1
|
Najim M, Abu-Tineh M, Alshurafa A, Ibrahim MIM, Ansari S, Faraj H, Alateeg S, Akiki SJ, Yassin MA. The characteristics of CALR mutations in myeloproliferative neoplasms: a clinical experience from a tertiary care center in Qatar and a literature review. Hematology 2024; 29:2360246. [PMID: 38804886 DOI: 10.1080/16078454.2024.2360246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Myeloproliferative neoplasms (MPNs) are hematological disorders characterized by abnormal production of myeloid cells due to genetic mutations. Since 2013, researchers have identified somatic mutations in the Calreticulin (CALR) gene, primarily insertions or deletions, in two Philadelphia chromosome-negative MPNs; essential thrombocytosis (ET) and primary myelofibrosis (PMF), and occasionally in chronic myelomonocytic leukemia (CMML). This study aims to identify the various types of CALR mutations and their impact on CALR-positive MPN patients' clinical manifestations and outcomes. METHODS A single-center retrospective study was conducted. The data was collected from pre-existing records. The study was carried out on Philadelphia-negative MPN patients who were being followed up on at the NCCCR (National Center for Cancer Care and Research) to assess the clinical manifestation and outcome of disease treatment. All patients included, were followed in our center between January 1, 2008, and November 20, 2021. RESULTS A total of 50 patients with CALR-positive MPN were reviewed with a median follow-up of three years (1-11). This cohort included 31 (62%) patients with ET, 10 (20%) patients with PMF, and 9 (18%) patients with prefibrotic myelofibrosis (pre-MF). The study involved 38 (76%) male and 12 (24%) female patients. There were 16 (32%) patients diagnosed before the age of 40, 24 (48%) patients diagnosed between the ages of 40 and 60; and 10 (20%) patients diagnosed after the age of 60. Molecular analysis showed 24 (48%) patients with CALR type 1, 21 (42%) patients with CALR type 2, and 5 (10%) patients with none Type 1, none Type 2 CALR mutations. Two patients have double mutations; 1(2%) with none Type 1, none Type 2 CALR and JAK2 mutations, and 1(2%) with CALR type 1 and MPL mutations. The thrombotic events were 3 (6%) venous thromboembolisms, 3 (6%) abdominal veins thromboses, 2 (4%) strokes, and 4 (8%) ischemic cardiac events. Only 4 (8%) patients progressed to Myelofibrosis and were carrying CALR 1 mutations, and 1 (2%) patient progressed to AML with CALR 2 mutation. CONCLUSION The data shows a significant rise in CALR-positive MPN diagnoses in younger people, emphasizing the need for a better assessment tool to improve disease management and reduce complications.
Collapse
Affiliation(s)
- Mostafa Najim
- Department of Medicine, Rochester Regional Health, Unity Hospital, Rochester, NY, USA
| | - Mohammad Abu-Tineh
- Department of Medicine, Tower Health, Reading Hospital, West Reading, PA, USA
| | - Awni Alshurafa
- Department of Medical Oncology, Hematology and BMT Section, National Center for Cancer Care and Research, Doha, Qatar
| | | | - Soubiya Ansari
- Internal Medicine Department, Hamad Medical Corporation, Doha, Qatar
| | - Hazem Faraj
- Internal Medicine Department, Hamad Medical Corporation, Doha, Qatar
| | - Saif Alateeg
- Internal Medicine Department, Hamad Medical Corporation, Doha, Qatar
| | - Susanna Jane Akiki
- Department of Diagnostic Laboratory, Hamad Medical Corporation, Doha, Qatar
| | - Mohamed A Yassin
- Department of Medical Oncology, Hematology and BMT Section, National Center for Cancer Care and Research, Doha, Qatar
| |
Collapse
|
2
|
Cicek C, Telkoparan-Akillilar P, Sertyel S, Bilgi C, Ozgun OD. Investigation of endoplasmic reticulum stress-regulated chaperones as biomarkers in idiopathic nonobstructive azoospermia. Cell Stress Chaperones 2024; 29:654-665. [PMID: 39237030 PMCID: PMC11424951 DOI: 10.1016/j.cstres.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Azoospermia is a condition in which sperm cells are completely absent in a male's ejaculate. Typically, sperm production occurs in the testes and is regulated by a complex series of cellular and molecular interactions. Endoplasmic reticulum (ER) stress arises when there is a deviation from or damage to the normal functions of the ER within cells. In response to this stress, a cascade of response mechanisms is activated to regulate ER stress within cells. This study aims to investigate the role of ER stress-regulated chaperones as potential biomarkers in male infertility. ER stress associated with azoospermia can manifest in cells such as spermatogonia in the testes and can impact sperm production. As a result of ER stress, the expression and activity of a variety of proteins within cells can be altered. Among these proteins are chaperone proteins that regulate the ER stress response. The sample size was calculated to be a minimum of 36 patients in each group. In this preliminary study, we measured and compared serum levels of protein disulfide-isomerase A1, protein disulfide-isomerase A3 (PDIA3), mesencephalic astrocyte-derived neurotrophic factor (MANF), glucose regulatory protein 78 (GRP78), clusterin (CLU), calreticulin (CRT), and calnexin (CNX) between male subjects with idiopathic nonobstructive azoospermia and a control group of noninfertile males. Serum PDIA1 (P = 0.0004), MANF (P = 0.018), PDIA3 (P < 0.0001), GRP78 (P = 0.0027), and CRT (P = 0.0009) levels were higher in the infertile group compared to the control. In summary, this study presents novel findings in a cohort of male infertile patients, emphasizing the significance of incorporating diverse biomarkers. It underscores the promising role of ER stress-regulated proteins as potential serum indicators for male infertility. By elucidating the impact of ER stress on spermatogenic cells, the research illuminates the maintenance or disruption of cellular health. A deeper understanding of these results could open the door to novel treatment approaches for reproductive conditions, including azoospermia.
Collapse
Affiliation(s)
- Cigdem Cicek
- Department of Medical Biochemistry, Faculty of Medicine, Yuksek Ihtisas University, Ankara 06530, Turkey.
| | - Pelin Telkoparan-Akillilar
- Department of Medical Biology, Faculty of Medicine, Gazi University, Ankara 06500, Turkey; Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, Ankara 06530, Turkey
| | | | - Cumhur Bilgi
- Alife Hospital Biochemistry Laboratory, Ankara 06794, Turkey
| | | |
Collapse
|
3
|
Wang J, Tian L, Barr T, Jin L, Chen Y, Li Z, Wang G, Liu JC, Wang LS, Zhang J, Hsu D, Feng M, Caligiuri MA, Yu J. Enhanced treatment of breast cancer brain metastases with oncolytic virus expressing anti-CD47 antibody and temozolomide. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200824. [PMID: 39035202 PMCID: PMC11260018 DOI: 10.1016/j.omton.2024.200824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/23/2024]
Abstract
Limited therapeutic options are available for patients with breast cancer brain metastases (BCBM), and thus there is an urgent need for novel treatment approaches. We previously engineered an effective oncolytic herpes simplex virus 1 (oHSV) expressing a full-length anti-CD47 monoclonal antibody (mAb) with a human IgG1 scaffold (OV-αCD47-G1) that was used to treat both ovarian cancer and glioblastoma. Here, we demonstrate that the combination of OV-αCD47-G1 and temozolomide (TMZ) improve outcomes in preclinical models of BCBM. The combination of TMZ with OV-αCD47-G1 synergistically increased macrophage phagocytosis against breast tumor cells and led to greater activation of NK cell cytotoxicity. In addition, the combination of OV-αCD47-G1 with TMZ significantly prolonged the survival of tumor-bearing mice when compared with TMZ or OV-αCD47-G1 alone. Combination treatment with the mouse counterpart of OV-αCD47-G1, termed OV-A4-IgG2b, also enhanced mouse macrophage phagocytosis, NK cell cytotoxicity, and survival in an immunocompetent model of mice bearing BCBM compared with TMZ or OV-A4-IgG2b alone. Collectively, these results suggest that OV-αCD47-G1 combined with TMZ should be explored in patients with BCBM.
Collapse
Affiliation(s)
- Jing Wang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lei Tian
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Tasha Barr
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Lewei Jin
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Yuqing Chen
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Zhiyao Li
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Ge Wang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jian-Chang Liu
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, Los Angeles, CA 91010, USA
| | - Li-Shu Wang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - David Hsu
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, Los Angeles, CA 91010, USA
| | - Mingye Feng
- Department of Immuno-Oncology, City of Hope, Los Angeles, CA 91010, USA
| | - Michael A. Caligiuri
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Department of Immuno-Oncology, City of Hope, Los Angeles, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Los Angeles, CA 91010, USA
| |
Collapse
|
4
|
Ha DP, Shin WJ, Liu Z, Doche ME, Lau R, Leli NM, Conn CS, Russo M, Lorenzato A, Koumenis C, Yu M, Mumenthaler SM, Lee AS. Targeting stress induction of GRP78 by cardiac glycoside oleandrin dually suppresses cancer and COVID-19. Cell Biosci 2024; 14:115. [PMID: 39238058 PMCID: PMC11378597 DOI: 10.1186/s13578-024-01297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Despite recent therapeutic advances, combating cancer resistance remains a formidable challenge. The 78-kilodalton glucose-regulated protein (GRP78), a key stress-inducible endoplasmic reticulum (ER) chaperone, plays a crucial role in both cancer cell survival and stress adaptation. GRP78 is also upregulated during SARS-CoV-2 infection and acts as a critical host factor. Recently, we discovered cardiac glycosides (CGs) as novel suppressors of GRP78 stress induction through a high-throughput screen of clinically relevant compound libraries. This study aims to test the possibility that agents capable of blocking stress induction of GRP78 could dually suppress cancer and COVID-19. RESULTS Here we report that oleandrin (OLN), is the most potent among the CGs in inhibiting acute stress induction of total GRP78, which also results in reduced cell surface and nuclear forms of GRP78 in stressed cells. The inhibition of stress induction of GRP78 is at the post-transcriptional level, independent of protein degradation and autophagy and may involve translational control as OLN blocks stress-induced loading of ribosomes onto GRP78 mRNAs. Moreover, the human Na+/K+-ATPase α3 isoform is critical for OLN suppression of GRP78 stress induction. OLN, in nanomolar range, enhances apoptosis, sensitizes colorectal cancer cells to chemotherapeutic agents, and reduces the viability of patient-derived colon cancer organoids. Likewise, OLN, suppresses GRP78 expression and impedes tumor growth in an orthotopic breast cancer xenograft model. Furthermore, OLN blocks infection by SARS-CoV-2 and its variants and enhances existing anti-viral therapies. Notably, GRP78 overexpression mitigates OLN-mediated cancer cell apoptotic onset and suppression of virus release. CONCLUSION Our findings validate GRP78 as a target of OLN anti-cancer and anti-viral activities. These proof-of-principle studies support further investigation of OLN as a readily accessible compound to dually combat cancer and COVID-19.
Collapse
Affiliation(s)
- Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Woo-Jin Shin
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, 34987, USA
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Ze Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Michael E Doche
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
| | - Roy Lau
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
| | - Nektaria Maria Leli
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Crystal S Conn
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariangela Russo
- Dipartimento di Oncologia, Molecular Biotechnology Center, Università di Torino, Turin, Italy
| | - Annalisa Lorenzato
- Dipartimento di Oncologia, Molecular Biotechnology Center, Università di Torino, Turin, Italy
| | - Constantinos Koumenis
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Min Yu
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shannon M Mumenthaler
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Ellison Institute of Technology, Los Angeles, CA, 90064, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
5
|
Li Y, Dong J, Qin JJ. Small molecule inhibitors targeting heat shock protein 90: An updated review. Eur J Med Chem 2024; 275:116562. [PMID: 38865742 DOI: 10.1016/j.ejmech.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
As a molecular chaperone, heat shock protein 90 (HSP90) plays important roles in the folding, stabilization, activation, and degradation of over 500 client proteins, and is extensively involved in cell signaling, proliferation, and survival. Thus, it has emerged as an important target in a variety of diseases, including cancer, neurodegenerative diseases, and viral infections. Therefore, targeted inhibition of HSP90 provides a valuable and promising therapeutic strategy for the treatment of HSP90-related diseases. This review aims to systematically summarize the progress of research on HSP90 inhibitors in the last five years, focusing on their structural features, design strategies, and biological activities. It will refer to the natural products and their derivatives (including novobiocin derivatives, deguelin derivatives, quinone derivatives, and terpenoid derivatives), and to synthetic small molecules (including resorcinol derivatives, pyrazoles derivatives, triazole derivatives, pyrimidine derivatives, benzamide derivatives, benzothiazole derivatives, and benzofuran derivatives). In addition, the major HSP90 small-molecule inhibitors that have moved into clinical trials to date are also presented here.
