1
|
Wang L, Wang H, Zhang Y, Cai M, Zhang Z, Lei M, Zhang Y, Zhao J, Wang Y, Xu J, Zhai Y, Sun J, An Q, Cai W, Jiang Y, Liu F, Peng Y, Guo L. Transcriptional signatures of gray matter volume changes in mild traumatic brain injury. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111195. [PMID: 39536812 DOI: 10.1016/j.pnpbp.2024.111195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/13/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Neuroimaging studies have shown that patients with mild traumatic brain injury (mTBI) often exhibit changes in gray matter volume (GMV) in the brain. However, the results regarding these changes are inconsistent, and the underlying molecular mechanisms remain unclear. This study aimed to investigate GMV changes in mTBI patients and uncover the molecular mechanisms driving these alterations. METHODS We conducted a neuroimaging meta-analysis on nine studies, involving 396 mTBI patients and 338 healthy controls, to identify consistent patterns of GMV changes. Additionally, we utilized the Allen Human Brain Atlas database to explore transcriptome-neuroimaging spatial correlations, identifying genes whose expression profiles are linked to GMV changes in mTBI patients. Enrichment analyses were also performed to determine the biological significance of the altered GMV-related genes. RESULTS We observed consistent GMV increases in the bilateral middle cingulate/paracingulate gyri, right striatum, and right dorsolateral superior frontal gyrus, along with GMV decreases in the right insula and left lingual gyrus. Moreover, we found spatial associations between mTBI-related GMV changes and the expression of 977 genes, which were primarily enriched in specific biological processes, body tissues, and developmental time windows of the cerebral cortex. CONCLUSION Our findings improve the understanding of GMV abnormalities in mTBI patients and provide insights into the molecular mechanisms underlying these changes.
Collapse
Affiliation(s)
- Lu Wang
- Department of Geriatrics and Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - He Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Yijing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Mengjing Cai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Zhihui Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Minghuan Lei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Yujie Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jiaxuan Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Ying Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jinglei Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Ying Zhai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jinghan Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Qi An
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Wenjie Cai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Yifan Jiang
- School of Nursing, Tianjin Medical University, Tianjin 300070, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China.
| | - Yanmin Peng
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University, 300204 Tianjin, China.
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, 300052 Tianjin, China.
| |
Collapse
|
2
|
Malik AA, Shariq M, Sheikh JA, Jaiswal U, Fayaz H, Shrivastava G, Ehtesham NZ, Hasnain SE. Mechanisms of immune evasion by Mycobacterium tuberculosis: the impact of T7SS and cell wall lipids on host defenses. Crit Rev Biochem Mol Biol 2024; 59:310-336. [PMID: 39378051 DOI: 10.1080/10409238.2024.2411264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 11/14/2024]
Abstract
Mycobacterium tuberculosis (M. tb) is one of the most successful human pathogens, causing a severe and widespread infectious disease. The frequent emergence of multidrug-resistant (MDR) strains has exacerbated this public health crisis, particularly in underdeveloped regions. M. tb employs a sophisticated array of virulence factors to subvert host immune responses, both innate and adaptive. It utilizes the early secretory antigenic target (ESAT6) secretion system 1 (ESX-1) type VII secretion system (T7SS) and cell wall lipids to disrupt phagosomal integrity, inhibiting phagosome maturation, and fusion with lysosomes. Although host cells activate mechanisms such as ubiquitin (Ub), Ub-ligase, and cyclic GMP-AMP synthase-stimulator of interferon genes 1 (CGAS-STING1)-mediated autophagy to inhibit M. tb survival within macrophages, the pathogen counteracts these defenses with its own virulence factors, thereby inhibiting autophagy and dampening host-directed responses. T7SSs are critical for transporting proteins across the complex mycobacterial cell envelope, performing essential functions, including metabolite uptake, immune evasion, and conjugation. T7SS substrates fall into two main families: ESAT-6 system proteins, which are found in both Firmicutes and Actinobacteria, and proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) proteins, which are unique to mycobacteria. Recent studies have highlighted the significance of T7SSs in mycobacterial growth, virulence, and pathogenesis. Understanding the mechanisms governing T7SSs could pave the way for novel therapeutic strategies to combat mycobacterial diseases, including tuberculosis (TB).
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mohd Shariq
- GITAM School of Science, GITAM University, Rudraram, Telangana, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Udyeshita Jaiswal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Gauri Shrivastava
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi, India
| |
Collapse
|
3
|
Guo W, Ren Y, Qiu X. FBXO2 promotes the progression of papillary thyroid carcinoma through the p53 pathway. Sci Rep 2024; 14:22574. [PMID: 39343799 PMCID: PMC11439943 DOI: 10.1038/s41598-024-73455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Emerging evidence have demonstrated that F-box only protein 2 (FBXO2) is intimately associated with malignant tumor development and occurrence. However, neither the functions nor the molecular mechanisms underlying FBXO2 have been determined in the papillary thyroid carcinoma (PTC). The quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry were carried out to detect the FBXO2 expression in PTC tissues. CCK-8 assay, EdU assay and flow cytometry were used to assess cell proliferation, cell cycle and apoptosis. The trans-well assay was conducted to determine the cell invasiveness. The effect of FBXO2 on PTC cell proliferation in vivo was observed through a subcutaneous tumor formation experiment in nude mice. Immunoprecipitation were conducted to detect the interaction between FBXO2 and p53. The ubiquitination assays were conducted to assess the regulation of p53 ubiquitination by FBXO2. FBXO2 was overexpressed in both PTC tissues and cell lines. FBXO2 expression positively correlated with PTC tumor size, lymphatic metastasis, and extramembranous invasion. Furthermore, silencing FBXO2 inhibited PTC cell proliferation and promoted apoptosis. The overexpression of FBXO2 significantly promotes PTC cell proliferation. Mechanistic studies revealed that FBXO2 could directly bind to p53 and promote its ubiquitination degradation. Knockdown of p53 partially reversed the progression arrest induced by FBXO2 Knockdown in PTC cells. FBXO2 knockdown inhibited PTC cell proliferation and promoted apoptosis by targeting p53 for ubiquitination and degradation. This process represents a research foundation for its diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Wenke Guo
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaoqiang Ren
- Department of Urology, Fenyang Hospital of Shanxi Province, Lüliang, Shanxi, China
| | - Xinguang Qiu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Li S, Yang M, Zhao Y, Zhai Y, Sun C, Guo Y, Zhang X, Zhang L, Tian T, Yang Y, Pei Y, Li J, Li C, Xuan L, Li X, Zhao D, Yang H, Zhang Y, Yang B, Zhang Z, Pan Z, Lu Y. Deletion of ASPP1 in myofibroblasts alleviates myocardial fibrosis by reducing p53 degradation. Nat Commun 2024; 15:8425. [PMID: 39341821 PMCID: PMC11439048 DOI: 10.1038/s41467-024-52739-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
In the healing process of myocardial infarction, cardiac fibroblasts are activated to produce collagen, leading to adverse remodeling and heart failure. Our previous study showed that ASPP1 promotes cardiomyocyte apoptosis by enhancing the nuclear trafficking of p53. We thus explored the influence of ASPP1 on myocardial fibrosis and the underlying mechanisms. Here, we observed that ASPP1 was increased after 4 weeks of MI. Both global and myofibroblast knockout of ASPP1 in mice mitigated cardiac dysfunction and fibrosis after MI. Strikingly, ASPP1 produced the opposite influence on p53 level and cell fate in cardiac fibroblasts and cardiomyocytes. Knockdown of ASPP1 increased p53 levels and inhibited the activity of cardiac fibroblasts. ASPP1 accumulated in the cytoplasm of fibroblasts while the level of p53 was reduced following TGF-β1 stimulation; however, inhibition of ASPP1 increased the p53 level and promoted p53 nuclear translocation. Mechanistically, ASPP1 is directly bound to deubiquitinase OTUB1, thereby promoting the ubiquitination and degradation of p53, attenuating myofibroblast activity and cardiac fibrosis, and improving heart function after MI.
Collapse
Affiliation(s)
- Shangxuan Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Meng Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Yinfeng Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Yinghe Zhai
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Chongsong Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Yang Guo
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Xiaofang Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Lingmin Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Tao Tian
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Ying Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Yao Pei
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Jialiang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Chenhong Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Lina Xuan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Xingda Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Deli Zhao
- Department of Medical Imaging, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huike Yang
- Department of Anatomy, Harbin Medical University, Harbin, P.R. China
| | - Yang Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China.
| | - Baofeng Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, P. R. China.
| | - Zhiren Zhang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| | - Zhenwei Pan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China.
- Key Laboratory of Cell Transplantation, The First Affiliated Hospital, Harbin Medical University, Harbin, P. R. China.
- School of Basic Medical Sciences, Harbin Medical University, Harbin, P.R. China.
| | - Yanjie Lu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China.
| |
Collapse
|
5
|
Vecchione A, Devlin JC, Tasker C, Ramnarayan VR, Haase P, Conde E, Srivastava D, Atwal GS, Bruhns P, Murphy AJ, Sleeman MA, Limnander A, Lim WK, Asrat S, Orengo JM. IgE plasma cells are transcriptionally and functionally distinct from other isotypes. Sci Immunol 2024; 9:eadm8964. [PMID: 39241058 DOI: 10.1126/sciimmunol.adm8964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/18/2024] [Accepted: 08/08/2024] [Indexed: 09/08/2024]
Abstract
Understanding the phenotypic and transcriptional signature of immunoglobulin E (IgE)-producing cells is fundamental to plasma cell (PC) biology and development of therapeutic interventions for allergy. Here, using a mouse model of intranasal house dust mite (HDM) exposure, we showed that short-lived IgE PCs emerge in lung draining lymph nodes (dLNs) during early exposure (<3 weeks) and long-lived IgE PCs accumulate in the bone marrow (BM) with prolonged exposure (>7 weeks). IgE PCs had distinct surface and gene expression profiles in these different tissues compared with other Ig isotypes. IgE BMPCs up-regulated genes associated with prosurvival and BM homing, whereas IgE dLN PCs expressed genes associated with recent class switching and differentiation. IgE PCs also exhibited higher expression of endoplasmic reticulum (ER) stress and protein coding genes and higher antibody secretion rate when compared with IgG1. Overall, this study highlights the unique developmental path and transcriptional signature of short-lived and long-lived IgE PCs.
