1
|
Fei W, Tang SY, Li MB. Luminescent metal nanoclusters and their application in bioimaging. NANOSCALE 2024; 16:19589-19605. [PMID: 39359125 DOI: 10.1039/d4nr03111c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Owing to their unique optical properties and atomically precise structures, metal nanoclusters (MNCs) constitute a new generation of optical probe materials. This mini-review provides a brief overview of luminescence mechanisms and modulation methods of luminescent metal nanoclusters in recent years. Based on these photophysical phenomena, the applications of cluster-based optical probes in optical bioimaging and related sensing, disease diagnosis, and treatment are summarized. Some challenges are also listed at the end.
Collapse
Affiliation(s)
- Wenwen Fei
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
| | - Sheng-Yan Tang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
| |
Collapse
|
2
|
Yang FK, Cao J, Zhang T, Jiang HX, Cui HB, Wang K. Dual-Activated Photoacoustic Probe for Reliably Detecting Hydroxyl Radical in Ischemic Cardiovascular Disease in Mouse and Human Samples. ACS Sens 2024; 9:5445-5453. [PMID: 39364916 DOI: 10.1021/acssensors.4c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Cardiovascular disease (CVD) is a chronic disease characterized by the accumulation of lipids and fibrous tissue within the arterial walls, potentially leading to vascular obstruction and an increased risk of heart disease and stroke. Hydroxyl radicals play a significant role in the formation and progression of CVD as they can instigate lipid peroxidation, resulting in cellular damage and inflammatory responses. However, precisely detecting hydroxyl radicals in CVD lesions presents significant challenges due to their high reactivity and short lifespan. Herein, we present the development and application of a novel activatable optical probe, Cy-OH-LP, designed to detect hydroxyl radicals in lipid-rich environments specifically. Built on the Cy7 molecular skeleton, Cy-OH-LP exhibits near-infrared absorption and fluorescence characteristics, and its specific response to hydroxyl radicals enables a turn-on signal in both photoacoustic and fluorescence spectra. The probe demonstrated excellent selectivity and stability in various tests. Furthermore, Cy-OH-LP was successfully applied in an in vivo model to detect hydroxyl radicals in mouse models, providing a potential tool for diagnosing and monitoring AS. The biosafety of Cy-OH-LP was also verified, showing low cytotoxicity and no significant organ damage in mice. The findings suggest that Cy-OH-LP is a promising tool for the specific detection of hydroxyl radicals in lipid-rich environments, providing new possibilities for research and clinical applications in the field of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Fang-Kun Yang
- Department of Cardiology, First Affiliated Hospital of Ningbo University (Ningbo First Hospital), School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jie Cao
- The Fifth Dental Center, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Ting Zhang
- Wuxi Maternity and Chield Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi 214002, China
| | - Hao-Xiang Jiang
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| | - Han-Bin Cui
- Department of Cardiology, First Affiliated Hospital of Ningbo University (Ningbo First Hospital), School of Medicine, Ningbo University, Ningbo 315211, China
| | - Kai Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| |
Collapse
|
3
|
Wu Q, Zhou Z, Xu L, Zhong H, Xiong B, Ren T, Li Z, Yuan L, Zhang XB. Multivalent supramolecular fluorescent probes for accurate disease imaging. SCIENCE ADVANCES 2024; 10:eadp8719. [PMID: 39423274 PMCID: PMC11488570 DOI: 10.1126/sciadv.adp8719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Optical imaging is a powerful tool for early disease detection and effective treatment planning, but its accuracy is often compromised by the uptake of imaging materials by the mononuclear phagocyte system (MPS). Herein, we leverage multivalent host-guest interactions between cyanine dyes and β-cyclodextrin polymers to develop supramolecular probes with enhanced stability, optical, and transport profiles for accurate in vivo imaging. These multivalent interactions not only ensure the stability of the probes but also enhance fluorescence efficiency by minimizing nonradiative decay. Our self-assembly approach effectively modulates probe size and surface properties, enabling evasion of MPS clearance and promoting prolonged bloodstream circulation, thereby improving the signal-to-background ratio for imaging. The effectiveness of our design is demonstrated by substantial advancements in the early diagnosis of acute kidney injury and by providing high-contrast imaging and precise surgical navigation across various tumor models. Our strategy not only advances optical imaging materials toward clinical translation but also establishes a versatile platform applicable to multiple imaging modalities.