Collapse
Affiliation(s)
- Yulong Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinyun Dong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
6
|
Yamamoto V, Ha DP, Liu Z, Huang M, Samanta S, Neamati N, Lee AS. GRP78 inhibitor YUM70 upregulates 4E-BP1 and suppresses c-MYC expression and viability of oncogenic c-MYC tumors. Neoplasia 2024; 55:101020. [PMID: 38991376 PMCID: PMC11294750 DOI: 10.1016/j.neo.2024.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The 78-kDa glucose regulated protein (GRP78) commonly upregulated in a wide variety of tumors is an important prognostic marker and a promising target for suppressing tumorigenesis and treatment resistance. While GRP78 is well established as a major endoplasmic reticulum (ER) chaperone with anti-apoptotic properties and a master regulator of the unfolded protein response, its new role as a regulator of oncoprotein expression is just emerging. MYC is dysregulated in about 70 % of human cancers and is the most commonly activated oncoprotein. However, despite recent advances, therapeutic targeting of MYC remains challenging. Here we identify GRP78 as a new target for suppression of MYC expression. Using multiple MYC-dependent cancer models including head and neck squamous cell carcinoma and their cisplatin-resistant clones, breast and pancreatic adenocarcinoma, our studies revealed that GRP78 knockdown by siRNA or inhibition of its activity by small molecule inhibitors (YUM70 or HA15) reduced c-MYC expression, leading to onset of apoptosis and loss of cell viability. This was observed in 2D cell culture, 3D spheroid and in xenograft models. Mechanistically, we determined that the suppression of c-MYC is at the post-transcriptional level and that YUM70 and HA15 treatment potently upregulated the eukaryotic translation inhibitor 4E-BP1, which targets eIF4E critical for c-MYC translation initiation. Furthermore, knock-down of 4E-BP1 via siRNA rescued YUM70-mediated c-MYC suppression. As YUM70 is also capable of suppressing N-MYC expression, this study offers a new approach to suppress MYC protein expression through knockdown or inhibition of GRP78.
Collapse
Affiliation(s)
- Vicky Yamamoto
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Ze Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Miller Huang
- Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Soma Samanta
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
7
|
Silva NSM, Siebeneichler B, Oliveira CS, Dores-Silva PR, Borges JC. The regulation of the thermal stability and affinity of the HSPA5 (Grp78/BiP) by clients and nucleotides is modulated by domains coupling. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141034. [PMID: 39009203 DOI: 10.1016/j.bbapap.2024.141034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
The HSPA5 protein (BiP/Grp78) serves as a pivotal chaperone in maintaining cellular protein quality control. As a member of the human HSP70 family, HSPA5 comprises two distinct domains: a nucleotide-binding domain (NBD) and a peptide-binding domain (PBD). In this study, we investigated the interdomain interactions of HSPA5, aiming to elucidate how these domains regulate its function as a chaperone. Our findings revealed that HSPA5-FL, HSPA5-T, and HSPA5-N exhibit varying affinities for ATP and ADP, with a noticeable dependency on Mg2+ for optimal interactions. Interestingly, in ADP assays, the presence of the metal ion seems to enhance NBD binding only for HSPA5-FL and HSPA5-T. Moreover, while the truncation of the C-terminus does not significantly impact the thermal stability of HSPA5, experiments involving MgATP underscore its essential role in mediating interactions and nucleotide hydrolysis. Thermal stability assays further suggested that the NBD-PBD interface enhances the stability of the NBD, more pronounced for HSPA5 than for the orthologous HSPA1A, and prevents self-aggregation through interdomain coupling. Enzymatic analyses indicated that the presence of PBD enhances NBD ATPase activity and augments its nucleotide affinity. Notably, the intrinsic chaperone activity of the PBD is dependent on the presence of the NBD, potentially due to the propensity of the PBD for self-oligomerization. Collectively, our data highlight the pivotal role of allosteric mechanisms in modulating thermal stability, nucleotide interaction, and ATPase activity of HSPA5, underscoring its significance in protein quality control within cellular environments.
Collapse
Affiliation(s)
- Noeli S M Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| | - Bruna Siebeneichler
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil; Exact and Technology Sciences Center, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | - Carlos S Oliveira
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Paulo R Dores-Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
8
|
Bhattacharya A, Chatterji U. Exosomal misfolded proteins released by cancer stem cells: dual functions in balancing protein homeostasis and orchestrating tumor progression. Discov Oncol 2024; 15:392. [PMID: 39215782 PMCID: PMC11365921 DOI: 10.1007/s12672-024-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer stem cells (CSCs), the master regulators of tumor heterogeneity and progression, exert profound influence on cancer metastasis, via various secretory vesicles. Emerging from CSCs, the exosomes serve as pivotal mediators of intercellular communication within the tumor microenvironment, modulating invasion, angiogenesis, and immune responses. Moreover, CSC-derived exosomes play a central role in sculpting a dynamic landscape, contributing to the malignant phenotype. Amidst several exosomal cargoes, misfolded proteins have recently gained attention for their dual functions in maintaining protein homeostasis and promoting tumor progression. Disrupting these communication pathways could potentially prevent the maintenance and expansion of CSCs, overcome treatment resistance, and inhibit the supportive environment created by the tumor microenvironment, thereby improving the effectiveness of cancer therapies and reducing the risk of tumor recurrence and metastasis. Additionally, exosomes have also shown potential therapeutic applications, such as in drug delivery or as biomarkers for cancer diagnosis and prognosis. Therefore, comprehending the biology of exosomes derived from CSCs is a multifaceted area of research with implications in both basic sciences and clinical applications. This review explores the intricate interplay between exosomal misfolded proteins released by CSCs, the potent contributor in tumor heterogeneity, and their impact on cellular processes, shedding light on their role in cancer progression.
Collapse
Affiliation(s)
- Anuran Bhattacharya
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
9
|
Kumar R, Rao GN. Glucose-Regulated Protein 78, via Releasing β-Catenin from Adherens Junctions, Facilitates Its Interaction with STAT3 in Mediating Retinal Neovascularization. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00324-9. [PMID: 39222910 DOI: 10.1016/j.ajpath.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Retinopathy due to neovascularization is one of the major causes of vision loss. To understand the mechanisms underlying retinal neovascularization, using the oxygen-induced retinopathy (OIR) model, we performed two-dimensional gel matrix-assisted laser desorption/ionization time-of-flight/time-of-flight analysis of normoxic and 24-hour post-OIR mice pups' retinas. Two-dimensional gel analysis revealed that glucose-regulated protein 78 (GRP78) is one of the several molecules induced by OIR in the retinal endothelial cells (ECs). Vascular endothelial growth factor A (VEGFA) also induced GRP78 expression independent of endoplasmic reticulum stress response in human retinal microvascular endothelial cells, and depletion of its levels reduced VEGFA-induced EC angiogenic responses. Consistent with these observations, EC-specific deletion of GRP78 inhibited OIR-induced retinal neovascularization. In exploring the mechanisms, we found that GRP78 binds with vascular endothelial-cadherin and releases adherens junction- but not Wnt-mediated β-catenin and that β-catenin, in turn, via interacting with STAT3, triggers cyclin D1 expression. Furthermore, depletion of β-catenin or cyclin D1 levels negated VEGFA-induced EC angiogenic responses and OIR-induced retinal neovascularization. EC-specific deletion of GRP78 also suppressed OIR-induced vascular leakage. In elucidating the upstream signaling, we found that activating transcription factor 6 mediates GRP78 induction in the modulation of VEGFA-induced EC angiogenic responses and OIR-induced retinal neovascularization. Together, these observations reveal that GRP78, independent of its response to endoplasmic reticulum stress, is involved in mediating EC angiogenic responses by VEGFA and retinal neovascularization by OIR. In view of these findings, it appears that GRP78 could be a desirable target for drug development against diabetic retinopathy.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
10
|
Corsetti G, Romano C, Codenotti S, Giugno L, Pasini E, Fanzani A, Scarabelli T, Dioguardi FS. Intake of Special Amino Acids Mixture Leads to Blunted Murine Colon Cancer Growth In Vitro and In Vivo. Cells 2024; 13:1210. [PMID: 39056792 PMCID: PMC11274386 DOI: 10.3390/cells13141210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer cells require substantial amounts of energy and substrates for their metabolic hyperactivity, enabling the synthesis of new cells at the expense of healthy ones. Preliminary in vitro data suggest that a mix of free essential amino acids (EAA-mix) can promote cancer cell apoptosis by enhancing autophagy. This study aimed to confirm, both in vitro and in vivo, whether EAA intake could influence the development of colon cancer in mice. We investigated changes in cancer proliferation in CT26 cells treated with EAA-mix and in mice fed with EAA-rich modified diets (EAARD) as compared to those on a standard laboratory diet (StD). CT26 cells were injected subcutaneously (s.c.) or intraperitoneally (i.p.). After 21 days, tumors were removed and measured. In vitro data corroborated that EAA-mix impairs cancer growth by inducing apoptosis. In vivo data revealed that mice on StD developed significantly larger (s.c.) and more numerous (i.p.) cancers than those on EAARD. EAA administration appears to influence cancer cell survival with notable antiproliferative properties.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.R.); (L.G.); (E.P.)
| | - Claudia Romano
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.R.); (L.G.); (E.P.)
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.C.); (A.F.)
| | - Lorena Giugno
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.R.); (L.G.); (E.P.)
| | - Evasio Pasini
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.R.); (L.G.); (E.P.)
- Italian Association of Functional Medicine, 20855 Lesmo, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.C.); (A.F.)
| | | | | |
Collapse
|
11
|
Liu J, Fan Y, Chen J, Zhao M, Jiang C. FOXA1 Suppresses Endoplasmic Reticulum Stress, Oxidative Stress, and Neuronal Apoptosis in Parkinson's Disease by Activating PON2 Transcription. Neurotox Res 2024; 42:31. [PMID: 38935306 DOI: 10.1007/s12640-024-00709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Endoplasmic reticulum (ER) stress and oxidative stress (OS) are often related states in pathological conditions including Parkinson's disease (PD). This study investigates the role of anti-oxidant protein paraoxonase 2 (PON2) in ER stress and OS in PD, along with its regulatory molecule. PD was induced in C57BL/6 mice using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treatment and in SH-SY5Y cells using 1-methyl-4-phenylpyridinium. PON2 was found to be poorly expressed in the substantia nigra pars compacta (SNc) of PD mice, and its overexpression improved motor coordination of mice. Through the evaluation of tyrosine hydroxylase, dopamine transporter, reactive oxygen species (ROS), and C/EBP homologous protein (CHOP) levels and neuronal loss in mice, as well as the examination of CHOP, glucose-regulated protein 94 (GRP94), GRP78, caspase-12, sarco/endoplasmic reticulum calcium ATPase 2, malondialdehyde, and superoxide dismutase levels in SH-SY5Y cells, we observed that PON2 overexpression mitigated ER stress, OS, and neuronal apoptosis both in vivo and in vitro. Forkhead box A1 (FOXA1) was identified as a transcription factor binding to the PON2 promoter to activate its transcription. Upregulation of FOXA1 similarly protected against neuronal loss by alleviating ER stress and OS, while the protective roles were abrogated by additional PON2 silencing. In conclusion, this study demonstrates that FOXA1-mediated transcription of PON2 alleviates ER stress and OS, ultimately reducing neuronal apoptosis in PD.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Neurology, The Baotou Central Hospital, Baotou, 014040, Inner Mongolia, People's Republic of China
| | - Yu Fan
- Department of Neurology, The Baotou Central Hospital, Baotou, 014040, Inner Mongolia, People's Republic of China
| | - Jinyu Chen
- Department of Neurology, The Baotou Central Hospital, Baotou, 014040, Inner Mongolia, People's Republic of China
| | - Meili Zhao
- Department of Neurology, The Baotou Central Hospital, Baotou, 014040, Inner Mongolia, People's Republic of China
| | - Changchun Jiang
- Department of Neurology, The Baotou Central Hospital, Baotou, 014040, Inner Mongolia, People's Republic of China.
| |
Collapse
|
12
|
Jiang X, Zhu B, Li G, Cui S, Yang J, Jiang R, Wang B. p20BAP31 promotes cell apoptosis via interaction with GRP78 and activating the PERK pathway in colorectal cancer. Int J Biol Macromol 2024; 272:132870. [PMID: 38844291 DOI: 10.1016/j.ijbiomac.2024.132870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/12/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Colorectal cancer (CRC) is the second most deadly cancer worldwide. Although various treatments for CRC have made progress, they have limitations. Therefore, the search for new effective molecular targets is important for the treatment of CRC. p20BAP31 induces apoptosis through diverse pathways and exhibits greater sensitivity in CRC. Therefore, a comprehensive exploration of the molecular functions of p20BAP31 is important for its application in anti-tumor therapy. In this study, we showed that exogenous p20BAP31 was still located in the ER and significantly activated the unfolded protein response (UPR) through the PERK pathway. The activation of the PERK pathway is prominent in p20BAP31-induced reactive oxygen species (ROS) accumulation and apoptosis. We found, for the first time, that p20BAP31 leads to ER stress and markedly attenuates tumor cell growth in vivo. Importantly, mechanistic investigations indicated that p20BAP31 competitively binds to GRP78 from PERK and causes hyperactivation of the UPR. Furthermore, p20BAP31 upregulates the expression of GRP78 by promoting HSF1 nuclear translocation and enhancing its binding to the GRP78 promoter. These findings reveal p20BAP31 as a regulator of ER stress and a potential target for tumor therapy, and elucidate the underlying mechanism by which p20BAP31 mediates signal transduction between ER and mitochondria.
