1
|
Tian Z, Du C, Xue J, Liu Y. Optically Responsive Hydrogel with Rapid Deformation for Motion Regulation of Magnetic Actuators. NANO LETTERS 2024; 24:13422-13430. [PMID: 39387646 DOI: 10.1021/acs.nanolett.4c04177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Optically and magnetically responsive soft actuators are gaining attention for their noncontact actuation, flexibility, and remote control capabilities. However, they face challenges in rapidly switching motion postures and modes, which limits their performance in complex environments. We developed bilayer hydrogel actuators based on poly(N-isopropylacrylamide) (PNIPAm) using an ice-templating method combined with free radical polymerization. This approach results in the formation of large, interconnected pores within the hydrogel. Under near-infrared light (27 W/cm2), the actuation speed of the actuator reached 38.5°/s, with complete recovery to the original shape 8 s after light cessation. In addition, the reversible changes in stiffness and volume enable the actuators to lock and dynamically adjust their magnetization curve, allowing for the decoupling of deformation and movement as well as the regulation of motion postures and modes. This work opens new pathways for multigait robots and shows promising applications in environmental monitoring and underwater exploration.
Collapse
Affiliation(s)
- Zhuangzhuang Tian
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Chuankai Du
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Jingze Xue
- Key Laboratory for Cross-Scale Micro and Nano Manufacturing (Ministry of Education), Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
- Weihai Institute for Bionics, Jilin University, Weihai 264402, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, P. R. China
| |
Collapse
|
2
|
Aguilar-Planet T, Peralta E. Innovation Inspired by Nature: Applications of Biomimicry in Engineering Design. Biomimetics (Basel) 2024; 9:523. [PMID: 39329545 PMCID: PMC11429577 DOI: 10.3390/biomimetics9090523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Sustainable development is increasingly driving the trend toward the application of biomimicry as a strategy to generate environmentally friendly solutions in the design of industrial products. Nature-inspired design can contribute to the achievement of the Sustainable Development Goals by improving efficiency and minimizing the environmental impact of each design. This research conducted an analysis of available biomimetic knowledge, highlighting the most applied tools and methodologies in each industrial sector. The primary objective was to identify sectors that have experienced greater adoption of biomimicry and those where its application is still in its early stages. Additionally, by applying the available procedures and tools to a selected case study (technologies in marine environments), the advantages and challenges of the methodologies and procedures were determined, along with potential gaps and future research directions necessary for widespread implementation of biomimetics in the industry. These results provide a comprehensive approach to biomimicry applied to more sustainable practices in product design and development.
Collapse
Affiliation(s)
| | - Estela Peralta
- Department of Engineering Design, University of Seville, C/Virgen de África 7, 41011 Seville, Spain;
| |
Collapse
|
3
|
Sun M, Wu Y, Zhang J, Zhang H, Liu Z, Li M, Wang C, Sitti M. Versatile, modular, and customizable magnetic solid-droplet systems. Proc Natl Acad Sci U S A 2024; 121:e2405095121. [PMID: 39088393 PMCID: PMC11317579 DOI: 10.1073/pnas.2405095121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/21/2024] [Indexed: 08/03/2024] Open
Abstract
Magnetic miniature robotic systems have attracted broad research interest because of their precise maneuverability in confined spaces and adaptability to diverse environments, holding significant promise for applications in both industrial infrastructures and biomedical fields. However, the predominant construction methodology involves the preprogramming of magnetic components into the system's structure. While this approach allows for intricate shape transformations, it exhibits limited flexibility in terms of reconfiguration and presents challenges when adapting to diverse materials, combining, and decoupling multiple functionalities. Here, we propose a construction strategy that facilitates the on-demand assembly of magnetic components, integrating ferrofluid droplets with the system's structural body. This approach enables the creation of complex solid-droplet robotic systems across a spectrum of length scales, ranging from 0.8 mm to 1.5 cm. It offers a diverse selection of materials and structural configurations, akin to assembling components like building blocks, thus allowing for the seamless integration of various functionalities. Moreover, it incorporates decoupling mechanisms to enable selective control over multiple functions, leveraging the fluidity, fission/fusion, and magneto-responsiveness properties inherent in the ferrofluid. Various solid-droplet systems have validated the feasibility of this strategy. This study advances the complexity and functionality achievable in small-scale magnetic robots, augmenting their potential for future biomedical and other applications.
Collapse
Affiliation(s)
- Mengmeng Sun
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Yingdan Wu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin150001, China
| | - Jianhua Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Hongchuan Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Zemin Liu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Chunxiang Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| |
Collapse
|
4
|
Han L, Si J, Guo M, Wang R, Wang K, Yang J, Wang Z, Yang X. An Untethered Soft Crawling Robot Driven by Wireless Power Transfer Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309661. [PMID: 38268235 DOI: 10.1002/smll.202309661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Soft robots based on flexible materials have attracted the attention due to high flexibility and great environmental adaptability. Among the common driving modes, electricity, light, and magnetism have the limitations of wiring, poor penetration capability, and sophisticated equipment, respectively. Here, an emerging wireless driving mode is proposed for the soft crawling robot based on wireless power transfer (WPT) technology. The receiving coil at the robot's tail, as an energy transfer station, receives energy from the transmitting coil and supplies the electrothermal responsiveness to drive the robot's crawling. By regulating the WPT's duration to control the friction between the robot and the ground, bidirectional crawling is realized. Furthermore, the receiving coil is also employed as a sensory organ to equip the robot with localization, ID recognition, and sensing capabilities based on electromagnetic coupling. This work provides an innovative and promising strategy for the design and integration of soft crawling robots, exhibiting great potential in the field of intelligent robots.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Jiawei Si
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Miaomiao Guo
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Rui Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Kai Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Jin Yang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Ziyuan Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Xiaohan Yang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| |
Collapse
|
5
|
Sartori P, Yadav RS, del Barrio J, DeSimone A, Sánchez‐Somolinos C. Photochemically Induced Propulsion of a 4D Printed Liquid Crystal Elastomer Biomimetic Swimmer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308561. [PMID: 38590131 PMCID: PMC11220691 DOI: 10.1002/advs.202308561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Indexed: 04/10/2024]
Abstract
Underwater organisms exhibit sophisticated propulsion mechanisms, enabling them to navigate fluid environments with exceptional dexterity. Recently, substantial efforts have focused on integrating these movements into soft robots using smart shape-changing materials, particularly by using light for their propulsion and control. Nonetheless, challenges persist, including slow response times and the need of powerful light beams to actuate the robot. This last can result in unintended sample heating and potentially necessitate tracking specific actuation spots on the swimmer. To tackle these challenges, new azobenzene-containing photopolymerizable inks are introduced, which can be processed by extrusion printing into liquid crystalline elastomer (LCE) elements of precise shape and morphology. These LCEs exhibit rapid and significant photomechanical response underwater, driven by moderate-intensity ultraviolet (UV) and green light, being the actuation mechanism predominantly photochemical. Inspired by nature, a biomimetic four-lapped ephyra-like LCE swimmer is printed. The periodically illumination of the entire swimmer with moderate-intensity UV and green light, induces synchronous lappet bending toward the light source and swimmer propulsion away from the light. The platform eliminates the need of localized laser beams and tracking systems to monitor the swimmer's motion through the fluid, making it a versatile tool for creating light-fueled robotic LCE free-swimmers.
Collapse
Affiliation(s)
- Paolo Sartori
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC‐Universidad de ZaragozaDepartamento de Física de la Materia CondensadaZaragoza50009Spain
| | - Rahul Singh Yadav
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC‐Universidad de ZaragozaDepartamento de Química OrgánicaZaragoza50009Spain
| | - Jesús del Barrio
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC‐Universidad de ZaragozaDepartamento de Química OrgánicaZaragoza50009Spain
| | - Antonio DeSimone
- The BioRobotics InstituteScuola Superiore Sant'AnnaPisa56127Italy
- SISSA‐Scuola Internazionale Superiore di Studi AvanzatiTrieste34136Italy
| | - Carlos Sánchez‐Somolinos
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC‐Universidad de ZaragozaDepartamento de Física de la Materia CondensadaZaragoza50009Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y NanomedicinaInstituto de Salud Carlos IIIZaragoza50018Spain
| |
Collapse
|
6
|
Zhao X, Yao H, Lv Y, Chen Z, Dong L, Huang J, Mi S. Reprogrammable Magnetic Soft Actuators with Microfluidic Functional Modules via Pixel-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310009. [PMID: 38295155 DOI: 10.1002/smll.202310009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/31/2023] [Indexed: 02/02/2024]
Abstract
Magnetic soft actuators and robots have attracted considerable attention in biomedical applications due to their speedy response, programmability, and biocompatibility. Despite recent advancements, the fabrication process of magnetic actuators and the reprogramming approach of their magnetization profiles continue to pose challenges. Here, a facile fabrication strategy is reported based on arrangements and distributions of reusable magnetic pixels on silicone substrates, allowing for various magnetic actuators with customizable architectures, arbitrary magnetization profiles, and integration of microfluidic technology. This approach enables intricate configurations with decent deformability and programmability, as well as biomimetic movements involving grasping, swimming, and wriggling in response to magnetic actuation. Moreover, microfluidic functional modules are integrated for various purposes, such as on/off valve control, curvature adjustment, fluid mixing, dynamic microfluidic architecture, and liquid delivery robot. The proposed method fulfills the requirements of low-cost, rapid, and simplified preparation of magnetic actuators, since it eliminates the need to sustain pre-defined deformations during the magnetization process or to employ laser heating or other stimulation for reprogramming the magnetization profile. Consequently, it is envisioned that magnetic actuators fabricated via pixel-assembly will have broad prospects in microfluidics and biomedical applications.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Hongyi Yao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Yaoyi Lv
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Zhixian Chen
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Lina Dong
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Jiajun Huang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
- Optometry Advanced Medical Equipment R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, 518000, China
| | - Shengli Mi
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
- Optometry Advanced Medical Equipment R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
7
|
Zhu QL, Liu W, Khoruzhenko O, Breu J, Bai H, Hong W, Zheng Q, Wu ZL. Closed Twisted Hydrogel Ribbons with Self-Sustained Motions under Static Light Irradiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314152. [PMID: 38652466 DOI: 10.1002/adma.202314152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Self-sustained motions are widespread in biological systems by harvesting energy from surrounding environments, which inspire scientists to develop autonomous soft robots. However, most-existing soft robots require dynamic heterogeneous stimuli or complex fabrication with different components. Recently, control of topological geometry has been promising to afford soft robots with physical intelligence and thus life-like motions. Reported here are a series of closed twisted ribbon robots, which exhibit self-sustained flipping and rotation under constant light irradiation. Both Möbius strip and Seifert ribbon robots are devised for the first time by using an identical hydrogel, which responds to light irradiation on either side. Experiment and simulation results indicate that the self-regulated motions of the hydrogel robots are related to fast and reversible response of muscle-like gel, self-shadowing effect, and topology-facilitated refresh of light-exposed regions. The motion speeds and directions of the hydrogel robots can be tuned over a wide range. These closed twisted ribbon hydrogels are further applied to execute specific tasks in aqueous environments, such as collecting plastic balls, climbing a vertical rod, and transporting objects. This work presents new design principle for autonomous hydrogel robots by benefiting from material response and topology geometry, which may be inspirative for the robotics community.
