "proof of concept", we examined the causes of aberrant HMMR (Hyaluronan-mediated motility receptor) splicing in MM. We identified clusters of single nucleotide variations (SNVs) in the HMMR transcript where the altered splicing took place. Using bioinformatics tools, we predicted SNVs and splicing factors that potentially contribute to aberrant HMMR splicing. Based on bioinformatic analyses and validation studies, we provided the rationale for RNA-based therapeutic strategies to selectively inhibit altered HMMR splicing in MM. Since splicing is a hallmark of many cancers, strategies described herein for target identification and the design of RNA-based therapeutics that inhibit gene splicing can be applied not only to other genes in MM but also more broadly to other hematological malignancies and solid tumors as well.
Collapse
Affiliation(s)
- Daisuke Ogiya
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Zuzana Chyra
- Department of Hemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Hemato-oncology, University of Ostrava, Ostrava, Czech Republic
| | - Sigitas J Verselis
- Molecular Diagnostic Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Morgan O'Keefe
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jacquelyn Cobb
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ivane Abiatari
- Institute of Medical and Public Health Research, School of Medicine, Ilia State University, Tbilisi, Georgia
| | - Srikanth Talluri
- Molecular Diagnostic Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
- Veterans Administration Boston Healthcare System, West Roxbury, MA, USA
| | - Anjana Anilkumar Sithara
- Department of Hemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Hemato-oncology, University of Ostrava, Ostrava, Czech Republic
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Michael P Chu
- Department of Medicine, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Roman Hájek
- Department of Hemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Hemato-oncology, University of Ostrava, Ostrava, Czech Republic
| | - David M Dorfman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda M Pilarski
- Department of Medicine, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Sophia Adamia
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Institute of Medical and Public Health Research, School of Medicine, Ilia State University, Tbilisi, Georgia.
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Vital T, Wali A, Butler KV, Xiong Y, Foster JP, Marcel SS, McFadden AW, Nguyen VU, Bailey BM, Lamb KN, James LI, Frye SV, Mosely AL, Jin J, Pattenden SG, Davis IJ. MS0621, a novel small-molecule modulator of Ewing sarcoma chromatin accessibility, interacts with an RNA-associated macromolecular complex and influences RNA splicing. Front Oncol 2023; 13:1099550. [PMID: 36793594 PMCID: PMC9924231 DOI: 10.3389/fonc.2023.1099550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
Ewing sarcoma is a cancer of children and young adults characterized by the critical translocation-associated fusion oncoprotein EWSR1::FLI1. EWSR1::FLI1 targets characteristic genetic loci where it mediates aberrant chromatin and the establishment of de novo enhancers. Ewing sarcoma thus provides a model to interrogate mechanisms underlying chromatin dysregulation in tumorigenesis. Previously, we developed a high-throughput chromatin-based screening platform based on the de novo enhancers and demonstrated its utility in identifying small molecules capable of altering chromatin accessibility. Here, we report the identification of MS0621, a molecule with previously uncharacterized mechanism of action, as a small molecule modulator of chromatin state at sites of aberrant chromatin accessibility at EWSR1::FLI1-bound loci. MS0621 suppresses cellular proliferation of Ewing sarcoma cell lines by cell cycle arrest. Proteomic studies demonstrate that MS0621 associates with EWSR1::FLI1, RNA binding and splicing proteins, as well as chromatin regulatory proteins. Surprisingly, interactions with chromatin and many RNA-binding proteins, including EWSR1::FLI1 and its known interactors, were RNA-independent. Our findings suggest that MS0621 affects EWSR1::FLI1-mediated chromatin activity by interacting with and altering the activity of RNA splicing machinery and chromatin modulating factors. Genetic modulation of these proteins similarly inhibits proliferation and alters chromatin in Ewing sarcoma cells. The use of an oncogene-associated chromatin signature as a target allows for a direct approach to screen for unrecognized modulators of epigenetic machinery and provides a framework for using chromatin-based assays for future therapeutic discovery efforts.