Collapse
Affiliation(s)
| | | | - Carley Tasker
- Regeneron Pharmaceuticals, Tarrytown, New York, 10591, USA
| | - Venkat Raman Ramnarayan
- Institut Pasteur, Université Paris Cité, Inserm UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| | - Paul Haase
- Institut Pasteur, Université Paris Cité, Inserm UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| | - Eva Conde
- Regeneron Pharmaceuticals, Tarrytown, New York, 10591, USA
| | | | | | - Pierre Bruhns
- Institut Pasteur, Université Paris Cité, Inserm UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| | | | | | | | - Wei Keat Lim
- Regeneron Pharmaceuticals, Tarrytown, New York, 10591, USA
| | | | - Jamie M Orengo
- Regeneron Pharmaceuticals, Tarrytown, New York, 10591, USA
| |
Collapse
|
6
|
Zhan X, Yuan W, Ma R, Zhou Y, Xu G, Ge Z. Mmu-let-7a-5p inhibits macrophage apoptosis by targeting CASP3 to increase bacterial load and facilities mycobacterium survival. PLoS One 2024; 19:e0308095. [PMID: 39226319 PMCID: PMC11371246 DOI: 10.1371/journal.pone.0308095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/17/2024] [Indexed: 09/05/2024] Open
Abstract
We have been trying to find a miRNA that can specifically regulate the function of mycobacterial host cells to achieve the purpose of eliminating Mycobacterium tuberculosis. The purpose of this study is to investigate the regulation of mmu-let-7a-5p on macrophages apoptosis and its effect on intracellular BCG clearance. After a series of in vitro experiments, we found that mmu-let-7a-5p could negatively regulate the apoptosis of macrophages by targeting Caspase-3. The extrinsic apoptosis signal axis TNFR1/FADD/Caspase-8/Caspase-3 was inhibited after BCG infection. Up-regulated the expression level of mmu-let-7a-5p increase the cell proliferation viability and inhibit apoptosis rate of macrophages, but down-regulated its level could apparently reduce the bacterial load of intracellular Mycobacteria and accelerate the clearance of residual Mycobacteria effectively. Mmu-let-7a-5p has great potential to be utilized as an optimal candidate exosomal loaded miRNA for anti-tuberculosis immunotherapy in our subsequent research.
Collapse
Affiliation(s)
- Xuehua Zhan
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenqi Yuan
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Rong Ma
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yueyong Zhou
- Clinical Medicine School, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Guangxian Xu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Zhaohui Ge
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
7
|
Zhang H, Liu W, Wu Y, Chen C. USP3: Key deubiquitylation enzyme in human diseases. Cancer Sci 2024; 115:2094-2106. [PMID: 38651282 PMCID: PMC11247611 DOI: 10.1111/cas.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024] Open
Abstract
Ubiquitination and deubiquitylation are pivotal posttranslational modifications essential for regulating cellular protein homeostasis and are implicated in the development of human diseases. Ubiquitin-specific protease 3 (USP3), a member of the ubiquitin-specific protease family, serves as a key deubiquitylation enzyme, playing a critical role in diverse cellular processes including the DNA damage response, cell cycle regulation, carcinogenesis, tumor cell proliferation, migration, and invasion. Despite notable research efforts, our current understanding of the intricate and context-dependent regulatory networks governing USP3 remains incomplete. This review aims to comprehensively synthesize existing published works on USP3, elucidating its multifaceted roles, functions, and regulatory mechanisms, while offering insights for future investigations. By delving into the complexities of USP3, this review strives to provide a foundation for a more nuanced understanding of its specific roles in various cellular processes. Furthermore, the exploration of USP3's regulatory networks may uncover novel therapeutic strategies targeting this enzyme in diverse human diseases, thereby holding promising clinical implications. Overall, an in-depth comprehension of USP3's functions and regulatory pathways is crucial for advancing our knowledge and developing targeted therapeutic approaches for human diseases.
Collapse
Affiliation(s)
- Hongyan Zhang
- Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
- Medical SchoolKunming University of Science and TechnologyKunmingChina
| | - Wenjing Liu
- The Third Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Yingying Wu
- The First Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Ceshi Chen
- The Third Affiliated Hospital, Kunming Medical UniversityKunmingChina
- Academy of Biomedical EngineeringKunming Medical UniversityKunmingChina
| |
Collapse
|
8
|
Wang L, Liu X, Han Y, Tsai HI, Dan Z, Yang P, Xu Z, Shu F, He C, Eriksson JE, Zhu H, Chen H, Cheng F. TRAF6 enhances PD-L1 expression through YAP1-TFCP2 signaling in melanoma. Cancer Lett 2024; 590:216861. [PMID: 38583649 DOI: 10.1016/j.canlet.2024.216861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Immunotherapy represented by programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) monoclonal antibodies has led tumor treatment into a new era. However, the low overall response rate and high incidence of drug resistance largely damage the clinical benefits of existing immune checkpoint therapies. Recent studies correlate the response to PD-1/PD-L1 blockade with PD-L1 expression levels in tumor cells. Hence, identifying molecular targets and pathways controlling PD-L1 protein expression and stability in tumor cells is a major priority. In this study, we performed a Stress and Proteostasis CRISPR interference screening to identify PD-L1 positive modulators. Here, we identified TRAF6 as a critical regulator of PD-L1 in melanoma cells. As a non-conventional E3 ubiquitin ligase, TRAF6 is inclined to catalyze the synthesis and linkage of lysine-63 (K63) ubiquitin which is related to the stabilization of substrate proteins. Our results showed that suppression of TRAF6 expression down-regulates PD-L1 expression on the membrane surface of melanoma cells. We then used in vitro and in vivo assays to investigate the biological function and mechanism of TRAF6 and its downstream YAP1/TFCP2 signaling in melanoma. TRAF6 stabilizes YAP1 by K63 poly-ubiquitination modification, subsequently promoting the formation of YAP1/TFCP2 transcriptional complex and PD-L1 transcription. Inhibition of TRAF6 by Bortezomib enhanced cytolytic activity of CD8+ T cells by reduction of endogenous PD-L1. Notably, Bortezomib enhances anti-tumor immunity to an extent comparable to anti-PD-1 therapies with no obvious toxicity. Our findings reveal the potential of inhibiting TRAF6 to stimulate internal anti-tumor immunological effect for TRAF6-PD-L1 overexpressing cancers.
Collapse
Affiliation(s)
- Linglu Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiaoyan Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yuhang Han
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Zilin Dan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Peiru Yang
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Fan Shu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Chao He
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China.
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
9
|
Shah Zaib Saleem R, Schwalm MP, Knapp S. Expanding the ligand spaces for E3 ligases for the design of protein degraders. Bioorg Med Chem 2024; 105:117718. [PMID: 38621319 DOI: 10.1016/j.bmc.2024.117718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Targeted protein degradation (TPD) has recently emerged as an exciting new drug modality. However, the strategy of developing small molecule-based protein degraders has evolved over the past two decades and has now established molecular tags that are already in clinical use, as well as chimeric molecules, PROteolysis TArgeting Chimeras (PROTACs), based mainly on ligand systems developed for the two E3 ligases CRBN and VHL. The large size of the human E3 ligase family suggests that PROTACs can be developed by targeting a large diversity of E3 ligases, some of which have restricted expression patterns with the potential to design disease- or tissue-specific degraders. Indeed, many new E3 ligands have been published recently, confirming the druggability of E3 ligases. This review summarises recent data on E3 ligases and highlights the challenges in developing these molecules into efficient PROTACs rivalling the established degrader systems.
Collapse
Affiliation(s)
- Rahman Shah Zaib Saleem
- Department of Chemistry & Chemical Engineering, SBA School of Sciences & Engineering, LUMS, Pakistan
| | - Martin P Schwalm
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|
10
|
Dakkak BE, Taneera J, El-Huneidi W, Abu-Gharbieh E, Hamoudi R, Semreen MH, Soares NC, Abu-Rish EY, Alkawareek MY, Alkilany AM, Bustanji Y. Unlocking the Therapeutic Potential of BCL-2 Associated Protein Family: Exploring BCL-2 Inhibitors in Cancer Therapy. Biomol Ther (Seoul) 2024; 32:267-280. [PMID: 38589288 PMCID: PMC11063480 DOI: 10.4062/biomolther.2023.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/05/2023] [Accepted: 12/05/2023] [Indexed: 04/10/2024] Open
Abstract
Apoptosis, programmed cell death pathway, is a vital physiological mechanism that ensures cellular homeostasis and overall cellular well-being. In the context of cancer, where evasion of apoptosis is a hallmark, the overexpression of anti-apoptotic proteins like Bcl2, Bcl-xL and Mcl-1 has been documented. Consequently, these proteins have emerged as promising targets for therapeutic interventions. The BCL-2 protein family is central to apoptosis and plays a significant importance in determining cellular fate serving as a critical determinant in this biological process. This review offers a comprehensive exploration of the BCL-2 protein family, emphasizing its dual nature. Specifically, certain members of this family promote cell survival (known as anti-apoptotic proteins), while others are involved in facilitating cell death (referred to as pro-apoptotic and BH3-only proteins). The potential of directly targeting these proteins is examined, particularly due to their involvement in conferring resistance to traditional cancer therapies. The effectiveness of such targeting strategies is also discussed, considering the tumor's propensity for anti-apoptotic pathways. Furthermore, the review highlights emerging research on combination therapies, where BCL-2 inhibitors are used synergistically with other treatments to enhance therapeutic outcomes. By understanding and manipulating the BCL-2 family and its associated pathways, we open doors to innovative and more effective cancer treatments, offering hope for resistant and aggressive cases.
