1
|
Rubio LS, Mohajan S, Gross DS. Heat Shock Factor 1 forms nuclear condensates and restructures the yeast genome before activating target genes. eLife 2024; 12:RP92464. [PMID: 39405097 PMCID: PMC11479590 DOI: 10.7554/elife.92464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
In insects and mammals, 3D genome topology has been linked to transcriptional states yet whether this link holds for other eukaryotes is unclear. Using both ligation proximity and fluorescence microscopy assays, we show that in Saccharomyces cerevisiae, Heat Shock Response (HSR) genes dispersed across multiple chromosomes and under the control of Heat Shock Factor (Hsf1) rapidly reposition in cells exposed to acute ethanol stress and engage in concerted, Hsf1-dependent intergenic interactions. Accompanying 3D genome reconfiguration is equally rapid formation of Hsf1-containing condensates. However, in contrast to the transience of Hsf1-driven intergenic interactions that peak within 10-20 min and dissipate within 1 hr in the presence of 8.5% (v/v) ethanol, transcriptional condensates are stably maintained for hours. Moreover, under the same conditions, Pol II occupancy of HSR genes, chromatin remodeling, and RNA expression are detectable only later in the response and peak much later (>1 hr). This contrasts with the coordinate response of HSR genes to thermal stress (39°C) where Pol II occupancy, transcription, histone eviction, intergenic interactions, and formation of Hsf1 condensates are all rapid yet transient (peak within 2.5-10 min and dissipate within 1 hr). Therefore, Hsf1 forms condensates, restructures the genome and transcriptionally activates HSR genes in response to both forms of proteotoxic stress but does so with strikingly different kinetics. In cells subjected to ethanol stress, Hsf1 forms condensates and repositions target genes before transcriptionally activating them.
Collapse
Affiliation(s)
- Linda S Rubio
- Department of Biochemistry and Molecular Biology Louisiana State University Health Sciences CenterShreveportUnited States
| | - Suman Mohajan
- Department of Biochemistry and Molecular Biology Louisiana State University Health Sciences CenterShreveportUnited States
| | - David S Gross
- Department of Biochemistry and Molecular Biology Louisiana State University Health Sciences CenterShreveportUnited States
| |
Collapse
|
2
|
Zheng H, Yuan C, Bu T, Liu Q, Li J, Wang F, Zhang Y, He L, Gao J. SSA4 Mediates Cd Tolerance via Activation of the Cis Element of VHS1 in Yeast and Enhances Cd Tolerance in Chinese Cabbage. Int J Mol Sci 2024; 25:11026. [PMID: 39456809 PMCID: PMC11507436 DOI: 10.3390/ijms252011026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Identifying key genes involved in Cadmium (Cd) response pathways in plants and developing low-Cd-accumulating cultivars may be the most effective and eco-friendly strategy to tackle the problem of Cd pollution in crops. In our previous study, Stressseventy subfamily A 4 (SSA4) was identified to be associated with Cd tolerance in yeast. Here, we investigated the mechanism of SSA4 in regulating Cd tolerance in yeast. ScSSA4 binds to POre Membrane 34 (POM34), a key component of nuclear pore complex (NPC), and translocates from the cytoplasm to the nucleus, where it regulates the expression of its downstream gene, Viable in a Hal3 Sit4 background 1 (VHS1), resulting in reduced Cd accumulation in yeast cells. Additionally, we identified a Chinese cabbage SSA4 gene, BrSSA4c, which could enhance the Cd tolerance in Chinese cabbage. This study offers new insights into the regulatory mechanisms of Cd tolerance in yeast, a model organism, and paves the way for the genetic enhancement of Cd tolerance in Chinese cabbage.
Collapse
Affiliation(s)
- Han Zheng
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Chao Yuan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China;
| | - Tong Bu
- College of Life Science, Shandong Normal University, Jinan 250100, China; (T.B.); (Q.L.)
| | - Qun Liu
- College of Life Science, Shandong Normal University, Jinan 250100, China; (T.B.); (Q.L.)
| | - Jingjuan Li
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Fengde Wang
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Yihui Zhang
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Lilong He
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Jianwei Gao
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
- College of Life Science, Shandong Normal University, Jinan 250100, China; (T.B.); (Q.L.)
| |
Collapse
|
3
|
Reckard AT, Pandeya A, Voris JM, Gonzalez Cruz CG, Oluwadare O, Klocko AD. A Constitutive Heterochromatic Region Shapes Genome Organization and Impacts Gene Expression in Neurospora crassa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597955. [PMID: 39229016 PMCID: PMC11370578 DOI: 10.1101/2024.06.07.597955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background Organization of the eukaryotic genome is essential for proper function, including gene expression. In metazoans, chromatin loops and Topologically Associated Domains (TADs) organize genes into transcription factories, while chromosomes occupy nuclear territories in which silent heterochromatin is compartmentalized at the nuclear periphery and active euchromatin localizes to the nucleus center. A similar hierarchical organization occurs in the fungus Neurospora crassa where its seven chromosomes form a Rabl conformation typified by heterochromatic centromeres and telomeres independently clustering at the nuclear membrane, while interspersed heterochromatic loci aggregate across Megabases of linear genomic distance to loop chromatin in TAD-like structures. However, the role of individual heterochromatic loci in normal genome organization and function is unknown. Results We examined the genome organization of a Neurospora strain harboring a ~47.4 kilobase deletion within a temporarily silent, facultative heterochromatic region, as well as the genome organization of a strain deleted of a 110.6 kilobase permanently silent constitutive heterochromatic region. While the facultative heterochromatin deletion minimally effects local chromatin structure or telomere clustering, the constitutive heterochromatin deletion alters local chromatin structure, the predicted three-dimensional chromosome conformation, and the expression of some genes, which are qualitatively repositioned into the nucleus center, while increasing Hi-C variability. Conclusions Our work elucidates how an individual constitutive heterochromatic region impacts genome organization and function. Specifically, one silent region indirectly assists in the hierarchical folding of the entire Neurospora genome by aggregating into the "typical" heterochromatin bundle normally observed in wild type nuclei, which may promote normal gene expression by positioning euchromatin in the nucleus center.
Collapse
Affiliation(s)
- Andrew T. Reckard
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Abhishek Pandeya
- Department of Computer Science, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Jacob M. Voris
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Carlos G. Gonzalez Cruz
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Oluwatosin Oluwadare
- Department of Computer Science, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Andrew D. Klocko
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
4
|
Rubio LS, Mohajan S, Gross DS. Heat Shock Factor 1 forms nuclear condensates and restructures the yeast genome before activating target genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.28.560064. [PMID: 37808805 PMCID: PMC10557744 DOI: 10.1101/2023.09.28.560064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In insects and mammals, 3D genome topology has been linked to transcriptional states yet whether this link holds for other eukaryotes is unclear. Using both ligation proximity and fluorescence microscopy assays, we show that in Saccharomyces cerevisiae, Heat Shock Response (HSR) genes dispersed across multiple chromosomes and under the control of Heat Shock Factor (Hsf1) rapidly reposition in cells exposed to acute ethanol stress and engage in concerted, Hsf1-dependent intergenic interactions. Accompanying 3D genome reconfiguration is equally rapid formation of Hsf1-containing condensates. However, in contrast to the transience of Hsf1-driven intergenic interactions that peak within 10-20 min and dissipate within 1 h in the presence of 8.5% (v/v) ethanol, transcriptional condensates are stably maintained for hours. Moreover, under the same conditions, Pol II occupancy of HSR genes, chromatin remodeling, and RNA expression are detectable only later in the response and peak much later (>1 h). This contrasts with the coordinate response of HSR genes to thermal stress (39°C) where Pol II occupancy, transcription, histone eviction, intergenic interactions, and formation of Hsf1 condensates are all rapid yet transient (peak within 2.5-10 min and dissipate within 1 h). Therefore, Hsf1 forms condensates, restructures the genome and transcriptionally activates HSR genes in response to both forms of proteotoxic stress but does so with strikingly different kinetics. In cells subjected to ethanol stress, Hsf1 forms condensates and repositions target genes before transcriptionally activating them.
Collapse
Affiliation(s)
- Linda S. Rubio
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - Suman Mohajan
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - David S. Gross
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| |
Collapse
|
5
|
Li M, Yang J, Xiao R, Liu Y, Hu J, Li T, Wu P, Zhang M, Huang Y, Sun Y, Li C. The effect of trisomic chromosomes on spatial genome organization and global transcription in embryonic stem cells. Cell Prolif 2024; 57:e13639. [PMID: 38553796 PMCID: PMC11294443 DOI: 10.1111/cpr.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 08/03/2024] Open
Abstract
Aneuploidy frequently occurs in cancer and developmental diseases such as Down syndrome, with its functional consequences implicated in dosage effects on gene expression and global perturbation of stress response and cell proliferation pathways. However, how aneuploidy affects spatial genome organization remains less understood. In this study, we addressed this question by utilizing the previously established isogenic wild-type (WT) and trisomic mouse embryonic stem cells (mESCs). We employed a combination of Hi-C, RNA-seq, chromosome painting and nascent RNA imaging technologies to compare the spatial genome structures and gene transcription among these cells. We found that trisomy has little effect on spatial genome organization at the level of A/B compartment or topologically associating domain (TAD). Inter-chromosomal interactions are associated with chromosome regions with high gene density, active histone modifications and high transcription levels, which are confirmed by imaging. Imaging also revealed contracted chromosome volume and weakened transcriptional activity for trisomic chromosomes, suggesting potential implications for the transcriptional output of these chromosomes. Our data resources and findings may contribute to a better understanding of the consequences of aneuploidy from the angle of spatial genome organization.