Collapse
Affiliation(s)
- Tamara Vital
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Aminah Wali
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kyle V. Butler
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joseph P. Foster
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shelsa S. Marcel
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Andrew W. McFadden
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Valerie U. Nguyen
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benton M. Bailey
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kelsey N. Lamb
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lindsey I. James
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen V. Frye
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amber L. Mosely
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Samantha G. Pattenden
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ian J. Davis
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
44
|
Luo J, Chen C, Liu Z, Wang X. The mutation in splicing factor genes correlates with unfavorable prognosis, genomic instability, anti-tumor immunosuppression and increased immunotherapy response in pan-cancer. Front Cell Dev Biol 2023; 10:1045130. [PMID: 36684432 PMCID: PMC9852835 DOI: 10.3389/fcell.2022.1045130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Splicing abnormality resulting from somatic mutations in key splicing factor genes (SFG) has been detected in various cancers. Hence, an in-depth study of splicing factor genes mutations' impact on pan-cancer is meaningful. This study investigated associations of splicing factor genes mutations with clinical features, tumor progression phenotypes, genomic integrity, anti-tumor immune responses, and immunotherapy response in 12 common cancer types from the TCGA database. Compared to SFG-wildtype cancers, SFG-mutated cancers displayed worse survival prognosis, higher tumor mutation burden and aneuploidy levels, higher expression of immunosuppressive signatures, and higher levels of tumor stemness, proliferation potential, and intratumor heterogeneity (ITH). However, splicing factor genes-mutated cancers showed higher response rates to immune checkpoint inhibitors than splicing factor genes-wildtype cancers in six cancer cohorts. Single-cell data analysis confirmed that splicing factor genes mutations were associated with increased tumor stemness, proliferation capacity, PD-L1 expression, intratumor heterogeneity, and aneuploidy levels. Our data suggest that the mutation in key splicing factor genes correlates with unfavorable clinical outcomes and disease progression, genomic instability, anti-tumor immunosuppression, and increased immunotherapy response in pan-cancer. Thus, the splicing factor genes mutation is an adverse prognostic factor and a positive marker for immunotherapy response in cancer.
Collapse
Affiliation(s)
- Jiangti Luo
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Canping Chen
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Zhixian Liu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Zhixian Liu, ; Xiaosheng Wang,
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Big Data Research Institute, China Pharmaceutical University, Nanjing, China,*Correspondence: Zhixian Liu, ; Xiaosheng Wang,
| |
Collapse
|
45
|
Ziegler N, Cortés-López M, Alt F, Sprang M, Ustjanzew A, Lehmann N, El Malki K, Wingerter A, Russo A, Beck O, Attig S, Roth L, König J, Paret C, Faber J. Analysis of RBP expression and binding sites identifies PTBP1 as a regulator of CD19 expression in B-ALL. Oncoimmunology 2023; 12:2184143. [PMID: 36875548 PMCID: PMC9980455 DOI: 10.1080/2162402x.2023.2184143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Despite massive improvements in the treatment of B-ALL through CART-19 immunotherapy, a large number of patients suffer a relapse due to loss of the targeted epitope. Mutations in the CD19 locus and aberrant splicing events are known to account for the absence of surface antigen. However, early molecular determinants suggesting therapy resistance as well as the time point when first signs of epitope loss appear to be detectable are not enlightened so far. By deep sequencing of the CD19 locus, we identified a blast-specific 2-nucleotide deletion in intron 2 that exists in 35% of B-ALL samples at initial diagnosis. This deletion overlaps with the binding site of RNA binding proteins (RBPs) including PTBP1 and might thereby affect CD19 splicing. Moreover, we could identify a number of other RBPs that are predicted to bind to the CD19 locus being deregulated in leukemic blasts, including NONO. Their expression is highly heterogeneous across B-ALL molecular subtypes as shown by analyzing 706 B-ALL samples accessed via the St. Jude Cloud. Mechanistically, we show that downregulation of PTBP1, but not of NONO, in 697 cells reduces CD19 total protein by increasing intron 2 retention. Isoform analysis in patient samples revealed that blasts, at diagnosis, express increased amounts of CD19 intron 2 retention compared to normal B cells. Our data suggest that loss of RBP functionality by mutations altering their binding motifs or by deregulated expression might harbor the potential for the disease-associated accumulation of therapy-resistant CD19 isoforms.