Collapse
Affiliation(s)
- Bisan El Dakkak
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nelson C. Soares
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon 1649-016, Portugal
| | - Eman Y. Abu-Rish
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | | | | | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
11
|
Malik AA, Shariq M, Sheikh JA, Zarin S, Ahuja Y, Fayaz H, Alam A, Ehtesham NZ, Hasnain SE. Activation of the lysosomal damage response and selective autophagy: the coordinated actions of galectins, TRIM proteins, and CGAS-STING1 in providing immunity against Mycobacterium tuberculosis. Crit Rev Microbiol 2024:1-20. [PMID: 38470107 DOI: 10.1080/1040841x.2024.2321494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Autophagy is a crucial immune defense mechanism that controls the survival and pathogenesis of M. tb by maintaining cell physiology during stress and pathogen attack. The E3-Ub ligases (PRKN, SMURF1, and NEDD4) and autophagy receptors (SQSTM1, TAX1BP1, CALCOCO2, OPTN, and NBR1) play key roles in this process. Galectins (LGALSs), which bind to sugars and are involved in identifying damaged cell membranes caused by intracellular pathogens such as M. tb, are essential. These include LGALS3, LGALS8, and LGALS9, which respond to endomembrane damage and regulate endomembrane damage caused by toxic chemicals, protein aggregates, and intracellular pathogens, including M. tb. They also activate selective autophagy and de novo endolysosome biogenesis. LGALS3, LGALS9, and LGALS8 interact with various components to activate autophagy and repair damage, while CGAS-STING1 plays a critical role in providing immunity against M. tb by activating selective autophagy and producing type I IFNs with antimycobacterial functions. STING1 activates cGAMP-dependent autophagy which provides immunity against various pathogens. Additionally, cytoplasmic surveillance pathways activated by ds-DNA, such as inflammasomes mediated by NLRP3 and AIM2 complexes, control M. tb. Modulation of E3-Ub ligases with small regulatory molecules of LGALSs and TRIM proteins could be a novel host-based therapeutic approach for controlling TB.
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, New Delhi, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Sheeba Zarin
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, New Delhi, India
| | - Yashika Ahuja
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anwar Alam
- Department of Biotechnology, School of Science and Engineering Technology, Sharda University, Greater Noida, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
12
|
Feng T, Wang P, Zhang X. Skp2: A critical molecule for ubiquitination and its role in cancer. Life Sci 2024; 338:122409. [PMID: 38184273 DOI: 10.1016/j.lfs.2023.122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
The ubiquitin-proteasome system (UPS) is a multi-step process that serves as the primary pathway for protein degradation within cells. UPS activity also plays a crucial role in regulating various life processes, including the cell cycle, signal transduction, DNA repair, and others. The F-box protein Skp2, a crucial member of the UPS, plays a central role in the development of various diseases. Skp2 controls cancer cell growth and drug resistance by ubiquitinating modifications to a variety of proteins. This review emphasizes the multifaceted role of Skp2 in a wide range of cancers and the mechanisms involved, highlighting the potential of Skp2 as a therapeutic target in cancer. Additionally, we describe the impactful influence exerted by Skp2 in various other diseases beyond cancer.
Collapse
Affiliation(s)
- Tianyang Feng
- The Fourth Affiliated Hospital of China Medical University, Department of Urology, Shenyang 110032, China; Liaoning Provincial Key Laboratory of Basic Research for Bladder Diseases, Shenyang 110000, China
| | - Ping Wang
- The Fourth Affiliated Hospital of China Medical University, Department of Urology, Shenyang 110032, China; Liaoning Provincial Key Laboratory of Basic Research for Bladder Diseases, Shenyang 110000, China
| | - Xiling Zhang
- The Fourth Affiliated Hospital of China Medical University, Department of Urology, Shenyang 110032, China; Liaoning Provincial Key Laboratory of Basic Research for Bladder Diseases, Shenyang 110000, China.
| |
Collapse
|
13
|
Goncharov T, Kőműves LG, Kist M, Castellanos ER, Witt A, Fedorova AV, Izrael-Tomasevic A, Yu K, Keir M, Matsumoto ML, Vucic D. Simultaneous substrate and ubiquitin modification recognition by bispecific antibodies enables detection of ubiquitinated RIP1 and RIP2. Sci Signal 2024; 17:eabn1101. [PMID: 38227684 DOI: 10.1126/scisignal.abn1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
Ubiquitination is a posttranslational modification that is crucial for the dynamic regulation of diverse signaling pathways. To enhance our understanding of ubiquitination-mediated signaling, we generated a new class of bispecific antibodies that combine recognition of ubiquitination substrates and specific polyubiquitin linkages. RIP1-K63 and RIP1-linear (Lin) linkage polyubiquitin bispecific antibodies detected linkage-specific ubiquitination of the proinflammatory kinase RIP1 in cells and in tissues and revealed RIP1 ubiquitination by immunofluorescence. Similarly, ubiquitination of the RIP1-related kinase RIP2 with K63 or linear linkages was specifically detected with the RIP2-K63 and RIP2-Lin bispecific antibodies, respectively. Furthermore, using the RIP2-K63 and RIP2-Lin bispecific antibodies, we found prominent K63-linked and linear RIP2 ubiquitination in samples from patients with ulcerative colitis and Crohn's disease. We also developed a bispecific antibody (K63-Lin) that simultaneously recognizes K63-linked and linear ubiquitination of components of various signaling pathways. Together, these bispecific antibodies represent a new class of reagents with the potential to be developed for the detection of inflammatory biomarkers.
Collapse
Affiliation(s)
- Tatiana Goncharov
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - László G Kőműves
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Matthias Kist
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - Erick R Castellanos
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Axel Witt
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - Anna V Fedorova
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
| | - Anita Izrael-Tomasevic
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Kebing Yu
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Mary Keir
- Department of Human Pathobiology and OMNI Reverse Translation, Genentech, South San Francisco, CA 94080, USA
| | - Marissa L Matsumoto
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| |
Collapse
|
14
|
Wu M, Sun L, Song T. OTUB1-mediated inhibition of ubiquitination: a growing list of effectors, multiplex mechanisms, and versatile functions. Front Mol Biosci 2024; 10:1261273. [PMID: 38264570 PMCID: PMC10803509 DOI: 10.3389/fmolb.2023.1261273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Protein ubiquitination plays a pivotal role in protein homeostasis. Ubiquitination may regulate the stability, activity, protein-protein interaction, and localization of a protein. Ubiquitination is subject to regulation by two groups of counteracting enzymes, the E3 ubiquitin ligases and deubiquitinases. Consistently, deubiquitinases are involved in essentially all biological processes. OTUB1, an OTU-family deubiquitinase, is a critical regulator of development, cancer, DNA damage response, and immune response. OTUB1 antagonizes the ubiquitination of a wide-spectrum of proteins through at least two different mechanisms. Besides direct deubiquitination, OTUB1 can also inhibit ubiquitination by non-canonically blocking ubiquitin transfer from certain ubiquitin-conjugases (E2). In this review, we start with a general background of protein ubiquitination and deubiquitination. Next, we introduce the basic characteristics of OTUB1 and then elaborate on the updated biological functions of OTUB1. Afterwards, we discuss potential mechanisms underlying the versatility and specificity of OTUB1 functions. In the end, we discuss the perspective that OTUB1 can be a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Miaomiao Wu
- Deparment of Obstetrics and Gynecology, Shuyang Hospital of Traditional Chinese Medicine, Suqian, China
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Zhang F, Zhang L. A20 haploinsufficiency in a neonate caused by a large deletion on chromosome 6q. Pediatr Rheumatol Online J 2024; 22:12. [PMID: 38183052 PMCID: PMC10770963 DOI: 10.1186/s12969-023-00947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2023] [Indexed: 01/07/2024] Open
Abstract
Haploinsufficiency of A20 (HA20) is a rare monogenic disease caused by heterozygous loss-of-function mutations in the tumor necrosis factor alpha-induced protein 3 (TNFAIP3) gene located on chromosome 6q23.3. The majority of disease-causing mutations in most cases of HA20 comprise single nucleotide variations, small insertions, or deletions in TNFAIP3, which result in a premature termination codon and subsequent disruption of its anti-inflammatory role. Large deletions have been reported sporadically. HA20 patients may present with a variety of autoinflammatory and autoimmune features during early childhood; however, cases with neonatal onset are rare. Here, we describe a Chinese neonate presenting with concomitant inflammatory and other syndromic manifestations caused by a 5.15 Mb interstitial deletion in chromosome 6; these deletions affect TNFAIP3. Taken together, the data extend the clinical and genetic spectra of HA20.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neonatology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Liang Zhang
- Department of Nephrology, Rheumatology and Immunology, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children's Hospital, Changsha, Hunan, China.
| |
Collapse
|
16
|
Xie Z, Wu Y, Shen Y, Guo J, Yuan P, Ma Q, Wang S, Jie Z, Zhou H, Fan S, Chen S. USP7 Inhibits Osteoclastogenesis via Dual Effects of Attenuating TRAF6/TAK1 Axis and Stimulating STING Signaling. Aging Dis 2023; 14:2267-2283. [PMID: 37199589 PMCID: PMC10676781 DOI: 10.14336/ad.2023.0325-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/25/2023] [Indexed: 05/19/2023] Open
Abstract
Ubiquitination is a reversible post-translational modification implicated in cell differentiation, homeostasis, and organ development. Several deubiquitinases (DUBs) decrease protein ubiquitination through the hydrolysis of ubiquitin linkages. However, the role of DUBs in bone resorption and formation is still unclear. In this study, we identified DUB ubiquitin-specific protease 7 (USP7) as a negative regulator of osteoclast formation. USP7 combines with tumor necrosis factor receptor-associated factor 6 (TRAF6) and inhibits its ubiquitination by impairing the Lys63-linked polyubiquitin chain. Such impairment leads to the suppression of receptor activator of NF-κB ligand (RANKL)-mediated nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) activation without affecting TRAF6 stability. USP7 also protects the stimulator of interferon genes (STING) against degradation, inducing interferon-β (IFN-β) expression in osteoclast formation, thereby inhibiting osteoclastogenesis cooperatively with the classical TRAF6 pathway. Furthermore, USP7 inhibition accelerates osteoclast differentiation and bone resorption both in vitro and in vivo. Contrarily, USP7 overexpression impairs osteoclast differentiation and bone resorption in vitro and in vivo. Additionally, in ovariectomy (OVX) mice, USP7 levels are lower than those in sham-operated mice, suggesting that USP7 plays a role in osteoporosis. Altogether, our data reveal the dual effect of USP7-mediated TRAF6 signal transduction and USP7-mediated protein degradation of STING in osteoclast formation.