Collapse
Affiliation(s)
- Qing Li Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Weixuan Liu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Olena Khoruzhenko
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Josef Breu
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Huiying Bai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wei Hong
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Wang X, Liu W, Luo Q, Yao L, Wei F. Thermally Drawn-Based Microtubule Soft Continuum Robot for Cardiovascular Intervention. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29783-29792. [PMID: 38811019 DOI: 10.1021/acsami.4c03885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Cardiovascular disease is becoming the leading cause of human mortality. In order to address this, flexible continuum robots have emerged as a promising solution for miniaturizing and automating vascular interventional equipment for diagnosing and treating cardiovascular diseases. However, existing continuum robots used for vascular intervention face challenges such as large cross-sectional sizes, inadequate driving force, and lack of navigation control, preventing them from accessing cerebral blood vessels or capillaries for medical procedures. Additionally, the complex manufacturing process and high cost of soft continuum robots hinder their widespread clinical application. In this study, we propose a thermally drawn-based microtubule soft continuum robot that overcomes these limitations. The proposed robot has cross-sectional dimensions several orders of magnitude smaller than the smallest commercially available conduits, and it can be manufactured without any length restrictions. By utilizing a driving strategy based on liquid kinetic energy advancement and external magnetic field for steering, the robot can easily navigate within blood vessels and accurately reach the site of the lesion. This innovation holds the potential to achieve controlled navigation of the robot throughout the entire blood vessel, enabling in situ diagnosis and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xufeng Wang
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Wei Liu
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Qinzhou Luo
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Ligang Yao
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Fanan Wei
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| |
Collapse
|
9
|
Feng J, Zhao Y, Kang J, Hu W, Wu R, Zhang W. Interference Morphology of Free-Growing Tendrils and Application of Self-Locking Structures. Soft Robot 2024; 11:392-409. [PMID: 38285476 DOI: 10.1089/soro.2023.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Organisms can adapt to various complex environments by obtaining optimal morphologies. Plant tendrils evolve an extraordinary and stable spiral morphology in the free-growing stage. By combining apical and asymmetrical growth strategies, the tendrils can adjust their morphology to wrap around and grab different supports. This phenomenon of changing tendril morphology through the movement of growth inspires a thoughtful consideration of the laws of growth that underlie it. In this study, tendril growth is modeled based on the Kirchhoff rod theory to obtain the exact morphological equations. Based on this, the movement patterns of the tendrils are investigated under different growth strategies. It is shown that the self-interference phenomenon appears as the tendril grows, allowing it to hold onto its support more firmly. In addition, a finite element model is constructed using continuum media mechanics and following the finite growth theory to simulate tendril growth. The growth morphology and self-interference phenomenon of tendrils are observed visually. Furthermore, an innovative class of fluid elastic actuators is designed to verify the growth phenomena of tendrils, which can realize the wrapping and locking functions. Several experiments are conducted to measure the end output force and the smallest size that can be clamped, and the output efficiency of the elastic actuator and the optimal working pressure are verified. The results presented in this study could reveal the formation law of free tendril spiral morphology and provide an inspiring idea for the programmability and motion control of bionic soft robots, with promising applications in the fields of underwater rescue and underwater picking.
Collapse
Affiliation(s)
- Jingjing Feng
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Department of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Yiwei Zhao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Department of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Jiquan Kang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Department of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Wenhua Hu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Department of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Ruiqin Wu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Department of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Wei Zhang
- Department of Mechanics, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
10
|
Xian W, Zhan YS, Maiti A, Saab AP, Li Y. Filled Elastomers: Mechanistic and Physics-Driven Modeling and Applications as Smart Materials. Polymers (Basel) 2024; 16:1387. [PMID: 38794580 PMCID: PMC11125212 DOI: 10.3390/polym16101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Elastomers are made of chain-like molecules to form networks that can sustain large deformation. Rubbers are thermosetting elastomers that are obtained from irreversible curing reactions. Curing reactions create permanent bonds between the molecular chains. On the other hand, thermoplastic elastomers do not need curing reactions. Incorporation of appropriated filler particles, as has been practiced for decades, can significantly enhance mechanical properties of elastomers. However, there are fundamental questions about polymer matrix composites (PMCs) that still elude complete understanding. This is because the macroscopic properties of PMCs depend not only on the overall volume fraction (ϕ) of the filler particles, but also on their spatial distribution (i.e., primary, secondary, and tertiary structure). This work aims at reviewing how the mechanical properties of PMCs are related to the microstructure of filler particles and to the interaction between filler particles and polymer matrices. Overall, soft rubbery matrices dictate the elasticity/hyperelasticity of the PMCs while the reinforcement involves polymer-particle interactions that can significantly influence the mechanical properties of the polymer matrix interface. For ϕ values higher than a threshold, percolation of the filler particles can lead to significant reinforcement. While viscoelastic behavior may be attributed to the soft rubbery component, inelastic behaviors like the Mullins and Payne effects are highly correlated to the microstructures of the polymer matrix and the filler particles, as well as that of the polymer-particle interface. Additionally, the incorporation of specific filler particles within intelligently designed polymer systems has been shown to yield a variety of functional and responsive materials, commonly termed smart materials. We review three types of smart PMCs, i.e., magnetoelastic (M-), shape-memory (SM-), and self-healing (SH-) PMCs, and discuss the constitutive models for these smart materials.
Collapse
Affiliation(s)
- Weikang Xian
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.X.); (Y.-S.Z.)
| | - You-Shu Zhan
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.X.); (Y.-S.Z.)
| | - Amitesh Maiti
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.M.); (A.P.S.)
| | - Andrew P. Saab
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.M.); (A.P.S.)
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.X.); (Y.-S.Z.)
| |
Collapse
|
11
|
Roshan U, Mudugamuwa A, Cha H, Hettiarachchi S, Zhang J, Nguyen NT. Actuation for flexible and stretchable microdevices. LAB ON A CHIP 2024; 24:2146-2175. [PMID: 38507292 DOI: 10.1039/d3lc01086d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Flexible and stretchable microdevices incorporate highly deformable structures, facilitating precise functionality at the micro- and millimetre scale. Flexible microdevices have showcased extensive utility in the fields of biomedicine, microfluidics, and soft robotics. Actuation plays a critical role in transforming energy between different forms, ensuring the effective operation of devices. However, when it comes to actuating flexible microdevices at the small millimetre or even microscale, translating actuation mechanisms from conventional rigid large-scale devices is not straightforward. The recent development of actuation mechanisms leverages the benefits of device flexibility, particularly in transforming conventional actuation concepts into more efficient approaches for flexible devices. Despite many reviews on soft robotics, flexible electronics, and flexible microfluidics, a specific and systematic review of the actuation mechanisms for flexible and stretchable microdevices is still lacking. Therefore, the present review aims to address this gap by providing a comprehensive overview of state-of-the-art actuation mechanisms for flexible and stretchable microdevices. We elaborate on the different actuation mechanisms based on fluid pressure, electric, magnetic, mechanical, and chemical sources, thoroughly examining and comparing the structure designs, characteristics, performance, advantages, and drawbacks of these diverse actuation mechanisms. Furthermore, the review explores the pivotal role of materials and fabrication techniques in the development of flexible and stretchable microdevices. Finally, we summarise the applications of these devices in biomedicine and soft robotics and provide perspectives on current and future research.