Collapse
Affiliation(s)
- Mengfan Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Junsheng Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijingChina
| | - Rong Xiao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical GeneticsInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Yunjie Liu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Jiaqi Hu
- School of Health HumanitiesPeking UniversityBeijingChina
| | - Tingting Li
- State Key Laboratory of ProteomicsInstitute of Basic Medical Sciences, National Center of Biomedical AnalysisBeijingChina
| | - Pengze Wu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Meili Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical GeneticsInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Yue Huang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical GeneticsInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijingChina
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| |
Collapse
|
6
|
Shi Z, Wu H. CTPredictor: A comprehensive and robust framework for predicting cell types by integrating multi-scale features from single-cell Hi-C data. Comput Biol Med 2024; 173:108336. [PMID: 38513390 DOI: 10.1016/j.compbiomed.2024.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/01/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Single-cell Hi-C (scHi-C) has emerged as a powerful technology for deciphering cell-to-cell variability in three-dimensional (3D) chromatin organization, providing insights into genome-wide chromatin interactions and their correlation with cellular functions. Nevertheless, the accurate identification of cell types across different datasets remains a formidable challenge, hindering comprehensive investigations into genome structure. In response, we introduce CTPredictor, an innovative computational method that integrates multi-scale features to accurately predict cell types in various datasets. CTPredictor strategically incorporates three distinct feature sets, namely, small intra-domain contact probability (SICP), smoothed small intra-domain contact probability (SSICP), and smoothed bin contact probability (SBCP). The resulting fusion classification model significantly enhances the accuracy of cell type prediction based on single-cell Hi-C data (scHi-C). Rigorous benchmarking against established methods and three conventional machine learning approaches demonstrates the robust performance of CTPredictor, positioning it as an advanced tool for cell type prediction within scHi-C data. Beyond its prediction capabilities, CTPredictor holds promise in illuminating 3D genome structures and their functional significance across a wide array of biological processes.
Collapse
Affiliation(s)
- Zhenqi Shi
- School of Software, Shandong University, 250100, Jinan, China
| | - Hao Wu
- School of Software, Shandong University, 250100, Jinan, China.
| |
Collapse
|
7
|
Ugolini M, Kerlin MA, Kuznetsova K, Oda H, Kimura H, Vastenhouw NL. Transcription bodies regulate gene expression by sequestering CDK9. Nat Cell Biol 2024; 26:604-612. [PMID: 38589534 PMCID: PMC11021188 DOI: 10.1038/s41556-024-01389-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
The localization of transcriptional activity in specialized transcription bodies is a hallmark of gene expression in eukaryotic cells. It remains unclear, however, if and how transcription bodies affect gene expression. Here we disrupted the formation of two prominent endogenous transcription bodies that mark the onset of zygotic transcription in zebrafish embryos and analysed the effect on gene expression using enriched SLAM-seq and live-cell imaging. We find that the disruption of transcription bodies results in the misregulation of hundreds of genes. Here we focus on genes that are upregulated. These genes have accessible chromatin and are poised to be transcribed in the presence of the two transcription bodies, but they do not go into elongation. Live-cell imaging shows that disruption of the two large transcription bodies enables these poised genes to be transcribed in ectopic transcription bodies, suggesting that the large transcription bodies sequester a pause release factor. Supporting this hypothesis, we find that CDK9-the kinase that releases paused polymerase II-is highly enriched in the two large transcription bodies. Overexpression of CDK9 in wild-type embryos results in the formation of ectopic transcription bodies and thus phenocopies the removal of the two large transcription bodies. Taken together, our results show that transcription bodies regulate transcription by sequestering machinery, thereby preventing genes elsewhere in the nucleus from being transcribed.
Collapse
Affiliation(s)
- Martino Ugolini
- Center for Integrative Genomics (CIG), University of Lausanne (UNIL), Lausanne, Switzerland
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Maciej A Kerlin
- Center for Integrative Genomics (CIG), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ksenia Kuznetsova
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Haruka Oda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- Institute of Human Genetics, CNRS, Montpellier, France
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Nadine L Vastenhouw
- Center for Integrative Genomics (CIG), University of Lausanne (UNIL), Lausanne, Switzerland.
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.
| |
Collapse
|
8
|
Braunger JM, Cammarata LV, Sornapudi TR, Uhler C, Shivashankar GV. Transcriptional changes are tightly coupled to chromatin reorganization during cellular aging. Aging Cell 2024; 23:e14056. [PMID: 38062919 PMCID: PMC10928569 DOI: 10.1111/acel.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Human life expectancy is constantly increasing and aging has become a major risk factor for many diseases, although the underlying gene regulatory mechanisms are still unclear. Using transcriptomic and chromosomal conformation capture (Hi-C) data from human skin fibroblasts from individuals across different age groups, we identified a tight coupling between the changes in co-regulation and co-localization of genes. We obtained transcription factors, cofactors, and chromatin regulators that could drive the cellular aging process by developing a time-course prize-collecting Steiner tree algorithm. In particular, by combining RNA-Seq data from different age groups and protein-protein interaction data we determined the key transcription regulators and gene regulatory changes at different life stage transitions. We then mapped these transcription regulators to the 3D reorganization of chromatin in young and old skin fibroblasts. Collectively, we identified key transcription regulators whose target genes are spatially rearranged and correlate with changes in their expression, thereby providing potential targets for reverting cellular aging.
Collapse
Affiliation(s)
- Jana M. Braunger
- Eric and Wendy Schmidt CenterBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Louis V. Cammarata
- Eric and Wendy Schmidt CenterBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Department of StatisticsHarvard UniversityCambridgeMassachusettsUSA
| | | | - Caroline Uhler
- Eric and Wendy Schmidt CenterBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Laboratory for Information and Decision SystemsMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - G. V. Shivashankar
- Division of Biology and ChemistryPaul Scherrer InstituteVilligenSwitzerland
- Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| |
Collapse
|
9
|
Martinez TC, McNerney ME. Haploinsufficient Transcription Factors in Myeloid Neoplasms. ANNUAL REVIEW OF PATHOLOGY 2024; 19:571-598. [PMID: 37906947 DOI: 10.1146/annurev-pathmechdis-051222-013421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Many transcription factors (TFs) function as tumor suppressor genes with heterozygous phenotypes, yet haploinsufficiency generally has an underappreciated role in neoplasia. This is no less true in myeloid cells, which are normally regulated by a delicately balanced and interconnected transcriptional network. Detailed understanding of TF dose in this circuitry sheds light on the leukemic transcriptome. In this review, we discuss the emerging features of haploinsufficient transcription factors (HITFs). We posit that: (a) monoallelic and biallelic losses can have distinct cellular outcomes; (b) the activity of a TF exists in a greater range than the traditional Mendelian genetic doses; and (c) how a TF is deleted or mutated impacts the cellular phenotype. The net effect of a HITF is a myeloid differentiation block and increased intercellular heterogeneity in the course of myeloid neoplasia.
Collapse
Affiliation(s)
- Tanner C Martinez
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, USA;
- Medical Scientist Training Program, The University of Chicago, Chicago, Illinois, USA
| | - Megan E McNerney
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
10
|
Bieker JJ, Philipsen S. Erythroid Krüppel-Like Factor (KLF1): A Surprisingly Versatile Regulator of Erythroid Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:217-242. [PMID: 39017846 DOI: 10.1007/978-3-031-62731-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Erythroid Krüppel-like factor (KLF1), first discovered in 1992, is an erythroid-restricted transcription factor (TF) that is essential for terminal differentiation of erythroid progenitors. At face value, KLF1 is a rather inconspicuous member of the 26-strong SP/KLF TF family. However, 30 years of research have revealed that KLF1 is a jack of all trades in the molecular control of erythropoiesis. Initially described as a one-trick pony required for high-level transcription of the adult HBB gene, we now know that it orchestrates the entire erythroid differentiation program. It does so not only as an activator but also as a repressor. In addition, KLF1 was the first TF shown to be directly involved in enhancer/promoter loop formation. KLF1 variants underlie a wide range of erythroid phenotypes in the human population, varying from very mild conditions such as hereditary persistence of fetal hemoglobin and the In(Lu) blood type in the case of haploinsufficiency, to much more serious non-spherocytic hemolytic anemias in the case of compound heterozygosity, to dominant congenital dyserythropoietic anemia type IV invariably caused by a de novo variant in a highly conserved amino acid in the KLF1 DNA-binding domain. In this chapter, we present an overview of the past and present of KLF1 research and discuss the significance of human KLF1 variants.
Collapse
Affiliation(s)
- James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Cammarata LV, Uhler C, Shivashankar GV. Adhesome Receptor Clustering is Accompanied by the Colocalization of the Associated Genes in the Cell Nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570697. [PMID: 38106037 PMCID: PMC10723460 DOI: 10.1101/2023.12.07.570697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Proteins on the cell membrane cluster to respond to extracellular signals; for example, adhesion proteins cluster to enhance extracellular matrix sensing; or T-cell receptors cluster to enhance antigen sensing. Importantly, the maturation of such receptor clusters requires transcriptional control to adapt and reinforce the extracellular signal sensing. However, it has been unclear how such efficient clustering mechanisms are encoded at the level of the genes that code for these receptor proteins. Using the adhesome as an example, we show that genes that code for adhesome receptor proteins are spatially co-localized and co-regulated within the cell nucleus. Towards this, we use Hi-C maps combined with RNA-seq data of adherent cells to map the correspondence between adhesome receptor proteins and their associated genes. Interestingly, we find that the transcription factors that regulate these genes are also co-localized with the adhesome gene loci, thereby potentially facilitating a transcriptional reinforcement of the extracellular matrix sensing machinery. Collectively, our results highlight an important layer of transcriptional control of cellular signal sensing.
Collapse
Affiliation(s)
- Louis V. Cammarata
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Caroline Uhler
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - G. V. Shivashankar
- Department of Health Science and Technology, ETH Zurich; Zurich, Switzerland
- Paul Scherrer Institute; Villigen, Switzerland
| |
Collapse
|
12
|
Scadden AW, Graybill AS, Hull-Crew C, Lundberg TJ, Lande NM, Klocko AD. Histone deacetylation and cytosine methylation compartmentalize heterochromatic regions in the genome organization of Neurospora crassa. Proc Natl Acad Sci U S A 2023; 120:e2311249120. [PMID: 37963248 PMCID: PMC10666030 DOI: 10.1073/pnas.2311249120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Chromosomes must correctly fold in eukaryotic nuclei for proper genome function. Eukaryotic organisms hierarchically organize their genomes, including in the fungus Neurospora crassa, where chromatin fiber loops compact into Topologically Associated Domain-like structures formed by heterochromatic region aggregation. However, insufficient data exist on how histone posttranslational modifications (PTMs), including acetylation, affect genome organization. In Neurospora, the HCHC complex [composed of the proteins HDA-1, CDP-2 (Chromodomain Protein-2), Heterochromatin Protein-1, and CHAP (CDP-2 and HDA-1 Associated Protein)] deacetylates heterochromatic nucleosomes, as loss of individual HCHC members increases centromeric acetylation, and alters the methylation of cytosines in DNA. Here, we assess whether the HCHC complex affects genome organization by performing Hi-C in strains deleted of the cdp-2 or chap genes. CDP-2 loss increases intra- and interchromosomal heterochromatic region interactions, while loss of CHAP decreases heterochromatic region compaction. Individual HCHC mutants exhibit different patterns of histone PTMs genome-wide, as CDP-2 deletion increases heterochromatic H4K16 acetylation, yet smaller heterochromatic regions lose H3K9 trimethylation and gain interheterochromatic region interactions; CHAP loss produces minimal acetylation changes but increases heterochromatic H3K9me3 enrichment. Loss of both CDP-2 and the DIM-2 DNA methyltransferase causes extensive genome disorder as heterochromatic-euchromatic contacts increase despite additional H3K9me3 enrichment. Our results highlight how the increased cytosine methylation in HCHC mutants ensures genome compartmentalization when heterochromatic regions become hyperacetylated without HDAC activity.