Collapse
Affiliation(s)
- Xiaohan Jiang
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China
| | - Benzhi Zhu
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China
| | - Guoxun Li
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China
| | - Shuyu Cui
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China
| | - Jiaying Yang
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China
| | - Rui Jiang
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China.
| | - Bing Wang
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China.
| |
Collapse
|
13
|
Yu L, Zhou S, Hong W, Lin N, Wang Q, Liang P. Characterization of an endoplasmic reticulum stress-associated lncRNA prognostic signature and the tumor-suppressive role of RP11-295G20.2 knockdown in lung adenocarcinoma. Sci Rep 2024; 14:12283. [PMID: 38811828 PMCID: PMC11137026 DOI: 10.1038/s41598-024-62836-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) is commonly induced by accumulating misfolded or unfolded proteins in tumor microenvironment. Long non-coding RNAs (lncRNAs) play important roles in ERS response and lung adenocarcinoma (LUAD) progression. However, the role of ERS-related lncRNAs in LUAD remains unknown. In this study, we aimed to identify ERS-associated lncRNAs with prognostic value in LUAD and characterize their clinical implications. Cox and least absolute shrinkage and selection operator regression analyses identified nine ERS-related lncRNAs with independent prognostic abilities, including five protective factors (CROCCP2, KIAA0125, LINC0996, RPARP-AS1 and TBX5-AS1) and four risk factors (LINC0857, LINC116, RP11-21L23.2 and RP11-295G20.2). We developed an ERS-related lncRNA risk prediction model in predicting overall survival of LUAD patients, which classified TCGA cohorts into high-risk (HS) and low-risk (LS) groups. Comprehensive bioinformatic analyses revealed HS patients featured with late-stage tumors, greater mutation burdens, weaker anti-tumor immunity/responses, and lower sensitivity to targeted drugs compared to LS patients, contributing to tumor progression and a poor prognosis. Functional enrichment analysis implicated these ERS-related lncRNAs in cell migration, cell death, and immunity. Furthermore, expression of the most significantly upregulated risk lncRNA, RP11-295G20.2, was validated at the mRNA level using clinical LUAD samples. Knockdown of RP11-295G20.2 obviously reduced ERS and suppressed proliferation, invasion, and migration of LUAD cells. This novel ERS-related lncRNA signature provides a new biomarker for prognostic prediction, and ERS-associated RP11-295G20.2 serves as a potential therapeutic target in LUAD.
Collapse
Affiliation(s)
- Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
- Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
- Pathology Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Shuang Zhou
- Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Wencong Hong
- Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Na Lin
- Pathology Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Qingshui Wang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China.
| | - Pingping Liang
- Center for Infection and Immunity, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
14
|
Poklepovic AS, Shah P, Tombes MB, Shrader E, Bandyopadhyay D, Deng X, Roberts CH, Ryan AA, Hudson D, Sankala H, Kmieciak M, Dent P, Malkin MG. Phase 2 Study of Sorafenib, Valproic Acid, and Sildenafil in the Treatment of Recurrent High-Grade Glioma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.23.24304634. [PMID: 38712133 PMCID: PMC11071549 DOI: 10.1101/2024.04.23.24304634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Here we report the results of a single-center phase 2 clinical trial combining sorafenib tosylate, valproic acid, and sildenafil for the treatment of patients with recurrent high-grade glioma (NCT01817751). Clinical toxicities were grade 1 and grade 2, with one grade 3 toxicity for maculopapular rash (6.4%). For all evaluable patients, the median progression-free survival was 3.65 months and overall survival (OS) 10.0 months. There was promising evidence showing clinical activity and benefit. In the 33 evaluable patients, low protein levels of the chaperone GRP78 (HSPA5) was significantly associated with a better OS (p < 0.0026). A correlation between the expression of PDGFRα and OS approached significance (p < 0.0728). Five patients presently have a mean OS of 73.6 months and remain alive. This is the first therapeutic intervention glioblastoma trial to significantly associate GRP78 expression to OS. Our data suggest that the combination of sorafenib tosylate, valproic acid, and sildenafil requires additional clinical development in the recurrent glioma population.
Collapse
Affiliation(s)
- Andrew S Poklepovic
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Palak Shah
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Mary Beth Tombes
- Department of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Ellen Shrader
- Department of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia. USA
| | | | - Xiaoyan Deng
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Catherine H Roberts
- Department of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Alison A Ryan
- Department of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Daniel Hudson
- Department of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Heidi Sankala
- Department of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Maciej Kmieciak
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Paul Dent
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia. USA
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Mark G Malkin
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia. USA
| |
Collapse
|
15
|
Cai C, Tu J, Najarro J, Zhang R, Fan H, Zhang FQ, Li J, Xie Z, Su R, Dong L, Arellano N, Ciboddo M, Elf SE, Gao X, Chen J, Wu R. NRAS Mutant Dictates AHCYL1-Governed ER Calcium Homeostasis for Melanoma Tumor Growth. Mol Cancer Res 2024; 22:386-401. [PMID: 38294692 PMCID: PMC10987265 DOI: 10.1158/1541-7786.mcr-23-0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/27/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Calcium homeostasis is critical for cell proliferation, and emerging evidence shows that cancer cells exhibit altered calcium signals to fulfill their need for proliferation. However, it remains unclear whether there are oncogene-specific calcium homeostasis regulations that can expose novel therapeutic targets. Here, from RNAi screen, we report that adenosylhomocysteinase like protein 1 (AHCYL1), a suppressor of the endoplasmic reticulum (ER) calcium channel protein inositol trisphosphate receptor (IP3R), is selectively upregulated and critical for cell proliferation and tumor growth potential of human NRAS-mutated melanoma, but not for melanoma expressing BRAF V600E. Mechanistically, AHCYL1 deficiency results in decreased ER calcium levels, activates the unfolded protein response (UPR), and triggers downstream apoptosis. In addition, we show that AHCYL1 transcription is regulated by activating transcription factor 2 (ATF2) in NRAS-mutated melanoma. Our work provides evidence for oncogene-specific calcium regulations and suggests AHCYL1 as a novel therapeutic target for RAS mutant-expressing human cancers, including melanoma. IMPLICATIONS Our findings suggest that targeting the AHCYL1-IP3R axis presents a novel therapeutic approach for NRAS-mutated melanomas, with potential applicability to all cancers harboring RAS mutations, such as KRAS-mutated human colorectal cancers.
Collapse
Affiliation(s)
- Chufan Cai
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jiayi Tu
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jeronimo Najarro
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rukang Zhang
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Hao Fan
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Freya Q. Zhang
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jiacheng Li
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Zhicheng Xie
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Nicole Arellano
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Michele Ciboddo
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Shannon E. Elf
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Xue Gao
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
- Current address: Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jing Chen
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rong Wu
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Kumar V, Barwal A, Sharma N, Mir DS, Kumar P, Kumar V. Therapeutic proteins: developments, progress, challenges, and future perspectives. 3 Biotech 2024; 14:112. [PMID: 38510462 PMCID: PMC10948735 DOI: 10.1007/s13205-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.
Collapse
Affiliation(s)
- Vimal Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Arti Barwal
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, Punjab 140307 India
| | - Danish Shafi Mir
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| |
Collapse
|
17
|
Tanveer F, Ilyas A, Syed B, Hashim Z, Ahmed A, Zarina S. Differential Protein Expression in Response to Varlitinib Treatment in Oral Cancer Cell Line: an In Vitro Therapeutic Approach. Appl Biochem Biotechnol 2024; 196:2110-2121. [PMID: 37470935 DOI: 10.1007/s12010-023-04642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Epidermal growth factor receptor (EGFR) is the most frequently overexpressed receptor histologically exhibited by oral squamous cell carcinoma (OSCC) patients. Aberrated EGFR signaling may lead to recurrence and metastasis, thus laying the foundation of targeted therapy. Deactivating EGFR is likely to prevent downstream signaling thus resulting in apoptosis. Tyrosine kinase inhibitors (TKIs) have come into play to revert aggressiveness of OSCC. We exploited comparative proteomic analyses based on anti-EGFR potential of varlitinib, using cellular proteomes from treated and untreated groups of oral cancer cells to identify protein players functional during oral carcinogenesis. Following separation by two-dimensional electrophoresis, differentially expressed cellular proteins (varlitinib-treated and untreated cells) were analyzed and later identified using QTOF mass spectrometer. In silico analysis for protein-protein interaction was carried out using STRING. Six differentially expressed proteins were identified as binding immunoglobulin protein (BiP), heat shock protein 7 C (HSP7C), protein disulfide isomerase 1 A (PDIA1), vimentin (VIME), keratin type I cytoskeletal 14 (K1C14), and β-Actin (ACTB). Relative expression of five proteins was found to be downregulated upon varlitinib treatment, whereas only K1C14 was upregulated in treated cells compared to control. Protein network analysis depicts the interaction between BiP, PDIA1, VIME, etc. indicating their role in oral carcinogenesis. Oral cancer cells show proteome shift based on varlitinib treatment compared to corresponding controls. Our data suggest candidature of varlitinib as a potent therapeutic agent and BiP, PDIA1, HSP7C, VIME, and β-Actin as complementary/prognostic markers of OSCC.
Collapse
Affiliation(s)
- Fariha Tanveer
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Amber Ilyas
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Basir Syed
- School of Pharmacy, Chapman University, Orange, CA, USA
| | - Zehra Hashim
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Aftab Ahmed
- School of Pharmacy, Chapman University, Orange, CA, USA
| | - Shamshad Zarina
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
18
|
Sun Q, Jin L, Dong S, Zhang L. LRRC59 promotes the progression of oral squamous cell carcinoma by interacting with SRP pathway components and enhancing the secretion of CKAP4-containing exosomes. Heliyon 2024; 10:e28083. [PMID: 38533057 PMCID: PMC10963372 DOI: 10.1016/j.heliyon.2024.e28083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Background As a ribosome receptor, LRRC59 was thought to regulate mRNA translation on the ER membrane. Evidence suggests that LRRC59 is overexpressed in a number of human malignancies and is associated with poor prognoses, but its primary biological function in the development of oral squamous cell carcinoma (OSCC) remains obscure. Objective The purpose of this study is to investigate at the expression changes and functional role of LRRC59 in OSCC. Methods LRRC59 gene expression and correlation with prognosis of OSCC patients were first examined using the data from The Cancer Genome Atlas (TCGA) databases. Following that, a series of functional experiments, including cell counting kit-8, cell cycle analysis, wound healing assays, and transwell assays, were carried out to analyze the biological roles of LRRC59 in tumor cells. Mechanistically, we employed Tandem Affinity Purification-Mass Spectrometry (TAP-MS) approach to isolate and identify protein complexes of LRRC59. Downstream regulatory proteins of LRRC59 were verified through immunoprecipitation and immunofluorescence experiments. Furthermore, we isolated exosomes from OSCC cell supernatant and conducted co-culture experiments to examine the effect of LRRC59 knockdown on OSCC cells. Results In samples from OSCC patients, LRRC59 was highly expressed and correlated with poor prognoses. Moreover, the gene sets analysis based on TCGA RNA-seq data indicated that LRRC59 seemed to be strongly related with protein secretory and OSCC migration. Upregulated levels of LRRC59 are more prone to lymph node metastasis in OSCC patients. LRRC59 knockdown impaired the ability of OSCC cell proliferation, migration, and invasion invitro. Mechanistically, our TAP-MS data situate LRRC59 in a functional nexus for mRNA translation regulation via interactions with SRP pathway components, translational initiation factors, CRD-mediated mRNA stabilization factors. More importantly, we found that LRRC59 interacted with cytoskeleton-associated protein 4 (CKAP4) and promoted the formation of CKAP4-containing exosomes. We also revealed that the LRRC59-CKAP4 axis was a crucial regulator of CKAP4-containing exosome secretion in OSCC cells for migration and invasion. Conclusions Therefore, based on our findings, LRRC59 may serve as a potential biomarker for OSCC patients, and LRRC59-induced exosome secretion via the CKAP4 axis may serve as a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Qijun Sun
- Department of Stomatology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Lili Jin
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Shunli Dong
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Ling Zhang
- Department of Stomatology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, 313000, Zhejiang, China
| |
Collapse
|
19
|
Qiu L, Liu H, Chen S, Wu Y, Yan J. Inhibition of the endoplasmic reticulum stress-associated IRE-1 pathway alleviates preterm birth. Am J Reprod Immunol 2024; 91:e13826. [PMID: 38531818 DOI: 10.1111/aji.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Premature birth (PTB) remains a major global health concern due to its association with neonatal morbidity and mortality. The unfolded protein response (UPR) within the endoplasmic reticulum (ER) is tightly regulated by Inositol-requiring enzyme type 1 (IRE-1), a pivotal cellular modulator. This study seeks to elucidate the role of the ER stress (ERS)-related IRE-1 pathway in PTB. METHODS Human placental trophoblast cells HTR8/Svneo were exposed to the ER-stress inducer tunicamycin (TM). The expression of IRE-1 and ERS-associated proteins ATF6, GRP78, and XBP-1 was assessed in placental tissues and TM-treated cells. Cellular viability, migration, invasion, and apoptosis were evaluated through a series of experimental assays. Additionally, various methods were employed to assess and verify the activation of autophagy, using the autophagy marker, microtubule-associated protein 1A/1B-light chain 3 (LC3). Additionally, TUDCA (an ERS inhibitor) was used to assess its potential to counteract the TM-induced cell effects. RESULTS Elevated levels of ATF6, GRP78, and XBP-1 were observed in PTB tissues and cells. TM treatment substantially reduced cell viability, migration, and invasion while promoting apoptosis. Treatment with TUDCA (an ERS inhibitor) counteracted the effects of TM on the cells. Furthermore, we identified an overexpression of IRE-1 in PTB tissues and cells and its knockdown enhanced cell viability, migration, and invasion while suppressed apoptosis and autophagy under TM stimulation. Notably, IRE-1 was found to modulate the activity of the IRE-1/XBP1/CHOP signaling pathway in TM-treated cells. CONCLUSION The upregulation of IRE-1 in PTB placental tissues is implicated in the pathogenesis of PTB. Importantly, inhibiting the ERS-associated IRE-1/XBP1/CHOP pathway may be a good strategy in mitigating PTB.