Collapse
Affiliation(s)
| | | | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haichen Zhong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bin Xiong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tianbing Ren
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhe Li
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Cheng P, Pu K. Enzyme-responsive, multi-lock optical probes for molecular imaging and disease theranostics. Chem Soc Rev 2024; 53:10171-10188. [PMID: 39229642 DOI: 10.1039/d4cs00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Optical imaging is an indispensable tool for non-invasive visualization of biomolecules in living organisms, thereby offering a sensitive approach for disease diagnosis and image-guided disease treatment. Single-lock activatable optical probes (SOPs) that specifically switch on optical signals in the presence of biomarkers-of-interest have shown both higher detection sensitivity and imaging quality as compared to conventional "always-on" optical probes. However, such SOPs can still show "false-positive" results in disease diagnosis due to non-specific biomarker expression in healthy tissues. By contrast, multi-lock activatable optical probes (MOPs) that simultaneously detect multiple biomarkers-of-interest could improve detection specificity towards certain biomolecular events or pathological conditions. In this Review, we discuss the recent advancements of enzyme-responsive MOPs, with a focus on their biomedical applications. The higher detection specificity of MOPs could in turn enhance disease diagnosis accuracy and improve treatment efficacy in image-guided disease therapy with minimal toxicity in the surrounding healthy tissues. Finally, we discuss the current challenges and suggest future applications of MOPs.
Collapse
Affiliation(s)
- Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore.
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
5
|
Jiang Y, Wang L, Hu B, Nong C, Shen XC, Chen H. Engineering of Kidney-Targeting Fluorophores with Tunable Emission from NIR-I to NIR-II for Early Diagnosis of Kidney Disease. Adv Healthc Mater 2024:e2402828. [PMID: 39375980 DOI: 10.1002/adhm.202402828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Indexed: 10/09/2024]
Abstract
The development of rapidly distributed and retained probes within the kidneys is important for accurately diagnosing kidney diseases. Although molecular imaging shows the potential for non-intrusively interrogating kidney disease-related biomarkers, the limited kidney contrast of many fluorophores, owing to their relatively low distribution in the kidney, hinders their effectiveness for kidney disease detection. Herein, for the first time, an amino-functionalization strategy is proposed to construct a library of kidney-targeting fluorophores NHcy with tunable emissions from NIR-I to NIR-II. Among these, NHcy-8 is the first small-molecule NIR-II dye without a renal clearance moiety, designed specifically for kidney-targeting imaging. Building on this class of NIR-II fluorophore, the first NIR-II small-molecule kidney-targeting pH probe NIR-II-pH is developed, which exhibits a desirable kidney distribution after intravenous injection and is fluorescent only after activation by acidosis. NIR-II in vivo fluorescence/photoacoustic imaging of kidney disease models induced by cisplatin and renal I/R injury using NIR-II-pH reveals increasingly severe metabolic acidosis as the disease progressed, enabling sensitive detection of the onset of acidosis 36 h (cisplatin group) earlier than clinical methods. Thus, this study introduces a practical NIR-II kidney-targeting probe and provides a useful molecular blueprint for guiding kidney-targeting NIR-II fluorophores as diagnostic aids for kidney diseases.
Collapse
Affiliation(s)
- Yulan Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Liping Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bangping Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Chengkun Nong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
6
|
Jung W, Asaduddin M, Yoo D, Lee DY, Son Y, Kim D, Keum H, Lee J, Park SH, Jon S. Noninvasive ROS imaging and drug delivery monitoring in the tumor microenvironment. Biomaterials 2024; 310:122633. [PMID: 38810387 DOI: 10.1016/j.biomaterials.2024.122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Reactive oxygen species (ROS) that are overproduced in certain tumors can be considered an indicator of oxidative stress levels in the tissue. Here, we report a magnetic resonance imaging (MRI)-based probe capable of detecting ROS levels in the tumor microenvironment (TME) using ROS-responsive manganese ion (Mn2+)-chelated, biotinylated bilirubin nanoparticles (Mn@bt-BRNPs). These nanoparticles are disrupted in the presence of ROS, resulting in the release of free Mn2+, which induces T1-weighted MRI signal enhancement. Mn@BRNPs show more rapid and greater MRI signal enhancement in high ROS-producing A549 lung carcinoma cells compared with low ROS-producing DU145 prostate cancer cells. A pseudo three-compartment model devised for the ROS-reactive MRI probe enables mapping of the distribution and concentration of ROS within the tumor. Furthermore, doxorubicin-loaded, cancer-targeting ligand biotin-conjugated Dox/Mn@bt-BRNPs show considerable accumulation in A549 tumors and also effectively inhibit tumor growth without causing body weight loss, suggesting their usefulness as a new theranostic agent. Collectively, these findings suggest that Mn@bt-BRNPs could be used as an imaging probe capable of detecting ROS levels and monitoring drug delivery in the TME with potential applicability to other inflammatory diseases.