Collapse
Affiliation(s)
- Ashley W. Scadden
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| | - Alayne S. Graybill
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| | - Clayton Hull-Crew
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| | - Tiffany J. Lundberg
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| | - Nickolas M. Lande
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| | - Andrew D. Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO80918
| |
Collapse
|
13
|
Mielczarek O, Rogers CH, Zhan Y, Matheson LS, Stubbington MJT, Schoenfelder S, Bolland DJ, Javierre BM, Wingett SW, Várnai C, Segonds-Pichon A, Conn SJ, Krueger F, Andrews S, Fraser P, Giorgetti L, Corcoran AE. Intra- and interchromosomal contact mapping reveals the Igh locus has extensive conformational heterogeneity and interacts with B-lineage genes. Cell Rep 2023; 42:113074. [PMID: 37676766 PMCID: PMC10548092 DOI: 10.1016/j.celrep.2023.113074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/28/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
To produce a diverse antibody repertoire, immunoglobulin heavy-chain (Igh) loci undergo large-scale alterations in structure to facilitate juxtaposition and recombination of spatially separated variable (VH), diversity (DH), and joining (JH) genes. These chromosomal alterations are poorly understood. Uncovering their patterns shows how chromosome dynamics underpins antibody diversity. Using tiled Capture Hi-C, we produce a comprehensive map of chromatin interactions throughout the 2.8-Mb Igh locus in progenitor B cells. We find that the Igh locus folds into semi-rigid subdomains and undergoes flexible looping of the VH genes to its 3' end, reconciling two views of locus organization. Deconvolution of single Igh locus conformations using polymer simulations identifies thousands of different structures. This heterogeneity may underpin the diversity of V(D)J recombination events. All three immunoglobulin loci also participate in a highly specific, developmentally regulated network of interchromosomal interactions with genes encoding B cell-lineage factors. This suggests a model of interchromosomal coordination of B cell development.
Collapse
Affiliation(s)
- Olga Mielczarek
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Carolyn H Rogers
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Louise S Matheson
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Michael J T Stubbington
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Stefan Schoenfelder
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Daniel J Bolland
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Biola M Javierre
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Steven W Wingett
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Csilla Várnai
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Anne Segonds-Pichon
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon J Conn
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Felix Krueger
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Anne E Corcoran
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
14
|
Scadden AW, Graybill AS, Hull-Crew C, Lundberg TJ, Lande NM, Klocko AD. Histone deacetylation and cytosine methylation compartmentalize heterochromatic regions in the genome organization of Neurospora crassa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547530. [PMID: 37461718 PMCID: PMC10349943 DOI: 10.1101/2023.07.03.547530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Chromosomes must correctly fold in eukaryotic nuclei for proper genome function. Eukaryotic organisms hierarchically organize their genomes, including in the fungus Neurospora crassa, where chromatin fiber loops compact into Topologically Associated Domain (TAD)-like structures formed by heterochromatic region aggregation. However, insufficient data exists on how histone post-translational modifications, including acetylation, affect genome organization. In Neurospora, the HCHC complex (comprised of the proteins HDA-1, CDP-2, HP1, and CHAP) deacetylates heterochromatic nucleosomes, as loss of individual HCHC members increases centromeric acetylation and alters the methylation of cytosines in DNA. Here, we assess if the HCHC complex affects genome organization by performing Hi-C in strains deleted of the cdp-2 or chap genes. CDP-2 loss increases intra- and inter-chromosomal heterochromatic region interactions, while loss of CHAP decreases heterochromatic region compaction. Individual HCHC mutants exhibit different patterns of histone post-translational modifications genome-wide: without CDP-2, heterochromatic H4K16 acetylation is increased, yet smaller heterochromatic regions lose H3K9 trimethylation and gain inter-heterochromatic region interactions; CHAP loss produces minimal acetylation changes but increases heterochromatic H3K9me3 enrichment. Loss of both CDP-2 and the DIM-2 DNA methyltransferase causes extensive genome disorder, as heterochromatic-euchromatic contacts increase despite additional H3K9me3 enrichment. Our results highlight how the increased cytosine methylation in HCHC mutants ensures genome compartmentalization when heterochromatic regions become hyperacetylated without HDAC activity.
Collapse
Affiliation(s)
- Ashley W. Scadden
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Alayne S. Graybill
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Clayton Hull-Crew
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Tiffany J. Lundberg
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Nickolas M. Lande
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| | - Andrew D. Klocko
- University of Colorado Colorado Springs, Department of Chemistry & Biochemistry, Colorado Springs, CO 80918, USA
| |
Collapse
|
15
|
Sexton T, Platania A, Erb C, Barbieri M, Molcrette B, Grandgirard E, de Kort M, Meabum K, Taylor T, Shchuka V, Kocanova S, Oliveira G, Mitchell J, Soutoglou E, Lenstra T, Molina N, Papantonis A, Bystricky K. Competition between transcription and loop extrusion modulates promoter and enhancer dynamics. RESEARCH SQUARE 2023:rs.3.rs-3164817. [PMID: 37645793 PMCID: PMC10462181 DOI: 10.21203/rs.3.rs-3164817/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The spatiotemporal configuration of genes with distal regulatory elements, and the impact of chromatin mobility on transcription, remain unclear. Loop extrusion is an attractive model for bringing genetic elements together, but how this functionally interacts with transcription is also largely unknown. We combine live tracking of genomic loci and nascent transcripts with molecular dynamics simulations to assess the spatiotemporal arrangement of the Sox2 gene and its enhancer, in response to a battery of perturbations. We find a close link between chromatin mobility and transcriptional status: active elements display more constrained mobility, consistent with confinement within specialized nuclear sites, and alterations in enhancer mobility distinguish poised from transcribing alleles. Strikingly, we find that whereas loop extrusion and transcription factor-mediated clustering contribute to promoter-enhancer proximity, they have antagonistic effects on chromatin dynamics. This provides an experimental framework for the underappreciated role of chromatin dynamics in genome regulation.
Collapse
Affiliation(s)
- Tom Sexton
- IGBMC (Institute of Genetics and Molecular and Cellular Biology)
| | | | - Cathie Erb
- IGBMC (Institute of Genetics and Molecular and Cellular Biology)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Nacho Molina
- IGBMC (Institute of Genetics and Molecular and Cellular Biology)
| | | | | |
Collapse
|
16
|
Senapati S, Irshad IU, Sharma AK, Kumar H. Fundamental insights into the correlation between chromosome configuration and transcription. Phys Biol 2023; 20:051002. [PMID: 37467757 DOI: 10.1088/1478-3975/ace8e5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Eukaryotic chromosomes exhibit a hierarchical organization that spans a spectrum of length scales, ranging from sub-regions known as loops, which typically comprise hundreds of base pairs, to much larger chromosome territories that can encompass a few mega base pairs. Chromosome conformation capture experiments that involve high-throughput sequencing methods combined with microscopy techniques have enabled a new understanding of inter- and intra-chromosomal interactions with unprecedented details. This information also provides mechanistic insights on the relationship between genome architecture and gene expression. In this article, we review the recent findings on three-dimensional interactions among chromosomes at the compartment, topologically associating domain, and loop levels and the impact of these interactions on the transcription process. We also discuss current understanding of various biophysical processes involved in multi-layer structural organization of chromosomes. Then, we discuss the relationships between gene expression and genome structure from perturbative genome-wide association studies. Furthermore, for a better understanding of how chromosome architecture and function are linked, we emphasize the role of epigenetic modifications in the regulation of gene expression. Such an understanding of the relationship between genome architecture and gene expression can provide a new perspective on the range of potential future discoveries and therapeutic research.
Collapse
Affiliation(s)
- Swayamshree Senapati
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha 752050, India
| | - Inayat Ullah Irshad
- Department of Physics, Indian Institute of Technology, Jammu, Jammu 181221, India
| | - Ajeet K Sharma
- Department of Physics, Indian Institute of Technology, Jammu, Jammu 181221, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Hemant Kumar
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
17
|
Friman ET, Flyamer IM, Marenduzzo D, Boyle S, Bickmore WA. Ultra-long-range interactions between active regulatory elements. Genome Res 2023; 33:1269-1283. [PMID: 37451823 PMCID: PMC10547262 DOI: 10.1101/gr.277567.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Contacts between enhancers and promoters are thought to relate to their ability to activate transcription. Investigating factors that contribute to such chromatin interactions is therefore important for understanding gene regulation. Here, we have determined contact frequencies between millions of pairs of cis-regulatory elements from chromosome conformation capture data sets and analyzed a collection of hundreds of DNA-binding factors for binding at regions of enriched contacts. This analysis revealed enriched contacts at sites bound by many factors associated with active transcription. We show that active regulatory elements, independent of cohesin and polycomb, interact with each other across distances of tens of megabases in vertebrate and invertebrate genomes and that interactions correlate and change with activity. However, these ultra-long-range interactions are not dependent on RNA polymerase II transcription or individual transcription cofactors. Using simulations, we show that a model of chromatin and multivalent binding factors can give rise to long-range interactions via bridging-induced clustering. We propose that long-range interactions between cis-regulatory elements are driven by at least three distinct processes: cohesin-mediated loop extrusion, polycomb contacts, and clustering of active regions.