Collapse
Affiliation(s)
- Liyin Qiu
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Hui Liu
- Department of Histology and Embryology, Fujian Medical University, Fuzhou, Fujian, China
| | - Shali Chen
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Yiting Wu
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianying Yan
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
20
|
Zhang B, Li N, Gao J, Zhao Y, Jiang J, Xie S, Zhang C, Zhang Q, Liu L, Wang Z, Ji D, Wu L, Ren R. Targeting of focal adhesion kinase enhances the immunogenic cell death of PEGylated liposome doxorubicin to optimize therapeutic responses of immune checkpoint blockade. J Exp Clin Cancer Res 2024; 43:51. [PMID: 38373953 PMCID: PMC10875809 DOI: 10.1186/s13046-024-02974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/03/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUNDS Immune checkpoint blockade (ICB) is widely considered to exert long-term treatment benefits by activating antitumor immunity. However, many cancer patients show poor clinical responses to ICB due in part to the lack of an immunogenic niche. Focal adhesion kinase (FAK) is frequently amplified and acts as an immune modulator across cancer types. However, evidence illustrates that targeting FAK is most effective in combination therapy rather than in monotherapy. METHODS Here, we used drug screening, in vitro and in vivo assays to filter out that doxorubicin and its liposomal form pegylated liposome doxorubicin (PLD) showed synergistic anti-tumor effects in combination with FAK inhibitor IN10018. We hypothesized that anti-tumor immunity and immunogenic cell death (ICD) may be involved in the treatment outcomes through the data analysis of our clinical trial testing the combination of IN10018 and PLD. We then performed cell-based assays and animal studies to detect whether FAK inhibition by IN10018 can boost the ICD of PLD/doxorubicin and further established syngeneic models to test the antitumor effect of triplet combination of PLD, IN10018, and ICB. RESULTS We demonstrated that the combination of FAK inhibitor IN10018, and PLD/doxorubicin exerted effective antitumor activity. Notably, the doublet combination regimen exhibited response latency and long-lasting treatment effects clinically, outcomes frequently observed in immunotherapy. Our preclinical study confirmed that the 2-drug combination can maximize the ICD of cancer cells. This approach primed the tumor microenvironment, supplementing it with sufficient tumor-infiltrating lymphocytes (TILs) to activate antitumor immunity. Finally, different animal studies confirmed that the antitumor effects of ICB can be significantly enhanced by this doublet regimen. CONCLUSIONS We confirmed that targeting FAK by IN10018 can enhance the ICD of PLD/doxorubicin, further benefiting the anti-tumor effect of ICB. The animal tests of the triplet regimen warrant further discovery in the real world.
Collapse
Affiliation(s)
- Baoyuan Zhang
- State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, Shanghai Institute of HematologyNational Research Center for Translational MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinses Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaming Gao
- State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, Shanghai Institute of HematologyNational Research Center for Translational MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxi Zhao
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinses Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Jiang
- InxMed (Shanghai) Co., Ltd, Beijing, China
| | - Shuang Xie
- InxMed (Shanghai) Co., Ltd, Beijing, China
| | - Cuiping Zhang
- Department of Pathology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Qingyu Zhang
- Laboratory of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Leo Liu
- InxMed (Shanghai) Co., Ltd, Beijing, China
| | - Zaiqi Wang
- InxMed (Shanghai) Co., Ltd, Beijing, China
| | - Dongmei Ji
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Lingying Wu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinses Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ruibao Ren
- State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, Shanghai Institute of HematologyNational Research Center for Translational MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- International Center for Aging and Cancer, Hainan Medical University, Hainan Province, Haikou, China.
| |
Collapse
|
21
|
Dubey R, Sharma A, Gupta S, Gupta GD, Asati V. A comprehensive review of small molecules targeting PI3K pathway: Exploring the structural development for the treatment of breast cancer. Bioorg Chem 2024; 143:107077. [PMID: 38176377 DOI: 10.1016/j.bioorg.2023.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Cancer stands as one of the deadliest diseases, ranking second in terms of its global impact. Despite the presence of numerous compelling theories concerning its origins, none have succeeded in fully elucidating the intricate nature of this ailment. Among the prevailing concerns in today's world, breast cancer proliferation remains a significant issue, particularly affecting females. The abnormal proliferation of the PI3K pathway emerges as a prominent driver of breast cancer, underscoring its role in cellular survival and proliferation. Consequently, targeting this pathway has emerged as a leading strategy in breast cancer therapeutics. Within this context, the present article explores the current landscape of anti-tumour drug development, focusing on structural activity relationships (SAR) in PI3K targeting breast cancer treatment. Notably, certain moieties like triazines, pyrimidine, quinazoline, quinoline, and pyridoxine have been explored as potential PI3K inhibitors for combating breast cancer. Various heterocyclic small molecules are undergoing clinical trials, such as Alpelisib, the first orally available FDA-approved drug targeting PI3K; others include buparlisib, pictilisib, and taselisib, which inhibit class I PI3K. These drugs are used for the treatment of breast cancer but still have various side effects with their high cost. Therefore, the primary goal of this review is to include all current advances in the development of anticancer medicines that target PI3K over-activation in the treatment of breast cancer.
Collapse
Affiliation(s)
- Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
22
|
Akhtar MF, Afzaal A, Saleem A, Roheel A, Khan MI, Imran M. A comprehensive review on the applications of ferrite nanoparticles in the diagnosis and treatment of breast cancer. Med Oncol 2024; 41:53. [PMID: 38198041 DOI: 10.1007/s12032-023-02277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Various conventional treatments including endocrine therapy, radiotherapy, surgery, and chemotherapy have been used for several decades to treat breast cancer; however, these therapies exhibit various life-threatening and debilitating adverse effects in patients. Additionally, combination therapies are required for prompt action as well as to prevent drug resistance toward standard breast cancer medications. Ferrite nanoparticles (NPs) are increasingly gaining momentum for their application in the diagnosis and treatment of breast cancer. Spinel ferrites are particularly used against breast cancer and have shown in vitro and in vivo better efficacy as compared to conventional cancer therapies. Magnetic resonance imaging contrast agents, magnetic particle imaging tracers, cell separation, and immune assays are some aspects related to the diagnosis of breast cancer against which different ferrite NPs have been successfully evaluated. Moreover, citrate-coated nickel ferrite, Mg/Zn ferrites, poly amidoamine dendrimers, cobalt ferrites, graphene oxide cobalt ferrites, doxorubicin functionalized cobalt ferrites, chitosan-coated zinc ferrites, PEG-coated cobalt ferrite, and copper ferrite NPs have demonstrated antiproliferative action against different breast cancer cells. Oxaliplatin-loaded polydopamine/BSA-copper ferrites, functionalized cobalt and zinc ferrites of curcumin, oxaliplatin-copper ferrite NPs, tamoxifen/diosgenin encapsulated ZnO/Mn ferrites, and fabricated core-shell fibers of doxorubicin have been developed to increase the bioavailability and anti-proliferative effect and decrease the toxicity of anticancer drugs. These ferrite NPs showed an anticancer effect at different doses in the presence or absence of an external magnetic field. The present review covers the in-depth investigations of ferrite NPs for the diagnosis and management of breast cancer.
Collapse
Affiliation(s)
- Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Aysha Afzaal
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Amna Roheel
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
| |
Collapse
|
23
|
Tao J, Xue C, Cao M, Ye J, Sun Y, Chen H, Guan Y, Zhang W, Zhang W, Yao Y. Protein disulfide isomerase family member 4 promotes triple-negative breast cancer tumorigenesis and radiotherapy resistance through JNK pathway. Breast Cancer Res 2024; 26:1. [PMID: 38167446 PMCID: PMC10759449 DOI: 10.1186/s13058-023-01758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Despite radiotherapy ability to significantly improve treatment outcomes and survival in triple-negative breast cancer (TNBC) patients, acquired resistance to radiotherapy poses a serious clinical challenge. Protein disulfide isomerase exists in endoplasmic reticulum and plays an important role in promoting protein folding and post-translational modification. However, little is known about the role of protein disulfide isomerase family member 4 (PDIA4) in TNBC, especially in the context of radiotherapy resistance. METHODS We detected the presence of PDIA4 in TNBC tissues and paracancerous tissues, then examined the proliferation and apoptosis of TNBC cells with/without radiotherapy. As part of the validation process, xenograft tumor mouse model was used. Mass spectrometry and western blot analysis were used to identify PDIA4-mediated molecular signaling pathway. RESULTS Based on paired clinical specimens of TNBC patients, we found that PDIA4 expression was significantly higher in tumor tissues compared to adjacent normal tissues. In vitro, PDIA4 knockdown not only increased apoptosis of tumor cells with/without radiotherapy, but also decreased the ability of proliferation. In contrast, overexpression of PDIA4 induced the opposite effects on apoptosis and proliferation. According to Co-IP/MS results, PDIA4 prevented Tax1 binding protein 1 (TAX1BP1) degradation by binding to TAX1BP1, which inhibited c-Jun N-terminal kinase (JNK) activation. Moreover, PDIA4 knockdown suppressed tumor growth xenograft model in vivo, which was accompanied by an increase in apoptosis and promoted tumor growth inhibition after radiotherapy. CONCLUSIONS The results of this study indicate that PDIA4 is an oncoprotein that promotes TNBC progression, and targeted therapy may represent a new and effective anti-tumor strategy, especially for patients with radiotherapy resistance.
Collapse
Affiliation(s)
- Jinqiu Tao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Cailin Xue
- Division of Hepatobilliary Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Meng Cao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Jiahui Ye
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yulu Sun
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Hao Chen
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yinan Guan
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Weijie Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Yongzhong Yao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
24
|
Wang J, Jin J, Li G. NR3C2 activates LCN2 transcription to promote endoplasmic reticulum stress and cell apoptosis in ischemic cerebral infarction. Brain Res 2024; 1822:148632. [PMID: 37832761 DOI: 10.1016/j.brainres.2023.148632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Endoplasmic reticulum (ER) stress can lead to cell death and worsen tissue damage during ischemic events. Nuclear receptor subfamily 3 group C member 2 (NR3C2) and lipocalin 2 (LCN2) are known to be associated with ER stress. In this study, we obtained a potential interaction between NR3C2 and LCN2 through bioinformatics. The primary objective was to investigate their roles and interactions in the context of ER stress in ischemic cerebral infarction (ICI). A mouse model of ICI was generated by middle cerebral artery occlusion, resulting in elevated levels of NR3C2 and LCN2 in brain tissues. NR3C2 bound to the LCN2 promoter, thereby activating its transcription. Either knockdown of LCN2 or NR3C2 led to an improvement in neurologic deficits in mice, along with a reduction in infract size, tissue damage, ER stress, inflammation, and cell apoptosis in their brain tissues. Similar results were reproduced in HT22 cells, where LCN2 or NR3C2 knockdown alleviated oxygen-glucose deprivation-induced ER stress, inflammation, and cell apoptosis while improving cell viability. However, the protective effects of NR3C2 knockdown were counteracted when LCN2 was overexpressed, both in vitro and in vivo. Overall, this study demonstrates that NR3C2 activates LCN2 transcription, ultimately promoting ER stress and cell apoptosis in the context of ICI.