Collapse
Affiliation(s)
- Uditha Roshan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Amith Mudugamuwa
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Haotian Cha
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Samith Hettiarachchi
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
12
|
Wang Y, Xuan H, Zhang L, Huang H, Neisiany RE, Zhang H, Gu S, Guan Q, You Z. 4D Printed Non-Euclidean-Plate Jellyfish Inspired Soft Robot in Diverse Organic Solvents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313761. [PMID: 38211632 DOI: 10.1002/adma.202313761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Soft robots have the potential to assist and complement human exploration of extreme and harsh environments (i.e., organic solvents). However, soft robots with stable performance in diverse organic solvents are not developed yet. In the current research, a non-Euclidean-plate under-liquid soft robot inspired by jellyfish based on phototropic liquid crystal elastomers is fabricated via a 4D-programmable strategy. Specifically, the robot employs a 3D-printed non-Euclidean-plate, designed with Archimedean orientation, which undergoes autonomous deformation to release internal stress when immersed in organic solvents. With the assistance of near-infrared light illumination, the organic solvent inside the robot vaporizes and generates propulsion in the form of bubble streams. The developed NEP-Jelly-inspired soft robot can swim with a high degree of freedom in various organic solvents, for example, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, dichloromethane, and trichloromethane, which is not reported before. Besides bionic jellyfish, various aquatic invertebrate-inspired soft robots can potentially be prepared via a similar 4D-programmable strategy.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Huixia Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Luzhi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Hongfei Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice, 44-100, Poland
| | - Haiyang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Shijia Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
13
|
Cheng X, Shen Z, Zhang Y. Bioinspired 3D flexible devices and functional systems. Natl Sci Rev 2024; 11:nwad314. [PMID: 38312384 PMCID: PMC10833470 DOI: 10.1093/nsr/nwad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 02/06/2024] Open
Abstract
Flexible devices and functional systems with elaborated three-dimensional (3D) architectures can endow better mechanical/electrical performances, more design freedom, and unique functionalities, when compared to their two-dimensional (2D) counterparts. Such 3D flexible devices/systems are rapidly evolving in three primary directions, including the miniaturization, the increasingly merged physical/artificial intelligence and the enhanced adaptability and capabilities of heterogeneous integration. Intractable challenges exist in this emerging research area, such as relatively poor controllability in the locomotion of soft robotic systems, mismatch of bioelectronic interfaces, and signal coupling in multi-parameter sensing. By virtue of long-time-optimized materials, structures and processes, natural organisms provide rich sources of inspiration to address these challenges, enabling the design and manufacture of many bioinspired 3D flexible devices/systems. In this Review, we focus on bioinspired 3D flexible devices and functional systems, and summarize their representative design concepts, manufacturing methods, principles of structure-function relationship and broad-ranging applications. Discussions on existing challenges, potential solutions and future opportunities are also provided to usher in further research efforts toward realizing bioinspired 3D flexible devices/systems with precisely programmed shapes, enhanced mechanical/electrical performances, and high-level physical/artificial intelligence.
Collapse
Affiliation(s)
- Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Zhangming Shen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Leanza S, Wu S, Sun X, Qi HJ, Zhao RR. Active Materials for Functional Origami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302066. [PMID: 37120795 DOI: 10.1002/adma.202302066] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state-of-the-art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.
Collapse
Affiliation(s)
- Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
15
|
Xiong J, Li X, He Z, Shi Y, Pan T, Zhu G, Lu D, Xin H. Light-controlled soft bio-microrobot. LIGHT, SCIENCE & APPLICATIONS 2024; 13:55. [PMID: 38403642 PMCID: PMC10894875 DOI: 10.1038/s41377-024-01405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Micro/nanorobots hold exciting prospects for biomedical and even clinical applications due to their small size and high controllability. However, it is still a big challenge to maneuver micro/nanorobots into narrow spaces with high deformability and adaptability to perform complicated biomedical tasks. Here, we report a light-controlled soft bio-microrobots (called "Ebot") based on Euglena gracilis that are capable of performing multiple tasks in narrow microenvironments including intestinal mucosa with high controllability, deformability and adaptability. The motion of the Ebot can be precisely navigated via light-controlled polygonal flagellum beating. Moreover, the Ebot shows highly controlled deformability with different light illumination duration, which allows it to pass through narrow and curved microchannels with high adaptability. With these features, Ebots are able to execute multiple tasks, such as targeted drug delivery, selective removal of diseased cells in intestinal mucosa, as well as photodynamic therapy. This light-controlled Ebot provides a new bio-microrobotic tool, with many new possibilities for biomedical task execution in narrow and complicated spaces where conventional tools are difficult to access due to the lack of deformability and bio-adaptability.
Collapse
Affiliation(s)
- Jianyun Xiong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Xing Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Ziyi He
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Yang Shi
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Ting Pan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Guoshuai Zhu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Dengyun Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Hongbao Xin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China.
| |
Collapse
|
16
|
Wang Z, Chen Y, Ma Y, Wang J. Bioinspired Stimuli-Responsive Materials for Soft Actuators. Biomimetics (Basel) 2024; 9:128. [PMID: 38534813 DOI: 10.3390/biomimetics9030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Biological species can walk, swim, fly, jump, and climb with fast response speeds and motion complexity. These remarkable functions are accomplished by means of soft actuation organisms, which are commonly composed of muscle tissue systems. To achieve the creation of their biomimetic artificial counterparts, various biomimetic stimuli-responsive materials have been synthesized and developed in recent decades. They can respond to various external stimuli in the form of structural or morphological transformations by actively or passively converting input energy into mechanical energy. They are the core element of soft actuators for typical smart devices like soft robots, artificial muscles, intelligent sensors and nanogenerators. Significant progress has been made in the development of bioinspired stimuli-responsive materials. However, these materials have not been comprehensively summarized with specific actuation mechanisms in the literature. In this review, we will discuss recent advances in biomimetic stimuli-responsive materials that are instrumental for soft actuators. Firstly, different stimuli-responsive principles for soft actuators are discussed, including fluidic, electrical, thermal, magnetic, light, and chemical stimuli. We further summarize the state-of-the-art stimuli-responsive materials for soft actuators and explore the advantages and disadvantages of using electroactive polymers, magnetic soft composites, photo-thermal responsive polymers, shape memory alloys and other responsive soft materials. Finally, we provide a critical outlook on the field of stimuli-responsive soft actuators and emphasize the challenges in the process of their implementation to various industries.
Collapse
Affiliation(s)
- Zhongbao Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixin Chen
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Ma
- Department of Mechanical Engineering, Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jing Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Ai W, Hou K, Wu J, Long Y, Song K. Miniaturized and untethered McKibben muscles based on photothermal-induced gas-liquid transformation. Nat Commun 2024; 15:1329. [PMID: 38351311 PMCID: PMC10864313 DOI: 10.1038/s41467-024-45540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Pneumatic artificial muscles can move continuously under the power support of air pumps, and their flexibility also provides the possibility for applications in complex environments. However, in order to achieve operation in confined spaces, the miniaturization of artificial muscles becomes crucial. Since external attachment devices greatly hinder the miniaturization and use of artificial muscles, we propose a light-driven approach to get rid of these limitations. In this study, we report a miniaturized fiber-reinforced artificial muscle based on mold editing, capable of bending and axial elongation using gas-liquid conversion in visible light. The minimum volume of the artificial muscle prepared using this method was 15.7 mm3 (d = 2 mm, l = 5 mm), which was smaller than those of other fiber-reinforced pneumatic actuators. This research can promote the development of non-tethered pneumatic actuators for rescue and exploration, and create the possibility of miniaturization of actuators.
Collapse
Affiliation(s)
- Wenfei Ai
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kai Hou
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, P. R. China
| | - Jiaxin Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Long
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, P. R. China.
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, China.
| | - Kai Song
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, China.
| |
Collapse
|
18
|
Ren Z, Sitti M. Design and build of small-scale magnetic soft-bodied robots with multimodal locomotion. Nat Protoc 2024; 19:441-486. [PMID: 38097687 DOI: 10.1038/s41596-023-00916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/21/2023] [Indexed: 02/12/2024]
Abstract
Small-scale magnetic soft-bodied robots can be designed to operate based on different locomotion modes to navigate and function inside unstructured, confined and varying environments. These soft millirobots may be useful for medical applications where the robots are tasked with moving inside the human body. Here we cover the entire process of developing small-scale magnetic soft-bodied millirobots with multimodal locomotion capability, including robot design, material preparation, robot fabrication, locomotion control and locomotion optimization. We describe in detail the design, fabrication and control of a sheet-shaped soft millirobot with 12 different locomotion modes for traversing different terrains, an ephyra jellyfish-inspired soft millirobot that can manipulate objects in liquids through various swimming modes, a larval zebrafish-inspired soft millirobot that can adjust its body stiffness for efficient propulsion in different swimming speeds and a dual stimuli-responsive sheet-shaped soft millirobot that can switch its locomotion modes automatically by responding to changes in the environmental temperature. The procedure is aimed at users with basic expertise in soft robot development. The procedure requires from a few days to several weeks to complete, depending on the degree of characterization required.
Collapse
Affiliation(s)
- Ziyu Ren
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland.