Collapse
Affiliation(s)
- Elias T Friman
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom;
| | - Ilya M Flyamer
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Davide Marenduzzo
- School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom;
| |
Collapse
|
18
|
Hehmeyer J, Spitz F, Marlow H. Shifting landscapes: the role of 3D genomic organizations in gene regulatory strategies. Curr Opin Genet Dev 2023; 81:102064. [PMID: 37390583 PMCID: PMC10547022 DOI: 10.1016/j.gde.2023.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/02/2023]
Abstract
3D genome folding enables the physical storage of chromosomes into the compact volume of a cell's nucleus, allows for the accurate segregation of chromatin to daughter cells, and has been shown to be tightly coupled to the way in which genetic information is converted into transcriptional programs [1-3]. Importantly, this link between chromatin architecture and gene regulation is a selectable feature in which modifications to chromatin organization accompany, or perhaps even drive the establishment of new regulatory strategies with enduring impacts on animal body plan complexity. Here, we discuss the nature of different 3D genome folding systems found across the tree of life, with particular emphasis on metazoans, and the relative influence of these systems on gene regulation. We suggest how the properties of these folding systems have influenced regulatory strategies employed by different lineages and may have catalyzed the partitioning and specialization of genetic programs that enabled multicellularity and organ-grade body plan complexity.
Collapse
Affiliation(s)
- Jenks Hehmeyer
- Department of Organismal Biology and Anatomy, The University of Chicago, USA
| | - François Spitz
- Department of Human Genetics, The University of Chicago, USA
| | - Heather Marlow
- Department of Organismal Biology and Anatomy, The University of Chicago, USA.
| |
Collapse
|
19
|
Oliveros W, Delfosse K, Lato DF, Kiriakopulos K, Mokhtaridoost M, Said A, McMurray BJ, Browning JW, Mattioli K, Meng G, Ellis J, Mital S, Melé M, Maass PG. Systematic characterization of regulatory variants of blood pressure genes. CELL GENOMICS 2023; 3:100330. [PMID: 37492106 PMCID: PMC10363820 DOI: 10.1016/j.xgen.2023.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 07/27/2023]
Abstract
High blood pressure (BP) is the major risk factor for cardiovascular disease. Genome-wide association studies have identified genetic variants for BP, but functional insights into causality and related molecular mechanisms lag behind. We functionally characterize 4,608 genetic variants in linkage with 135 BP loci in vascular smooth muscle cells and cardiomyocytes by massively parallel reporter assays. High densities of regulatory variants at BP loci (i.e., ULK4, MAP4, CFDP1, PDE5A) indicate that multiple variants drive genetic association. Regulatory variants are enriched in repeats, alter cardiovascular-related transcription factor motifs, and spatially converge with genes controlling specific cardiovascular pathways. Using heuristic scoring, we define likely causal variants, and CRISPR prime editing finally determines causal variants for KCNK9, SFXN2, and PCGF6, which are candidates for developing high BP. Our systems-level approach provides a catalog of functionally relevant variants and their genomic architecture in two trait-relevant cell lines for a better understanding of BP gene regulation.
Collapse
Affiliation(s)
- Winona Oliveros
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Kate Delfosse
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Daniella F. Lato
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Katerina Kiriakopulos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Milad Mokhtaridoost
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Abdelrahman Said
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brandon J. McMurray
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jared W.L. Browning
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kaia Mattioli
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Guoliang Meng
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James Ellis
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Seema Mital
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1X8, Canada
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Philipp G. Maass
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Pandupuspitasari NS, Khan FA, Huang C, Ali A, Yousaf MR, Shakeel F, Putri EM, Negara W, Muktiani A, Prasetiyono BWHE, Kustiawan L, Wahyuni DS. Recent advances in chromosome capture techniques unraveling 3D genome architecture in germ cells, health, and disease. Funct Integr Genomics 2023; 23:214. [PMID: 37386239 DOI: 10.1007/s10142-023-01146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
In eukaryotes, the genome does not emerge in a specific shape but rather as a hierarchial bundle within the nucleus. This multifaceted genome organization consists of multiresolution cellular structures, such as chromosome territories, compartments, and topologically associating domains, which are frequently defined by architecture, design proteins including CTCF and cohesin, and chromatin loops. This review briefly discusses the advances in understanding the basic rules of control, chromatin folding, and functional areas in early embryogenesis. With the use of chromosome capture techniques, the latest advancements in technologies for visualizing chromatin interactions come close to revealing 3D genome formation frameworks with incredible detail throughout all genomic levels, including at single-cell resolution. The possibility of detecting variations in chromatin architecture might open up new opportunities for disease diagnosis and prevention, infertility treatments, therapeutic approaches, desired exploration, and many other application scenarios.
Collapse
Affiliation(s)
- Nuruliarizki Shinta Pandupuspitasari
- Laboratory of Animal Nutrition and Feed Science, Animal Science Department, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia.
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Bogor, Indonesia
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Azhar Ali
- Laboratory of Molecular Biology and Genomics, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Rizwan Yousaf
- Laboratory of Molecular Biology and Genomics, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Farwa Shakeel
- Laboratory of Molecular Biology and Genomics, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Ezi Masdia Putri
- Research Center for Animal Husbandry, National Research and Innovation Agency, Bogor, Indonesia
| | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Bogor, Indonesia
| | - Anis Muktiani
- Laboratory of Animal Nutrition and Feed Science, Animal Science Department, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Bambang Waluyo Hadi Eko Prasetiyono
- Laboratory of Feed Technology, Animal Science Department, Faculty of Animal and Agricultural Sciences Universitas Diponegoro, Semarang, Indonesia
| | - Limbang Kustiawan
- Laboratory of Animal Nutrition and Feed Science, Animal Science Department, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Dimar Sari Wahyuni
- Research Center for Animal Husbandry, National Research and Innovation Agency, Bogor, Indonesia
| |
Collapse
|
21
|
Torres DE, Reckard AT, Klocko AD, Seidl MF. Nuclear genome organization in fungi: from gene folding to Rabl chromosomes. FEMS Microbiol Rev 2023; 47:fuad021. [PMID: 37197899 PMCID: PMC10246852 DOI: 10.1093/femsre/fuad021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Comparative genomics has recently provided unprecedented insights into the biology and evolution of the fungal lineage. In the postgenomics era, a major research interest focuses now on detailing the functions of fungal genomes, i.e. how genomic information manifests into complex phenotypes. Emerging evidence across diverse eukaryotes has revealed that the organization of DNA within the nucleus is critically important. Here, we discuss the current knowledge on the fungal genome organization, from the association of chromosomes within the nucleus to topological structures at individual genes and the genetic factors required for this hierarchical organization. Chromosome conformation capture followed by high-throughput sequencing (Hi-C) has elucidated how fungal genomes are globally organized in Rabl configuration, in which centromere or telomere bundles are associated with opposite faces of the nuclear envelope. Further, fungal genomes are regionally organized into topologically associated domain-like (TAD-like) chromatin structures. We discuss how chromatin organization impacts the proper function of DNA-templated processes across the fungal genome. Nevertheless, this view is limited to a few fungal taxa given the paucity of fungal Hi-C experiments. We advocate for exploring genome organization across diverse fungal lineages to ensure the future understanding of the impact of nuclear organization on fungal genome function.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research,Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Andrew T Reckard
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Andrew D Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
22
|
Gnanapragasam MN, Planutis A, Glassberg JA, Bieker JJ. Identification of a genomic DNA sequence that quantitatively modulates KLF1 transcription factor expression in differentiating human hematopoietic cells. Sci Rep 2023; 13:7589. [PMID: 37165057 PMCID: PMC10172341 DOI: 10.1038/s41598-023-34805-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/08/2023] [Indexed: 05/12/2023] Open
Abstract
The onset of erythropoiesis is under strict developmental control, with direct and indirect inputs influencing its derivation from the hematopoietic stem cell. A major regulator of this transition is KLF1/EKLF, a zinc finger transcription factor that plays a global role in all aspects of erythropoiesis. Here, we have identified a short, conserved enhancer element in KLF1 intron 1 that is important for establishing optimal levels of KLF1 in mouse and human cells. Chromatin accessibility of this site exhibits cell-type specificity and is under developmental control during the differentiation of human CD34+ cells towards the erythroid lineage. This site binds GATA1, SMAD1, TAL1, and ETV6. In vivo editing of this region in cell lines and primary cells reduces KLF1 expression quantitatively. However, we find that, similar to observations seen in pedigrees of families with KLF1 mutations, downstream effects are variable, suggesting that the global architecture of the site is buffered towards keeping the KLF1 genetic region in an active state. We propose that modification of intron 1 in both alleles is not equivalent to complete loss of function of one allele.
Collapse
Affiliation(s)
- M N Gnanapragasam
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - A Planutis
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
| | - J A Glassberg
- Department of Emergency Medicine, Hematology and Medical Oncology, Mount Sinai School of Medicine, New York, NY, USA
| | - J J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, USA.
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, USA.
- Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
23
|
Platania A, Erb C, Barbieri M, Molcrette B, Grandgirard E, de Kort MAC, Meaburn K, Taylor T, Shchuka VM, Kocanova S, Oliveira GM, Mitchell JA, Soutoglou E, Lenstra TL, Molina N, Papantonis A, Bystricky K, Sexton T. Competition between transcription and loop extrusion modulates promoter and enhancer dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538222. [PMID: 37162887 PMCID: PMC10168261 DOI: 10.1101/2023.04.25.538222] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The spatiotemporal configuration of genes with distal regulatory elements, and the impact of chromatin mobility on transcription, remain unclear. Loop extrusion is an attractive model for bringing genetic elements together, but how this functionally interacts with transcription is also largely unknown. We combine live tracking of genomic loci and nascent transcripts with molecular dynamics simulations to assess the 4D arrangement of the Sox2 gene and its enhancer, in response to a battery of perturbations. We find that alterations in chromatin mobility, not promoter-enhancer distance, is more informative about transcriptional status. Active elements display more constrained mobility, consistent with confinement within specialized nuclear sites, and alterations in enhancer mobility distinguish poised from transcribing alleles. Strikingly, we find that whereas loop extrusion and transcription factor-mediated clustering contribute to promoter-enhancer proximity, they have antagonistic effects on chromatin dynamics. This provides an experimental framework for the underappreciated role of chromatin dynamics in genome regulation.