Collapse
Affiliation(s)
- Wonsik Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Muhammad Asaduddin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Dohyun Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Seoul, 05505, Republic of Korea
| | - Youngju Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Dohyeon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Hyeongseop Keum
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Jungun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
7
|
Yue Y, Ai J, Shi H, Wang S, Xu Z, Chai X, Huo F, Yin C. Fluorimetric Tool to Discriminate Glomerular and Tubular Injuries In Vivo. Anal Chem 2024; 96:14853-14859. [PMID: 39213638 DOI: 10.1021/acs.analchem.4c02724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The etiology and pathological complexity of acute kidney injury (AKI) pose great challenges for early diagnosis, typing, and personalized treatment. It is an important reason for poor prognosis and high mortality of AKI. In order to provide a relatively noninvasive diagnostic and typing method for AKI, we proposed the pathological changes of albumin permeability after glomerular injury and reabsorption efficiency after tubular injury as potential entry points. Thus, a renal tubule labeling fluorescent dye which features albumin concentration-related fluorescence intensity was used to fit these pathological changes. Utilizing this fluorescence assay, we realized urinary tract obstruction imaging as early as 12 h after morbidity. For glomerular and tubular injury discrimination, compared to a healthy control, membranous nephropathy as a representative glomerular injury resulted in enhanced fluorescence intensity of the kidney due to increased albumin penetration, while renal tubular injury caused insufficient dye reabsorption to exhibit weakened fluorescence intensity. The significant differences demonstrated the feasibility of this approach for fluorescence imaging-based AKI typing in vivo.
Collapse
Affiliation(s)
- Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Jiahong Ai
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Shuo Wang
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Zhou Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Xiaojun Chai
- Second People's Hospital in the City of Linfen, Linfen 041099, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
8
|
Zhou Y, Xu W, Ruan B, Zhu L, Jiang Y, Cai H, Huang J. Molecular Imaging of Renin Activity using Fluorogenic Nanoprobes for Precision Antihypertensive Therapy. Angew Chem Int Ed Engl 2024:e202416002. [PMID: 39279688 DOI: 10.1002/anie.202416002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/18/2024]
Abstract
Life-threatening hypertension remains inadequately controlled in clinics due to its heterogeneous renin levels. Rapid stratification of hypertension through renin analysis is crucial for effective personalized treatment, yet an ultrasensitive detection approach is currently lacking. Here, we report activatable renin nanoprobes (ARNs) for non-invasive and ultrasensitive profiling of renin activity and guiding antihypertensive treatment decision through near-infrared fluorescence (NIRF) in vivo imaging and in vitro urinalysis. ARNs are intrinsically non-fluorescent due to NIRF reporter connected to a gold nanocluster through a renin-responsive peptide. In hyperreninemia mouse models, ARNs specifically react with renin to liberate the renal clearable NIRF reporter for accurate renin detection that outperforms the gold standard radioimmunoassay. Such specific and sensitive detection also enables imaging-based high-throughput screening of antihypertensive drugs. In hypertensive rat models, ARNs enable ultrasensitive detection of both plasma and urinary renin, facilitating renin-guided precision treatment and significantly improving hypertension control rate (90 % versus 58 %). Our nanoprobe platform holds great potential for assisting clinicians in rapidly and accurately classifying hypertensive patients and improving outcomes through tailored treatment selection.
Collapse
Affiliation(s)
- Ya Zhou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key La-boratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Weiping Xu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key La-boratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bankang Ruan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key La-boratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lijuan Zhu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key La-boratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuyan Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA-94305, USA
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen, 518107, China
| | - Jiaguo Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key La-boratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
9
|
Ye YX, Pan JC, Wang HC, Zhang XT, Zhu HL, Liu XH. Advances in small-molecule fluorescent probes for the study of apoptosis. Chem Soc Rev 2024; 53:9133-9189. [PMID: 39129564 DOI: 10.1039/d4cs00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Apoptosis, as type I cell death, is an active death process strictly controlled by multiple genes, and plays a significant role in regulating various activities. Mounting research indicates that the unique modality of cell apoptosis is directly or indirectly related to different diseases including cancer, autoimmune diseases, viral diseases, neurodegenerative diseases, etc. However, the underlying mechanisms of cell apoptosis are complicated and not fully clarified yet, possibly due to the lack of effective chemical tools for the nondestructive and real-time visualization of apoptosis in complex biological systems. In the past 15 years, various small-molecule fluorescent probes (SMFPs) for imaging apoptosis in vitro and in vivo have attracted broad interest in related disease diagnostics and therapeutics. In this review, we aim to highlight the recent developments of SMFPs based on enzyme activity, plasma membranes, reactive oxygen species, reactive sulfur species, microenvironments and others during cell apoptosis. In particular, we generalize the mechanisms commonly used to design SMFPs for studying apoptosis. In addition, we discuss the limitations of reported probes, and emphasize the potential challenges and prospects in the future. We believe that this review will provide a comprehensive summary and challenging direction for the development of SMFPs in apoptosis related fields.