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey.
| |
Collapse
|
19
|
Wang W, Chang J, Chen L, Weng D, Yu Y, Hou Y, Yu G, Wang J, Wang X. A laser-processed micro/nanostructures surface and its photothermal de-icing and self-cleaning performance. J Colloid Interface Sci 2024; 655:307-318. [PMID: 37944378 DOI: 10.1016/j.jcis.2023.10.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Micro/nanostructures have garnered significant attention and widespread applications in areas such as photocatalysis, coated fabrics, microchips, and sensors. However, high-resolution and multifunctional micro/nanostructures fabrication remains a great challenge. In this work, a novel self-assembly-femtosecond laser processing for the regular micro squares and nano bumps surface on steel substrates is proposed, and a great potential in the field of anti-icing/de-icing and self-cleaning is demonstrated. The surface tension gradient-driven liquid-air self-assembly provides a silica microsphere monolayer, while the post-femtosecond laser process can give precise micro/nano decoration. We systematically explore the impact of laser repetition frequency, scanning speed, and laser incident power on the size and shape of micro/nano decorations that have been studied. The different performances of self-cleaning effects, ice adhesion, and the photothermal de-icing capability due to the change in surface wettability have been demonstrated. This research shows a new pathway for the creation of smart micro/nanostructures surface which possess stable super hydrophilic and highly adhesive superhydrophobic properties, as well as high abrasion resistance. The discovery achieves a suitable blend of multiple functions on the surface of a single material, which can be applied to various surface engineering fields.
Collapse
Affiliation(s)
- Weiling Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jinlin Chang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Chen
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Ding Weng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yadong Yu
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yacong Hou
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Guoxu Yu
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiadao Wang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xueguang Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
20
|
Yu Q, Gravish N. Multimodal Locomotion in a Soft Robot Through Hierarchical Actuation. Soft Robot 2024; 11:21-31. [PMID: 37471221 DOI: 10.1089/soro.2022.0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Soft and continuum robots present the opportunity for extremely large ranges of motion, which can enable dexterous, adaptive, and multimodal locomotion behaviors. However, as the number of degrees of freedom (DOF) of a robot increases, the number of actuators should also increase to achieve the full actuation potential. This presents a dilemma in mobile soft robot design: physical space and power requirements restrict the number and type of actuators available and may ultimately limit the movement capabilities of soft robots with high-DOF appendages. Restrictions on actuation of continuum appendages ultimately may limit the various movement capabilities of soft robots. In this work, we demonstrate multimodal behaviors in an underwater robot called "Hexapus." A hierarchical actuation design for multiappendage soft robots is presented in which a single high-power motor actuates all appendages for locomotion, while smaller low-power motors augment the shape of each appendage. The flexible appendages are designed to be capable of hyperextension for thrust, and flexion for grasping with a peak pullout force of 32 N. For propulsion, we incorporate an elastic membrane connected across the base of each tentacle, which is stretched slowly by the high-power motor and released rapidly through a slip-gear mechanism. Through this actuation arrangement, Hexapus is capable of underwater locomotion with low cost of transport (COT = 1.44 at 16.5 mm/s) while swimming and a variety of multimodal locomotion behaviors, including swimming, turning, grasping, and crawling, which we demonstrate in experiment.
Collapse
Affiliation(s)
- Qifan Yu
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, California, USA
| | - Nick Gravish
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, California, USA
| |
Collapse
|
21
|
Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem Rev 2024; 124:455-553. [PMID: 38174868 DOI: 10.1021/acs.chemrev.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Arie Levin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
22
|
Costello JH, Colin SP, Gemmell BJ, Dabiri JO, Kanso EA. Turning kinematics of the scyphomedusa Aurelia aurita. BIOINSPIRATION & BIOMIMETICS 2024; 19:026005. [PMID: 38211351 DOI: 10.1088/1748-3190/ad1db8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Scyphomedusae are widespread in the oceans and their swimming has provided valuable insights into the hydrodynamics of animal propulsion. Most of this research has focused on symmetrical, linear swimming. However, in nature, medusae typically swim circuitous, nonlinear paths involving frequent turns. Here we describe swimming turns by the scyphomedusaAurelia auritaduring which asymmetric bell margin motions produce rotation around a linearly translating body center. These jellyfish 'skid' through turns and the degree of asynchrony between opposite bell margins is an approximate predictor of turn magnitude during a pulsation cycle. The underlying neuromechanical organization of bell contraction contributes substantially to asynchronous bell motions and inserts a stochastic rotational component into the directionality of scyphomedusan swimming. These mechanics are important for natural populations because asynchronous bell contraction patterns are commonin situand result in frequent turns by naturally swimming medusae.
Collapse
Affiliation(s)
- J H Costello
- Biology Department, Providence College, Providence, RI 02918, United States of America
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, United States of America
| | - S P Colin
- Marine Biology and Environmental Science, Roger Williams University, Bristol, RI 02809, United States of America
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, United States of America
| | - B J Gemmell
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, United States of America
| | - J O Dabiri
- Graduate Aerospace Laboratories and Mechanical Engineering, California Institute of Technology, Pasadena, CA 91125, United States of America
| | - E A Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| |
Collapse
|
23
|
Sirithunge C, Wang H, Iida F. Soft touchless sensors and touchless sensing for soft robots. Front Robot AI 2024; 11:1224216. [PMID: 38312746 PMCID: PMC10830750 DOI: 10.3389/frobt.2024.1224216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Soft robots are characterized by their mechanical compliance, making them well-suited for various bio-inspired applications. However, the challenge of preserving their flexibility during deployment has necessitated using soft sensors which can enhance their mobility, energy efficiency, and spatial adaptability. Through emulating the structure, strategies, and working principles of human senses, soft robots can detect stimuli without direct contact with soft touchless sensors and tactile stimuli. This has resulted in noteworthy progress within the field of soft robotics. Nevertheless, soft, touchless sensors offer the advantage of non-invasive sensing and gripping without the drawbacks linked to physical contact. Consequently, the popularity of soft touchless sensors has grown in recent years, as they facilitate intuitive and safe interactions with humans, other robots, and the surrounding environment. This review explores the emerging confluence of touchless sensing and soft robotics, outlining a roadmap for deployable soft robots to achieve human-level dexterity.
Collapse
Affiliation(s)
| | - Huijiang Wang
- Bio-Inspired Robotics Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
24
|
Nadzharyan TA, Kramarenko EY. Effects of Filler Anisometry on the Mechanical Response of a Magnetoactive Elastomer Cell: A Single-Inclusion Modeling Approach. Polymers (Basel) 2023; 16:118. [PMID: 38201782 PMCID: PMC10780330 DOI: 10.3390/polym16010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
A finite-element model of the mechanical response of a magnetoactive elastomer (MAE) volume element is presented. Unit cells containing a single ferromagnetic inclusion with geometric and magnetic anisotropy are considered. The equilibrium state of the cell is calculated using the finite-element method and cell energy minimization. The response of the cell to three different excitation modes is studied: inclusion rotation, inclusion translation, and uniaxial cell stress. The influence of the magnetic properties of the filler particles on the equilibrium state of the MAE cell is considered. The dependence of the mechanical response of the cell on the filler concentration and inclusion anisometry is calculated and analyzed. Optimal filler shapes for maximizing the magnetic response of the MAE are discussed.
Collapse
|
25
|
Sun R, Zou Z, Yan R, Shou M, Zhang H, Zeng S, Feng H, Liao C. Magnetically Induced Grid Structure for Enhancing the Performance of a Dual-Mode Flexible Sensor with Tactile/Touchless Perception. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59876-59886. [PMID: 38105477 DOI: 10.1021/acsami.3c16240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As an advanced sensing technology, dual-mode flexible sensing, integrating both tactile and touchless perception, propels numerous intelligent devices toward a more practical and efficient direction. The ability to incorporate multiple sensing modes and accurately distinguish them in real time has become crucial for technological advancements. Here, we proposed a dual-mode sensing system (B-MIGS) consisting of a dual-layer sensing device with a magnetically induced grid structure and a testing device. The system was capable of utilizing mechanical pressure to perceive tactile stimulation and magnetic sensing to simultaneously transduce touchless stimulation simultaneously. By leveraging the triboelectric effect, the decoupling of tactile and touchless signals in the presence of unknown signal sources was achieved. Additionally, the sensing characteristics of the B-MIGS were optimized by varying the curing magnetic induction intensity and magnetic particle concentration. The influence of the temperature and humidity on the sensing signals was also discussed. Finally, the practical value of the B-MIGS as a dual-mode monitoring system was demonstrated on soft petals and sensor arrays, along with exploration of its potential application in underwater environments.
Collapse
Affiliation(s)
- Ruixue Sun
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhiyuan Zou
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Ruohan Yan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengjie Shou
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Honghui Zhang
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Suhua Zeng
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Huizong Feng
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Changrong Liao
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
26
|
Kostrov SA, Marshall JH, Maw M, Sheiko SS, Kramarenko EY. Programming and Reprogramming the Viscoelasticity and Magnetic Response of Magnetoactive Thermoplastic Elastomers. Polymers (Basel) 2023; 15:4607. [PMID: 38231994 PMCID: PMC10708547 DOI: 10.3390/polym15234607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
We present a novel type of magnetorheological material that allows one to restructure the magnetic particles inside the finished composite, tuning in situ the viscoelasticity and magnetic response of the material in a wide range using temperature and an applied magnetic field. The polymer medium is an A-g-B bottlebrush graft copolymer with side chains of two types: polydimethylsiloxane and polystyrene. At room temperature, the brush-like architecture provides the tissue mimetic softness and strain stiffening of the elastomeric matrix, which is formed through the aggregation of polystyrene side chains into aggregates that play the role of physical cross-links. The aggregates partially dissociate and the matrix softens at elevated temperatures, allowing for the effective rearrangement of magnetic particles by applying a magnetic field in the desired direction. Magnetoactive thermoplastic elastomers (MATEs) based on A-g-B bottlebrush graft copolymers with different amounts of aggregating side chains filled with different amounts of carbonyl iron microparticles were prepared. The in situ restructuring of magnetic particles in MATEs was shown to significantly alter their viscoelasticity and magnetic response. In particular, the induced anisotropy led to an order-of-magnitude enhancement of the magnetorheological properties of the composites.