Collapse
Affiliation(s)
- Angeliki Platania
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Cathie Erb
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Mariano Barbieri
- Translational Epigenetics Group, Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Bastien Molcrette
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Erwan Grandgirard
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Marit AC de Kort
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Karen Meaburn
- Genome Damage and Stability Centre, Sussex University, School of Life Sciences, University of Sussex, Brighton, UK
| | - Tiegh Taylor
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Virlana M Shchuka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Silvia Kocanova
- Molecular Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI) University of Toulouse Paul Sabatier, CNRS, 31062 Toulouse, France
| | - Guilherme Monteiro Oliveira
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Evi Soutoglou
- Genome Damage and Stability Centre, Sussex University, School of Life Sciences, University of Sussex, Brighton, UK
| | - Tineke L Lenstra
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Nacho Molina
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Argyris Papantonis
- Translational Epigenetics Group, Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Kerstin Bystricky
- Molecular Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI) University of Toulouse Paul Sabatier, CNRS, 31062 Toulouse, France
- Institut Universitaire de France (IUF)
| | - Tom Sexton
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| |
Collapse
|
24
|
Rubio LS, Gross DS. Dynamic coalescence of yeast Heat Shock Protein genes bypasses the requirement for actin. Genetics 2023; 223:iyad006. [PMID: 36659814 PMCID: PMC10319981 DOI: 10.1093/genetics/iyad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/22/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Nuclear actin has been implicated in dynamic chromatin rearrangements in diverse eukaryotes. In mammalian cells, it is required to reposition double-strand DNA breaks to enable homologous recombination repair and to enhance transcription by facilitating RNA Pol II recruitment to gene promoters. In the yeast Saccharomyces cerevisiae, nuclear actin modulates interphase chromosome dynamics and is required to reposition the induced INO1 gene to the nuclear periphery. Here, we have investigated the role of actin in driving intergenic interactions between Heat Shock Factor 1 (Hsf1)-regulated Heat Shock Protein (HSP) genes in budding yeast. These genes, dispersed on multiple chromosomes, dramatically reposition following exposure of cells to acute thermal stress, leading to their clustering within dynamic biomolecular condensates. Using an auxin-induced degradation strategy, we found that conditional depletion of nucleators of either linear or branched F-actin (Bni1/Bnr1 and Arp2, respectively) had little or no effect on heat shock-induced HSP gene coalescence or transcription. In addition, we found that pretreatment of cells with latrunculin A, an inhibitor of both filamentous and monomeric actin, failed to affect intergenic interactions between activated HSP genes and their heat shock-induced intragenic looping and folding. Moreover, latrunculin A pretreatment had little effect on HSP gene expression at either RNA or protein levels. In notable contrast, we confirmed that repositioning of activated INO1 to the nuclear periphery and its proper expression do require actin. Collectively, our work suggests that transcriptional activation and 3D genome restructuring of thermally induced, Hsf1-regulated genes can occur in the absence of actin.
Collapse
Affiliation(s)
- Linda S Rubio
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - David S Gross
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
25
|
A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms. Int J Mol Sci 2023; 24:ijms24065603. [PMID: 36982676 PMCID: PMC10052683 DOI: 10.3390/ijms24065603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.
Collapse
|
26
|
Chen M, Liu X, Liu Q, Shi D, Li H. 3D genomics and its applications in precision medicine. Cell Mol Biol Lett 2023; 28:19. [PMID: 36879202 PMCID: PMC9987123 DOI: 10.1186/s11658-023-00428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Three-dimensional (3D) genomics is an emerging discipline that studies the three-dimensional structure of chromatin and the three-dimensional and functions of genomes. It mainly studies the three-dimensional conformation and functional regulation of intranuclear genomes, such as DNA replication, DNA recombination, genome folding, gene expression regulation, transcription factor regulation mechanism, and the maintenance of three-dimensional conformation of genomes. Self-chromosomal conformation capture (3C) technology has been developed, and 3D genomics and related fields have developed rapidly. In addition, chromatin interaction analysis techniques developed by 3C technologies, such as paired-end tag sequencing (ChIA-PET) and whole-genome chromosome conformation capture (Hi-C), enable scientists to further study the relationship between chromatin conformation and gene regulation in different species. Thus, the spatial conformation of plant, animal, and microbial genomes, transcriptional regulation mechanisms, interaction patterns of chromosomes, and the formation mechanism of spatiotemporal specificity of genomes are revealed. With the help of new experimental technologies, the identification of key genes and signal pathways related to life activities and diseases is sustaining the rapid development of life science, agriculture, and medicine. In this paper, the concept and development of 3D genomics and its application in agricultural science, life science, and medicine are introduced, which provides a theoretical basis for the study of biological life processes.
Collapse
Affiliation(s)
- Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China
| | - Xingyu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China.
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China.
| |
Collapse
|
27
|
Zhu X, Huang Q, Luo J, Kong D, Zhang Y. Mini-review: Gene regulatory network benefits from three-dimensional chromatin conformation and structural biology. Comput Struct Biotechnol J 2023; 21:1728-1737. [PMID: 36890880 PMCID: PMC9986247 DOI: 10.1016/j.csbj.2023.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Gene regulatory networks are now at the forefront of precision biology, which can help researchers better understand how genes and regulatory elements interact to control cellular gene expression, offering a more promising molecular mechanism in biological research. Interactions between the genes and regulatory elements involve different promoters, enhancers, transcription factors, silencers, insulators, and long-range regulatory elements, which occur at a ∼10 µm nucleus in a spatiotemporal manner. In this way, three-dimensional chromatin conformation and structural biology are critical for interpreting the biological effects and the gene regulatory networks. In the review, we have briefly summarized the latest processes in three-dimensional chromatin conformation, microscopic imaging, and bioinformatics, and we have presented the outlook and future directions for these three aspects.
Collapse
Affiliation(s)
- Xiusheng Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qitong Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Animal Breeding and Genomics, Wageningen University & Research, Wageningen 6708PB, the Netherlands
| | - Jing Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dashuai Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yubo Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
28
|
Fleming M, Nelson F, Wallace I, Eskiw CH. Genome Tectonics: Linking Dynamic Genome Organization with Cellular Nutrients. Lifestyle Genom 2022; 16:21-34. [PMID: 36446341 DOI: 10.1159/000528011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/06/2022] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Our daily intake of food provides nutrients for the maintenance of health, growth, and development. The field of nutrigenomics aims to link dietary intake/nutrients to changes in epigenetic status and gene expression. SUMMARY Although the relationship between our diet and our genes in under intense investigation, there is still a significant aspect of our genome that has received little attention with regard to this. In the past 15 years, the importance of genome organization has become increasingly evident, with research identifying small-scale local changes to large segments of the genome dynamically repositioning within the nucleus in response to/or mediating change in gene expression. The discovery of these dynamic processes and organization maybe as significant as dynamic plate tectonics is to geology, there is little information tying genome organization to specific nutrients or dietary intake. KEY MESSAGES Here, we detail key principles of genome organization and structure, with emphasis on genome folding and organization, and link how these contribute to our future understand of nutrigenomics.
Collapse
Affiliation(s)
- Morgan Fleming
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Fina Nelson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- 21st Street Brewery Inc., Saskatoon, Saskatchewan, Canada
| | - Iain Wallace
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Proxima Research and Development, Saskatoon, Saskatchewan, Canada
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
29
|
Nair SJ, Suter T, Wang S, Yang L, Yang F, Rosenfeld MG. Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures. Trends Genet 2022; 38:1019-1047. [PMID: 35811173 PMCID: PMC9474616 DOI: 10.1016/j.tig.2022.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 02/08/2023]
Abstract
Gene regulation by transcriptional enhancers is the dominant mechanism driving cell type- and signal-specific transcriptional diversity in metazoans. However, over four decades since the original discovery, how enhancers operate in the nuclear space remains largely enigmatic. Recent multidisciplinary efforts combining real-time imaging, genome sequencing, and biophysical strategies provide insightful but conflicting models of enhancer-mediated gene control. Here, we review the discovery and progress in enhancer biology, emphasizing the recent findings that acutely activated enhancers assemble regulatory machinery as mesoscale architectural structures with distinct physical properties. These findings help formulate novel models that explain several mysterious features of the assembly of transcriptional enhancers and the mechanisms of spatial control of gene expression.
Collapse
Affiliation(s)
- Sreejith J Nair
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Tom Suter
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan Wang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Cellular and Molecular Medicine Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lu Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Feng Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
30
|
Abstract
Chromatin architecture, a key regulator of gene expression, can be inferred using chromatin contact data from chromosome conformation capture, or Hi-C. However, classical Hi-C does not preserve multi-way contacts. Here we use long sequencing reads to map genome-wide multi-way contacts and investigate higher order chromatin organization in the human genome. We use hypergraph theory for data representation and analysis, and quantify higher order structures in neonatal fibroblasts, biopsied adult fibroblasts, and B lymphocytes. By integrating multi-way contacts with chromatin accessibility, gene expression, and transcription factor binding, we introduce a data-driven method to identify cell type-specific transcription clusters. We provide transcription factor-mediated functional building blocks for cell identity that serve as a global signature for cell types. Mapping higher order chromatin architecture is important. Here the authors use long sequencing reads to map genome-wide multi-way contacts and investigate higher order chromatin organisation; they use hypergraph theory for data representation and analysis, and apply this to different cell types.
Collapse
|
31
|
Ni Y, Fan L, Wang M, Zhang N, Zuo Y, Liao M. EPI-Mind: Identifying Enhancer-Promoter Interactions Based on Transformer Mechanism. Interdiscip Sci 2022; 14:786-794. [PMID: 35633468 DOI: 10.1007/s12539-022-00525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
MOTIVATION Enhancer-Promoter Interactions (EPIs) is an essential step in the gene regulation process. However, the detection of EPIs by traditional wet experimental techniques is time-consuming and expensive. Thus, computational methods would be very useful for understanding the mechanism of EPIs. A number of approaches have been proposed to address this problem. Nevertheless, there is room for exploration and improvement for the existing research methods. METHODS In this study, a novel deep-learning model named EPI-Mind was proposed to predict EPIs with sequences features. First, we encoded enhancers and promoters sequences with pre-trained DNA vectors. Then, the Convolutional Neural Network (CNN) was utilized to rough extract the global and local features. Finally, the transformer mechanism was introduced to further extract the feature. We first trained a model named EPI-Mind_spe which can predict EPIs in one cell line. To achieve general prediction across different cell lines and further improve the performance of the model, a second-time training was carried on. The redivided dataset were used to train a new model called EPI-Mind_gen which can predict EPIs across different cell lines. To further improve the accuracy, a new model named EPI-Mind_best was trained which used the EPI-Mind_gen as a pre-trained model. RESULTS EPI-Mind_spe has the ability of predict EPIs with average AUROC above 90% and average AUPR above 70% but with cell lines specificity. EPI-Mind_gen can predict EPIs across different cell lines and its average AUROC is higher than the EPI-Mind_spe about 4.8%. EPI-Mind_best is superior to the state-of-the-art predictors on benchmarking datasets. EPI-Mind_best achieved best in 5 indicators within 12 indicators consists of AUPR and AUROC which is better than pioneers. CONCLUSION This research proposed a method, which was called EPI-Mind, to predict EPIs only with enhancer and promoters sequences, the framework of which was based on deep learning. This manuscript may provide a new route to solve the problem.