Collapse
Affiliation(s)
- Ziang Xie
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Yizheng Wu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Yang Shen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Jiandong Guo
- Department of Orthopedic Surgery, Ninth people’s Hospital of Hangzhou, Hangzhou, China.
| | - Putao Yuan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Qingliang Ma
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Shiyu Wang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Zhiwei Jie
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Hongyi Zhou
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Shunwu Fan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Shuai Chen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
17
|
Shestoperova EI, Strieter ER. Uncovering DUB Selectivity through an Ion Mobility-Based Assessment of Ubiquitin Chain Isomers. Anal Chem 2023; 95:17416-17423. [PMID: 37962301 PMCID: PMC11103383 DOI: 10.1021/acs.analchem.3c04622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Ubiquitination is a reversible post-translational modification that maintains cellular homeostasis and regulates protein turnover. Deubiquitinases (DUBs) are a large family of proteases that catalyze the removal of ubiquitin (Ub) along with the dismantling and editing of Ub chains. Assessing the activity and selectivity of DUBs is critical for defining physiological functions. Despite numerous methods for evaluating DUB activity, none are capable of assessing activity and selectivity in the context of multicomponent mixtures of native unlabeled Ub conjugates. Here, we report an ion mobility (IM)-based approach for measuring DUB selectivity in the context of unlabeled mixtures of Ub chains. We show that IM-mass spectrometry (IM-MS) can be used to assess the selectivity of DUBs in a time-dependent manner. Moreover, using the branched Ub chain selective DUB UCH37/UCHL5 along with a mixture of Ub trimers, a strong preference for branched Ub trimers bearing K6 and K48 linkages is revealed. Our results demonstrate that IM-MS is a powerful method for evaluating DUB selectivity under conditions more physiologically relevant than single-component mixtures.
Collapse
Affiliation(s)
- Elizaveta I Shestoperova
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Molecular & Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
18
|
Liu ZY, Li YH, Zhang QK, Li BW, Xin L. Development and validation of a ubiquitin-proteasome system gene signature for prognostic prediction and immune microenvironment evaluation in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:13363-13382. [PMID: 37490101 DOI: 10.1007/s00432-023-05189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND The ubiquitin proteasome has a major role in the development of many tumors. However, the prognostic importance of ubiquitin proteasome-system genes (UPSGs) in hepatocellular carcinoma (HCC) is not fully defined. METHODS The TCGA and ICGC datasets were utilized to obtain transcriptional profiling data as well as clinicopathological information about HCC. The 3-UPSGs signature for the TCGA cohort was developed via univariate and LASSO Cox regression analyses. Differential expression of genes was demonstrated by qRT-PCR and immunohistochemistry (IHC). Biological pathways were studied using GSVA and GSEA. Six algorithms were used to compare immune infiltration between the two risk groups. Furthermore, drug sensitivity was measured using the "pRRophetic" R package. The predictive capacity of the 3-UPSGs signature for sensitivity to immunotherapy was also explored. Moreover, we performed a pan-cancer analysis of the 3-UPSGs signature. RESULTS A risk model containing 3 UPSGs (DCAF13, CDC20 and PSMB5) was developed. IHC and qRT-PCR results showed that signature genes were significantly overexpressed in HCC tissues. The high-risk group had a worse prognosis, with a higher clinicopathological grade, higher levels of tumor mutation burden (TMB), elevated levels of immune checkpoint (IC) expression, as well as increased sensitivity to immunotherapy. The two risk groups also differ in their sensitivity to chemotherapeutic drugs. Furthermore, the three UPSGs may play crucial roles in the progression of multiple types of cancers. CONCLUSION We created a 3-UPSGs signature to estimate the prognosis of HCC and to assist in individualized treatment.
Collapse
Affiliation(s)
- Zhi-Yang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Yi-He Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing-Kun Zhang
- Department of Otorhinolaryngology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo-Wen Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
19
|
Shestoperova EI, Strieter ER. Uncovering DUB Selectivity Through Ion-Mobility-Based Assessment of Ubiquitin Chain Isomers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561976. [PMID: 37873305 PMCID: PMC10592704 DOI: 10.1101/2023.10.11.561976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Ubiquitination is a reversible posttranslational modification that maintains cellular homeostasis and regulates protein turnover. Deubiquitinases (DUBs) are a large family of proteases that catalyze the removal of ubiquitin (Ub) along with the dismantling and editing of Ub chains. Assessing the activity and selectivity of DUBs is critical for defining physiological function. Despite numerous methods for evaluating DUB activity, none are capable of assessing activity and selectivity in the context of multicomponent mixtures of native, unlabeled ubiquitin conjugates. Here we report on an ion mobility (IM)-based approach for measuring DUB selectivity in the context of unlabeled mixtures of Ub chains. We show that IM-MS can be used to assess the selectivity of DUBs in a time-dependent manner. Moreover, using the branched Ub chain selective DUB UCH37/UCHL5 along with a mixture of Ub trimers, a strong preference for branched Ub trimers bearing K6 and K48 linkages is revealed. Our results demonstrate that IM coupled with mass spectrometry (IM-MS) is a powerful method for evaluating DUB selectivity under conditions more physiologically relevant than single component mixtures.
Collapse
|
20
|
Li S, He J, Liao X, He Y, Chen R, Chen J, Hu S, Sun J. Fbxo22 inhibits metastasis in triple-negative breast cancer through ubiquitin modification of KDM5A and regulation of H3K4me3 demethylation. Cell Biol Toxicol 2023; 39:1641-1655. [PMID: 36112263 PMCID: PMC10425479 DOI: 10.1007/s10565-022-09754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
The importance of Fbxo22 in carcinogenesis has been highly documented. Here, we discussed downstream regulatory factors of Fbxo22 in TNBC. RNA-sequencing was conducted for identifying differentially expressed genes, followed by construction of a regulatory network. Expression patterns of Fbxo22/KDM5A in TNBC were determined by their correlation with the prognosis analyzed. Then, regulation mechanisms between Fbxo22 and KDM5A as well as between KDM5A and H3K4me3 were assayed. After silencing and overexpression experiments, the significance of Fbxo22 in repressing tumorigenesis in vitro and in vivo was explored. Fbxo22 was poorly expressed, while KDM5A was highly expressed in TNBC. Patients with elevated Fbxo22, decreased KDM5A, or higher p16 had long overall survival. Fbxo22 reduced the levels of KDM5A by ubiquitination. KDM5A promoted histone H3K4me3 demethylation to downregulate p16 expression. Fbxo22 reduced KDM5A expression to enhance p16, thus inducing DNA damage as well as reducing tumorigenesis and metastasis in TNBC. Our study validated FBXO22 as a tumor suppressor in TNBC through ubiquitination of KDM5A and regulation of p16.
Collapse
Affiliation(s)
- Siqiaozhi Li
- Shenzhen Toyon Biotechnology Co., Ltd, Shenzhen, 518057, People's Republic of China
- Shenzhen Beike Biotechnology Research Institute, Shenzhen, 518057, People's Republic of China
| | - Jinsong He
- Department of Breast Surgery, Shenzhen Hospital of Peking University, Shenzhen, 518057, People's Republic of China
| | - Xin Liao
- Shenzhen Toyon Biotechnology Co., Ltd, Shenzhen, 518057, People's Republic of China
| | - Yixuan He
- Shenzhen Toyon Biotechnology Co., Ltd, Shenzhen, 518057, People's Republic of China
| | - Rui Chen
- Shenzhen Toyon Biotechnology Co., Ltd, Shenzhen, 518057, People's Republic of China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Shenzhen Hospital of Peking University, No. 1120, Lianhua Road, Shenzhen, 518057, Guangdong Province, People's Republic of China
| | - Sean Hu
- Shenzhen Beike Biotechnology Research Institute, Shenzhen, 518057, People's Republic of China
| | - Jia Sun
- Shenzhen Toyon Biotechnology Co., Ltd, Shenzhen, 518057, People's Republic of China.
- Intervention and Cell Therapy Center, Shenzhen Hospital of Peking University, No. 1120, Lianhua Road, Shenzhen, 518057, Guangdong Province, People's Republic of China.
| |
Collapse
|
21
|
Ali MA, Qin Z, Dou S, Huang A, Wang Y, Yuan X, Zhang Y, Ni Q, Azmat R, Zeng C. Cryopreservation Induces Acetylation of Metabolism-Related Proteins in Boar Sperm. Int J Mol Sci 2023; 24:10983. [PMID: 37446160 DOI: 10.3390/ijms241310983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Cryodamage affects the normal physiological functions and survivability of boar sperm during cryopreservation. Lysine acetylation is thought to be an important regulatory mechanism in sperm functions. However, little is known about protein acetylation and its effects on cryotolerance or cryodamage in boar sperm. In this study, the characterization and protein acetylation dynamics of boar sperm during cryopreservation were determined using liquid chromatography-mass spectrometry (LC-MS). A total of 1440 proteins were identified out of 4705 modified proteins, and 2764 quantifiable sites were elucidated. Among the differentially modified sites, 1252 were found to be upregulated compared to 172 downregulated sites in fresh and frozen sperms. Gene ontology indicated that these differentially modified proteins are involved in metabolic processes and catalytic and antioxidant activities, which are involved in pyruvate metabolism, phosphorylation and lysine degradation. In addition, the present study demonstrated that the mRNA and protein expressions of SIRT5, IDH2, MDH2 and LDHC, associated with sperm quality parameters, are downregulated after cryopreservation. In conclusion, cryopreservation induces the acetylation and deacetylation of energy metabolism-related proteins, which may contribute to the post-thawed boar sperm quality parameters.
Collapse
Affiliation(s)
- Malik Ahsan Ali
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Department of Theriogenology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ziyue Qin
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan Dou
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Anqi Huang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yihan Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Yuan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingyong Ni
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Rameesha Azmat
- Department of Biochemistry, Faculty of Science and Technology, Government College Women University, Faisalabad 38000, Pakistan
| | - Changjun Zeng
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
22
|
Chen Y, Li W. Scutellarin Inhibits Glioblastoma Growth in a Dose-dependent Manner by Suppressing the p63 Signaling Pathway. Dose Response 2023; 21:15593258231197101. [PMID: 37654726 PMCID: PMC10467202 DOI: 10.1177/15593258231197101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
Although scutellarin has been extensively investigated, its effects on glioma are unclear. This study intended to reveal this regulation and the underlying mechanisms. The U251, M059K, and SF-295 cell lines were treated with gradient concentrations of scutellarin and then IC50 was calculated. SF-295 cells selected for subsequent procedures were treated with four concentrations of scutellarin. Then, proliferation, apoptosis, and cell cycle, as well as the protein and mRNA expression of significantly differentially expressed genes identified by next-generation sequencing (NGS), were examined. The curative effect of scutellarin was validated by 5-FU as the positive control. Scutellarin inhibited proliferation and induced apoptosis and G2/M cell cycle arrest in the SF-295 cell line in a dose-dependent manner. The effect of scutellarin was similar to but significantly weaker than the effect of 5-FU. The NGS results showed that genes associated with anti-apoptosis signaling pathways were significantly reduced after treatment. The Western blotting results indicated that the expressions of TP63/BIRC3/TRAF1/Bcl-2 were reduced in a dose-dependent manner, as well as the mRNA levels determined by qRT‒PCR. Our original conclusion revealed that scutellarin may inhibit glioma growth in a dose-dependent manner via the p63 signaling pathway which may provide a potential medicine for glioma chemotherapy.