Collapse
Affiliation(s)
- Sergei A. Kostrov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/2, 119991 Moscow, Russia;
| | - Josiah H. Marshall
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.H.M.); (M.M.)
| | - Mitchell Maw
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.H.M.); (M.M.)
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.H.M.); (M.M.)
| | - Elena Yu. Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/2, 119991 Moscow, Russia;
| |
Collapse
|
27
|
Ganguly S, Margel S. Fabrication and Applications of Magnetic Polymer Composites for Soft Robotics. MICROMACHINES 2023; 14:2173. [PMID: 38138344 PMCID: PMC10745923 DOI: 10.3390/mi14122173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
The emergence of magnetic polymer composites has had a transformative impact on the field of soft robotics. This overview will examine the various methods by which innovative materials can be synthesized and utilized. The advancement of soft robotic systems has been significantly enhanced by the utilization of magnetic polymer composites, which amalgamate the pliability of polymers with the reactivity of magnetic materials. This study extensively examines the production methodologies involved in dispersing magnetic particles within polymer matrices and controlling their spatial distribution. The objective is to gain insights into the strategies required to attain the desired mechanical and magnetic properties. Additionally, this study delves into the potential applications of these composites in the field of soft robotics, encompassing various devices such as soft actuators, grippers, and wearable gadgets. The study emphasizes the transformative capabilities of magnetic polymer composites, which offer a novel framework for the advancement of biocompatible, versatile soft robotic systems that utilize magnetic actuation.
Collapse
Affiliation(s)
- Sayan Ganguly
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shlomo Margel
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
28
|
Liang X, Zhao Y, Liu D, Deng Y, Arai T, Kojima M, Liu X. Magnetic Microrobots Fabricated by Photopolymerization and Assembly. CYBORG AND BIONIC SYSTEMS 2023; 4:0060. [PMID: 38026540 PMCID: PMC10644835 DOI: 10.34133/cbsystems.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/13/2023] [Indexed: 12/01/2023] Open
Abstract
Magnetic soft microrobots have great potential to access narrow spaces and conduct multiple tasks in the biomedical field. Until now, drug delivery, microsurgery, disease diagnosis, and dredging the blocked blood vessel have been realized by magnetic soft microrobots in vivo or in vitro. However, as the tasks become more and more complex, more functional units have been embedded in the body of the developed magnetic microrobots. These magnetic soft microrobots with complex designed geometries, mechanisms, and magnetic orientation are now greatly challenging the fabrication of the magnetic microrobots. In this paper, we propose a new method combining photopolymerization and assembly for the fabrication of magnetic soft microrobots. Utilizing the micro-hand assembly system, magnetic modules with different shapes and materials are firstly arrayed with precise position and orientation control. Then, the developed photopolymerization system is employed to fix and link these modules with soft materials. Based on the proposed fabrication method, 3 kinds of soft magnetic microrobots were fabricated, and the fundamental locomotion was presented. We believe that the presented fabrication strategy could help accelerate the clinical application of magnetic microrobots.
Collapse
Affiliation(s)
- Xiyue Liang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Yue Zhao
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Dan Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Yan Deng
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Tatsuo Arai
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
- Center for Neuroscience and Biomedical Engineering,
The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Masaru Kojima
- Department of Materials Engineering Science,
Osaka University, Osaka 560-8531, Japan
| | - Xiaoming Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
29
|
Nasseri R, Bouzari N, Huang J, Golzar H, Jankhani S, Tang XS, Mekonnen TH, Aghakhani A, Shahsavan H. Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics. Nat Commun 2023; 14:6108. [PMID: 37777525 PMCID: PMC10542366 DOI: 10.1038/s41467-023-41874-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
Stimuli-responsive hydrogels have garnered significant attention as a versatile class of soft actuators. Introducing anisotropic properties, and shape-change programmability to responsive hydrogels promises a host of opportunities in the development of soft robots. Herein we report the synthesis of pH-responsive hydrogel nanocomposites with predetermined microstructural anisotropy, shape-transformation, and self-healing. Our hydrogel nanocomposites are largely composed of zwitterionic monomers and asymmetric cellulose nanocrystals. While the zwitterionic nature of the network imparts both self-healing and cytocompatibility to our hydrogel nanocomposites, the shear-induced alignment of cellulose nanocrystals renders their anisotropic swelling and mechanical properties. Thanks to the self-healing properties, we utilized a cut-and-paste approach to program reversible, and complex deformation into our hydrogels. As a proof-of-concept, we demonstrated the transport of light cargo using tethered and untethered soft robots made from our hydrogels. We believe the proposed material system introduce a powerful toolbox for the development of future generations of biomedical soft robots.
Collapse
Affiliation(s)
- Rasool Nasseri
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Negin Bouzari
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Junting Huang
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hossein Golzar
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Sarah Jankhani
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Xiaowu Shirley Tang
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Institute for Polymer Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Amirreza Aghakhani
- Institute of Biomaterials and Biomolecular Systems (IBBS), University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Hamed Shahsavan
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
30
|
Duhr P, Meier YA, Damanpack A, Carpenter J, Studart AR, Rafsanjani A, Demirörs AF. Kirigami Makes a Soft Magnetic Sheet Crawl. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301895. [PMID: 37357135 PMCID: PMC10477847 DOI: 10.1002/advs.202301895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/28/2023] [Indexed: 06/27/2023]
Abstract
Limbless crawling on land requires breaking symmetry of the friction with the ground and exploiting an actuation mechanism to generate propulsive forces. Here, kirigami cuts are introduced into a soft magnetic sheet that allow to achieve effective crawling of untethered soft robots upon application of a rotating magnetic field. Bidirectional locomotion is achieved under clockwise and counterclockwise rotating magnetic fields with distinct locomotion patterns and crawling speed in forward and backward propulsions. The crawling and deformation profiles of the robot are experimentally characterized and combined with detailed multiphysics numerical simulations to extract locomotion mechanisms in both directions. It is shown that by changing the shape of the cuts and orientation of the magnet the robot can be steered, and if combined with translational motion of the magnet, complex crawling paths are programed. The proposed magnetic kirigami robot offers a simple approach to developing untethered soft robots with programmable motion.
Collapse
Affiliation(s)
- Pierre Duhr
- Complex MaterialsDepartment of MaterialsETH ZurichZurichCH‐8092Switzerland
| | - Yuki A. Meier
- Complex MaterialsDepartment of MaterialsETH ZurichZurichCH‐8092Switzerland
| | - Alireza Damanpack
- Department of Mechanical and Electrical EngineeringUniversity of Southern DenmarkOdense5230Denmark
| | - Julia Carpenter
- Complex MaterialsDepartment of MaterialsETH ZurichZurichCH‐8092Switzerland
| | - André R. Studart
- Complex MaterialsDepartment of MaterialsETH ZurichZurichCH‐8092Switzerland
| | - Ahmad Rafsanjani
- SDU Soft RoboticsSDU BioroboticsThe Maersk Mc‐Kinney Moller InstituteUniversity of Southern DenmarkOdense5230Denmark
| | - Ahmet F. Demirörs
- Complex MaterialsDepartment of MaterialsETH ZurichZurichCH‐8092Switzerland
- Present address:
Department of PhysicsUniversity of FribourgFribourgCH‐1700Switzerland
| |
Collapse
|
31
|
Xu Y, Xiao B, Balakumar L, Obstein KL, Dong X. Wireless Millimeter-Size Soft Climbing Robots with Omnidirectional Steerability on Tissue Surfaces. IEEE Robot Autom Lett 2023; 8:5720-5726. [PMID: 37744315 PMCID: PMC10515379 DOI: 10.1109/lra.2023.3300570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Wirelessly actuated miniature soft robots actuated by magnetic fields that can overcome gravity by climbing soft and wet tissues are promising for accessing challenging enclosed and confined spaces with minimal invasion for targeted medical operation. However, existing designs lack the directional steerability to traverse complex terrains and perform agile medical operations. Here we propose a rod-shaped millimeter-size climbing robot that can be omnidirectionally steered with a steering angle up to 360 degrees during climbing beyond existing soft miniature robots. The design innovation includes the rod-shaped robot body, its special magnetization profile, and the spherical robot footpads, allowing directional bending of the body under external magnetic fields and out-of-plane motion of the body for delivery of medical patches. With further integrated bio-adhesives and microstructures on the footpads, we experimentally demonstrated inverted climbing of the robot on porcine gastrointestinal (GI) tract tissues and deployment of a medical patch for targeted drug delivery.