Collapse
Affiliation(s)
- Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Jian-Cheng Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Xing-Tao Zhang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xin-Hua Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
10
|
Ning X, Zhong Y, Cai Q, Wang Y, Jia X, Hsieh JT, Zheng J, Yu M. Gold Nanoparticle Transport in the Injured Kidneys with Elevated Renal Function Biomarkers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402479. [PMID: 39073056 PMCID: PMC11410533 DOI: 10.1002/adma.202402479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Renal function biomarkers such as serum blood urea nitrogen (BUN) and creatinine (Cr) serve as key indicators for guiding clinical decisions before administering kidney-excreted small-molecule agents. With engineered nanoparticles increasingly designed to be renally clearable to expedite their clinical translation, understanding the relationship between renal function biomarkers and nanoparticle transport in diseased kidneys becomes crucial to their biosafety in future clinical applications. In this study, renal-clearable gold nanoparticles (AuNPs) are used as X-ray contrast agents to noninvasively track their transport and retention in cisplatin-injured kidneys with varying BUN and Cr levels. The findings reveal that AuNP transport is significantly slowed in the medulla of severely injured kidneys, with BUN and Cr levels elevated to 10 times normal. In mildly injured kidneys, where BUN and Cr levels only four to five times higher than normal, AuNP transport and retention are not predictable by BUN and Cr levels but correlate strongly with the degree of tubular injury due to the formation of gold-protein casts in the Henle's loop of the medulla. These results underscore the need for caution when employing renal-clearable nanomedicines in compromised kidneys and highlight the potential of renal-clearable AuNPs as X-ray probes for assessing kidney injuries noninvasively.
Collapse
Affiliation(s)
- Xuhui Ning
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yuncheng Zhong
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Qi Cai
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yaohong Wang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Xun Jia
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Jer-Tsong Hsieh
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
11
|
Xia B, Ren F, Ma X, Yang ZC, Jiang ZL, Fang WW, Wang NW, Hu JL, Zhu WD, He T, Li Q, Cao BQ, Li Z. Preparation of NIR-II Polymer Nanoprobe Through Twisted Intramolecular Charge Transfer and Förster Resonance Energy Transfer of NIR-I Dye. Adv Healthc Mater 2024; 13:e2400760. [PMID: 38703026 DOI: 10.1002/adhm.202400760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/13/2024] [Indexed: 05/06/2024]
Abstract
Near-infrared-II (NIR-II) fluorescence imaging is pivotal in biomedical research. Organic probes exhibit high potential in clinical translation, due to advantages such as precise structure design, low toxicity, and post-modifications convenience. In related preparation, enhancement of NIR-II tail emission from NIR-I dyes is an efficient method. In particular, the promotion of twisted intramolecular charge transfer (TICT) of relevant NIR-I dyes is a convenient protocol. However, present TICT-type probes still show disadvantages in relatively low emission, large particle sizes, or limited choice of NIR-I dyes, etc. Herein, the synthesis of stable small-sized polymer NIR-II fluoroprobes (e.g., 7.2 nm), integrating TICT and Förster resonance energy transfer process to synergistically enhance the NIR-II emission is reported. Strong enhanced emissions can be obtained from various NIR-I dyes and lanthanide elements (e.g., twelvefold at 1250 nm from Nd-DTPA/IR-808 sample). The fluorophore provides high-resolution angiography, with high-contrast imaging on middle cerebral artery occlusion model mice for distinguishing occlusion. The fluorophore can be rapidly excreted from the kidney (urine ≈65% within 4 h) in normal mice and exhibits long-term renal retention on acute kidney injury mice, showing potential applications in the prognosis of kidney diseases. This development provides an effective strategy to design and synthesize effective NIR-II fluoroprobes.
Collapse
Affiliation(s)
- Bin Xia
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Hefei University of Technology, Hefei, 230009, China
| | - Feng Ren
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiaopeng Ma
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Zheng-Chuan Yang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Hefei University of Technology, Hefei, 230009, China
| | - Zhi-Lin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wei-Wei Fang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Hefei University of Technology, Hefei, 230009, China
| | - Ning-Wei Wang
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jin-Long Hu
- Department of General Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, China
| | - Wei-Duo Zhu
- School of Physics, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Tao He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Hefei University of Technology, Hefei, 230009, China
| | - Qing Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Bao-Qiang Cao
- Department of General Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
12
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
13
|
Peng Y, Qi Y, Xu M, Chen Y, Wang X, Jiang X, Du B. Early Detection and Noninvasive Staging of Kidney Dysfunction by a PEGylated Conventional Fluorophore via GFR-Sensitive Renal Transport. Bioconjug Chem 2024; 35:1258-1268. [PMID: 39078129 DOI: 10.1021/acs.bioconjchem.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Noninvasive fluorescence imaging of renal function is a valuable technique for understanding kidney disease progression and the development of renal medicine. This technique requires sensitive imaging probes for reporting renal dysfunction accurately at early stage. Herein, a molecularly engineered imaging probe (800CW-PEG45-COOH) was synthesized by simply PEGylating conventional near-infrared fluorophore IRDye800CW with NH2-PEG45-COOH (molecular weight ∼2100 Da) for early detection and staging of renal dysfunction through noninvasive real-time kidney imaging. 800CW-PEG45-COOH not only cleared through the kidney efficiently (>90% injection dosage at 24 h postinjection) but was also found to be freely filtered by glomeruli without renal tubular reabsorption and secretion. Despite this simple construction strategy, the transport of 800CW-PEG45-COOH within the kidneys was extremely sensitive to the alteration of the glomerular filtration rate (GFR), which enabled it to detect renal dysfunction much earlier than commonly used serum biomarkers and stage kidney function impairments (mild vs severe dysfunction) via imaging-based kidney clearance kinetics. This work not only provides a promising optical imaging probe for the noninvasive evaluation of kidney function but also highlights the utility of PEGylation in enhancing the performance of conventional organic dyes in biomedical applications.