Collapse
Affiliation(s)
- Yongjie Chen
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| |
Collapse
|
23
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
24
|
Ji J, Jing A, Geng T, Ma X, Liu W, Liu B. Editorial: Protein modifications in epigenetic dysfunctional diseases: mechanisms and potential therapeutic strategies. Front Cell Dev Biol 2023; 11:1216637. [PMID: 37255602 PMCID: PMC10225621 DOI: 10.3389/fcell.2023.1216637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Affiliation(s)
- Jing Ji
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Aixin Jing
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Ting Geng
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xinhui Ma
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Wei Liu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, United States
| | - Bin Liu
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
25
|
Shestoperova EI, Ivanov DG, Strieter ER. Quantitative Analysis of Diubiquitin Isomers Using Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:931-938. [PMID: 37014729 DOI: 10.1021/jasms.3c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The diversity of ubiquitin modifications calls for methods to better characterize ubiquitin chain linkage, length, and morphology. Here, we use multiple linear regression analysis coupled with ion mobility mass spectrometry (IM-MS) to quantify the relative abundance of different ubiquitin dimer isomers. We demonstrate the utility and robustness of this approach by quantifying the relative abundance of different ubiquitin dimers in complex mixtures and comparing the results to the standard, bottom-up ubiquitin AQUA method. Our results provide a foundation for using multiple linear regression analysis and IM-MS to characterize more complex ubiquitin chain architectures.
Collapse
Affiliation(s)
- Elizaveta I Shestoperova
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Daniil G Ivanov
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Molecular & Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
26
|
Shang K, Zhang L, Yu Y, Xiao H, Gao Y, Yang L, Huang J, Song H, Han H. Disulfide-containing polymer delivery of C527 and a Platinum(IV) prodrug selectively inhibited protein ubiquitination and tumor growth on cisplatin resistant and patient-derived liver cancer models. Mater Today Bio 2023; 18:100548. [PMID: 36713799 PMCID: PMC9874064 DOI: 10.1016/j.mtbio.2023.100548] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
USP1 (Ubiquitin-specific protease 1) is closely related to the prognosis of patients with liver cancer and plays an important role in DNA damage repair. C527 is a selective USP1 inhibitor (USP1i), which can regulate the protein ubiquitination to effectively inhibit the proliferation of cancer cells. However, its clinical application is hindered due to the poor water solubility and lack of tumor targeting. Moreover, the efficacy of single use of USP1i is still limited. Herein, a glutathione (GSH) sensitive amphiphilic polymer (poly (2-HD-co-HPMDA)-mPEG, PHHM) with disulfide bonds in the main chain was designed to encapsulate the USP1i as well as platinum (IV) prodrug (Pt (IV)-C12), resulting in the formation of composite nanoparticles, i.e., NP-Pt-USP1i. NP-Pt-USP1i can inhibit the DNA damage repair by targeting USP1 by the encapsulated USP1i, which ultimately increases the sensitivity of tumor cells to cisplatin and enhances the anti-cancer efficacy of cisplatin. Finally, an intraperitoneal tumor mice model and a patient-derived xenograft (PDX) of liver cancer mice model were established to prove that NP-Pt-USP1i could effectively inhibit the tumor growth. This work further validated the possibility of therapeutically target USP1 by USP1i in combination with DNA damaging alkylating agents, which could become a promising cancer treatment modality in the future.
Collapse
Affiliation(s)
- Kun Shang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Lingpu Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, 100191, China
| | - Liu Yang
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, 100191, China
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 20023, China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
- Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
27
|
Shariq M, Quadir N, Alam A, Zarin S, Sheikh JA, Sharma N, Samal J, Ahmad U, Kumari I, Hasnain SE, Ehtesham NZ. The exploitation of host autophagy and ubiquitin machinery by Mycobacterium tuberculosis in shaping immune responses and host defense during infection. Autophagy 2023; 19:3-23. [PMID: 35000542 PMCID: PMC9809970 DOI: 10.1080/15548627.2021.2021495] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Intracellular pathogens have evolved various efficient molecular armaments to subvert innate defenses. Cellular ubiquitination, a normal physiological process to maintain homeostasis, is emerging one such exploited mechanism. Ubiquitin (Ub), a small protein modifier, is conjugated to diverse protein substrates to regulate many functions. Structurally diverse linkages of poly-Ub to target proteins allow enormous functional diversity with specificity being governed by evolutionarily conserved enzymes (E3-Ub ligases). The Ub-binding domain (UBD) and LC3-interacting region (LIR) are critical features of macroautophagy/autophagy receptors that recognize Ub-conjugated on protein substrates. Emerging evidence suggests that E3-Ub ligases unexpectedly protect against intracellular pathogens by tagging poly-Ub on their surfaces and targeting them to phagophores. Two E3-Ub ligases, PRKN and SMURF1, provide immunity against Mycobacterium tuberculosis (M. tb). Both enzymes conjugate K63 and K48-linked poly-Ub to M. tb for successful delivery to phagophores. Intriguingly, M. tb exploits virulence factors to effectively dampen host-directed autophagy utilizing diverse mechanisms. Autophagy receptors contain LIR-motifs that interact with conserved Atg8-family proteins to modulate phagophore biogenesis and fusion to the lysosome. Intracellular pathogens have evolved a vast repertoire of virulence effectors to subdue host-immunity via hijacking the host ubiquitination process. This review highlights the xenophagy-mediated clearance of M. tb involving host E3-Ub ligases and counter-strategy of autophagy inhibition by M. tb using virulence factors. The role of Ub-binding receptors and their mode of autophagy regulation is also explained. We also discuss the co-opting and utilization of the host Ub system by M. tb for its survival and virulence.Abbreviations: APC: anaphase promoting complex/cyclosome; ATG5: autophagy related 5; BCG: bacille Calmette-Guerin; C2: Ca2+-binding motif; CALCOCO2: calcium binding and coiled-coil domain 2; CUE: coupling of ubiquitin conjugation to ER degradation domains; DUB: deubiquitinating enzyme; GABARAP: GABA type A receptor-associated protein; HECT: homologous to the E6-AP carboxyl terminus; IBR: in-between-ring fingers; IFN: interferon; IL1B: interleukin 1 beta; KEAP1: kelch like ECH associated protein 1; LAMP1: lysosomal associated membrane protein 1; LGALS: galectin; LIR: LC3-interacting region; MAPK11/p38: mitogen-activated protein kinase 11; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MAPK8/JNK: mitogen-activated protein kinase 8; MHC-II: major histocompatibility complex-II; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NFKB1/p50: nuclear factor kappa B subunit 1; OPTN: optineurin; PB1: phox and bem 1; PE/PPE: proline-glutamic acid/proline-proline-glutamic acid; PknG: serine/threonine-protein kinase PknG; PRKN: parkin RBR E3 ubiquitin protein ligase; RBR: RING-in between RING; RING: really interesting new gene; RNF166: RING finger protein 166; ROS: reactive oxygen species; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TNF: tumor necrosis factor; TRAF6: TNF receptor associated factor 6; Ub: ubiquitin; UBA: ubiquitin-associated; UBAN: ubiquitin-binding domain in ABIN proteins and NEMO; UBD: ubiquitin-binding domain; UBL: ubiquitin-like; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Mohd Shariq
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Neha Quadir
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Anwar Alam
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Sheeba Zarin
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Javaid A. Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Neha Sharma
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Jasmine Samal
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Uzair Ahmad
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Indu Kumari
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Seyed E. Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India,Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India,Seyed E. Hasnain ; ; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi 110 016, India
| | - Nasreen Z. Ehtesham
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,CONTACT Nasreen Z. Ehtesham ; ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi110029, India
| |
Collapse
|
28
|
Li W, Yuan J. Targeting RIPK1 kinase for modulating inflammation in human diseases. Front Immunol 2023; 14:1159743. [PMID: 36969188 PMCID: PMC10030951 DOI: 10.3389/fimmu.2023.1159743] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Receptor-Interacting Serine/Threonine-Protein Kinase 1 (RIPK1) is a master regulator of TNFR1 signaling in controlling cell death and survival. While the scaffold of RIPK1 participates in the canonical NF-κB pathway, the activation of RIPK1 kinase promotes not only necroptosis and apoptosis, but also inflammation by mediating the transcriptional induction of inflammatory cytokines. The nuclear translocation of activated RIPK1 has been shown to interact BAF-complex to promote chromatin remodeling and transcription. This review will highlight the proinflammatory role of RIPK1 kinase with focus on human neurodegenerative diseases. We will discuss the possibility of targeting RIPK1 kinase for the treatment of inflammatory pathology in human diseases.
Collapse
Affiliation(s)
- Wanjin Li
- *Correspondence: Wanjin Li, ; Junying Yuan,
| | | |
Collapse
|
29
|
Hypoxia-induced circADAMTS6 in a TDP43-dependent manner accelerates glioblastoma progression via ANXA2/ NF-κB pathway. Oncogene 2023; 42:138-153. [PMID: 36396726 DOI: 10.1038/s41388-022-02542-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Circular RNAs (circRNAs) play important roles in the malignant progression of tumours. Herein, we identified an unreported circRNA (hsa-circ-0072688, also named circADAMTS6) that is specifically upregulated in the hypoxic microenvironment of glioblastoma and closely correlated with poor prognosis of gliblastoma patients. We found that circADAMTS6 promotes the malignant progression of glioblastoma by promoting cell proliferation and inhibiting apoptosis. Mechanistically, the hypoxic tumour microenvironment upregulates circADAMTS6 expression through transcription factor activator protein 1 (AP-1) and RNA-binding protein TAR DNA-binding protein 43 (TDP43). Moreover, circADAMTS6 accelerates glioblastoma progression by recruiting and stabilising annexin A2 (ANXA2) in a proteasomes-dependent manner. Furthermore, we found T-5224 (AP-1 inhibitor) treatment induces downregulation of circADAMTS6 and then inhibits tumour growth. In conclusion, our findings highlight the important role of the circADAMTS6/ANXA2 axis based on hypoxic microenvironment in glioblastoma progression, as well as its regulation in NF-κB pathway. Targeting circADAMTS6 is thus expected to become a novel therapeutic strategy for glioblastoma.