Collapse
Affiliation(s)
- Jianxiu Wang
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin 150001, Heilongjiang, PR China
| | - Jing Jin
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin 150001, Heilongjiang, PR China
| | - Guozhong Li
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin 150001, Heilongjiang, PR China.
| |
Collapse
|
25
|
Joyce R, Pascual R, Heitink L, Capaldo BD, Vaillant F, Christie M, Tsai M, Surgenor E, Anttila CJA, Rajasekhar P, Jackling FC, Trussart M, Milevskiy MJG, Song X, Li M, Teh CE, Gray DHD, Smyth GK, Chen Y, Lindeman GJ, Visvader JE. Identification of aberrant luminal progenitors and mTORC1 as a potential breast cancer prevention target in BRCA2 mutation carriers. Nat Cell Biol 2024; 26:138-152. [PMID: 38216737 DOI: 10.1038/s41556-023-01315-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
Inheritance of a BRCA2 pathogenic variant conveys a substantial life-time risk of breast cancer. Identification of the cell(s)-of-origin of BRCA2-mutant breast cancer and targetable perturbations that contribute to transformation remains an unmet need for these individuals who frequently undergo prophylactic mastectomy. Using preneoplastic specimens from age-matched, premenopausal females, here we show broad dysregulation across the luminal compartment in BRCA2mut/+ tissue, including expansion of aberrant ERBB3lo luminal progenitor and mature cells, and the presence of atypical oestrogen receptor (ER)-positive lesions. Transcriptional profiling and functional assays revealed perturbed proteostasis and translation in ERBB3lo progenitors in BRCA2mut/+ breast tissue, independent of ageing. Similar molecular perturbations marked tumours bearing BRCA2-truncating mutations. ERBB3lo progenitors could generate both ER+ and ER- cells, potentially serving as cells-of-origin for ER-positive or triple-negative cancers. Short-term treatment with an mTORC1 inhibitor substantially curtailed tumorigenesis in a preclinical model of BRCA2-deficient breast cancer, thus uncovering a potential prevention strategy for BRCA2 mutation carriers.
Collapse
Affiliation(s)
- Rachel Joyce
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Rosa Pascual
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Luuk Heitink
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Bianca D Capaldo
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - François Vaillant
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Christie
- Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Minhsuang Tsai
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Elliot Surgenor
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Casey J A Anttila
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Pradeep Rajasekhar
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Felicity C Jackling
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Marie Trussart
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Michael J G Milevskiy
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Xiaoyu Song
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mengbo Li
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Charis E Teh
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Daniel H D Gray
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yunshun Chen
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Geoffrey J Lindeman
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.
- Parkville Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.
| | - Jane E Visvader
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
26
|
Yuan Y, Fan J, Liang D, Wang S, Luo X, Zhu Y, Liu N, Xiang T, Zhao X. Cell surface GRP78-directed CAR-T cells are effective at treating human pancreatic cancer in preclinical models. Transl Oncol 2024; 39:101803. [PMID: 37897831 PMCID: PMC10630660 DOI: 10.1016/j.tranon.2023.101803] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/13/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023] Open
Abstract
Pancreatic cancer is a highly lethal solid malignancy with limited treatment options. Chimeric antigen receptor T (CAR-T) cell therapy has been successfully applied to treat hematological malignancies, but faces many challenges in solid tumors. One major challenge is the shortage of tumor-selective targets. Cell surface GRP78 (csGRP78) is highly expressed on various solid cancer cells including pancreatic cancer, but not normal cells, providing a potential target for CAR-T cell therapy in pancreatic cancer. Here, we demonstrated that csGRP78-directed CAR-T (GRP78-CAR-T) cells effectively killed the human pancreatic cancer cell lines Bxpc-3-luc, Aspc-1-luc and MIA PaCa-2-luc, and pancreatic cancer stem-like cells derived from Aspc-1-luc cells and MIA PaCa-2-luc cells in vitro by a luciferase-based cytotoxicity assay. Importantly, we showed that GRP78-CAR-T cells efficiently homed to and infiltrated Aspc-1-luc cell-derived xenografts and significantly inhibited pancreatic tumor growth in vivo by performing mouse xenograft experiments. Interestingly, we found that gemcitabine treatment increased csGRP78 expression in gemcitabine-resistant MIA PaCa-2-luc cells, and the coapplication of gemcitabine with GRP78-CAR-T cells led to a robust cytotoxic effect on these cells in vitro. Taken together, our study demonstrates that csGRP78-directed CAR-T cells, alone or in combination with chemotherapy, selectively and efficiently target csGRP78-expressing pancreatic cancer cells to suppress pancreatic tumor growth.
Collapse
Affiliation(s)
- Yuncang Yuan
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiawei Fan
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dandan Liang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shijie Wang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xu Luo
- Development and Application of Human Major Disease Monkey Model Key Laboratory of Sichuan Province, Sichuan Hengshu Bio-Technology Co., Ltd., Yibin 644600, China
| | - Yongjie Zhu
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Nan Liu
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Xudong Zhao
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
27
|
Huang PY, Shih IA, Liao YC, You HL, Lee MJ. FT895 Impairs Mitochondrial Function in Malignant Peripheral Nerve Sheath Tumor Cells. Int J Mol Sci 2023; 25:277. [PMID: 38203448 PMCID: PMC10779378 DOI: 10.3390/ijms25010277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) stands as a prevalent neurocutaneous disorder. Approximately a quarter of NF1 patients experience the development of plexiform neurofibromas, potentially progressing into malignant peripheral nerve sheath tumors (MPNST). FT895, an HDAC11 inhibitor, exhibits potent anti-tumor effects on MPNST cells and enhances the cytotoxicity of cordycepin against MPNST. The study aims to investigate the molecular mechanism underlying FT895's efficacy against MPNST cells. Initially, our study unveiled that FT895 disrupts mitochondrial biogenesis and function. Post-FT895 treatment, reactive oxygen species (ROS) in MPNST notably increased, while mitochondrial DNA copy numbers decreased significantly. Seahorse analysis indicated a considerable decrease in basal, maximal, and ATP-production-coupled respiration following FT895 treatment. Immunostaining highlighted FT895's role in promoting mitochondrial aggregation without triggering mitophagy, possibly due to reduced levels of XBP1, Parkin, and PINK1 proteins. Moreover, the study using CHIP-qPCR analysis revealed a significant reduction in the copy numbers of promoters of the MPV17L2, POLG, TFAM, PINK1, and Parkin genes. The RNA-seq analysis underscored the prominent role of the HIF-1α signaling pathway post-FT895 treatment, aligning with the observed impairment in mitochondrial respiration. In summary, the study pioneers the revelation that FT895 induces mitochondrial respiratory damage in MPNST cells.
Collapse
Affiliation(s)
- Po-Yuan Huang
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10012, Taiwan; (P.-Y.H.); (I.-A.S.); (Y.-C.L.); (H.-L.Y.)
| | - I-An Shih
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10012, Taiwan; (P.-Y.H.); (I.-A.S.); (Y.-C.L.); (H.-L.Y.)
| | - Ying-Chih Liao
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10012, Taiwan; (P.-Y.H.); (I.-A.S.); (Y.-C.L.); (H.-L.Y.)
| | - Huey-Ling You
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10012, Taiwan; (P.-Y.H.); (I.-A.S.); (Y.-C.L.); (H.-L.Y.)
| | - Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10012, Taiwan; (P.-Y.H.); (I.-A.S.); (Y.-C.L.); (H.-L.Y.)
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10012, Taiwan
| |
Collapse
|
28
|
Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023; 15:5082. [PMID: 38140341 PMCID: PMC10745682 DOI: 10.3390/nu15245082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiyoon Lee
- Department of Biological Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30609, USA;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
29
|
Guo W, Wang M, Yang Z, Liu D, Ma B, Zhao Y, Chen Y, Hu Y. Recent advances in small molecule and peptide inhibitors of glucose-regulated protein 78 for cancer therapy. Eur J Med Chem 2023; 261:115792. [PMID: 37690265 DOI: 10.1016/j.ejmech.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Glucose-regulated protein 78 (GRP78) is one of key endoplasmic reticulum (ER) chaperone proteins that regulates the unfolded protein response (UPR) to maintain ER homeostasis. As a core factor in the regulation of the UPR, GRP78 takes a critical part in the cellular processes required for tumorigenesis, such as proliferation, metastasis, anti-apoptosis, immune escape and chemoresistance. Overexpression of GRP78 is closely correlated with tumorigenesis and poor prognosis in various malignant tumors. Targeting GRP78 is regarded as a potentially promising therapeutic strategy for cancer therapy. Although none of the GRP78 inhibitors have been approved to date, there have been several studies of GRP78 inhibitors. Herein, we comprehensively review the structure, physiological functions of GRP78 and the recent progress of GRP78 inhibitors, and discuss the structures, in vitro and in vivo efficacies, and merits and demerits of these inhibitors to inspire further research. Additionally, the feasibility of GRP78-targeting proteolysis-targeting chimeras (PROTACs), disrupting GRP78 cochaperone interactions, or covalent inhibition are also discussed as novel strategies for drugs discovery targeting GRP78, with the hope that these strategies can provide new opportunities for targeted GRP78 antitumor therapy.
Collapse
Affiliation(s)
- Weikai Guo
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Manjie Wang
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Zhengfan Yang
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Danyang Liu
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Borui Ma
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Yanqun Zhao
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Yanzhong Hu
- The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
30
|
Hoang KNL, Murphy CJ. Adsorption and Molecular Display of a Redox-Active Protein on Gold Nanoparticle Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15974-15985. [PMID: 37906943 DOI: 10.1021/acs.langmuir.3c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Engineered gold nanoparticles (AuNPs) have great potential in many applications due to their tunable optical properties, facile synthesis, and surface functionalization via thiol chemistry. When exposed to a biological environment, NPs are coated with a protein corona that can alter the NPs' biological identity but can also affect the proteins' structures and functions. Protein disulfide isomerase (PDI) is an abundant protein responsible for the disulfide formation and isomerization that contribute to overall cell redox homeostasis and signaling. Given that AuNPs are widely employed in nanomedicine and PDI plays a functional role in various diseases, the interactions between oxidized (oPDI) and reduced (rPDI) with 50 nm citrate-coated AuNPs (AuNPs) are examined in this study using various techniques. Upon incubation, PDI adsorbs to the AuNP surface, which leads to a reduction in its enzymatic activity despite limited changes in secondary structures. Partial enzymatic digestion followed by mass spectrometry analysis shows that orientation of PDI on the NP surface is dependent on both its oxidation state and the PDI:AuNP incubation ratios.
Collapse
Affiliation(s)
- Khoi Nguyen L Hoang
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Chung C. Current therapies for classic myeloproliferative neoplasms: A focus on pathophysiology and supportive care. Am J Health Syst Pharm 2023; 80:1624-1636. [PMID: 37556726 DOI: 10.1093/ajhp/zxad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
PURPOSE This article concisely evaluates current therapies that have received regulatory approval for the treatment of classic myeloproliferative neoplasms (MPNs). Pertinent pathophysiology and supportive care are discussed. Emerging therapies are also briefly described. SUMMARY MPNs are a heterogeneous group of diseases characterized by acquired abnormalities of hematopoietic stem cells (HSCs), resulting in the generation of transformed myeloid progenitor cells that overproduce mature and immature cells within the myeloid lineage. Mutations in JAK2 and other driver oncogenes are central to the genetic variability of these diseases. Cytoreductive therapies such as hydroxyurea, anagrelide, interferon, and therapeutic phlebotomy aim to lower the risk of thrombotic events without exposing patients to an increased risk of leukemic transformation. However, no comparisons can be made between these therapies, as reduction of thrombotic risk has not been used as an endpoint. On the other hand, Janus kinase (JAK) inhibitors such as ruxolitinib, fedratinib, pacritinib, and momelotinib (an investigational agent at the time of writing) directly target the constitutively activated JAK-signal transducer and activator of transcription (JAK-STAT) pathway of HSCs in the bone marrow. Mutations of genes in the JAK-STAT signaling pathway provide a unifying understanding of MPNs, spur therapeutic innovations, and represent opportunities for pharmacists to optimize mitigation strategies for both disease-related and treatment-related adverse effects. CONCLUSION Treatment options for MPNs span a wide range of disease mechanisms. The growth of targeted therapies holds promise for expanding the treatment arsenal for these rare, yet complex diseases and creates opportunities to optimize supportive care for affected patients.
Collapse
|
32
|
Kwon Y, Kim J, Cho SY, Kang YJ, Lee J, Kwon J, Rhee H, Bauer S, Kim HS, Lee E, Kim HS, Jung JH, Kim H, Kim WK. Identification of novel pathogenic roles of BLZF1/ATF6 in tumorigenesis of gastrointestinal stromal tumor showing Golgi-localized mutant KIT. Cell Death Differ 2023; 30:2309-2321. [PMID: 37704840 PMCID: PMC10589262 DOI: 10.1038/s41418-023-01220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) frequently show KIT mutations, accompanied by overexpression and aberrant localization of mutant KIT (MT-KIT). As previously established by multiple studies, including ours, we confirmed that MT-KIT initiates downstream signaling in the Golgi complex. Basic leucine zipper nuclear factor 1 (BLZF1) was identified as a novel MT-KIT-binding partner that tethers MT-KIT to the Golgi complex. Sustained activation of activated transcription factor 6 (ATF6), which belongs to the unfolded protein response (UPR) family, alleviates endoplasmic reticulum (ER) stress by upregulating chaperone expression, including heat shock protein 90 (HSP90), which assists in MT-KIT folding. BLZF1 knockdown and ATF6 inhibition suppressed both imatinib-sensitive and -resistant GIST in vitro. ATF6 inhibitors further showed potent antitumor effects in GIST xenografts, and the effect was enhanced with ER stress-inducing drugs. ATF6 activation was frequently observed in 67% of patients with GIST (n = 42), and was significantly associated with poorer relapse-free survival (P = 0.033). Overall, GIST bypasses ER quality control (QC) and ER stress-mediated cell death via UPR activation and uses the QC-free Golgi to initiate signaling.