Collapse
Affiliation(s)
- Yexi Peng
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P. R. China
| | - Yuming Qi
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P. R. China
| | - Mingze Xu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P. R. China
| | - Yiqiao Chen
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P. R. China
| | - Xiaoxian Wang
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P. R. China
| | - Xingya Jiang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Bujie Du
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P. R. China
| |
Collapse
|
14
|
Huang Y, Yang G, Yu Z, Tong T, Huang Y, Zhang Q, Hong Y, Jiang J, Zhang G, Yuan Y. Amino-Acid-Encoded Bioinspired Supramolecular Self-Assembly of Multimorphological Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311351. [PMID: 38453673 DOI: 10.1002/smll.202311351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Supramolecular self-assembly has emerged as an efficient tool to construct well-organized nanostructures for biomedical applications by small organic molecules. However, the physicochemical properties of self-assembled nanoarchitectures are greatly influenced by their morphologies, mechanical properties, and working mechanisms, making it challenging to design and screen ideal building blocks. Herein, using a biocompatible firefly-sourced click reaction between the cyano group of 2-cyano-benzothiazole (CBT) and the 1,2-aminothiol group of cysteine (Cys), an amino-acid-encoded supramolecular self-assembly platform Cys(SEt)-X-CBT (X represents any amino acid) is developed to incorporate both covalent and noncovalent interactions for building diverse morphologies of nanostructures with bioinspired response mechanism, providing a convenient and rapid strategy to construct site-specific nanocarriers for drug delivery, cell imaging, and enzyme encapsulation. Additionally, it is worth noting that the biodegradation of Cys(SEt)-X-CBT generated nanocarriers can be easily tracked via bioluminescence imaging. By caging either the thiol or amino groups in Cys with other stimulus-responsive sites and modifying X with probes or drugs, a variety of multi-morphological and multifunctional nanomedicines can be readily prepared for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Yifan Huang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Guokun Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zian Yu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Tong Tong
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Yan Huang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qianzijing Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yajian Hong
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Guozhen Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yue Yuan
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230031, China
| |
Collapse
|
15
|
Yi S, Liang B, Huang J. Engineering Cyanine- and Hemicyanine-Based Probes for Optical Imaging of Kidney Diseases. ChemMedChem 2024; 19:e202400227. [PMID: 38679574 DOI: 10.1002/cmdc.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Molecular optical probes play pivotal roles in in vivo imaging of biomarkers associated to kidney diseases. Relying on structural tunability and high fluorescence quantum yields, versatile optical probes have been constructed on cyanine or hemicyanine-based scaffold in recent years. This review summaries the recent progress on the development of optical probes for imaging of kidney diseases, particularly through near-infrared fluorescence, chemiluminescence and photoacoustic imaging modalities. The chemical design and sensing mechanisms are discussed along with applications in the detection of renal cell carcinoma and acute kidney injury. This progress provides insights and directions for the development of next generation kidney-targeted probes and for pushing their further applications in preclinical and clinical research.
Collapse
Affiliation(s)
- Shujuan Yi
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Baoshuai Liang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiaguo Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
16
|
Luo T, Huang S, Bai S, Feng B, Huang W, Cheng X, Liu M, Yao H, Zeng W. A novel dual-activatable ultrasensitive chemiluminescent probe for mercury (II) monitoring: From rational design to multiple application. Food Chem 2024; 447:138954. [PMID: 38461716 DOI: 10.1016/j.foodchem.2024.138954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Real-time optical sensing of mercury has been developed rapidly in recent years but remains challenging such as bearing background interference. Herein, a Hg2+ and base dual-activatable ultrasensitive chemiluminescent probe CL-Hg based on benzothiazole-phenoxyl-dioxetane with profits of excitation light-free and minimal interference is presented. The photophysical properties study and sensing performance verified CL-Hg is coupled with unique advantages of long-term detection (more than 400 min), ultrahigh sensitivity (LOD = 0.52 nM), and high specificity to Hg2+, and visualization detection by the paper-based test strips. More importantly, CL-Hg showed the qualitative and quantitative detection capability for Hg2+ with great recyclability in real samples of water, seafood, and beverages, holding great potential for on-site monitoring of Hg2+ levels in the actual samples. To our knowledge, this is the first work achieving the detection of Hg2+ by chemiluminescence. Overall, the Hg2+-activated visualization platform offers a practical method for detecting Hg2+ in various application scenarios.