Collapse
Affiliation(s)
- Yu Ni
- College of Life Sciences, Northwest A&F University, Taicheng Road, Yangling, 712100, China
- College of Information Engineering, Northwest A&F University, Taicheng Road, Yangling, 712100, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Linqi Fan
- The 5th Paradigm Technology Co., Ltd, Yuanjiang Street, Shanghai, 200000, China
| | - Miao Wang
- College of Information Engineering, Northwest A&F University, Taicheng Road, Yangling, 712100, China
| | - Ning Zhang
- College of Life Sciences, Northwest A&F University, Taicheng Road, Yangling, 712100, China
| | - Yongchun Zuo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Mingzhi Liao
- College of Life Sciences, Northwest A&F University, Taicheng Road, Yangling, 712100, China.
| |
Collapse
|
32
|
Fleck K, Raj R, Erceg J. The 3D genome landscape: Diverse chromosomal interactions and their functional implications. Front Cell Dev Biol 2022; 10:968145. [PMID: 36036013 PMCID: PMC9402908 DOI: 10.3389/fcell.2022.968145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Genome organization includes contacts both within a single chromosome and between distinct chromosomes. Thus, regulatory organization in the nucleus may include interplay of these two types of chromosomal interactions with genome activity. Emerging advances in omics and single-cell imaging technologies have allowed new insights into chromosomal contacts, including those of homologs and sister chromatids, and their significance to genome function. In this review, we highlight recent studies in this field and discuss their impact on understanding the principles of chromosome organization and associated functional implications in diverse cellular processes. Specifically, we describe the contributions of intra-chromosomal, inter-homolog, and inter-sister chromatid contacts to genome organization and gene expression.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Romir Raj
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
33
|
Xing Z, Mai H, Liu X, Fu X, Zhang X, Xie L, Chen Y, Shlien A, Wen F. Single-cell diploid Hi-C reveals the role of spatial aggregations in complex rearrangements and KMT2A fusions in leukemia. Genome Biol 2022; 23:173. [PMID: 35945623 PMCID: PMC9361544 DOI: 10.1186/s13059-022-02740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Simple translocations and complex rearrangements are formed through illegitimate ligations of double-strand breaks of fusion partners and lead to generation of oncogenic fusion genes that affect cellular function. The contact first hypothesis states that fusion partners tend to colocalize prior to fusion in normal cells. Here we test this hypothesis at the single-cell level and explore the underlying mechanism. RESULTS By analyzing published single-cell diploid Hi-C datasets, we find partner genes fused in leukemia exhibit smaller spatial distances than those fused in solid tumor and control gene pairs. Intriguingly, multiple partners tend to colocalize with KMT2A in the same cell. 3D genome architecture has little association with lineage decision of KMT2A fusion types in leukemia. Besides simple translocations, complex rearrangement-related KMT2A fusion genes (CRGs) also show closer proximity and belong to a genome-wide mutual proximity network. We find CRGs are co-expressed, co-localized, and enriched in the targets of the transcriptional factor RUNX1, suggesting they may be involved in RUNX1-mediated transcription factories. Knockdown of RUNX1 leads to significantly fewer contacts among CRGs. We also find CRGs are enriched in active transcriptional regions and loop anchors, and exhibit high levels of TOP2-mediated DNA breakages. Inhibition of transcription leads to reduced DNA breakages of CRGs. CONCLUSIONS Our results demonstrate KMT2A partners and CRGs may form dynamic and multipartite spatial clusters in individual cells that may be involved in RUNX1-mediated transcription factories, wherein massive DNA damages and illegitimate ligations of genes may occur, leading to complex rearrangements and KMT2A fusions in leukemia.
Collapse
Affiliation(s)
- Zhihao Xing
- Clinical Laboratory & Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Shenzhen Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China
| | - Huirong Mai
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xiaorong Liu
- Clinical Laboratory & Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xiaoying Fu
- Clinical Laboratory & Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xingliang Zhang
- Shenzhen Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China
| | - Lichun Xie
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yunsheng Chen
- Clinical Laboratory & Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Feiqiu Wen
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.
| |
Collapse
|
34
|
Antel M, Raj R, Masoud MYG, Pan Z, Li S, Mellone BG, Inaba M. Interchromosomal interaction of homologous Stat92E alleles regulates transcriptional switch during stem-cell differentiation. Nat Commun 2022; 13:3981. [PMID: 35810185 PMCID: PMC9271046 DOI: 10.1038/s41467-022-31737-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/30/2022] [Indexed: 01/24/2023] Open
Abstract
Pairing of homologous chromosomes in somatic cells provides the opportunity of interchromosomal interaction between homologous gene regions. In the Drosophila male germline, the Stat92E gene is highly expressed in a germline stem cell (GSC) and gradually downregulated during the differentiation. Here we show that the pairing of Stat92E is always tight in GSCs and immediately loosened in differentiating daughter cells, gonialblasts (GBs). Disturbance of Stat92E pairing by relocation of one locus to another chromosome or by knockdown of global pairing/anti-pairing factors both result in a failure of Stat92E downregulation, suggesting that the pairing is required for the decline in transcription. Furthermore, the Stat92E enhancer, but not its transcription, is required for the change in pairing state, indicating that pairing is not a consequence of transcriptional changes. Finally, we show that the change in Stat92E pairing is dependent on asymmetric histone inheritance during the asymmetric division of GSCs. Taken together, we propose that the changes in Stat92E pairing status is an intrinsically programmed mechanism for enabling prompt cell fate switch during the differentiation of stem cells. Asymmetric inheritance of organelles, proteins and RNAs occurs during stem cell division. Here the authors show the strength of pairing of homologous Stat92E loci, a stem cell-specific gene, changes immediately after the asymmetric division due to asymmetric inheritance of new histones to one of the daughter cells and is important for turning off gene expression in this cell as it differentiates.
Collapse
Affiliation(s)
- Matthew Antel
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Romir Raj
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Madona Y G Masoud
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Ziwei Pan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Sheng Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Barbara G Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
35
|
Zhang S, Plummer D, Lu L, Cui J, Xu W, Wang M, Liu X, Prabhakar N, Shrinet J, Srinivasan D, Fraser P, Li Y, Li J, Jin F. DeepLoop robustly maps chromatin interactions from sparse allele-resolved or single-cell Hi-C data at kilobase resolution. Nat Genet 2022; 54:1013-1025. [PMID: 35817982 PMCID: PMC10082397 DOI: 10.1038/s41588-022-01116-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/30/2022] [Indexed: 11/09/2022]
Abstract
Mapping chromatin loops from noisy Hi-C heatmaps remains a major challenge. Here we present DeepLoop, which performs rigorous bias correction followed by deep-learning-based signal enhancement for robust chromatin interaction mapping from low-depth Hi-C data. DeepLoop enables loop-resolution, single-cell Hi-C analysis. It also achieves a cross-platform convergence between different Hi-C protocols and micrococcal nuclease (micro-C). DeepLoop allowed us to map the genetic and epigenetic determinants of allele-specific chromatin interactions in the human genome. We nominate new loci with allele-specific interactions governed by imprinting or allelic DNA methylation. We also discovered that, in the inactivated X chromosome (Xi), local loops at the DXZ4 'megadomain' boundary escape X-inactivation but the FIRRE 'superloop' locus does not. Importantly, DeepLoop can pinpoint heterozygous single-nucleotide polymorphisms and large structure variants that cause allelic chromatin loops, many of which rewire enhancers with transcription consequences. Taken together, DeepLoop expands the use of Hi-C to provide loop-resolution insights into the genetics of the three-dimensional genome.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,The Biomedical Sciences Training Program, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Dylan Plummer
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Leina Lu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jian Cui
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Wanying Xu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,The Biomedical Sciences Training Program, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Miao Wang
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Xiaoxiao Liu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Nachiketh Prabhakar
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jatin Shrinet
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Divyaa Srinivasan
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Yan Li
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Jing Li
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA. .,Department of Population and Quantitative Health Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Fulai Jin
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA. .,Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA. .,Department of Population and Quantitative Health Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
36
|
Wei C, Jia L, Huang X, Tan J, Wang M, Niu J, Hou Y, Sun J, Zeng P, Wang J, Qing L, Ma L, Liu X, Tang X, Li F, Jiang S, Liu J, Li T, Fan L, Sun Y, Gao J, Li C, Ding J. CTCF organizes inter-A compartment interactions through RYBP-dependent phase separation. Cell Res 2022; 32:744-760. [PMID: 35768498 PMCID: PMC9343660 DOI: 10.1038/s41422-022-00676-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
Chromatin is spatially organized into three-dimensional structures at different levels including A/B compartments, topologically associating domains and loops. The canonical CTCF-mediated loop extrusion model can explain the formation of loops. However, the organization mechanisms underlying long-range chromatin interactions such as interactions between A-A compartments are still poorly understood. Here we show that different from the canonical loop extrusion model, RYBP-mediated phase separation of CTCF organizes inter-A compartment interactions. Based on this model, we designed and verified an induced CTCF phase separation system in embryonic stem cells (ESCs), which facilitated inter-A compartment interactions, improved self-renewal of ESCs and inhibited their differentiation toward neural progenitor cells. These findings support a novel and non-canonical role of CTCF in organizing long-range chromatin interactions via phase separation.