Collapse
Affiliation(s)
- Yujin Kwon
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Jiyoon Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Su-Yeon Cho
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Yoon Jin Kang
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
- Department of Marine Life Sciences, College of Life Science, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Jongsoo Lee
- Department of Urology, Urologic Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jaeyoung Kwon
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, South Korea
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
| | - Hyungjin Rhee
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Sebastian Bauer
- Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Germany and German Cancer Consortium (DKTK), Essen, 45141, Germany
| | - Hyung-Sik Kim
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Han Sang Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jae Hung Jung
- Department of Urology, Yonsei University Wonju College of Medicine/Center of Evidence Based Medicine Institute of Convergence Science, Wonju, 26426, South Korea
| | - Hoguen Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Won Kyu Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea.
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju, 26426, South Korea.
| |
Collapse
|
33
|
Qing B, Wang S, Du Y, Liu C, Li W. Crosstalk between endoplasmic reticulum stress and multidrug-resistant cancers: hope or frustration. Front Pharmacol 2023; 14:1273987. [PMID: 37790807 PMCID: PMC10544988 DOI: 10.3389/fphar.2023.1273987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023] Open
Abstract
Endoplasmic reticulum stress (ERS) is a kind of cell response for coping with hypoxia and other stresses. Pieces of evidence show that continuous stress can promote the occurrence, development, and drug resistance of tumors through the unfolded protein response. Therefore, the abnormal ac-tivation of ERS and its downstream signaling pathways not only can regulate tumor growth and metastasis but also profoundly affect the efficacy of antitumor therapy. Therefore, revealing the molecular mechanism of ERS may be expected to solve the problem of tumor multidrug resistance (MDR) and become a novel strategy for the treatment of refractory and recurrent tumors. This re-view summarized the mechanism of ERS and tumor MDR, reviewed the relationship between ERS and tumor MDR, introduced the research status of tumor tissue and ERS, and previewed the prospect of targeting ERS to improve the therapeutic effect of tumor MDR. This article aims to provide researchers and clinicians with new ideas and inspiration for basic antitumor treatment.
Collapse
Affiliation(s)
- Bowen Qing
- First Affiliated Hospital of Hunan Normal University, Department of Hematology, Hunan Provincial People’s Hospital, Changsha, China
| | - Song Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingan Du
- First Affiliated Hospital of Hunan Normal University, Department of Hematology, Hunan Provincial People’s Hospital, Changsha, China
| | - Can Liu
- First Affiliated Hospital of Hunan Normal University, Department of Hematology, Hunan Provincial People’s Hospital, Changsha, China
| | - Wei Li
- First Affiliated Hospital of Hunan Normal University, Department of Hematology, Hunan Provincial People’s Hospital, Changsha, China
| |
Collapse
|
34
|
Abu-Mahfouz A, Ali M, Elfiky A. Anti-breast cancer drugs targeting cell-surface glucose-regulated protein 78: a drug repositioning in silico study. J Biomol Struct Dyn 2023; 41:7794-7808. [PMID: 36129131 DOI: 10.1080/07391102.2022.2125076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/10/2022] [Indexed: 10/14/2022]
Abstract
Breast cancer (BC) is prevalent worldwide and is a leading cause of death among women. However, cell-surface glucose-regulated protein 78 (cs-GRP78) is overexpressed in several types of cancer and during pathogen infections. This study examines two well-known BC drugs approved by the FDA as BC treatments to GRP78. The first type consists of inhibitors of cyclin-based kinases 4/6, including abemaciclib, palbociclib, ribociclib, and dinaciclib. In addition, tunicamycin, and doxorubicin, which are among the most effective anticancer drugs for early and late-stage BC, are tested against GRP78. As (-)-epiGallocatechin gallate inhibits GRP78, it is also being evaluated (used as positive control). Thus, using molecular dynamics simulation approaches, this study aims to examine the advantages of targeting GRP78, which represents a promising cancer therapy regime. In light of recent advances in computational drug response prediction models, this study aimed to examine the benefits of GRP78 targeting, which represents a promising cancer therapy regime, by utilizing combined molecular docking and molecular dynamics simulation approaches. The simulated protein (50 ns) was docked with the drugs, then a second round of dynamics simulation was performed for 100 ns. After that, the binding free energies were calculated from 30 to 100 ns for each complex during the simulation period. These findings demonstrate the efficacy of abemaciclib, ribociclib, and tunicamycin in binding to the nucleotide-binding domain of the GRP78, paving the way for elucidating the mode of interactions between these drugs and cancer (and other stressed) cells that overexpress GRP78.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alaa Abu-Mahfouz
- Biophysics Department, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Maha Ali
- Biophysics Department, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Abdo Elfiky
- Biophysics Department, Faculty of Sciences, Cairo University, Giza, Egypt
| |
Collapse
|
35
|
Akinyemi AO, Simpson KE, Oyelere SF, Nur M, Ngule CM, Owoyemi BCD, Ayarick VA, Oyelami FF, Obaleye O, Esoe DP, Liu X, Li Z. Unveiling the dark side of glucose-regulated protein 78 (GRP78) in cancers and other human pathology: a systematic review. Mol Med 2023; 29:112. [PMID: 37605113 PMCID: PMC10464436 DOI: 10.1186/s10020-023-00706-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Glucose-Regulated Protein 78 (GRP78) is a chaperone protein that is predominantly expressed in the lumen of the endoplasmic reticulum. GRP78 plays a crucial role in protein folding by assisting in the assembly of misfolded proteins. Under cellular stress conditions, GRP78 can translocate to the cell surface (csGRP78) were it interacts with different ligands to initiate various intracellular pathways. The expression of csGRP78 has been associated with tumor initiation and progression of multiple cancer types. This review provides a comprehensive analysis of the existing evidence on the roles of GRP78 in various types of cancer and other human pathology. Additionally, the review discusses the current understanding of the mechanisms underlying GRP78's involvement in tumorigenesis and cancer advancement. Furthermore, we highlight recent innovative approaches employed in downregulating GRP78 expression in cancers as a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Maria Nur
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | | | | | | | - Felix Femi Oyelami
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | | | - Dave-Preston Esoe
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA.
| |
Collapse
|
36
|
Liu Z, Liu G, Ha DP, Wang J, Xiong M, Lee AS. ER chaperone GRP78/BiP translocates to the nucleus under stress and acts as a transcriptional regulator. Proc Natl Acad Sci U S A 2023; 120:e2303448120. [PMID: 37487081 PMCID: PMC10400976 DOI: 10.1073/pnas.2303448120] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/08/2023] [Indexed: 07/26/2023] Open
Abstract
Cancer cells are commonly subjected to endoplasmic reticulum (ER) stress. To gain survival advantage, cancer cells exploit the adaptive aspects of the unfolded protein response such as upregulation of the ER luminal chaperone GRP78. The finding that when overexpressed, GRP78 can escape to other cellular compartments to gain new functions regulating homeostasis and tumorigenesis represents a paradigm shift. Here, toward deciphering the mechanisms whereby GRP78 knockdown suppresses EGFR transcription, we find that nuclear GRP78 is prominent in cancer and stressed cells and uncover a nuclear localization signal critical for its translocation and nuclear activity. Furthermore, nuclear GRP78 can regulate expression of genes and pathways, notably those important for cell migration and invasion, by interacting with and inhibiting the activity of the transcriptional repressor ID2. Our study reveals a mechanism for cancer cells to respond to ER stress via transcriptional regulation mediated by nuclear GRP78 to adopt an invasive phenotype.
Collapse
Affiliation(s)
- Ze Liu
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA90033
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Guanlin Liu
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA90033
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Dat P. Ha
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA90033
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Justin Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA92037
| | - Min Xiong
- Department of System Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Amy S. Lee
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA90033
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| |
Collapse
|
37
|
Feng D, Li L, Li D, Wu R, Zhu W, Wang J, Ye L, Han P. Prolyl 4-hydroxylase subunit beta (P4HB) could serve as a prognostic and radiosensitivity biomarker for prostate cancer patients. Eur J Med Res 2023; 28:245. [PMID: 37480146 PMCID: PMC10362756 DOI: 10.1186/s40001-023-01215-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/08/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Prolyl 4-hydroxylase subunit beta (P4HB) has been reported as a suppressor in ferroptosis. However, no known empirical research has focused on exploring relationships between P4HB and prostate cancer (PCa). In this research, we initially examine the function of P4HB in PCa by thorough analysis of numerous databases and proliferation experiment. METHODS We analyzed the correlations of P4HB expression with prognosis, clinical features, mutation genes, tumor heterogeneity, stemness, tumor immune microenvironment and PCa cells using multiple databases and in vitro experiment with R 3.6.3 software and its suitable packages. RESULTS P4HB was significantly upregulated in tumor tissues compared to normal tissues and was closely related to biochemical recurrence-free survival. In terms of clinical correlations, we found that higher P4HB expression was significantly related to older age, higher Gleason score, advanced T stage and residual tumor. Surprisingly, P4HB had highly diagnostic accuracy of radiotherapy resistance (AUC 0.938). TGF beta signaling pathway and dorso ventral axis formation were upregulated in the group of low-expression P4HB. For tumor stemness, P4HB expression was positively related to EREG.EXPss and RNAss, but was negatively associated with ENHss and DNAss with statistical significance. For tumor heterogeneity, P4HB expression was positively related to MATH, but was negatively associated with tumor ploidy and microsatellite instability. For the overall assessment of TME, we observed that P4HB expression was negatively associated with all parameters, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, dendritic cells, stromal score, immune score and ESTIMATE score. Spearman analysis showed that P4HB expression was negatively related to TIDE score with statistical significance. In vitro experiment, RT-qPCR and western blot showed that three siRNAs of P4HB were effective on the knockdown of P4HB expression. Furthermore, we observed that the downregulation of P4HB had significant influence on the cell proliferation of six PCa cell lines, including LNCap, C4-2, C4-2B, PC3, DU145 and 22RV1 cells. CONCLUSIONS In this study, we found that P4HB might serve as a prognostic biomarker and predict radiotherapy resistance for PCa patients. Downregulation of P4HB expression could inhibit the cell proliferation of PCa cells.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Li Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Weizhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
38
|
De Re V, Tornesello ML, Racanelli V, Prete M, Steffan A. Non-Classical HLA Class 1b and Hepatocellular Carcinoma. Biomedicines 2023; 11:1672. [PMID: 37371767 DOI: 10.3390/biomedicines11061672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A number of studies are underway to gain a better understanding of the role of immunity in the pathogenesis of hepatocellular carcinoma and to identify subgroups of individuals who may benefit the most from systemic therapy according to the etiology of their tumor. Human leukocyte antigens play a key role in antigen presentation to T cells. This is fundamental to the host's defense against pathogens and tumor cells. In addition, HLA-specific interactions with innate lymphoid cell receptors, such those present on natural killer cells and innate lymphoid cell type 2, have been shown to be important activators of immune function in the context of several liver diseases. More recent studies have highlighted the key role of members of the non-classical HLA-Ib and the transcript adjacent to the HLA-F locus, FAT10, in hepatocarcinoma. The present review analyzes the major contribution of these molecules to hepatic viral infection and hepatocellular prognosis. Particular attention has been paid to the association of natural killer and Vδ2 T-cell activation, mediated by specific HLA class Ib molecules, with risk assessment and novel treatment strategies to improve immunotherapy in HCC.
Collapse
Affiliation(s)
- Valli De Re
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131 Naples, Italy
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, 'Aldo Moro' University of Bari, 70124 Bari, Italy
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, 'Aldo Moro' University of Bari, 70124 Bari, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| |
Collapse
|
39
|
Zhang H, Ma B, Li N, Zhang L, Xu J, Zhang S, Guo Z, Han C, Xu S, Li X, Zhang B. SNHG1, a KLF4-upregulated gene, promotes glioma cell survival and tumorigenesis under endoplasmic reticulum stress by upregulating BIRC3 expression. J Cell Mol Med 2023. [PMID: 37243389 DOI: 10.1111/jcmm.17779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Increasing evidence indicates that long noncoding RNAs (lncRNAs) play crucial roles in the resistance to endoplasmic reticulum (ER) stress in many cancers. However, ER stress-regulated lncRNAs are still unknown in glioma. In the present study, we investigated the altered lncRNAs upon ER stress in glioma and found that small nucleolar RNA host gene 1 (SNHG1) was markedly increased in response to ER stress. Increased SNHG1 suppressed ER stress-induced apoptosis and promoted tumorigenesis in vitro and in vivo. Further mechanistic studies indicated that SNHG1 elevated BIRC3 mRNA stability and enhanced BIRC3 expression. We also found that KLF4 transcriptionally upregulated SNHG1 expression and contributed to the ER stress-induced SNHG1 increase. Collectively, the present findings indicated that SNHG1 is a KLF4-regulated lncRNA that suppresses ER stress-induced apoptosis and facilitates gliomagenesis by elevating BIRC3 expression.