Collapse
Affiliation(s)
- Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Shuaige Bai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Wenzhi Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Xiang Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Meihui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Heying Yao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410013, PR China.
| |
Collapse
|
17
|
Zhao Z, He K, Liu B, Nie W, Luo X, Liu J. Intrarenal pH-Responsive Self-Assembly of Luminescent Gold Nanoparticles for Diagnosis of Early Kidney Injury. Angew Chem Int Ed Engl 2024; 63:e202406016. [PMID: 38703020 DOI: 10.1002/anie.202406016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/06/2024]
Abstract
Metabolic acidosis-induced kidney injury (MAKI) is asymptomatic and lack of clinical biomarkers in early stage, but rapidly progresses to severe renal fibrosis and ultimately results in end-stage kidney failure. Therefore, developing rapid and noninvasive strategies direct responsive to renal tubular acidic microenvironment rather than delayed biomarkers are essential for timely renoprotective interventions. Herein, we develop pH-responsive luminescent gold nanoparticles (p-AuNPs) in the second near-infrared emission co-coated with 2,3-dimethylaleic anhydride conjugated β-mercaptoethylamine and cationic 2-diethylaminoethanethiol hydrochloride, which showed sensitive pH-induced charge reversal and intrarenal self-assembly for highly sensitive and long-time (~24 h) imaging of different stages of MAKI. By integrating advantages of pH-induced intrarenal self-assembly and enhanced interactions between pH-triggered positively charged p-AuNPs and renal tubular cells, the early- and late-stage MAKI could be differentiated rapidly within 10 min post-injection (p.i.) with contrast index (CI) of 3.5 and 4.3, respectively. The corresponding maximum CI could reach 5.1 and 9.2 at 12 h p.i., respectively. Furthermore, p-AuNPs were demonstrated to effectively real-time monitor progressive recovery of kidney injury in MAKI mice after therapy, and also exhibit outstanding capabilities for drug screening. This pH-responsive strategy showed great promise for feedback on kidney dysfunction progression, opening new possibilities for early-stage diagnosis of pH-related diseases.
Collapse
Affiliation(s)
- Zhipeng Zhao
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kui He
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ben Liu
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Wenyan Nie
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaoxi Luo
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jinbin Liu
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
18
|
Li L, Chen C, Bu Y, Wang J, Shao J, Li A, Lin H, Gao J. Fluorinated 1,7-DO2A-Based Iron(II) Complexes as Sensitive 19F MRI Molecular Probes for Visualizing Renal Dysfunction in Living Mice. Anal Chem 2024; 96:10827-10834. [PMID: 38885015 DOI: 10.1021/acs.analchem.4c02272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Kidney diseases have become an important global health concern due to their high incidence, inefficient diagnosis, and poor prognosis. Devising direct methods, especially imaging means, to assess renal function is the key for better understanding the mechanisms of various kidney diseases and subsequent development of effective treatment. Herein, we developed a fluorinated ferrous chelate-based sensitive probe, 1,7-DO2A-Fe(II)-F18 (Probe 1), for 19F magnetic resonance imaging (MRI). This highly fluorinated probe (containing 18 chemically equivalent 19F atoms with a fluorine content at 35 wt %) achieves a 15-time enhancement in signal intensity compared with the fluorine-containing ligand alone due to the appropriately regulated 19F relaxation times by the ferrous ion, which significantly increases imaging sensitivity and reduces acquisition time. Owing to its high aqueous solubility, biostability, and biocompatibility, this probe could be rapidly cleared by kidneys, which provides a means for monitoring renal dysfunction via 19F MRI. With this probe, we accomplish in vivo imaging of the impaired renal dysfunction caused by various kidney diseases including acute kidney injury, unilateral ureteral obstruction, and renal fibrosis at different stages. Our study illustrates the promising potential of Probe 1 for in vivo real-time visualization of kidney dysfunction, which is beneficial for the study, diagnosis, and even stratification of different kidney diseases. Furthermore, the design strategy of our probe is inspiring for the development of more high-performance 19F MRI probes for monitoring various biological processes.
Collapse
Affiliation(s)
- Lingxuan Li
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chuankai Chen
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yifan Bu
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junjie Wang
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Juan Shao
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ao Li
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Jinhao Gao
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
19
|
She Z, Li R, Zeng F, Wu S. Homo-Dyad with Outer Hydration Layer Approach for Developing NIR-II Chromophore of High Stability and Water-Solubility as Injectable and Sprayable Optical Probe. Adv Healthc Mater 2024; 13:e2400791. [PMID: 38588220 DOI: 10.1002/adhm.202400791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Dyes with extended conjugate structures are the focus of extensive design and synthesis efforts, aiming to confer unique and improved optical and electronic properties. Such advancements render these dyes applicable across a wide spectrum of uses, ranging from second-window near-infrared (NIR-II) bioimaging to organic photovoltaics. Nevertheless, the inherent benefits of long conjugation are often accompanied by persistent challenges like aggregation, fluorescence quenching, absorption blueshift, and low stability and poor water solubility. Herein, a unique structural design strategy termed "homo-dyad with outer hydration layer" is introduced to address these inherent problems, tailored for the development of imaging probes exhibiting long absorption/emission wavelengths. This approach involves bringing two heptamethine cyanines together through a flexible linker, forming a homo-dyad structure, while strategically attaching four polyethylene glycol (PEG9) chains to the terminal heterocycles. This approach imparts excellent water solubility, biocompatibility, and enhanced chemical, photo-, and spectral stability for the dyes. Utilizing this strategy, a biomarker-activatable probe (HD-FL-4PEG9-N) for NIR-II fluorescent and 3D multispectral optoacoustic tomography imaging is developed, and its effectiveness in disease visualization. It can not only serve as an injectable probe for acute kidney injury imaging due to its high water solubility, but also a sprayable probe for imaging bacterial-infected wounds.