Collapse
|
30
|
Luo WZ, Li X, Wu XX, Shang YW, Meng DH, Chen YL, Zhang QS. MAGED4B is a Poor Prognostic Marker of Stomach Adenocarcinoma and a Potential Therapeutic Target for Stomach Adenocarcinoma Tumorigenesis. Int J Gen Med 2023; 16:1681-1693. [PMID: 37181643 PMCID: PMC10171223 DOI: 10.2147/ijgm.s401507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
Background Gastric cancer is the second most common cause of cancer death worldwide with poor overall prognosis. It is important to study the molecular mechanism of stomach adenocarcinoma (STAD). MAGED4B, a member of the melanoma antigen gene (MAGE) family, is highly expressed in many tumor cells and is associated with tumor progression. Its prognostic value in and the function of the encoded protein are still unclear. Methods The data of 415 STAD tissues was retrieved from TCGA database, and the expression level of MAGED4B mRNA was evaluated. The correlation between the expression of MAGED4B mRNA and the progression free survival (PFS) time of STAD patients was evaluated by Kaplan Meier analysis. The STAD cell lines with overexpressed and silent MAGED4B were constructed, and the effects of MAGED4B on the viability, migration and proliferation were evaluated by the CCK-8, scratch test and EDU test. The flow cytometry was used to detect apoptosis with overexpressed and silent MAGED4B under the cisplatin treatment, and WB was used to detect the expressions of related proteins, such as TNF-α. Results The expression level of MAGED4B mRNA in the STAD tissues was higher than that in the normal tissues, and its high expression was related to poor PFS. The overexpression of MAGED4B in the STAD cell lines can promote the vitality, motility and proliferation of the STAD cells, while the silencing of MAGED4B can inhibit the above three cell functions of the STAD cells. The overexpression of MAGED4B can reduce the cisplatin induced apoptosis and increase the cisplatin IC50; the silencing of MAGED4B can promote the cisplatin induced apoptosis and reduce the cisplatin IC50. The overexpression of MAGED4B reduced the protein levels of TRIM27 and TNF- α. Conclusion MAGED4B could be a valuable prognostic biomarker and a therapeutic target for gastric adenocarcinoma of great interest.
Collapse
Affiliation(s)
- Wen-Zhao Luo
- School of Basic Medicine (Zhongjing School), Henan University of Chinese Medicine, Zhengzhou, Henan Province, 45000, People’s Republic of China
- Department of Hepatobiliary and Spleen Stomach, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, 450000, People’s Republic of China
| | - Xian Li
- Department of Hepatobiliary and Spleen Stomach, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, 450000, People’s Republic of China
| | - Xiu-Xia Wu
- Department of Hepatobiliary and Spleen Stomach, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, 450000, People’s Republic of China
| | - Yi-Wan Shang
- School of Basic Medicine (Zhongjing School), Henan University of Chinese Medicine, Zhengzhou, Henan Province, 45000, People’s Republic of China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 45000, People’s Republic of China
| | - Dan-Hua Meng
- School of Basic Medicine (Zhongjing School), Henan University of Chinese Medicine, Zhengzhou, Henan Province, 45000, People’s Republic of China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 45000, People’s Republic of China
| | - Yu-Long Chen
- School of Basic Medicine (Zhongjing School), Henan University of Chinese Medicine, Zhengzhou, Henan Province, 45000, People’s Republic of China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 45000, People’s Republic of China
- Correspondence: Yu-Long Chen, School of Basic Medicine (Zhongjing School), Henan University of Chinese Medicine, No. 156 East Jinshui Road, Jinshui District, Zhengzhou, Henan Province, 45000, People’s Republic of China, Email
| | - Qin-Sheng Zhang
- Department of Hepatobiliary and Spleen Stomach, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, 450000, People’s Republic of China
- Qin-Sheng Zhang, Henan Province Hospital of Traditional Chinese Medicine, Department of Hepatobiliary and Spleen Stomach, No. 6 Dongfeng Road, Jinshui District, Zhengzhou, Henan Province, 450000, People’s Republic of China, Email
| |
Collapse
|
31
|
Yang H, Oh CK, Amal H, Wishnok JS, Lewis S, Schahrer E, Trudler D, Nakamura T, Tannenbaum SR, Lipton SA. Mechanistic insight into female predominance in Alzheimer's disease based on aberrant protein S-nitrosylation of C3. SCIENCE ADVANCES 2022; 8:eade0764. [PMID: 36516243 PMCID: PMC9750152 DOI: 10.1126/sciadv.ade0764] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Protein S-nitros(yl)ation (SNO) is a posttranslational modification involved in diverse processes in health and disease and can contribute to synaptic damage in Alzheimer's disease (AD). To identify SNO proteins in AD brains, we used triaryl phosphine (SNOTRAP) combined with mass spectrometry (MS). We detected 1449 SNO proteins with 2809 SNO sites, representing a wide range of S-nitrosylated proteins in 40 postmortem AD and non-AD human brains from patients of both sexes. Integrative protein ranking revealed the top 10 increased SNO proteins, including complement component 3 (C3), p62 (SQSTM1), and phospholipase D3. Increased levels of S-nitrosylated C3 were present in female over male AD brains. Mechanistically, we show that formation of SNO-C3 is dependent on falling β-estradiol levels, leading to increased synaptic phagocytosis and thus synapse loss and consequent cognitive decline. Collectively, we demonstrate robust alterations in the S-nitrosoproteome that contribute to AD pathogenesis in a sex-dependent manner.
Collapse
Affiliation(s)
- Hongmei Yang
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Northeast Asia Institute of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Chang-ki Oh
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Haitham Amal
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - John S. Wishnok
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah Lewis
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emily Schahrer
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dorit Trudler
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven R. Tannenbaum
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author. (S.R.T.); (S.A.L.)
| | - Stuart A. Lipton
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla CA 92093, USA
- Corresponding author. (S.R.T.); (S.A.L.)
| |
Collapse
|
32
|
Zhou Z, Song X, Kang R, Tang D. The Emerging Role of Deubiquitinases in Cell Death. Biomolecules 2022; 12:1825. [PMID: 36551253 PMCID: PMC9775562 DOI: 10.3390/biom12121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Regulated cell death (RCD) is a signal-controlled process that not only eliminates infected, damaged, or aged cells but is also implicated in a variety of pathological conditions. The process of RCD is regulated by intracellular proteins that undergo varying levels of post-translational modifications, including mono- or polyubiquitination. Functionally, ubiquitination can affect protein abundance, localization, and activity. Like other post-translational modifications, ubiquitination is a dynamic and reversible process mediated by deubiquitinases, a large class of proteases that cleave ubiquitin from proteins and other substrates. The balance between ubiquitination and deubiquitination machinery determines cell fate under stressful conditions. Here, we review the latest advances in our understanding of the role of deubiquitinases in regulating the main types of RCD, including apoptosis, necroptosis, pyroptosis, and ferroptosis. This knowledge may contribute to identifying new protein degradation-related prognostic markers and therapeutic targets for human disease.
Collapse
Affiliation(s)
| | | | | | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
33
|
Song J, Yuan X, Piao L, Wang J, Wang P, Zhuang M, Liu J, Liu Z. Cellular functions and molecular mechanisms of ubiquitination in osteosarcoma. Front Oncol 2022; 12:1072701. [DOI: 10.3389/fonc.2022.1072701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Although some advances have been made in the treatment of osteosarcoma in recent years, surgical resection remains the mainstream treatment. Initial and early diagnosis of osteosarcoma could be very difficult to achieve due to the insufficient sensitivity for the means of examination. The distal metastasis of osteosarcoma also predicts the poor prognosis of osteosarcoma. In order to solve this series of problems, people begin to discover a new method of diagnosing and treating osteosarcoma. Ubiquitination, as an emerging posttranslational modification, has been shown to be closely related to osteosarcoma in studies over the past decades. In general, this review describes the cellular functions and molecular mechanisms of ubiquitination during the development of osteosarcoma.
Collapse
|
34
|
Liu N, Lin MM, Wang Y. The Emerging Roles of E3 Ligases and DUBs in Neurodegenerative Diseases. Mol Neurobiol 2022; 60:247-263. [PMID: 36260224 DOI: 10.1007/s12035-022-03063-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/27/2022] [Indexed: 10/24/2022]
Abstract
Despite annual increases in the incidence and prevalence of neurodegenerative diseases, there is a lack of effective treatment strategies. An increasing number of E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) have been observed to participate in the pathogenesis mechanisms of neurodegenerative diseases, on the basis of which we conducted a systematic literature review of the studies. This review will help to explore promising therapeutic targets from highly dynamic ubiquitination modification processes.
Collapse
Affiliation(s)
- Na Liu
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Miao-Miao Lin
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yan Wang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
35
|
Maxwell ZA, Suazo KF, Brown HM, Distefano MD, Arriaga EA. Combining Isoprenoid Probes with Antibody Markers for Mass Cytometric Analysis of Prenylation in Single Cells. Anal Chem 2022; 94:11521-11528. [PMID: 35952372 PMCID: PMC9441216 DOI: 10.1021/acs.analchem.2c01509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein prenylation is an essential post-translational modification that plays a key role in facilitating protein localization. Aberrations in protein prenylation have been indicated in multiple disease pathologies including progeria, some forms of cancer, and Alzheimer's disease. While there are single-cell methods to study prenylation, these methods cannot simultaneously assess prenylation and other cellular changes in the complex cell environment. Here, we report a novel method to monitor, at the single-cell level, prenylation and expression of autophagy markers. An isoprenoid analogue containing a terminal alkyne, substrate of prenylation enzymes, was metabolically incorporated into cells in culture. Treatment with a terbium reporter containing an azide functional group, followed by copper-catalyzed azide-alkyne cycloaddition, covalently attached terbium ions to prenylated proteins within cells. In addition, simultaneous treatment with a holmium-containing analogue of the reporter, without an azide functional group, was used to correct for non-specific retention at the single-cell level. This procedure was compatible with other mass cytometric sample preparation steps that use metal-tagged antibodies. We demonstrate that this method reports changes in levels of prenylation in competitive and inhibitor assays, while tracking autophagy molecular markers with metal-tagged antibodies. The method reported here makes it possible to track prenylation along with other molecular pathways in single cells of complex systems, which is essential to elucidate the role of this post-translational modification in disease, cell response to pharmacological treatments, and aging.