Collapse
Affiliation(s)
- Yilan Xu
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37215, USA
| | - Boyang Xiao
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37215, USA
| | - Lohit Balakumar
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37215, USA
| | - Keith L. Obstein
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37215, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN 37215, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaoguang Dong
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37215, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37215, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN 37215, USA
| |
Collapse
|
32
|
Roghani M, Romeis D, Saphiannikova M. Effect of microstructure evolution on the mechanical behavior of magneto-active elastomers with different matrix stiffness. SOFT MATTER 2023; 19:6387-6398. [PMID: 37578241 DOI: 10.1039/d3sm00906h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Evolution of microstructure in magneto-active elastomers (MAEs) which can be caused by an applied magnetic field is a fascinating phenomenon with a significant impact on the mechanical behavior of the composite. To gain insight into the underlying mechanisms of this phenomenon, it is essential to create a model that can appropriately describe the field induced change in the particle distribution and its mechanical implications. The magneto-mechanical coupling is driven by magnetic interactions between the particles in the applied field. These magnetic interactions can result in macroscopic deformation of the sample and also in rearrangement of the microstructure, i.e. the local positions of the particles. In the case of initially isotropic MAEs made with a sufficiently soft matrix, this leads to the formation of chains of magnetized particles, creating a significant increase in the mechanical moduli along the field direction. In this paper, we implement a transversely isotropic Neo-Hookean material model to account for such anisotropic elastic behavior. A dipolar mean field approach is used to describe magnetic interactions between the particles. A penalty term is introduced to compensate for the micro-mechanical elastic energy required to move the particles inside the cross-linked elastomer. The resulting model can predict the huge magneto-rheological effects observed in experiments, and improves our understanding of how microstructure evolution affects magnetically induced deformation and stiffness of MAEs.
Collapse
Affiliation(s)
- Mehran Roghani
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany.
| | - Dirk Romeis
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany.
| | - Marina Saphiannikova
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany.
| |
Collapse
|
33
|
Banerjee H, Leber A, Laperrousaz S, La Polla R, Dong C, Mansour S, Wan X, Sorin F. Soft Multimaterial Magnetic Fibers and Textiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212202. [PMID: 37080546 DOI: 10.1002/adma.202212202] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Magnetically responsive soft materials are promising building blocks for the next generation of soft robotics, prosthesis, surgical tools, and smart textiles. To date, however, the fabrication of highly integrated magnetic fibers with extreme aspect ratios, that can be used as steerable catheters, endoscopes, or within functional textiles remains challenging. Here, multimaterial thermal drawing is proposed as a material and processing platform to realize 10s of meters long soft, ultrastretchable, yet highly resilient magnetic fibers. Fibers with a diameter as low as 300 µm and an aspect ratio of 105 are demonstrated, integrating nanocomposite domains with ferromagnetic microparticles embedded in a soft elastomeric matrix. With the proper choice of filler content that must strike the right balance between magnetization density and mechanical stiffness, fibers withstanding strains of >1000% are shown, which can be magnetically actuated and lift up to 370 times their own weight. Magnetic fibers can also integrate other functionalities like microfluidic channels, and be weaved into conventional textiles. It is shown that the novel magnetic textiles can be washed and sustain extreme mechanical constraints, as well as be folded into arbitrary shapes when magnetically actuated, paving the way toward novel intriguing opportunities in medical textiles and soft magnetic systems.
Collapse
Affiliation(s)
- Hritwick Banerjee
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Andreas Leber
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Stella Laperrousaz
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Rémi La Polla
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Chaoqun Dong
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Syrine Mansour
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Xue Wan
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Fabien Sorin
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
34
|
Dai M, Tu C, Du P, Bao F, Lin J. Spontaneous Rising of a Whirling-Swimmer Driven by a Bubble. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10638-10650. [PMID: 37366249 DOI: 10.1021/acs.langmuir.3c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The wind-dispersed seeds can rotate and fall like small vehicles with the help of the wind to obtain a longer propagation distance. Inspired by this, we propose a novel bubble-driven three-bladed whirling-swimmer (WS) to travel in the fluid as a vehicle. Four types of WSs with blade folding angles (φ) ranging from 10 to 60° were designed, and their swimming performance was evaluated. Regardless of the WS shape, the velocity increases linearly with φ, while the angular frequency exhibits an asymptotic value. Further, both the St and rotational energy of the WS peak at 20° ≤ φ ≤ 30° for different WS shapes as well as the vertical force and the hydrodynamic torque were solved from a proposed mechanics model. This folding angle range is unexpectedly consistent with the coning angle during maple samaras' stable falling. The WS lift and drag forces greatly depend on the interaction between the leading-edge vortex and the hub vortex. The results showed that the WS-IV seems to have the highest performance. Our work may shed new light on developing unpowered wireless swimmers of high swimming performance to provide a new way for underwater information collection, information transmission, and enhanced mixing.
Collapse
Affiliation(s)
- Minglu Dai
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou 310018, China
| | - Chengxu Tu
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou 310018, China
| | - Pengfei Du
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou 310018, China
| | - Fubing Bao
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou 310018, China
| | - Jianzhong Lin
- Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315201, China
| |
Collapse
|
35
|
Matharu PS, Gong P, Guntaka KPR, Almubarak Y, Jin Y, Tadesse YT. Jelly-Z: swimming performance and analysis of twisted and coiled polymer (TCP) actuated jellyfish soft robot. Sci Rep 2023; 13:11086. [PMID: 37422482 PMCID: PMC10329702 DOI: 10.1038/s41598-023-37611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/24/2023] [Indexed: 07/10/2023] Open
Abstract
Monitoring, sensing, and exploration of over 70% of the Earth's surface that is covered with water is permitted through the deployment of underwater bioinspired robots without affecting the natural habitat. To create a soft robot actuated with soft polymeric actuators, this paper describes the development of a lightweight jellyfish-inspired swimming robot, which achieves a maximum vertical swimming speed of 7.3 mm/s (0.05 body length/s) and is characterized by a simple design. The robot, named Jelly-Z, utilizes a contraction-expansion mechanism for swimming similar to the motion of a Moon jellyfish. The objective of this paper is to understand the behavior of soft silicone structure actuated by novel self-coiled polymer muscles in an underwater environment by varying stimuli and investigate the associated vortex for swimming like a jellyfish. To better understand the characteristics of this motion, simplified Fluid-structure simulation, and particle image velocimetry (PIV) tests were conducted to study the wake structure from the robot's bell margin. The thrust generated by the robot was also characterized with a force sensor to ascertain the force and cost of transport (COT) at different input currents. Jelly-Z is the first robot that utilized twisted and coiled polymer fishing line (TCPFL) actuators for articulation of the bell and showed successful swimming operations. Here, a thorough investigation on swimming characteristics in an underwater setting is presented theoretically and experimentally. We found swimming metrics of the robot are comparable with other jellyfish-inspired robots that have utilized different actuation mechanisms, but the actuators used here are scalable and can be made in-house relatively easily, hence paving way for further advancements into the use of these actuators.
Collapse
Affiliation(s)
- Pawandeep Singh Matharu
- Humanoid, Biorobotics and Smart Systems Laboratory (HBS Lab), Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Pengyao Gong
- Fluids, Turbulence Control and Renewable Energy Laboratory, Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Koti Pramod Reddy Guntaka
- SoRobotics Laboratory, Department of Mechanical Engineering, Wayne State University, Detroit, MI, 48202, USA
| | - Yara Almubarak
- SoRobotics Laboratory, Department of Mechanical Engineering, Wayne State University, Detroit, MI, 48202, USA
| | - Yaqing Jin
- Fluids, Turbulence Control and Renewable Energy Laboratory, Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yonas T Tadesse
- Humanoid, Biorobotics and Smart Systems Laboratory (HBS Lab), Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
36
|
Muff LF, Mills AS, Riddle S, Buclin V, Roulin A, Chiel HJ, Quinn RD, Weder C, Daltorio KA. Modular Design of a Polymer-Bilayer-Based Mechanically Compliant Worm-Like Robot. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210409. [PMID: 36807655 DOI: 10.1002/adma.202210409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Indexed: 05/05/2023]
Abstract
Soft earthworm-like robots that exhibit mechanical compliance can, in principle, navigate through uneven terrains and constricted spaces that are inaccessible to traditional legged and wheeled robots. However, unlike the biological originals that they mimic, most of the worm-like robots reported to date contain rigid components that limit their compliance, such as electromotors or pressure-driven actuation systems. Here, a mechanically compliant worm-like robot with a fully modular body that is based on soft polymers is reported. The robot is composed of strategically assembled, electrothermally activated polymer bilayer actuators, which are based on a semicrystalline polyurethane with an exceptionally large nonlinear thermal expansion coefficient. The segments are designed on the basis of a modified Timoshenko model, and finite element analysis simulation is used to describe their performance. Upon electrical activation of the segments with basic waveform patterns, the robot can move through repeatable peristaltic locomotion on exceptionally slippery or sticky surfaces and it can be oriented in any direction. The soft body enables the robot to wriggle through openings and tunnels that are much smaller than its cross-section.
Collapse
Affiliation(s)
- Livius F Muff
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Austin S Mills
- Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shane Riddle
- Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Véronique Buclin
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Anita Roulin
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Hillel J Chiel
- Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Roger D Quinn
- Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | | |
Collapse
|
37
|
Wang T, Joo HJ, Song S, Hu W, Keplinger C, Sitti M. A versatile jellyfish-like robotic platform for effective underwater propulsion and manipulation. SCIENCE ADVANCES 2023; 9:eadg0292. [PMID: 37043565 PMCID: PMC10096580 DOI: 10.1126/sciadv.adg0292] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/13/2023] [Indexed: 05/27/2023]
Abstract
Underwater devices are critical for environmental applications. However, existing prototypes typically use bulky, noisy actuators and limited configurations. Consequently, they struggle to ensure noise-free and gentle interactions with underwater species when realizing practical functions. Therefore, we developed a jellyfish-like robotic platform enabled by a synergy of electrohydraulic actuators and a hybrid structure of rigid and soft components. Our 16-cm-diameter noise-free prototype could control the fluid flow to propel while manipulating objects to be kept beneath its body without physical contact, thereby enabling safer interactions. Its against-gravity speed was up to 6.1 cm/s, substantially quicker than other examples in literature, while only requiring a low input power of around 100 mW. Moreover, using the platform, we demonstrated contact-based object manipulation, fluidic mixing, shape adaptation, steering, wireless swimming, and cooperation of two to three robots. This study introduces a versatile jellyfish-like robotic platform with a wide range of functions for diverse applications.