Collapse
Affiliation(s)
- Zunpan She
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Rong Li
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
20
|
Wei X, Xu C, Cheng P, Hu Y, Liu J, Xu M, Huang J, Zhang Y, Pu K. Leveraging Long-Distance Singlet-Oxygen Transfer for Bienzyme-Locked Afterglow Imaging of Intratumoral Granule Enzymes. J Am Chem Soc 2024; 146:17393-17403. [PMID: 38860693 DOI: 10.1021/jacs.4c05012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Dual-locked activatable optical probes, leveraging the orthogonal effects of two biomarkers, hold great promise for the specific imaging of biological processes. However, their design approaches are limited to a short-distance energy or charge transfer mechanism, while the signal readout relies on fluorescence, which inevitably suffers from tissue autofluorescence. Herein, we report a long-distance singlet oxygen transfer approach to develop a bienzyme-locked activatable afterglow probe (BAAP) that emits long-lasting self-luminescence without real-time light excitation for the dynamic imaging of an intratumoral granule enzyme. Composed of an immuno-biomarker-activatable singlet oxygen (1O2) donor and a cancer-biomarker-activatable 1O2 acceptor, BAAP is initially nonafterglow. Only in the presence of both immune and cancer biomarkers can 1O2 be generated by the activated donor and subsequently diffuse toward the activated acceptor, resulting in bright near-infrared afterglow with a high signal-to-background ratio and specificity toward an intratumoral granule enzyme. Thus, BAAP allows for real-time tracking of tumor-infiltrating cytotoxic T lymphocytes, enabling the evaluation of cancer immunotherapy and the differentiation of tumor from local inflammation with superb sensitivity and specificity, which are unachievable by single-locked probes. Thus, this study not only presents the first dual-locked afterglow probe but also proposes a new design way toward dual-locked probes via reactive oxygen species transfer processes.
Collapse
Affiliation(s)
- Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Yuxuan Hu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
21
|
Wang X, Ding Q, Groleau RR, Wu L, Mao Y, Che F, Kotova O, Scanlan EM, Lewis SE, Li P, Tang B, James TD, Gunnlaugsson T. Fluorescent Probes for Disease Diagnosis. Chem Rev 2024; 124:7106-7164. [PMID: 38760012 PMCID: PMC11177268 DOI: 10.1021/acs.chemrev.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
The identification and detection of disease-related biomarkers is essential for early clinical diagnosis, evaluating disease progression, and for the development of therapeutics. Possessing the advantages of high sensitivity and selectivity, fluorescent probes have become effective tools for monitoring disease-related active molecules at the cellular level and in vivo. In this review, we describe current fluorescent probes designed for the detection and quantification of key bioactive molecules associated with common diseases, such as organ damage, inflammation, cancers, cardiovascular diseases, and brain disorders. We emphasize the strategies behind the design of fluorescent probes capable of disease biomarker detection and diagnosis and cover some aspects of combined diagnostic/therapeutic strategies based on regulating disease-related molecules. This review concludes with a discussion of the challenges and outlook for fluorescent probes, highlighting future avenues of research that should enable these probes to achieve accurate detection and identification of disease-related biomarkers for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Xin Wang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Qi Ding
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | | | - Luling Wu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Yuantao Mao
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Feida Che
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Oxana Kotova
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
| | - Eoin M. Scanlan
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| | - Simon E. Lewis
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Ping Li
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
- Laoshan
Laboratory, 168 Wenhai
Middle Road, Aoshanwei Jimo, Qingdao 266237, Shandong, People’s Republic of China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, People’s
Republic of China
| | - Thorfinnur Gunnlaugsson
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| |
Collapse
|
22
|
Ji Y, Wang H, Liu X, Zhu Z, Song A, Chen L, Ren J. Targeted inhibition of pyroptosis via a carbonized nanoinhibitor for alleviating drug-induced acute kidney injury. J Mater Chem B 2024; 12:5609-5618. [PMID: 38764416 DOI: 10.1039/d4tb00382a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Pyroptosis is a form of pro-inflammatory programmed cell death and it represents a potential therapeutic target for alleviating drug-induced acute kidney injury (AKI). However, there is a lack of effective and kidney-targeted pyroptosis inhibitors for AKI treatment so far. Herein, we report a pharmacologically active carbonized nanoinhibitor (P-RCDs) derived from 3,4',5-trihydroxystilbene that can preferentially accumulate in the kidneys and ameliorate chemotherapeutic drug-induced AKI by inhibiting pyroptosis. In particular, such a carbonized nanoformulation enables the transfer of desired pyroptosis inhibitory activity as well as the radical eliminating activity to the nanoscale, endowing P-RCDs with a favorable kidney-targeting ability. In cisplatin-induced AKI mice, P-RCDs can not only pharmacologically inhibit GSDME-mediated pyroptosis in renal cells with high efficacy, but also exhibit high antioxidative activity that protects the kidneys from oxidative injury. The present study proposes a feasible but efficacious strategy to construct versatile carbonized nanomedicine for targeted delivery of the desired pharmacological activities.