Collapse
Affiliation(s)
- Chao Wei
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lumeng Jia
- School of Life Sciences, Peking University, Beijing, China
| | - Xiaona Huang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jin Tan
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mulan Wang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jing Niu
- School of Medicine, Tsinghua University, Beijing, China
| | - Yingping Hou
- Peking-Tsinghua Center for Life Sciences; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jun Sun
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Pengguihang Zeng
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Wang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Li Qing
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lin Ma
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xinyi Liu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiuxiao Tang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fenjie Li
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jingxin Liu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tingting Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, China
| | - Lili Fan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yujie Sun
- School of Life Sciences, Peking University, Beijing, China.,State Key Laboratory of Membrane Biology, Biomedical pioneering innovation center (BIOPIC), Peking University, Beijing, China
| | - Juntao Gao
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division, BNRist; Department of Automation; Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| | - Cheng Li
- School of Life Sciences, Peking University, Beijing, China. .,Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China.
| | - Junjun Ding
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China. .,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
Taylor T, Sikorska N, Shchuka VM, Chahar S, Ji C, Macpherson NN, Moorthy SD, de Kort MAC, Mullany S, Khader N, Gillespie ZE, Langroudi L, Tobias IC, Lenstra TL, Mitchell JA, Sexton T. Transcriptional regulation and chromatin architecture maintenance are decoupled functions at the Sox2 locus. Genes Dev 2022; 36:699-717. [PMID: 35710138 PMCID: PMC9296009 DOI: 10.1101/gad.349489.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022]
Abstract
How distal regulatory elements control gene transcription and chromatin topology is not clearly defined, yet these processes are closely linked in lineage specification during development. Through allele-specific genome editing and chromatin interaction analyses of the Sox2 locus in mouse embryonic stem cells, we found a striking disconnection between transcriptional control and chromatin architecture. We traced nearly all Sox2 transcriptional activation to a small number of key transcription factor binding sites, whose deletions have no effect on promoter-enhancer interaction frequencies or topological domain organization. Local chromatin architecture maintenance, including at the topologically associating domain (TAD) boundary downstream from the Sox2 enhancer, is widely distributed over multiple transcription factor-bound regions and maintained in a CTCF-independent manner. Furthermore, partial disruption of promoter-enhancer interactions by ectopic chromatin loop formation has no effect on Sox2 transcription. These findings indicate that many transcription factors are involved in modulating chromatin architecture independently of CTCF.
Collapse
Affiliation(s)
- Tiegh Taylor
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Natalia Sikorska
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Virlana M Shchuka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Sanjay Chahar
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Chenfan Ji
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Neil N Macpherson
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Sakthi D Moorthy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Marit A C de Kort
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Shanelle Mullany
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Nawrah Khader
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Zoe E Gillespie
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Lida Langroudi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Ian C Tobias
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Tineke L Lenstra
- Division of Gene Regulation, the Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M55 3G5, Canada
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| |
Collapse
|
38
|
Avdeyev P, Zhou J. Computational Approaches for Understanding Sequence Variation Effects on the 3D Genome Architecture. Annu Rev Biomed Data Sci 2022; 5:183-204. [PMID: 35537461 DOI: 10.1146/annurev-biodatasci-102521-012018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Decoding how genomic sequence and its variations affect 3D genome architecture is indispensable for understanding the genetic architecture of various traits and diseases. The 3D genome organization can be significantly altered by genome variations and in turn impact the function of the genomic sequence. Techniques for measuring the 3D genome architecture across spatial scales have opened up new possibilities for understanding how the 3D genome depends upon the genomic sequence and how it can be altered by sequence variations. Computational methods have become instrumental in analyzing and modeling the sequence effects on 3D genome architecture, and recent development in deep learning sequence models have opened up new opportunities for studying the interplay between sequence variations and the 3D genome. In this review, we focus on computational approaches for both the detection and modeling of sequence variation effects on the 3D genome, and we discuss the opportunities presented by these approaches. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pavel Avdeyev
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
39
|
Li D, He M, Tang Q, Tian S, Zhang J, Li Y, Wang D, Jin L, Ning C, Zhu W, Hu S, Long K, Ma J, Liu J, Zhang Z, Li M. Comparative 3D genome architecture in vertebrates. BMC Biol 2022; 20:99. [PMID: 35524220 PMCID: PMC9077971 DOI: 10.1186/s12915-022-01301-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/20/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The three-dimensional (3D) architecture of the genome has a highly ordered and hierarchical nature, which influences the regulation of essential nuclear processes at the basis of gene expression, such as gene transcription. While the hierarchical organization of heterochromatin and euchromatin can underlie differences in gene expression that determine evolutionary differences among species, the way 3D genome architecture is affected by evolutionary forces within major lineages remains unclear. Here, we report a comprehensive comparison of 3D genomes, using high resolution Hi-C data in fibroblast cells of fish, chickens, and 10 mammalian species. RESULTS This analysis shows a correlation between genome size and chromosome length that affects chromosome territory (CT) organization in the upper hierarchy of genome architecture, whereas lower hierarchical features, including local transcriptional availability of DNA, are selected through the evolution of vertebrates. Furthermore, conservation of topologically associating domains (TADs) appears strongly associated with the modularity of expression profiles across species. Additionally, LINE and SINE transposable elements likely contribute to heterochromatin and euchromatin organization, respectively, during the evolution of genome architecture. CONCLUSIONS Our analysis uncovers organizational features that appear to determine the conservation and transcriptional regulation of functional genes across species. These findings can guide ongoing investigations of genome evolution by extending our understanding of the mechanisms shaping genome architecture.
Collapse
Affiliation(s)
- Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengnan He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shilin Tian
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Novogene Bioinformatics Institute, Beijing, 100000, China
| | - Jiaman Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Danyang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunyou Ning
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
40
|
Rodriguez S, Ward A, Reckard AT, Shtanko Y, Hull-Crew C, Klocko AD. The genome organization of Neurospora crassa at high resolution uncovers principles of fungal chromosome topology. G3 (BETHESDA, MD.) 2022; 12:jkac053. [PMID: 35244156 PMCID: PMC9073679 DOI: 10.1093/g3journal/jkac053] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 01/17/2023]
Abstract
The eukaryotic genome must be precisely organized for its proper function, as genome topology impacts transcriptional regulation, cell division, replication, and repair, among other essential processes. Disruptions to human genome topology can lead to diseases, including cancer. The advent of chromosome conformation capture with high-throughput sequencing (Hi-C) to assess genome organization has revolutionized the study of nuclear genome topology; Hi-C has elucidated numerous genomic structures, including chromosomal territories, active/silent chromatin compartments, Topologically Associated Domains, and chromatin loops. While low-resolution heatmaps can provide important insights into chromosomal level contacts, high-resolution Hi-C datasets are required to reveal folding principles of individual genes. Of particular interest are high-resolution chromosome conformation datasets of organisms modeling the human genome. Here, we report the genome topology of the fungal model organism Neurospora crassa at a high resolution. Our composite Hi-C dataset, which merges 2 independent datasets generated with restriction enzymes that monitor euchromatin (DpnII) and heterochromatin (MseI), along with our DpnII/MseI double digest dataset, provide exquisite detail for both the conformation of entire chromosomes and the folding of chromatin at the resolution of individual genes. Within constitutive heterochromatin, we observe strong yet stochastic internal contacts, while euchromatin enriched with either activating or repressive histone post-translational modifications associates with constitutive heterochromatic regions, suggesting intercompartment contacts form to regulate transcription. Consistent with this, a strain with compromised heterochromatin experiences numerous changes in gene expression. Our high-resolution Neurospora Hi-C datasets are outstanding resources to the fungal community and provide valuable insights into higher organism genome topology.
Collapse
Affiliation(s)
- Sara Rodriguez
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Ashley Ward
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Andrew T Reckard
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Yulia Shtanko
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Clayton Hull-Crew
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Andrew D Klocko
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
41
|
Deng S, Feng Y, Pauklin S. 3D chromatin architecture and transcription regulation in cancer. J Hematol Oncol 2022; 15:49. [PMID: 35509102 PMCID: PMC9069733 DOI: 10.1186/s13045-022-01271-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 12/18/2022] Open
Abstract
Chromatin has distinct three-dimensional (3D) architectures important in key biological processes, such as cell cycle, replication, differentiation, and transcription regulation. In turn, aberrant 3D structures play a vital role in developing abnormalities and diseases such as cancer. This review discusses key 3D chromatin structures (topologically associating domain, lamina-associated domain, and enhancer-promoter interactions) and corresponding structural protein elements mediating 3D chromatin interactions [CCCTC-binding factor, polycomb group protein, cohesin, and Brother of the Regulator of Imprinted Sites (BORIS) protein] with a highlight of their associations with cancer. We also summarise the recent development of technologies and bioinformatics approaches to study the 3D chromatin interactions in gene expression regulation, including crosslinking and proximity ligation methods in the bulk cell population (ChIA-PET and HiChIP) or single-molecule resolution (ChIA-drop), and methods other than proximity ligation, such as GAM, SPRITE, and super-resolution microscopy techniques.
Collapse
Affiliation(s)
- Siwei Deng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Siim Pauklin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
42
|
Levo M, Raimundo J, Bing XY, Sisco Z, Batut PJ, Ryabichko S, Gregor T, Levine MS. Transcriptional coupling of distant regulatory genes in living embryos. Nature 2022; 605:754-760. [PMID: 35508662 PMCID: PMC9886134 DOI: 10.1038/s41586-022-04680-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/23/2022] [Indexed: 02/01/2023]
Abstract
The prevailing view of metazoan gene regulation is that individual genes are independently regulated by their own dedicated sets of transcriptional enhancers. Past studies have reported long-range gene-gene associations1-3, but their functional importance in regulating transcription remains unclear. Here we used quantitative single-cell live imaging methods to provide a demonstration of co-dependent transcriptional dynamics of genes separated by large genomic distances in living Drosophila embryos. We find extensive physical and functional associations of distant paralogous genes, including co-regulation by shared enhancers and co-transcriptional initiation over distances of nearly 250 kilobases. Regulatory interconnectivity depends on promoter-proximal tethering elements, and perturbations in these elements uncouple transcription and alter the bursting dynamics of distant genes, suggesting a role of genome topology in the formation and stability of co-transcriptional hubs. Transcriptional coupling is detected throughout the fly genome and encompasses a broad spectrum of conserved developmental processes, suggesting a general strategy for long-range integration of gene activity.
Collapse
Affiliation(s)
- Michal Levo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - João Raimundo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Xin Yang Bing
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Zachary Sisco
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Philippe J. Batut
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Sergey Ryabichko
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Thomas Gregor
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA,Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA,Department of Developmental and Stem Cell Biology, UMR3738, Institut Pasteur, Paris, France,Corresponding authors
| | - Michael S. Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA,Corresponding authors
| |
Collapse
|
43
|
Flavell RB. Wheat Breeding, Transcription Factories, and Genetic Interactions: New Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:807884. [PMID: 35283934 PMCID: PMC8905190 DOI: 10.3389/fpls.2022.807884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Epistatic interactions and negative heterosis have been shown to be associated with interchromosomal interactions in wheat. Physical gene-gene interactions between co-regulated genes clustered in "transcription factories" have been documented, and a genome-wide atlas of functionally paired, interacting regulatory elements and genes of wheat recently produced. Integration of these new studies on gene and regulatory element interactions, co-regulation of gene expression in "transcription factories," and epigenetics generates new perspectives for wheat breeding and trait enhancement.