Collapse
Affiliation(s)
- Tianlu Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Hyeong-Joon Joo
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Shanyuan Song
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Bioinspired Autonomous Miniature Robots Group, Stuttgart 70569, Germany
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Bioinspired Autonomous Miniature Robots Group, Stuttgart 70569, Germany
| | - Christoph Keplinger
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
38
|
Lee YW, Kim JK, Bozuyuk U, Dogan NO, Khan MTA, Shiva A, Wild AM, Sitti M. Multifunctional 3D-Printed Pollen Grain-Inspired Hydrogel Microrobots for On-Demand Anchoring and Cargo Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209812. [PMID: 36585849 DOI: 10.1002/adma.202209812] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
While a majority of wireless microrobots have shown multi-responsiveness to implement complex biomedical functions, their functional executions are strongly dependent on the range of stimulus inputs, which curtails their functional diversity. Furthermore, their responsive functions are coupled to each other, which results in the overlap of the task operations. Here, a 3D-printed multifunctional microrobot inspired by pollen grains with three hydrogel components is demonstrated: iron platinum (FePt) nanoparticle-embedded pentaerythritol triacrylate (PETA), poly N-isopropylacrylamide (pNIPAM), and poly N-isopropylacrylamide acrylic acid (pNIPAM-AAc) structures. Each of these structures exhibits their respective targeted functions: responding to magnetic fields for torque-driven surface rolling and steering, exhibiting temperature responsiveness for on-demand surface attachment (anchoring), and pH-responsive cargo release. The versatile multifunctional pollen grain-inspired robots conceptualized here pave the way for various future medical microrobots to improve their projected performance and functional diversity.
Collapse
Affiliation(s)
- Yun-Woo Lee
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Jae-Kang Kim
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Ugur Bozuyuk
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Nihal Olcay Dogan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Muhammad Turab Ali Khan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Anitha Shiva
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Anna-Maria Wild
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|
39
|
Hou Y, Wang H, Fu R, Wang X, Yu J, Zhang S, Huang Q, Sun Y, Fukuda T. A review on microrobots driven by optical and magnetic fields. LAB ON A CHIP 2023; 23:848-868. [PMID: 36629004 DOI: 10.1039/d2lc00573e] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to their small sizes, microrobots are advantageous for accessing hard-to-reach spaces for delivery and measurement. However, their small sizes also bring challenges in on-board powering, thus usually requiring actuation by external energy. Microrobots actuated by external energy have been applied to the fields of physics, biology, medical science, and engineering. Among these actuation sources, light and magnetic fields show advantages in high precision and high biocompatibility. This paper reviews the recent advances in the design, actuation, and applications of microrobots driven by light and magnetic fields. For light-driven microrobots, we summarized the uses of optical tweezers, optoelectronic tweezers, and heat-mediated optical manipulation techniques. For magnetically driven microrobots, we summarized the uses of torque-driven microrobots, force-driven microrobots, and shape-deformable microrobots. Then, we compared the two types of field-driven microrobots and reviewed their advantages and disadvantages. The paper concludes with an outlook for the joint use of optical and magnetic field actuation in microrobots.
Collapse
Affiliation(s)
- Yaozhen Hou
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
| | - Huaping Wang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xian Wang
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ONT, M5G 1X8, Canada
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
| | - Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Qiang Huang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Toshio Fukuda
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
40
|
Guo R, Yu D, Wang S, Fu L, Lin Y. Nanosheet-hydrogel composites: from preparation and fundamental properties to their promising applications. SOFT MATTER 2023; 19:1465-1481. [PMID: 36752168 DOI: 10.1039/d2sm01471h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogels are an important class of soft materials with elastic and intelligent properties. Nevertheless, these traditional hydrogels usually possess poor mechanical properties and limited functions, which greatly restrict their further applications. With the rapid development of nanotechnology, there have been significant advances in the design and fabrication of functional nanocomposite hydrogels with unique properties and functions. Among various materials, nanosheets with planar topography, large specific surface areas, and versatile physicochemical properties have attracted intense research interest. Herein, this review summarises the synthesis mechanisms, fundamental properties, and promising applications of nanosheet-incorporated hydrogels. In particular, how the nanosheet structure is applied to improve the overall performance of the hydrogel in each application is emphasized. Additionally, the current challenges and prospects are briefly discussed in this area. We expect that the combination of nanosheets and hydrogels can attract more researchers' interest and bring new opportunities in the future.
Collapse
Affiliation(s)
- Rongrong Guo
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Deshuai Yu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Sen Wang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Lianlian Fu
- College of Material Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, P. R. China
| |
Collapse
|
41
|
Hou Y, Dai Y, Zhang W, Wang M, Zhao H, Feng L. Ultrasound-Based Real-Time Imaging of Hydrogel-Based Millirobots with Volume Change Capability. MICROMACHINES 2023; 14:422. [PMID: 36838121 PMCID: PMC9959195 DOI: 10.3390/mi14020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Soft-bodied robots driven by external fields have better environmental adaptability, extending their applications. Nature also provides lots of inspiration for shape-morphing robot development, for example, larvae and jellyfish. This paper presents magnetically propelled hydrogel-based millirobots with volume changeability. The millirobot can be imaged in real time in a completely enclosed space with an ultrasound imaging system. Firstly, a custom-designed magnetic generating system with six square coils was introduced to generate a uniform field to propel the robot. The robot was fabricated using hydrogel with a thickness of around 300 μm. After programmable magnetization, the robot could change its shape and move using the rotating magnetic field. With the near-infrared illumination, the robot could shrink and could recover when the illumination stopped. Even when the robot shrank, it could be propelled by the external field, showing its potential usage in complex environments. Moreover, the posture information of the robot including the position and shape could be obtained in real time using ultrasound image technology.
Collapse
Affiliation(s)
- Yaxin Hou
- Department of Diagnostic Ultrasound, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yuguo Dai
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Wei Zhang
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Minghui Wang
- NO. 1 Outpatient Department of Xi Cheng District, Beijing Garrison, Beijing 100055, China
| | - Hanxue Zhao
- Department of Diagnostic Ultrasound, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
42
|
Li G, Shintake J, Hayashibe M. Soft-body dynamics induces energy efficiency in undulatory swimming: A deep learning study. Front Robot AI 2023; 10:1102854. [PMID: 36845333 PMCID: PMC9949375 DOI: 10.3389/frobt.2023.1102854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Recently, soft robotics has gained considerable attention as it promises numerous applications thanks to unique features originating from the physical compliance of the robots. Biomimetic underwater robots are a promising application in soft robotics and are expected to achieve efficient swimming comparable to the real aquatic life in nature. However, the energy efficiency of soft robots of this type has not gained much attention and has been fully investigated previously. This paper presents a comparative study to verify the effect of soft-body dynamics on energy efficiency in underwater locomotion by comparing the swimming of soft and rigid snake robots. These robots have the same motor capacity, mass, and body dimensions while maintaining the same actuation degrees of freedom. Different gait patterns are explored using a controller based on grid search and the deep reinforcement learning controller to cover the large solution space for the actuation space. The quantitative analysis of the energy consumption of these gaits indicates that the soft snake robot consumed less energy to reach the same velocity as the rigid snake robot. When the robots swim at the same average velocity of 0.024 m/s, the required power for the soft-body robot is reduced by 80.4% compared to the rigid counterpart. The present study is expected to contribute to promoting a new research direction to emphasize the energy efficiency advantage of soft-body dynamics in robot design.
Collapse
Affiliation(s)
- Guanda Li
- Neuro-Robotics Lab, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Jun Shintake
- Department of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, Chofu, Japan
| | - Mitsuhiro Hayashibe
- Neuro-Robotics Lab, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan,*Correspondence: Mitsuhiro Hayashibe,
| |
Collapse
|
43
|
Li W, Guan Q, Li M, Saiz E, Hou X. Nature's strategy to construct tough responsive hydrogel actuators and their applications. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
44
|
Yang C, Yu Y, Zhao Y, Shang L. Bioinspired Jellyfish Microparticles from Microfluidics. RESEARCH (WASHINGTON, D.C.) 2023; 6:0034. [PMID: 37040286 PMCID: PMC10076059 DOI: 10.34133/research.0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023]
Abstract
Nonspherical particles have attracted increasing interest because of their shape anisotropy. However, the current methods to prepare anisotropic particles suffer from complex generation processes and limited shape diversity. Here, we develop a piezoelectric microfluidic system to generate complex flow configurations and fabricate jellyfish-like microparticles. In this delicate system, the piezoelectric vibration could evolve a jellyfish-like flow configuration in the microchannel and the in situ photopolymerization could instantly capture the flow architecture. The sizes and morphologies of the particles are precisely controlled by tuning the piezoelectric and microfluidic parameters. Furthermore, multi-compartmental microparticles with a dual-layer structure are achieved by modifying the injecting channel geometry. Moreover, such unique a shape endows the particles with flexible motion ability especially when stimuli-responsive materials are incorporated. On the basis of that, we demonstrate the capability of the jellyfish-like microparticles in highly efficient adsorption of organic pollutants under external control. Thus, it is believed that such jellyfish-like microparticles are highly versatile in potential applications and the piezoelectric-integrated microfluidic strategy could open an avenue for the creation of such anisotropic particles.