Collapse
Affiliation(s)
- Nicole Ziegler
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Francesca Alt
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maximilian Sprang
- Faculty of Biology, Johannes Gutenberg University Mainz, Biozentrum I, Mainz, Germany
| | - Arsenij Ustjanzew
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nadine Lehmann
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Khalifa El Malki
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Arthur Wingerter
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexandra Russo
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Olaf Beck
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Attig
- Department of Translational Oncology and Immunology at the Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lea Roth
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Claudia Paret
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Faber
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
46
|
Deng Y, Xiao M, Wan AH, Li J, Sun L, Liang H, Wang QP, Yin S, Bu X, Wan G. RNA and RNA Derivatives: Light and Dark Sides in Cancer Immunotherapy. Antioxid Redox Signal 2022; 37:1266-1290. [PMID: 35369726 DOI: 10.1089/ars.2022.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Immunotherapy, which utilizes the patient's immune system to fight tumor cells, has been approved for the treatment of some types of advanced cancer. Recent Advances: The complexity and diversity of tumor immunity are responsible for the varying response rates toward current immunotherapy strategies and highlight the importance of exploring regulators in tumor immunotherapy. Several genetic factors have proved to be critical regulators of tumor immunotherapy. RNAs, including messenger RNAs and non-coding RNAs, play vital and diverse roles in tumorigenesis, metastasis, drug resistance, and immunotherapy response. RNA modifications, including N6-methyladenosine methylation, are involved in tumor immunity. Critical Issues: A critical issue is the lack of summary of the regulatory RNA molecules and their derivatives in mediating immune activities in human cancers that could provide potential applications for tumor immunotherapeutic strategy. Future Directions: This review summarizes the dual roles (the light and dark sides) of RNA and its derivatives in tumor immunotherapy and discusses the development of RNA-based therapies as novel immunotherapeutic strategies for cancer treatment. Antioxid. Redox Signal. 37, 1266-1290.
Collapse
Affiliation(s)
- Yuan Deng
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Min Xiao
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Arabella H Wan
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiarui Li
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lei Sun
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Heng Liang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiao-Ping Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Sheng Yin
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xianzhang Bu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guohui Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
47
|
O’Leary PC, Chen H, Doruk YU, Williamson T, Polacco B, McNeal AS, Shenoy T, Kale N, Carnevale J, Stevenson E, Quigley DA, Chou J, Feng FY, Swaney DL, Krogan NJ, Kim M, Diolaiti ME, Ashworth A. Resistance to ATR Inhibitors Is Mediated by Loss of the Nonsense-Mediated Decay Factor UPF2. Cancer Res 2022; 82:3950-3961. [PMID: 36273492 PMCID: PMC9633439 DOI: 10.1158/0008-5472.can-21-4335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/20/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Over one million cases of gastric cancer are diagnosed each year globally, and the metastatic disease continues to have a poor prognosis. A significant proportion of gastric tumors have defects in the DNA damage response pathway, creating therapeutic opportunities through synthetic lethal approaches. Several small-molecule inhibitors of ATR, a key regulator of the DNA damage response, are now in clinical development as targeted agents for gastric cancer. Here, we performed a large-scale CRISPR interference screen to discover genetic determinants of response and resistance to ATR inhibitors (ATRi) in gastric cancer cells. Among the top hits identified as mediators of ATRi response were UPF2 and other components of the nonsense-mediated decay (NMD) pathway. Loss of UPF2 caused ATRi resistance across multiple gastric cancer cell lines. Global proteomic, phosphoproteomic, and transcriptional profiling experiments revealed that cell-cycle progression and DNA damage responses were altered in UPF2-mutant cells. Further studies demonstrated that UPF2-depleted cells failed to accumulate in G1 following treatment with ATRi. UPF2 loss also reduced transcription-replication collisions, which has previously been associated with ATRi response, thereby suggesting a possible mechanism of resistance. Our results uncover a novel role for NMD factors in modulating response to ATRi in gastric cancer, highlighting a previously unknown mechanism of resistance that may inform the clinical use of these drugs. SIGNIFICANCE Loss of NMD proteins promotes resistance to ATR inhibitors in gastric cancer cells, which may provide a combination of therapeutic targets and biomarkers to improve the clinical utility of these drugs.