Collapse
|
44
|
Dias JD, Sarica N, Cournac A, Koszul R, Neuveut C. Crosstalk between Hepatitis B Virus and the 3D Genome Structure. Viruses 2022; 14:445. [PMID: 35216038 PMCID: PMC8877387 DOI: 10.3390/v14020445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses that transcribe their DNA within the nucleus have to adapt to the existing cellular mechanisms that govern transcriptional regulation. Recent technological breakthroughs have highlighted the highly hierarchical organization of the cellular genome and its role in the regulation of gene expression. This review provides an updated overview on the current knowledge on how the hepatitis B virus interacts with the cellular 3D genome and its consequences on viral and cellular gene expression. We also briefly discuss the strategies developed by other DNA viruses to co-opt and sometimes subvert cellular genome spatial organization.
Collapse
Affiliation(s)
- João Diogo Dias
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS, Université de Montpellier, 34000 Montpellier, France; (J.D.D.); (N.S.)
| | - Nazim Sarica
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS, Université de Montpellier, 34000 Montpellier, France; (J.D.D.); (N.S.)
| | - Axel Cournac
- Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Institut Pasteur, Université de Paris, 75015 Paris, France; (A.C.); (R.K.)
| | - Romain Koszul
- Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Institut Pasteur, Université de Paris, 75015 Paris, France; (A.C.); (R.K.)
| | - Christine Neuveut
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS, Université de Montpellier, 34000 Montpellier, France; (J.D.D.); (N.S.)
| |
Collapse
|
45
|
Leidescher S, Ribisel J, Ullrich S, Feodorova Y, Hildebrand E, Galitsyna A, Bultmann S, Link S, Thanisch K, Mulholland C, Dekker J, Leonhardt H, Mirny L, Solovei I. Spatial organization of transcribed eukaryotic genes. Nat Cell Biol 2022; 24:327-339. [PMID: 35177821 DOI: 10.1038/s41556-022-00847-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
Abstract
Despite the well-established role of nuclear organization in the regulation of gene expression, little is known about the reverse: how transcription shapes the spatial organization of the genome. Owing to the small sizes of most previously studied genes and the limited resolution of microscopy, the structure and spatial arrangement of a single transcribed gene are still poorly understood. Here we study several long highly expressed genes and demonstrate that they form open-ended transcription loops with polymerases moving along the loops and carrying nascent RNAs. Transcription loops can span across micrometres, resembling lampbrush loops and polytene puffs. The extension and shape of transcription loops suggest their intrinsic stiffness, which we attribute to decoration with multiple voluminous nascent ribonucleoproteins. Our data contradict the model of transcription factories and suggest that although microscopically resolvable transcription loops are specific for long highly expressed genes, the mechanisms underlying their formation could represent a general aspect of eukaryotic transcription.
Collapse
Affiliation(s)
- Susanne Leidescher
- Department of Biology II, Biozentrum, Ludwig-Maximilians University Munich (LMU), Planegg-Martinsried, Germany
| | - Johannes Ribisel
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Simon Ullrich
- Department of Biology II, Biozentrum, Ludwig-Maximilians University Munich (LMU), Planegg-Martinsried, Germany
| | - Yana Feodorova
- Department of Biology II, Biozentrum, Ludwig-Maximilians University Munich (LMU), Planegg-Martinsried, Germany.,Department of Medical Biology, Medical University of Plovdiv; Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Erica Hildebrand
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Sebastian Bultmann
- Department of Biology II, Biozentrum, Ludwig-Maximilians University Munich (LMU), Planegg-Martinsried, Germany
| | - Stephanie Link
- BioMedizinisches Center, Ludwig-Maximilians University Munich, Planegg-Martinsried, Germany
| | - Katharina Thanisch
- Department of Biology II, Biozentrum, Ludwig-Maximilians University Munich (LMU), Planegg-Martinsried, Germany.,Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Christopher Mulholland
- Department of Biology II, Biozentrum, Ludwig-Maximilians University Munich (LMU), Planegg-Martinsried, Germany
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Heinrich Leonhardt
- Department of Biology II, Biozentrum, Ludwig-Maximilians University Munich (LMU), Planegg-Martinsried, Germany
| | - Leonid Mirny
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Irina Solovei
- Department of Biology II, Biozentrum, Ludwig-Maximilians University Munich (LMU), Planegg-Martinsried, Germany.
| |
Collapse
|
46
|
Uchino S, Ito Y, Sato Y, Handa T, Ohkawa Y, Tokunaga M, Kimura H. Live imaging of transcription sites using an elongating RNA polymerase II-specific probe. J Cell Biol 2022; 221:212888. [PMID: 34854870 PMCID: PMC8647360 DOI: 10.1083/jcb.202104134] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/12/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
In eukaryotic nuclei, most genes are transcribed by RNA polymerase II (RNAP2), whose regulation is a key to understanding the genome and cell function. RNAP2 has a long heptapeptide repeat (Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), and Ser2 is phosphorylated on an elongation form. To detect RNAP2 Ser2 phosphorylation (RNAP2 Ser2ph) in living cells, we developed a genetically encoded modification-specific intracellular antibody (mintbody) probe. The RNAP2 Ser2ph-mintbody exhibited numerous foci, possibly representing transcription “factories,” and foci were diminished during mitosis and in a Ser2 kinase inhibitor. An in vitro binding assay using phosphopeptides confirmed the mintbody’s specificity. RNAP2 Ser2ph-mintbody foci were colocalized with proteins associated with elongating RNAP2 compared with factors involved in the initiation. These results support the view that mintbody localization represents the sites of RNAP2 Ser2ph in living cells. RNAP2 Ser2ph-mintbody foci showed constrained diffusional motion like chromatin, but they were more mobile than DNA replication domains and p300-enriched foci, suggesting that the elongating RNAP2 complexes are separated from more confined chromatin domains.
Collapse
Affiliation(s)
- Satoshi Uchino
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuma Ito
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuko Sato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsuya Handa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Makio Tokunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Kimura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
47
|
Di Stefano M, Nützmann HW. Modeling the 3D genome of plants. Nucleus 2021; 12:65-81. [PMID: 34057011 PMCID: PMC8168717 DOI: 10.1080/19491034.2021.1927503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Chromosomes are the carriers of inheritable traits and define cell function and development. This is not only based on the linear DNA sequence of chromosomes but also on the additional molecular information they are associated with, including the transcription machinery, histone modifications, and their three-dimensional folding. The synergistic application of experimental approaches and computer simulations has helped to unveil how these organizational layers of the genome interplay in various organisms. However, such multidisciplinary approaches are still rarely explored in the plant kingdom. Here, we provide an overview of our current knowledge on plant 3D genome organization and review recent efforts to integrate cutting-edge experiments from microscopy and next-generation sequencing approaches with theoretical models. Building on these recent approaches, we propose possible avenues to extend the application of theoretical modeling in the characterization of the 3D genome organization in plants.
Collapse
Affiliation(s)
- Marco Di Stefano
- Institute of Human Genetics, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Hans-Wilhelm Nützmann
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
48
|
Park YJ, Han SM, Huh JY, Kim JB. Emerging roles of epigenetic regulation in obesity and metabolic disease. J Biol Chem 2021; 297:101296. [PMID: 34637788 PMCID: PMC8561000 DOI: 10.1016/j.jbc.2021.101296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 01/10/2023] Open
Abstract
Adipose tissue dysfunction is a hallmark of obesity and contributes to obesity-related sequelae such as metabolic complications and insulin resistance. Compelling evidence indicates that adipose-tissue-specific gene expression is influenced by gene interactions with proximal and distal cis-regulatory elements; the latter exert regulatory effects via three-dimensional (3D) chromosome conformation. Recent advances in determining the regulatory mechanisms reveal that compromised epigenomes are molecularly interlinked to altered cis-regulatory element activity and chromosome architecture in the adipose tissue. This review summarizes the roles of epigenomic components, particularly DNA methylation, in transcriptional rewiring in adipose tissue. In addition, we discuss the emerging roles of DNA methylation in the maintenance of 3D chromosome conformation and its pathophysiological significance concerning adipose tissue function.
Collapse
Affiliation(s)
- Yoon Jeong Park
- Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sang Mun Han
- Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jin Young Huh
- Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
49
|
Kainth AS, Chowdhary S, Pincus D, Gross DS. Primordial super-enhancers: heat shock-induced chromatin organization in yeast. Trends Cell Biol 2021; 31:801-813. [PMID: 34001402 PMCID: PMC8448919 DOI: 10.1016/j.tcb.2021.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 01/29/2023]
Abstract
Specialized mechanisms ensure proper expression of critically important genes such as those specifying cell identity or conferring protection from environmental stress. Investigations of the heat shock response have been critical in elucidating basic concepts of transcriptional control. Recent studies demonstrate that in response to thermal stress, heat shock-responsive genes associate with high levels of transcriptional activators and coactivators and those in yeast intensely interact across and between chromosomes, coalescing into condensates. In mammalian cells, cell identity genes that are regulated by super-enhancers (SEs) are also densely occupied by transcriptional machinery that form phase-separated condensates. We suggest that the stress-remodeled yeast nucleome bears functional and structural resemblance to mammalian SEs, and will reveal fundamental mechanisms of gene control by transcriptional condensates.
Collapse
Affiliation(s)
- Amoldeep S Kainth
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Surabhi Chowdhary
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - David Pincus
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - David S Gross
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
50
|
Ray-Jones H, Spivakov M. Transcriptional enhancers and their communication with gene promoters. Cell Mol Life Sci 2021; 78:6453-6485. [PMID: 34414474 PMCID: PMC8558291 DOI: 10.1007/s00018-021-03903-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Transcriptional enhancers play a key role in the initiation and maintenance of gene expression programmes, particularly in metazoa. How these elements control their target genes in the right place and time is one of the most pertinent questions in functional genomics, with wide implications for most areas of biology. Here, we synthesise classic and recent evidence on the regulatory logic of enhancers, including the principles of enhancer organisation, factors that facilitate and delimit enhancer-promoter communication, and the joint effects of multiple enhancers. We show how modern approaches building on classic insights have begun to unravel the complexity of enhancer-promoter relationships, paving the way towards a quantitative understanding of gene control.
Collapse
Affiliation(s)
- Helen Ray-Jones
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK
| | - Mikhail Spivakov
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK.
| |
Collapse
|