Collapse
Affiliation(s)
- Hongqiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Binbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Na Li
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Li Zhang
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Jialu Xu
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Shuqi Zhang
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ziming Guo
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Chuanchun Han
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Shasha Xu
- Department of Gastroendoscopy, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaodong Li
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Neurosurgery Department of School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
40
|
Yuan Y, Guo Y, Guo ZW, Hao HF, Jiao YN, Deng XX, Han SY. Marsdenia tenacissima extract induces endoplasmic reticulum stress-associated immunogenic cell death in non-small cell lung cancer cells through targeting AXL. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116620. [PMID: 37207882 DOI: 10.1016/j.jep.2023.116620] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marsdenia Tenacissima (Roxb.) Wight et Arn. is a traditional Chinese medicine. Its standardized extract (MTE), with the trade name Xiao-Ai-Ping injection, is widely used for cancer treatment. The pharmacological effects of MTE-inducing cancer cell death have been primarily explored. However, whether MTE triggers tumor endoplasmic reticulum stress (ERS)-associated immunogenic cell death (ICD) is unknown. AIM OF THE STUDY To determine the potential role of endoplasmic reticulum stress in the anti-cancer effects of MTE, and uncover the possible mechanisms of endoplasmic reticulum stress-associated immunogenic cell death induced by MTE. MATERIAL AND METHODS The anti-tumor effects of MTE on non-small cell lung cancer (NSCLC) were examined through CCK-8 and wound healing assay. Network pharmacology analysis and RNA-sequencing (RNA seq) were performed to confirm the biological changes of NSCLCs after MTE treatment. Western blot, qRT-PCR, reactive oxygen species (ROS) assay, and mitochondrial membrane potential (MMP) assay were used to explore the occurrence of endoplasmic reticulum stress. Immunogenic cell death-related markers were tested by ELISA and ATP release assay. Salubrinal was used to inhibit the endoplasmic reticulum stress response. SiRNA and bemcentinib (R428) were used to impede the function of AXL. AXL phosphorylation was regained by recombinant human Gas6 protein (rhGas6). The effects of MTE on endoplasmic reticulum stress and immunogenic cell death response were also proved in vivo. The AXL inhibiting compound in MTE was explored by molecular docking and confirmed by Western blot. RESULTS MTE inhibited cell viability and migration of PC-9 and H1975 cells. Enrichment analysis identified that differential genes after MTE treatment were significantly enriched in endoplasmic reticulum stress-related biological processes. MTE decreased mitochondrial membrane potential (MMP) and increased ROS production. Meanwhile, endoplasmic reticulum stress-related proteins (ATF6, GRP-78, ATF4, XBP1s, and CHOP) and immunogenic cell death-related markers (ATP, HMGB1) were upregulated, and the AXL phosphorylation level was suppressed after MTE treatment. However, when salubrinal (an endoplasmic reticulum stress inhibitor) and MTE were co-treated cells, the inhibitory effects of MTE on PC-9 and H1975 cells were impaired. Importantly, inhibition of AXL expression or activity also promotes the expression of endoplasmic reticulum stress and immunogenic cell death-related markers. Mechanistically, MTE induced endoplasmic reticulum stress and immunogenic cell death by suppressing AXL activity, and these effects were attenuated when AXL activity recovered. Moreover, MTE significantly increased the expression of endoplasmic reticulum stress-related markers in LLC tumor-bearing mouse tumor tissues and plasma levels of ATP and HMGB1. Molecular docking illustrated that kaempferol has the strongest binding energy with AXL and suppresses AXL phosphorylation. CONCLUSION MTE induces endoplasmic reticulum stress-associated immunogenic cell death in NSCLC cells. The anti-tumor effects of MTE are dependent upon endoplasmic reticulum stress. MTE triggers endoplasmic reticulum stress-associated immunogenic cell death by inhibiting AXL activity. Kaempferol is an active component that inhibits AXL activity in MTE. The present research revealed the role of AXL in regulating endoplasmic reticulum stress and enriched the anti-tumor mechanisms of MTE. Moreover, kaempferol may be considered a novel AXL inhibitor.
Collapse
Affiliation(s)
- Yuan Yuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China.
| | - Yang Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Zheng-Wang Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Hui-Feng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Yan-Na Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Xin-Xin Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University, Cancer Hospital and Institute, Beijing, 100142, PR China.
| |
Collapse
|
41
|
Ha DP, Shin WJ, Hernandez JC, Neamati N, Dubeau L, Machida K, Lee AS. GRP78 Inhibitor YUM70 Suppresses SARS-CoV-2 Viral Entry, Spike Protein Production and Ameliorates Lung Damage. Viruses 2023; 15:v15051118. [PMID: 37243204 DOI: 10.3390/v15051118] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, has given rise to many new variants with increased transmissibility and the ability to evade vaccine protection. The 78-kDa glucose-regulated protein (GRP78) is a major endoplasmic reticulum (ER) chaperone that has been recently implicated as an essential host factor for SARS-CoV-2 entry and infection. In this study, we investigated the efficacy of YUM70, a small molecule inhibitor of GRP78, to block SARS-CoV-2 viral entry and infection in vitro and in vivo. Using human lung epithelial cells and pseudoviral particles carrying spike proteins from different SARS-CoV-2 variants, we found that YUM70 was equally effective at blocking viral entry mediated by original and variant spike proteins. Furthermore, YUM70 reduced SARS-CoV-2 infection without impacting cell viability in vitro and suppressed viral protein production following SARS-CoV-2 infection. Additionally, YUM70 rescued the cell viability of multi-cellular human lung and liver 3D organoids transfected with a SARS-CoV-2 replicon. Importantly, YUM70 treatment ameliorated lung damage in transgenic mice infected with SARS-CoV-2, which correlated with reduced weight loss and longer survival. Thus, GRP78 inhibition may be a promising approach to augment existing therapies to block SARS-CoV-2, its variants, and other viruses that utilize GRP78 for entry and infection.
Collapse
Affiliation(s)
- Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Woo-Jin Shin
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Juan Carlos Hernandez
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Louis Dubeau
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
42
|
Kiang KMY, Tang W, Song Q, Liu J, Li N, Lam TL, Shum HC, Zhu Z, Leung GKK. Targeting unfolded protein response using albumin-encapsulated nanoparticles attenuates temozolomide resistance in glioblastoma. Br J Cancer 2023; 128:1955-1963. [PMID: 36927978 PMCID: PMC10147657 DOI: 10.1038/s41416-023-02225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Chemoresistant cancer cells frequently exhibit a state of chronically activated endoplasmic reticulum (ER) stress. Engaged with ER stress, the unfolded protein response (UPR) is an adaptive reaction initiated by the accumulation of misfolded proteins. Protein disulfide isomerase (PDI) is a molecular chaperone known to be highly expressed in glioblastomas with acquired resistance to temozolomide (TMZ). We investigate whether therapeutic targeting of PDI provides a rationale to overcome chemoresistance. METHODS The activity of PDI was suppressed in glioblastoma cells using a small molecule inhibitor CCF642. Either single or combination treatment with TMZ was used. We prepared nanoformulation of CCF642 loaded in albumin as a drug carrier for orthotopic tumour model. RESULTS Inhibition of PDI significantly enhances the cytotoxic effect of TMZ on glioblastoma cells. More importantly, inhibition of PDI is able to sensitise glioblastoma cells that are initially resistant to TMZ treatment. Nanoformulation of CCF642 is well-tolerated and effective in suppressing tumour growth. It activates cell death-triggering UPR beyond repair and induces ER perturbations through the downregulation of PERK signalling. Combination treatment of TMZ with CCF642 significantly reduces tumour growth compared with either modality alone. CONCLUSION Our study demonstrates modulation of ER stress by targeting PDI as a promising therapeutic rationale to overcome chemoresistance.
Collapse
Affiliation(s)
- Karrie Mei-Yee Kiang
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Wanjun Tang
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Qingchun Song
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Jiaxin Liu
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Ning Li
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Tsz-Lung Lam
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Hnog SAR, China
| | - Zhiyuan Zhu
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
- Department of Functional Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Gilberto Ka-Kit Leung
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| |
Collapse
|
43
|
Al Zaidi M, Marggraf V, Repges E, Nickenig G, Skowasch D, Aksoy A, Pizarro C. Relevance of serum levels of the endoplasmic reticulum stress protein GRP78 (glucose-regulated protein 78 kDa) as biomarker in pulmonary diseases. Cell Stress Chaperones 2023; 28:333-341. [PMID: 37020080 PMCID: PMC10167071 DOI: 10.1007/s12192-023-01341-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 04/07/2023] Open
Abstract
Cellular stress and inflammation contribute to the initiation and progression of a variety of pulmonary diseases. Endoplasmic reticulum (ER) stress and its main regulator GRP78 (glucose-regulated protein 78 kDa) appear to be involved in the pathogenesis of pulmonary diseases, and GRP78 was found to be a biomarker in a wide range of inflammatory diseases. The aim of this study was to investigate the relevance of serum GRP78 in pulmonary disorders.In this prospective cohort study, 78 consecutive patients with chronic obstructive pulmonary disease (COPD, n = 28), asthma (n = 38) or interstitial lung disease (ILD, n = 12) underwent measurement of serum GRP78 levels by ELISA.The mean age of patients was 59.8 ± 12.4 years, 48.7% were female. Patients with elevated GRP78 levels (> median) offered a significantly better oxygenation status (capillary pO2: 75.3 ± 11.7 mmHg vs. 67.8 ± 15.9 mmHg, p = 0.02). Significant correlations were observed between GRP78, on the one hand, and haemoglobin, high-sensitivity C-reactive protein (hs-CRP) and eosinophil counts, on the other hand (haemoglobin: Pearson's r = -0.25, hs-CRP: r = 0.30, eosinophils: r = 0.63).Subsequently, we evaluated GRP78 measurements in function of severity stratifiers of the specific underlying pulmonary disease. ILD patients with a severe diffusion impairment (DLCO< 40% of predicted), exhibited a significant decrease in GRP78 levels (p = 0.01). In COPD and asthma, both characterized by obstructive ventilatory defects, a forced expiratory volume in one second (FEV1) <30% of predicted was accompanied by significantly lower GRP78 (p = 0.0075).In both obstructive and restrictive pulmonary disorders, GRP78 protein concentrations were reduced with increasing disease severity. These data suggest a prevalent role of GRP78 in the presently studied pulmonary disorders.
Collapse
Affiliation(s)
- Muntadher Al Zaidi
- Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Vanessa Marggraf
- Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Elena Repges
- Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Dirk Skowasch
- Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Adem Aksoy
- Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Carmen Pizarro
- Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
44
|
Liu X, Song J, Liu H, Sun Z, Ren H, Luo J. Endoplasmic Reticulum Stress Could Predict the Prognosis of Cervical Cancer and Regulate the Occurrence of Radiation Mucositis. Dose Response 2023; 21:15593258231173199. [PMID: 37197387 PMCID: PMC10184221 DOI: 10.1177/15593258231173199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 05/19/2023] Open
Abstract
The endoplasmic reticulum (ER) is an important cellular organelle, and ER dysfunction has an important impact on a variety of biological processes. In this study, we explored the role of ER stress in cervical cancer by establishing a prognostic model related to ER stress. This study included 309 samples from the TCGA database and 15 pairs of RNA sequencing data before and after radiotherapy. ER stress characteristics were obtained by the LASSO regression model. The prognostic value of risk characteristics was analyzed by Cox regression, Kaplan‒Meier, and ROC curves. The effects of radiation and radiation mucositis on ER stress were evaluated. We found that ER stress-related genes were differentially expressed in cervical cancer and could predict its prognosis. The LASSO regression model suggested that risk genes had a strong ability to predict prognosis. In addition, the regression suggests that the low-risk group may benefit from immunotherapy. Cox regression analysis showed that FOXRED2 and N staging could be independent factors affecting prognosis. ERN1 was significantly affected by radiation and may be related to the occurrence of radiation mucositis. In conclusion, ER stress activation might have a high value in the treatment and prognosis of cervical cancer and has good clinical prospects.
Collapse
Affiliation(s)
- Xue Liu
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- Department of Radiotherapy, Graduate School of Dalian Medical University, Dalian, China
| | - Jing Song
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hui Liu
- School of Computer Science and Technology, Nanjing Tech University, Nanjing, China
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Huiwen Ren
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- Department of Radiotherapy, Graduate School of Dalian Medical University, Dalian, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
45
|
Cen S, Jiang D, Lv D, Xu R, Hou J, Yang Z, Wu P, Xiong X, Gao X. Comprehensive analysis of the biological functions of endoplasmic reticulum stress in prostate cancer. Front Endocrinol (Lausanne) 2023; 14:1090277. [PMID: 36967783 PMCID: PMC10036859 DOI: 10.3389/fendo.2023.1090277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction Endoplasmic reticulum stress (ERS) has sizeable affect on cancer proliferation, metastasis, immunotherapy and chemoradiotherapy resistance. However, the effect of ERS on the biochemical recurrence (BCR) of prostate cancer patients remains elusive. Here, we generated an ERS-related genes risk signature to evaluate the physiological function of ERS in PCa with BCR. Methods We collected the ERS-related genes from the GeneCards. The edgeR package was used to screen the differential ERS-related genes in PCa from TCGA datasets. ERS-related gene risk signature was then established using LASSO and multivariate Cox regression models and validated by GEO data sets. Nomogram was developed to assess BCR-free survival possibility. Meanwhile, the correlations between ERS-related signature, gene mutations, drug sensitivity and tumor microenvironment were also investigated. Results We obtained an ERS risk signature consisting of five genes (AFP, COL10A1, DNAJB1, EGF and PTGS2). Kaplan Meier survival analysis and ROC Curve analysis indicated that the high risk score of ERS-related gene signature was associated with poor BCR-free prognosis in PCa patients. Besides, immune cell infiltration and immune checkpoint expression levels differed between high- and low-risk scoring subgroups. Moreover, drug sensitivity analyzed indicated that high-risk score group may be involved in apoptosis pathway. Discussion This study comprehensively analyzed the characteristics of ERS related genes in PCa, and created a five-gene signature, which could effectively predict the BCR time of PCa patients. Targeting ERS related genes and pathways may provide potential guidance for the treatment of PCa.