Collapse
|
36
|
Yuan L, Li P, Zheng Q, Wang H, Xiao H. The Ubiquitin-Proteasome System in Apoptosis and Apoptotic Cell Clearance. Front Cell Dev Biol 2022; 10:914288. [PMID: 35874820 PMCID: PMC9300945 DOI: 10.3389/fcell.2022.914288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022] Open
Abstract
Ubiquitination, a critical post-translational modification of proteins, refers to the covalent attachment of ubiquitin to the substrate and is involved in various biological processes such as protein stability regulation, DNA damage repair, and apoptosis, among others. E3 ubiquitin ligases are essential enzymes of the ubiquitin pathway with high substrate specificity and precisely regulate specific proteins’ turnover. As one of the most well-studied forms of programmed cell death, apoptosis is substantially conserved across the evolutionary tree. The final critical stage in apoptosis is the removal of apoptotic cells by professional and non-professional phagocytes. Apoptosis and apoptotic cell clearance are crucial for the normal development, differentiation, and growth of multicellular organisms, as well as their association with a variety of inflammatory and immune diseases. In this review, we discuss the role of ubiquitination and deubiquitination in apoptosis and apoptotic cell clearance.
Collapse
Affiliation(s)
- Lei Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Peiyao Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qian Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hui Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
37
|
Li M, Wang ZW, Fang LJ, Cheng SQ, Wang X, Liu NF. Programmed cell death in atherosclerosis and vascular calcification. Cell Death Dis 2022; 13:467. [PMID: 35585052 PMCID: PMC9117271 DOI: 10.1038/s41419-022-04923-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
Abstract
The concept of cell death has been expanded beyond apoptosis and necrosis to additional forms, including necroptosis, pyroptosis, autophagy, and ferroptosis. These cell death modalities play a critical role in all aspects of life, which are noteworthy for their diverse roles in diseases. Atherosclerosis (AS) and vascular calcification (VC) are major causes for the high morbidity and mortality of cardiovascular disease. Despite considerable advances in understanding the signaling pathways associated with AS and VC, the exact molecular basis remains obscure. In the article, we review the molecular mechanisms that mediate cell death and its implications for AS and VC. A better understanding of the mechanisms underlying cell death in AS and VC may drive the development of promising therapeutic strategies.
Collapse
Affiliation(s)
- Min Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Zhen-Wei Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Li-Juan Fang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Shou-Quan Cheng
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Xin Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
38
|
Necroptosis in heart disease: Molecular mechanisms and therapeutic implications. J Mol Cell Cardiol 2022; 169:74-83. [PMID: 35597275 DOI: 10.1016/j.yjmcc.2022.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
Abstract
Cell death is a crucial event underlying cardiac ischemic injury, pathological remodeling, and heart failure. Unlike apoptosis, necrosis had long been regarded as a passive and unregulated process. However, recent studies demonstrate that a significant subset of necrotic cell death is actively mediated through regulated pathways - a process known as "regulated necrosis". As a form of regulated necrosis, necroptosis is mediated by death receptors and executed through the activation of receptor interacting protein kinase 3 (RIPK3) and its downstream substrate mixed lineage kinase-like domain (MLKL). Recent studies have provided compelling evidence that necroptosis plays an important role in myocardial homeostasis, ischemic injury, pathological remodeling, and heart failure. Moreover, it has been shown that genetic and pharmacological manipulations of the necroptosis signaling pathway elicit cardioprotective effects. Important progress has also been made regarding the molecular mechanisms that regulate necroptotic cell death in vitro and in vivo. In this review, we discuss molecular and cellular mechanisms of necroptosis, potential crosstalk between necroptosis and other cell death pathways, functional implications of necroptosis in heart disease, and new therapeutic strategies that target necroptosis signaling.
Collapse
|
39
|
Yang L, Wang S, Pan Z, Du X, Li Q. TGFBR2 is a novel substrate and indirect transcription target of deubiquitylase USP9X in granulosa cells. J Cell Physiol 2022; 237:2969-2979. [PMID: 35578792 DOI: 10.1002/jcp.30776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 11/11/2022]
Abstract
The ubiquitin-specific peptidase 9 X-linked (USP9X) is one of the highly conserved members belonging to the ubiquitin-specific proteases (USPs) family, which has been reported to control substrates-mediated biological functions through deubiquitinating and stabilizing substrates. Here, we have found that TGFBR2, the type II receptor of the transforming growth factor beta (TGF-β) signaling pathway, is a novel substrate and indirect transcription target of deubiquitylase USP9X in granulosa cells (GCs). Mechanically, USP9X positively influences the expression of TGFBR2 at different levels through two independent ways: (i) directly targets and deubiquitinates TGFBR2, which maintains the protein stability of TGFBR2 through avoiding degradation mediated by ubiquitin-proteasome system; (ii) indirectly maintains TGFBR2 messenger RNA (mRNA) expression via SMAD4/miR-143 axis. Specifically, SMAD4, another substrate of USP9X, acts as a transcription factor and suppresses miR-143 which inhibits the mRNA level of TGFBR2 by directly binding to its 3'-untranslated region. Functionally, the maintenance of TGFBR2 by USP9X activates the TGF-β signaling pathway, which further represses GC apoptosis. Our study highlights a functional micro-regulatory network composed of deubiquitinase (USP9X), small noncoding RNA (miR-143) and the TGF-β signaling pathway, which plays a crucial role in the regulation of GC apoptosis and female fertility.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Siqi Wang
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zengxiang Pan
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Du
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qifa Li
- Laboratory of Statistical Genetics and Epigenetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
40
|
Cai D, Liu L, Tian B, Fu X, Yang Q, Chen J, Zhang Y, Fang J, Shen L, Wang Y, Gou L, Zuo Z. Dual-Role Ubiquitination Regulation Shuttling the Entire Life Cycle of the Flaviviridae. Front Microbiol 2022; 13:835344. [PMID: 35602051 PMCID: PMC9120866 DOI: 10.3389/fmicb.2022.835344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitination is a reversible protein post-translational modification that regulates various pivotal physiological and pathological processes in all eukaryotes. Recently, the antiviral immune response is enhanced by the regulation of ubiquitination. Intriguingly, Flaviviridae viruses can ingeniously hijack the ubiquitination system to help them survive, which has become a hot topic among worldwide researchers. The Flaviviridae family members, such as HCV and CSFV, can cause serious diseases of humans and animals around the world. The multiple roles of ubiquitination involved in the life cycle of Flaviviridae family would open new sight for future development of antiviral tactic. Here, we discuss recent advances with regard to functional roles of ubiquitination and some ubiquitin-like modifications in the life cycle of Flaviviridae infection, shedding new light on the antiviral mechanism research and therapeutic drug development.
Collapse
Affiliation(s)
- Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lingli Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingxin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiyuan Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jie Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yilin Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Animal Disease Prevention and Control Center, Agriculture and Rural Affairs Bureau of Luoping County, Luoping, China
| | - Jing Fang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Zhicai Zuo,
| |
Collapse
|
41
|
BRCA mutations lead to XIAP overexpression and sensitise ovarian cancer to inhibitor of apoptosis (IAP) family inhibitors. Br J Cancer 2022; 127:488-499. [PMID: 35501389 PMCID: PMC9345958 DOI: 10.1038/s41416-022-01823-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
Background We tested the hypothesis that inhibitor of apoptosis family (IAP) proteins may be altered in BRCA1-mutated ovarian cancers and that could affect the sensitivity to IAP inhibitors. Methods The levels of IAP proteins were evaluated in human cancers and cell lines. Cell lines were used to determine the effects of IAP inhibitors. The in vivo effects of treatments were evaluated in PDX mouse models. Results Expression of X-linked inhibitor of apoptosis (XIAP) is increased in BRCA1-mutated cancers and high levels are associated with improved patient outcomes after platinum chemotherapy. XIAP overexpression is mediated by NF-kB activation and is associated with an optimisation of PARP. BRCA1-mutated cell lines are particularly sensitive to IAP inhibitors due to an inhibitory effect on PARP. Both a BRCA1-mutated cell line with acquired resistance to PARP inhibitors and one with restored BRCA1 remain sensitive to IAP inhibitors. Treatment with IAP inhibitors restores the efficacy of PARP inhibition in these cell lines. The IAP inhibitor LCL161 alone and in combination with a PARP inhibitor, exhibited antitumour effects in PDX mouse models of resistant BRCA2 and 1-mutated ovarian cancer, respectively. Conclusion A clinical trial may be justified to further investigate the utility of IAP inhibitors.
Collapse
|
42
|
The Next Frontier: Translational Development of Ubiquitination, SUMOylation, and NEDDylation in Cancer. Int J Mol Sci 2022; 23:ijms23073480. [PMID: 35408841 PMCID: PMC8999128 DOI: 10.3390/ijms23073480] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/01/2023] Open
Abstract
Post-translational modifications of proteins ensure optimized cellular processes, including proteostasis, regulated signaling, cell survival, and stress adaptation to maintain a balanced homeostatic state. Abnormal post-translational modifications are associated with cellular dysfunction and the occurrence of life-threatening diseases, such as cancer and neurodegenerative diseases. Therefore, some of the frequently seen protein modifications have been used as disease markers, while others are targeted for developing specific therapies. The ubiquitin and ubiquitin-like post-translational modifiers, namely, small ubiquitin-like modifier (SUMO) and neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8), share several features, such as protein structures, enzymatic cascades mediating the conjugation process, and targeted amino acid residues. Alterations in the regulatory mechanisms lead to aberrations in biological processes during tumorigenesis, including the regulation of tumor metabolism, immunological modulation of the tumor microenvironment, and cancer stem cell stemness, besides many more. Novel insights into ubiquitin and ubiquitin-like pathways involved in cancer biology reveal a potential interplay between ubiquitination, SUMOylation, and NEDDylation. This review outlines the current understandings of the regulatory mechanisms and assay capabilities of ubiquitination, SUMOylation, and NEDDylation. It will further highlight the role of ubiquitination, SUMOylation, and NEDDylation in tumorigenesis.