Collapse
Affiliation(s)
- Patrick C. O’Leary
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Huadong Chen
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yagmur U. Doruk
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tess Williamson
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Benjamin Polacco
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Andrew S. McNeal
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tanushree Shenoy
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nupura Kale
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Julia Carnevale
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - David A. Quigley
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jonathan Chou
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Felix Y. Feng
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Danielle L. Swaney
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Nevan J. Krogan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Minkyu Kim
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Morgan E. Diolaiti
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
48
|
Tran TM, Rao DS. RNA binding proteins in MLL-rearranged leukemia. Exp Hematol Oncol 2022; 11:80. [PMID: 36307883 PMCID: PMC9615162 DOI: 10.1186/s40164-022-00343-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractRNA binding proteins (RBPs) have recently emerged as important post-transcriptional gene expression regulators in both normal development and disease. RBPs influence the fate of mRNAs through multiple mechanisms of action such as RNA modifications, alternative splicing, and miR-mediated regulation. This complex and, often, combinatorial regulation by RBPs critically impacts the expression of oncogenic transcripts and, thus, the activation of pathways that drive oncogenesis. Here, we focus on the major features of RBPs, their mechanisms of action, and discuss the current progress in investigating the function of important RBPs in MLL-rearranged leukemia.
Collapse
|
49
|
Nagel R, Pataskar A, Champagne J, Agami R. Boosting Antitumor Immunity with an Expanded Neoepitope Landscape. Cancer Res 2022; 82:3637-3649. [PMID: 35904353 PMCID: PMC9574376 DOI: 10.1158/0008-5472.can-22-1525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023]
Abstract
Immune-checkpoint blockade therapy has been successfully applied to many cancers, particularly tumors that harbor a high mutational burden and consequently express a high abundance of neoantigens. However, novel approaches are needed to improve the efficacy of immunotherapy for treating tumors that lack a high load of classic genetically derived neoantigens. Recent discoveries of broad classes of nongenetically encoded and inducible neoepitopes open up new avenues for therapeutic development to enhance sensitivity to immunotherapies. In this review, we discuss recent work on neoantigen discovery, with an emphasis on novel classes of noncanonical neoepitopes.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Erasmus MC, Rotterdam University, Rotterdam, the Netherlands
| |
Collapse
|
50
|
Shiraishi Y, Okada A, Chiba K, Kawachi A, Omori I, Mateos RN, Iida N, Yamauchi H, Kosaki K, Yoshimi A. Systematic identification of intron retention associated variants from massive publicly available transcriptome sequencing data. Nat Commun 2022; 13:5357. [PMID: 36175409 PMCID: PMC9522810 DOI: 10.1038/s41467-022-32887-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/23/2022] [Indexed: 12/01/2022] Open
Abstract
Many disease-associated genomic variants disrupt gene function through abnormal splicing. With the advancement of genomic medicine, identifying disease-associated splicing associated variants has become more important than ever. Most bioinformatics approaches to detect splicing associated variants require both genome and transcriptomic data. However, there are not many datasets where both of them are available. In this study, we develop a methodology to detect genomic variants that cause splicing changes (more specifically, intron retention), using transcriptome sequencing data alone. After evaluating its sensitivity and precision, we apply it to 230,988 transcriptome sequencing data from the publicly available repository and identified 27,049 intron retention associated variants (IRAVs). In addition, by exploring positional relationships with variants registered in existing disease databases, we extract 3,000 putative disease-associated IRAVs, which range from cancer drivers to variants linked with autosomal recessive disorders. The in-silico screening framework demonstrates the possibility of near-automatically acquiring medical knowledge, making the most of massively accumulated publicly available sequencing data. Collections of IRAVs identified in this study are available through IRAVDB ( https://iravdb.io/ ).
Collapse
Affiliation(s)
- Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan.
| | - Ai Okada
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Asuka Kawachi
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo, Japan
| | - Ikuko Omori
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo, Japan
| | - Raúl Nicolás Mateos
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Naoko Iida
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Hirofumi Yamauchi
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Akihide Yoshimi
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|