Collapse
Affiliation(s)
- Chaoyu Yang
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yunru Yu
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Luoran Shang
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Bio-inspired magnetic-driven folded diaphragm for biomimetic robot. Nat Commun 2023; 14:163. [PMID: 36631471 PMCID: PMC9834404 DOI: 10.1038/s41467-023-35905-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Functional soft materials, exhibiting multiple types of deformation, have shown their potential/abilities to achieve complicated biomimetic behaviors (soft robots). Inspired by the locomotion of earthworm, which is conducted through the contraction and stretching between body segments, this study proposes a type of one-piece-mold folded diaphragm, consisting of the structure of body segments with radial magnetization property, to achieve large 3D and bi-directional deformation with inside-volume change capability subjected to the low homogeneous magnetically driving field (40 mT). Moreover, the appearance based on the proposed magnetic-driven folded diaphragm is able to be easily customized to desired ones and then implanted into different untethered soft robotic systems as soft drivers. To verify the above points, we design the diaphragm pump providing unique properties of lightweight, powerful output and rapid response, and the soft robot including the bio-earthworm crawling robot and swimming robot inspired by squid to exhibit the flexible and rapid locomotion excited by single homogeneous magnetic fields.
Collapse
|
46
|
Pramanik R, Verstappen RWCP, Onck PR. Magnetic-field-induced propulsion of jellyfish-inspired soft robotic swimmers. Phys Rev E 2023; 107:014607. [PMID: 36797941 DOI: 10.1103/physreve.107.014607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
The multifaceted appearance of soft robots in the form of swimmers, catheters, surgical devices, and drug-carrier vehicles in biomedical and microfluidic applications is ubiquitous today. Jellyfish-inspired soft robotic swimmers (jellyfishbots) have been fabricated and experimentally characterized by several researchers that reported their swimming kinematics and multimodal locomotion. However, the underlying physical mechanisms that govern magnetic-field-induced propulsion are not yet fully understood. Here, we use a robust and efficient computational framework to study the jellyfishbot swimming kinematics and the induced flow field dynamics through numerical simulation. We consider a two-dimensional model jellyfishbot that has flexible lappets, which are symmetric about the jellyfishbot center. These lappets exhibit flexural deformation when subjected to external magnetic fields to displace the surrounding fluid, thereby generating the thrust required for propulsion. We perform a parametric sweep to explore the jellyfishbot kinematic performance for different system parameters-structural, fluidic, and magnetic. In jellyfishbots, the soft magnetic composite elastomeric lappets exhibit temporal and spatial asymmetries when subjected to unsteady external magnetic fields. The average speed is observed to be dependent on both these asymmetries, quantified by the glide magnitude and the net area swept by the lappet tips per swimming cycle, respectively. We observe that a judicious choice of the applied magnetic field and remnant magnetization profile in the jellyfishbot lappets enhances both these asymmetries. Furthermore, the dependence of the jellyfishbot swimming speed upon the net area swept (spatial asymmetry) is twice as high as the dependence of speed on the glide ratio (temporal asymmetry). Finally, functional relationships between the swimming speed and different kinematic parameters and nondimensional numbers are developed. Our results provide guidelines for the design of improved jellyfish-inspired magnetic soft robotic swimmers.
Collapse
Affiliation(s)
- R Pramanik
- Computational and Numerical Mathematics Group, Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Netherlands
- Micromechanics Group, Zernike Institute for Advanced Materials, University of Groningen, Netherlands
| | - R W C P Verstappen
- Computational and Numerical Mathematics Group, Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Netherlands
| | - P R Onck
- Micromechanics Group, Zernike Institute for Advanced Materials, University of Groningen, Netherlands
| |
Collapse
|
47
|
He Z, Yang Y, Jiao P, Wang H, Lin G, Pähtz T. Copebot: Underwater Soft Robot with Copepod-Like Locomotion. Soft Robot 2022; 10:314-325. [PMID: 36580550 DOI: 10.1089/soro.2021.0158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It has been a great challenge to develop robots that are able to perform complex movement patterns with high speed and, simultaneously, high accuracy. Copepods are animals found in freshwater and saltwater habitats that can have extremely fast escape responses when a predator is sensed by performing explosive curved jumps. In this study, we present a design and build prototypes of a combustion-driven underwater soft robot, the "copebot," which, similar to copepods, is able to accurately reach nearby predefined locations in space within a single curved jump. Because of an improved thrust force transmission unit, causing a large initial acceleration peak (850 body length·s-2), the copebot is eight times faster than previous combustion-driven underwater soft robots, while able to perform a complete 360° rotation during the jump. Thrusts generated by the copebot are tested to quantitatively determine the actuation performance, and parametric studies are conducted to investigate the sensitivity of the kinematic performance of the copebot to the input parameters. We demonstrate the utility of our design by building a prototype that rapidly jumps out of the water, accurately lands on its feet on a small platform, wirelessly transmits data, and jumps back into the water. Our copebot design opens the way toward high-performance biomimetic robots for multifunctional applications.
Collapse
Affiliation(s)
- Zhiguo He
- Institute of Port, Coastal and Offshore Engineering, Department of Ocean Engineering, Ocean College, Zhejiang University, Zhoushan, China.,Engineering Research Center of Oceanic Sensing Technology and Equipment, Zhejiang University, Ministry of Education, Zhoushan, China
| | - Yang Yang
- Institute of Port, Coastal and Offshore Engineering, Department of Ocean Engineering, Ocean College, Zhejiang University, Zhoushan, China
| | - Pengcheng Jiao
- Institute of Port, Coastal and Offshore Engineering, Department of Ocean Engineering, Ocean College, Zhejiang University, Zhoushan, China.,Engineering Research Center of Oceanic Sensing Technology and Equipment, Zhejiang University, Ministry of Education, Zhoushan, China
| | - Haipeng Wang
- Institute of Port, Coastal and Offshore Engineering, Department of Ocean Engineering, Ocean College, Zhejiang University, Zhoushan, China
| | - Guanzheng Lin
- Institute of Port, Coastal and Offshore Engineering, Department of Ocean Engineering, Ocean College, Zhejiang University, Zhoushan, China
| | - Thomas Pähtz
- Institute of Port, Coastal and Offshore Engineering, Department of Ocean Engineering, Ocean College, Zhejiang University, Zhoushan, China
| |
Collapse
|
48
|
Abstract
Jellyfish are among the widely distributed nature creatures that can effectively control the fluidic flow around their transparent soft body, thus achieving movements in the water and camouflage in the surrounding environments. Till now, it remains a challenge to replicate both transparent appearance and functionalities of nature jellyfish in synthetic systems due to the lack of transparent actuators. In this work, a fully transparent soft jellyfish robot is developed to possess both transparency and bio-inspired omni motions in water. This robot is driven by transparent dielectric elastomer actuators (DEAs) using hybrid silver nanowire networks and conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/waterborne polyurethane as compliant electrodes. The electrode exhibits large stretchability, low stiffness, high transmittance, and excellent conductivity at large strains. Consequently, the highly transparent DEA based on this hybrid electrode, with Very-High-Bond membranes as dielectric layers and polydimethylsiloxane as top coating, can achieve a maximum area strain of 146% with only 3% hysteresis loss. Driven by this transparent DEA, the soft jellyfish robot can achieve vertical and horizontal movements in water, by mimicking the actual pulsating rhythm of an Aurelia aurita. The bio-inspired robot can serve multiple functions as an underwater soft robot. The hybrid electrodes and bio-inspired design approach are potentially useful in a variety of soft robots and flexible devices.
Collapse
Affiliation(s)
- Yuzhe Wang
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Pengpeng Zhang
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Hui Huang
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jian Zhu
- School of Science and Engineering, Chinese University of Hong Kong at Shenzhen, Shenzhen, China.,Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
| |
Collapse
|
49
|
Ren Z, Shao Y. Future bio-inspired robots require delicate structures. Front Robot AI 2022; 9:1073329. [PMID: 36618011 PMCID: PMC9811312 DOI: 10.3389/frobt.2022.1073329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ziyu Ren
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany,*Correspondence: Ziyu Ren, ; Yuxiu Shao,
| | - Yuxiu Shao
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure—PSL Research University, Paris, France,*Correspondence: Ziyu Ren, ; Yuxiu Shao,
| |
Collapse
|
50
|
Lim S, Du Y, Lee Y, Panda SK, Tong D, Khalid Jawed M. Fabrication, control, and modeling of robots inspired by flagella and cilia. BIOINSPIRATION & BIOMIMETICS 2022; 18:011003. [PMID: 36533860 DOI: 10.1088/1748-3190/aca63d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Flagella and cilia are slender structures that serve important functionalities in the microscopic world through their locomotion induced by fluid and structure interaction. With recent developments in microscopy, fabrication, biology, and modeling capability, robots inspired by the locomotion of these organelles in low Reynolds number flow have been manufactured and tested on the micro-and macro-scale, ranging from medicalin vivomicrobots, microfluidics to macro prototypes. We present a collection of modeling theories, control principles, and fabrication methods for flagellated and ciliary robots.
Collapse
Affiliation(s)
- Sangmin Lim
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - Yayun Du
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - Yongkyu Lee
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - Shivam Kumar Panda
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - Dezhong Tong
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - M Khalid Jawed
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| |
Collapse
|