Collapse
Affiliation(s)
- Shengren Cen
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongmei Jiang
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Daojun Lv
- Department of Urology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ran Xu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiamao Hou
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zixiang Yang
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Wu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhao Xiong
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingcheng Gao
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
46
|
Hall MK, Shajahan A, Burch AP, Hatchett CJ, Azadi P, Schwalbe RA. Limited N-Glycan Processing Impacts Chaperone Expression Patterns, Cell Growth and Cell Invasiveness in Neuroblastoma. BIOLOGY 2023; 12:293. [PMID: 36829569 PMCID: PMC9953357 DOI: 10.3390/biology12020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Enhanced N-glycan branching is associated with cancer, but recent investigations supported the involvement of less processed N-glycans. Herein, we investigated how changes in N-glycosylation influence cellular properties in neuroblastoma (NB) using rat N-glycan mutant cell lines, NB_1(-Mgat1), NB_1(-Mgat2) and NB_1(-Mgat3), as well as the parental cell line NB_1. The two earlier mutant cells have compromised N-acetylglucosaminyltransferase-I (GnT-I) and GnT-II activities. Lectin blotting showed that NB_1(-Mgat3) cells had decreased activity of GnT-III compared to NB_1. ESI-MS profiles identified N-glycan structures in NB cells, supporting genetic edits. NB_1(-Mgat1) had the most oligomannose N-glycans and the greatest cell invasiveness, while NB_1(-Mgat2) had the fewest and least cell invasiveness. The proliferation rate of NB_1 was slightly slower than NB_1(-Mgat3), but faster than NB_1(-Mgat1) and NB_1(-Mgat2). Faster proliferation rates were due to the faster progression of those cells through the G1 phase of the cell cycle. Further higher levels of oligomannose with 6-9 Man residues indicated faster proliferating cells. Human NB cells with higher oligomannose N-glycans were more invasive and had slower proliferation rates. Both rat and human NB cells revealed modified levels of ER chaperones. Thus, our results support a role of oligomannose N-glycans in NB progression; furthermore, perturbations in the N-glycosylation pathway can impact chaperone systems.
Collapse
Affiliation(s)
- M. Kristen Hall
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University Greenville, 600 Moye Boulevard, Greenville, NC 27834, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Adam P. Burch
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University Greenville, 600 Moye Boulevard, Greenville, NC 27834, USA
| | - Cody J. Hatchett
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University Greenville, 600 Moye Boulevard, Greenville, NC 27834, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ruth A. Schwalbe
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University Greenville, 600 Moye Boulevard, Greenville, NC 27834, USA
| |
Collapse
|
47
|
Dos Santos NS, Gonçalves DR, Balbinot B, Visioli F. Is GRP78 (Glucose-regulated protein 78) a prognostic biomarker in differents types of cancer? A systematic review and meta-analysis. Pathol Res Pract 2023; 242:154301. [PMID: 36610326 DOI: 10.1016/j.prp.2023.154301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
GRP78 is a chaperone with anti-apoptotic function associated with aggressive tumors. This systematic review aimed to evaluate GRP78 expression in cancer and its relation to prognosis outcomes. This review was conducted in different databases searching for human cancer studies assessing GRP78 immunohistochemical levels on tissue samples. A total of 98 manuscripts were included. In 62% of the studies, GRP78 was associated with a worse prognosis. A meta-analysis included 29 studies that detected a significantly higher expression of GRP78 in cancer tissues (RR= 2.35, 95% CI 1.75-3.15) compared to control. A meta-analysis of 3 and 5-years Overall Survival revealed an increased risk of death for tumors with high expression of GRP78 (RR=1.36, 95%CI 1.16-1,59, I2 = 57%) and (RR=1.65, 95%CI 1.22-2.21, I2 =64%), respectively. GRP78 is an important prognostic biomarker for different types of cancer and a promising therapeutic target.
Collapse
Affiliation(s)
- Natália Souza Dos Santos
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Douglas Rodrigues Gonçalves
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil; Oral Medicine Unit, Otorhinolaryngology Service, Hospital de Clínicas de Porto Alegre, Brazil
| | - Bianca Balbinot
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Fernanda Visioli
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil; Experimental Center Research, Hospital de Clínicas de Porto Alegre, Brazil.
| |
Collapse
|
48
|
Liu B, Zhou Y, Wu Q, Fu Y, Zhang X, Wang Z, Yi W, Wang H, Chen Z, Song Z, Xiong W, Qiu Y, He W, Ju Z. EVA1A regulates hematopoietic stem cell regeneration via ER-mitochondria mediated apoptosis. Cell Death Dis 2023; 14:71. [PMID: 36717548 PMCID: PMC9887066 DOI: 10.1038/s41419-023-05559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023]
Abstract
Excessive protein synthesis upon enhanced cell proliferation frequently results in an increase of unfolded or misfolded proteins. During hematopoietic regeneration, to replenish the hematopoietic system, hematopoietic stem cells (HSCs) are activated and undergo a rapid proliferation. But how the activated HSCs respond to the proliferation pressure is still ambiguous; The proper control of the functional reservoir in the activated HSCs remains poorly understood. Here, we show a significant upregulation of EVA1A protein associated with the increase of ER stress during hematopoietic regeneration. Deletion of Eva1a significantly enhances the regeneration capacity of HSCs by inhibiting the ER stress-induced apoptosis. Mechanistically, the expression of EVA1A protein was upregulated by CHOP, and thereby promoted the ER-mitochondria interlinking via MCL1, which resulted in mitochondria-mediated apoptosis. These findings reveal a pathway for ER stress responses of HSCs by the EVA1A mediated apoptosis, which play an important role in HSCs regeneration.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Yuanyuan Zhou
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Qiaofeng Wu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 310036, China
| | - Yuting Fu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Xianli Zhang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhenkun Wang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Weiwei Yi
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 310036, China
| | - Hu Wang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 310036, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Wei Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Institute on Aging and Brain Disorders, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Yugang Qiu
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, 261053, China
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing, 400038, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
49
|
Yamamoto V, Wang B, Lee AS. Suppression of head and neck cancer cell survival and cisplatin resistance by GRP78 small molecule inhibitor YUM70. Front Oncol 2023; 12:1044699. [PMID: 36713577 PMCID: PMC9875086 DOI: 10.3389/fonc.2022.1044699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is one of the leading causes of cancer-related death worldwide. Surgical resection, radiation and chemotherapy are the mainstay of HNSCC treatment but are often unsatisfactory. Cisplatin is a commonly used chemotherapy in HNSCC; however, cisplatin resistance is a major cause of relapse and death. The 78-kD glucose-regulated protein (GRP78) is the master regulator of the unfolded protein response (UPR) and is implicated in therapeutic resistance in cancer. The role of GRP78 in cisplatin resistance in HNSCC remains unclear. YUM70 is a newly discovered hydroxyquinoline analogue and found to be an inhibitor of GRP78. The effect of YUM70 in HNSCC cell lines is unknown. Method Knockdown of GRP78 by siRNAs was performed to investigate the effect of GRP78 reduction in endoplasmic reticulum (ER)-stress induced and general apoptosis. Western blots examining apoptotic markers were performed on three HPV-negative HNSCC cell lines. WST-1 assay was performed to determine cell viability. In reverse, we utilized AA147, an ER proteostasis regulator to upregulate GRP78, and apoptotic markers and cell viability were determined. To test the ability of YUM70 to reverse cisplatin resistance, cisplatin-resistant HNSCC cell lines were generated by prolonged, repeated exposure to increasing concentrations of cisplatin. Colony formation assay using the cisplatin-resistant HNSCC cell line was performed to assess the in vitro reproductive cell survival. Furthermore, to test the ability of YUM70 to reverse cisplatin resistance in a physiologically relevant system, we subjected the 3D spheroids of the cisplatin-resistant HNSCC cell line to cisplatin treatment with or without YUM70 and monitored the onset of apoptosis. Results Reduction of GRP78 level induced HNSCC cell death while GRP78 upregulation conferred higher resistance to cisplatin. Combined cisplatin and YUM70 treatment increased apoptotic markers in the cisplatin-resistant HNSCC cell line, associating with reduced cell viability and clonogenicity. The combination treatment also increased apoptotic markers in the 3D spheroid model. Conclusion The GRP78 inhibitor YUM70 reduced HNSCC cell viability and re-sensitized cisplatin-resistant HNSCC cell line in both 2D and 3D spheroid models, suggesting the potential use of YUM70 in the treatment of HNSCC, including cisplatin-resistant HNSCC.
Collapse
Affiliation(s)
- Vicky Yamamoto
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States,USC Norris Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Bintao Wang
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States
| | - Amy S. Lee
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States,USC Norris Comprehensive Cancer Center, Los Angeles, CA, United States,*Correspondence: Amy S. Lee,
| |
Collapse
|
50
|
Angeles-Floriano T, Sanjuan-Méndez A, Rivera-Torruco G, Parra-Ortega I, Lopez-Martinez B, Martinez-Castro J, Marin-Santiago S, Alcántara-Hernández C, Martínez-Martínez A, Márquez-González H, Klünder-Klünder M, Olivar-López V, Zaragoza-Ojeda M, Arenas-Huertero F, Torres-Aguilar H, Medina-Contreras O, Zlotnik A, Valle-Rios R. Leukocyte surface expression of the endoplasmic reticulum chaperone GRP78 is increased in severe COVID-19. J Leukoc Biol 2023; 113:1-10. [PMID: 36822163 DOI: 10.1093/jleuko/qiac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 01/12/2023] Open
Abstract
Hyperinflammation present in individuals with severe COVID-19 has been associated with an exacerbated cytokine production and hyperactivated immune cells. Endoplasmic reticulum stress leading to the unfolded protein response has been recently reported as an active player in inducing inflammatory responses. Once unfolded protein response is activated, GRP78, an endoplasmic reticulum-resident chaperone, is translocated to the cell surface (sGRP78), where it is considered a cell stress marker; however, its presence has not been evaluated in immune cells during disease. Here we assessed the presence of sGRP78 on different cell subsets in blood samples from severe or convalescent COVID-19 patients. The frequency of CD45+sGRP78+ cells was higher in patients with the disease compared to convalescent patients. The latter showed similar frequencies to healthy controls. In patients with COVID-19, the lymphoid compartment showed the highest presence of sGRP78+ cells versus the myeloid compartment. CCL2, TNF-α, C-reactive protein, and international normalized ratio measurements showed a positive correlation with the frequency of CD45+sGRP78+ cells. Finally, gene expression microarray data showed that activated T and B cells increased the expression of GRP78, and peripheral blood mononuclear cells from healthy donors acquired sGRP78 upon activation with ionomycin and PMA. Thus, our data highlight the association of sGRP78 on immune cells in patients with severe COVID-19.
Collapse
Affiliation(s)
- Tania Angeles-Floriano
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Programa de Maestría y Doctorado en Ciencias Médicas Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Adriana Sanjuan-Méndez
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.,Programa de Maestría en Biomedicina Experimental, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca City, Mexico
| | - Guadalupe Rivera-Torruco
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.,Departamento de Fisiología y Neurociencias, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Israel Parra-Ortega
- Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Briceida Lopez-Martinez
- Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jesús Martinez-Castro
- Departamento de Medicina Interna, Centro Médico Lic, Adolfo López Mateos de Toluca, Toluca City, Mexico
| | - Sergio Marin-Santiago
- Departamento de Medicina Interna, Centro Médico Lic, Adolfo López Mateos de Toluca, Toluca City, Mexico
| | | | - Araceli Martínez-Martínez
- Departamento de Medicina Interna, Centro Médico Lic, Adolfo López Mateos de Toluca, Toluca City, Mexico
| | - Horacio Márquez-González
- Departamento de Investigación Clínica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Miguel Klünder-Klünder
- Subdirección de Investigación, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Victor Olivar-López
- Departamento de Urgencias Pediátricas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Montserrat Zaragoza-Ojeda
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Honorio Torres-Aguilar
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca City, Mexico
| | - Oscar Medina-Contreras
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Albert Zlotnik
- Department of Physiology and Biophysics, University of California, Irvine, CA, United States
| | - Ricardo Valle-Rios
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|