Collapse
|
43
|
Chang CC, Peng SY, Tsao HH, Huang HT, Lai XY, Hsu HJ, Jiang SJ. A Multitarget Therapeutic Peptide Derived From Cytokine Receptors Based on in Silico Analysis Alleviates Cytokine-Stimulated Inflammation. Front Pharmacol 2022; 13:853818. [PMID: 35370629 PMCID: PMC8965626 DOI: 10.3389/fphar.2022.853818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Septicemia is a severe inflammatory response caused by the invasion of foreign pathogens. Severe sepsis-induced shock and multiple organ failure are the two main causes of patient death. The overexpression of many proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6, is closely related to severe sepsis. Although the treatment of sepsis has been subject to many major breakthroughs of late, the treatment of patients with septic shock is still accompanied by a high mortality rate. In our previous research, we used computer simulations to design the multifunctional peptide KCF18 that can bind to TNF-α, IL-1β, and IL-6 based on the binding regions of receptors and proinflammatory cytokines. In this study, proinflammatory cytokines were used to stimulate human monocytes to trigger an inflammatory response, and the anti-inflammatory ability of the multifunctional KCF18 peptide was further investigated. Cell experiments demonstrated that KCF18 significantly reduced the binding of proinflammatory cytokines to their cognate receptors and inhibited the mRNA and protein expressions of TNF-α, IL-1β, and IL-6. It could also reduce the expression of reactive oxygen species induced by cytokines in human monocytes. KCF18 could effectively decrease the p65 nucleus translocation induced by cytokines, and a mice endotoxemia experiment demonstrated that KCF18 could reduce the expression of IL-6 and the increase of white blood cells in the blood stimulated by lipopolysaccharides. According to our study of tissue sections, KCF18 alleviated liver inflammation. By reducing the release of cytokines in plasma and directly affecting vascular cells, KCF18 is believed to significantly reduce the risk of vascular inflammation.
Collapse
Affiliation(s)
- Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hao-Hsiang Tsao
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsin-Ting Huang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Xing-Yan Lai
- Department of Life Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan
- *Correspondence: Hao-Jen Hsu, ; Shinn-Jong Jiang,
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
- *Correspondence: Hao-Jen Hsu, ; Shinn-Jong Jiang,
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Apoptosis is a major mechanism of cancer cell death. Thus, evasion of apoptosis results in therapy resistance. Here, we review apoptosis modulators in cancer and their recent developments, including MDM2 inhibitors and kinase inhibitors that can induce effective apoptosis. RECENT FINDINGS Both extrinsic pathways (external stimuli through cell surface death receptor) and intrinsic pathways (mitochondrial-mediated regulation upon genotoxic stress) regulate the complex process of apoptosis through orchestration of various proteins such as members of the BCL-2 family. Dysregulation within these complex steps can result in evasion of apoptosis. However, via the combined evolution of medicinal chemistry and molecular biology, omics assays have led to innovative inducers of apoptosis and inhibitors of anti-apoptotic regulators. Many of these agents are now being tested in cancer patients in early-phase trials. We believe that despite a sluggish speed of development, apoptosis targeting holds promise as a relevant strategy in cancer therapeutics.
Collapse
|
45
|
Silva-Costa LC, Smith BJ. Post-translational Modifications in Brain Diseases: A Future for Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:129-141. [DOI: 10.1007/978-3-031-05460-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Shanmugam MK, Sethi G. Molecular mechanisms of cell death. MECHANISMS OF CELL DEATH AND OPPORTUNITIES FOR THERAPEUTIC DEVELOPMENT 2022:65-92. [DOI: 10.1016/b978-0-12-814208-0.00002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
47
|
Nguyen TTT, Shang E, Westhoff MA, Karpel-Massler G, Siegelin MD. Methodological Approaches for Assessing Metabolomic Changes in Glioblastomas. Methods Mol Biol 2022; 2445:305-328. [PMID: 34973000 DOI: 10.1007/978-1-0716-2071-7_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glioblastoma (GBM), a highly malignant primary brain tumor, inevitably leads to death. In the last decade, a variety of novel molecular characteristics of GBMs were unraveled. The identification of the mutation in the IDH1 and less commonly IDH2 gene was surprising and ever since has nurtured research in the field of GBM metabolism. While initially thought that mutated IDH1 were to act as a loss of function mutation it became clear that it conferred the production of an oncometabolite that in turn substantially reprograms GBM metabolism. While mutated IDH1 represents truly the tip of the iceberg, there are numerous other related observations in GBM that are of significant interest to the field, including the notion that oxidative metabolism appears to play a more critical role than believed earlier. Metabolic zoning is another important hallmark of GBM since it was found that the infiltrative margin that drives GBM progression reveals enrichment of fatty acid derivatives. Consistently, fatty acid metabolism appears to be a novel therapeutic target for GBM. How metabolism in GBM intersects is another pivotal issue that appears to be important for its progression and response and resistance to therapies. In this review, we will summarize some of the most relevant findings related to GBM metabolism and cell death and how these observations are influencing the field. We will provide current approaches that are applied in the field to measure metabolomic changes in GBM models, including the detection of unlabeled and labeled metabolites as well as extracellular flux analysis.
Collapse
Affiliation(s)
- Trang T T Nguyen
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Enyuan Shang
- Department of Biological Sciences, Bronx Community College, City University of New York, Bronx, NY, USA
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | | | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
48
|
Applications of genetic code expansion in studying protein post-translational modification. J Mol Biol 2021; 434:167424. [PMID: 34971673 DOI: 10.1016/j.jmb.2021.167424] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 01/18/2023]
Abstract
Various post-translational modifications can naturally occur on proteins, regulating the activity, subcellular localization, interaction, or stability of the proteins. However, it can be challenging to decipher the biological implication or physiological roles of site-specific modifications due to their dynamic and sub-stoichiometric nature. Genetic code expansion method, relying on an orthogonal aminoacyl-tRNA synthetase/tRNA pair, enables site-specific incorporation of non-canonical amino acids. Here we focus on the application of genetic code expansion to study site-specific protein post-translational modification in vitro and in vivo. After a brief introduction, we discuss possibilities of incorporating non-canonical amino acids containing post-translational modifications or their mimics into target proteins. This approach is applicable for Ser/Thr/Tyr phosphorylation, Tyr sulfation and nitration, Lys acetylation and acylation, Lys/His mono-methylation, as well as Arg citrullination. The next section describes the use of a precursor non-canonical amino acid followed by chemical and/or enzymatic reactions to afford the desired modification, such as Cys/Lys acylation, ubiquitin and ubiquitin-like modifications, as well as Lys/Gln methylation. We also discuss means for functional regulation of enzymes involving in post-translational modifications through genetically incorporated non-canonical amino acids. Lastly, the limitations and perspectives of genetic code expansion in studying protein post-translational modification are described.
Collapse
|
49
|
Xu J, Li B, Song W, Cao L, Zhu C, Lin S. Tumor suppressor functions of miRNA-375 in nasopharyngeal carcinoma through inhibition of ubiquitin-specific protease 1 expression. Int J Biochem Cell Biol 2021; 141:106092. [PMID: 34626803 DOI: 10.1016/j.biocel.2021.106092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) development involves many genetic alterations. This study profiled differentially expressed microRNAs (DE-miRNAs) and selected miR-375 for further study. METHODS DE-miRNAs were screened using online databases and subjected to various analyzes. miR-375 mimics with negative control (NC) cDNA, and a ubiquitin-specific protease 1 (USP1) as well as a NC group were transfected into NPC cells for analysis by quantitative PCR, western blotting, wound healing, Transwell, flow cytometry, cell counting kit-8 (CCK-8), and luciferase gene reporter assays. RESULTS Among these DE-miRNAs, miR-375 was downregulated and miR-21 was upregulated in NPC cells. Bioinformatical analysis identified USP1 as a potential target gene of miR-375. Increased USP1 expression was associated with poor survival of head and neck cancer patients. The luciferase assay confirmed miR-375 binding to the USP1 3'-untranslated region (UTR), while the transfection experiment confirmed miR-375 expression reduced USP1 expression. USP1 overexpression reversed the anti-tumor activity of miR-375 in NPC cells as determined by tumor cell migration, invasion, apoptosis, and viability assays. In addition, USP1 overexpression activated phosphoinositide 3-kinase (PI3K) signaling, whereas a selective PI3K inhibitor (S2739) could reverse the effects of USP1 on NPC cells in vitro. CONCLUSIONS miR-375 and miR-21 are both related to NPC and miR-375 can target USP1. Further experiments revealed that up-regulated miR-375 expression led to USP1 down-regulation, and miR-375 overexpression suppressed PI3K/Akt signaling and inhibited NPC cell migration and invasion, but promoted NPC cell apoptosis.
Collapse
Affiliation(s)
- Jiayuan Xu
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bangliang Li
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wei Song
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Longhe Cao
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chuansai Zhu
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Sen Lin
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
50
|
Chu Q, Gu X, Zheng Q, Guo Z, Shan D, Wang J, Zhu H. Long noncoding RNA SNHG4: a novel target in human diseases. Cancer Cell Int 2021; 21:583. [PMID: 34717631 PMCID: PMC8557547 DOI: 10.1186/s12935-021-02292-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have attracted great attention from researchers. LncRNAs are non-protein-coding RNAs of more than 200 nucleotides in length. Multiple studies have been published on the relationship between lncRNA expression and the progression of human diseases. LncRNA small nucleolar RNA host gene 4 (SNHG4), a member of the lncRNA SNHG family, is abnormally expressed in a variety of human diseases, including gastric cancer, renal cell carcinoma, glioblastoma, neuroblastoma, prostate cancer, colorectal cancer, osteosarcoma, cervical cancer, liver cancer, lung cancer, non-small-cell lung cancer, neonatal pneumonia, diabetic retinopathy, neuropathic pain, acute cerebral infarction, acute myeloid leukaemia, and endometriosis. In this paper, the structure of SNHG4 is first introduced, and then studies in humans, animal models and cells are summarized to highlight the expression and function of SNHG4 in the above diseases. In addition, the specific mechanism of SNHG4 as a competing endogenous RNA (ceRNA) is discussed. The findings indicate that SNHG4 can be used as a biomarker for disease prognosis evaluation and as a potential target for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Zixuan Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Dandan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|