Collapse
Affiliation(s)
- Yanjun Ji
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Xinchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Zitong Zhu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Anjun Song
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Li Chen
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
23
|
Wang C, Yuan R, Ma S, Miao Q, Zhao X, Liu Y, Bi S, Chen G. Developing NIR xanthene-chalcone fluorophores with large Stokes shifts for fluorescence imaging. Analyst 2024; 149:3372-3379. [PMID: 38712551 DOI: 10.1039/d4an00339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A series of novel near-infrared (NIR) xanthene-chalcone fluorophores were constructed through a modular synthesis with the electron-donating xanthene moiety and the electron-withdrawing chalcone moiety. These fluorophores are convenient for fluorescence imaging in living cells, benefiting from their NIR emissions (650-710 nm), large Stokes shifts (>100 nm), moderate quantum yields and low cytotoxicity. The substituted hydroxyl group of the xanthene-chalcone fluorophore HCA-E facilitates the development of multifunctional fluorescent probes. As an example, a highly sensitive and selective probe N-HCA-E for glutathione (GSH) detection was developed based on the fluorophore HCA-E. A 4-nitrobenzenesulfonyl (4-Ns) group was introduced to cage the hydroxyl group of HCA-E, which was used as a selective recognition site for the thiol of GSH and an effective fluorescence quencher. Probe N-HCA-E revealed NIR "turn-on" fluorescence (709 nm) for endogenous and exogenous GSH detection in lysosomes with a large Stokes shift (129 nm) and high anti-interference ability.
Collapse
Affiliation(s)
- Chao Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Rongrong Yuan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Siyue Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Qing Miao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Xufang Zhao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Yuxia Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| |
Collapse
|
24
|
Huang Y, Ning X, Ahrari S, Cai Q, Rajora N, Saxena R, Yu M, Zheng J. Physiological principles underlying the kidney targeting of renal nanomedicines. Nat Rev Nephrol 2024; 20:354-370. [PMID: 38409369 DOI: 10.1038/s41581-024-00819-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Kidney disease affects more than 10% of the global population and is associated with considerable morbidity and mortality, highlighting a need for new therapeutic options. Engineered nanoparticles for the treatment of kidney diseases (renal nanomedicines) represent one such option, enabling the delivery of targeted therapeutics to specific regions of the kidney. Although they are underdeveloped compared with nanomedicines for diseases such as cancer, findings from preclinical studies suggest that renal nanomedicines may hold promise. However, the physiological principles that govern the in vivo transport and interactions of renal nanomedicines differ from those of cancer nanomedicines, and thus a comprehensive understanding of these principles is needed to design nanomedicines that effectively and specifically target the kidney while ensuring biosafety in their future clinical translation. Herein, we summarize the current understanding of factors that influence the glomerular filtration, tubular uptake, tubular secretion and extrusion of nanoparticles, including size and charge dependency, and the role of specific transporters and processes such as endocytosis. We also describe how the transport and uptake of nanoparticles is altered by kidney disease and discuss strategic approaches by which nanoparticles may be harnessed for the detection and treatment of a variety of kidney diseases.
Collapse
Affiliation(s)
- Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Xuhui Ning
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Samira Ahrari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Qi Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nilum Rajora
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ramesh Saxena
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Huang J, Xu M, Cheng P, Yu J, Wu J, Pu K. A Tandem-Locked Chemiluminescent Probe for Imaging of Tumor-Associated Macrophage Polarization. Angew Chem Int Ed Engl 2024; 63:e202319780. [PMID: 38523406 DOI: 10.1002/anie.202319780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Tumor-associated macrophages (TAMs) play a role in both pro- and anti-tumor functions; and the targeted polarization from M2 to M1 TAMs has become an effective therapy option. Although detection of M1 TAMs is imperative to assess cancer immunotherapeutic efficacy, existing optical probes suffer from shallow tissue penetration depth and poor specificity toward M1 TAMs. Herein, we report a tandem-locked NIR chemiluminescent (CL) probe for specific detection of M1 TAMs. Through a combined molecular engineering approach via both atomic alternation and introduction of electron-withdrawing groups, near-infrared (NIR) chemiluminophores are screened out to possess record-long emission (over 800 nm), record-high CL quantum yield (2.7 % einstein/mol), and prolonged half-life (7.7 h). Based on an ideal chemiluminophore, the tandem-locked probe (DPDGN) is developed to only activate CL signal in the presence of both tumour (γ-glutamyl transpeptidase) and M1 macrophage biomarkers (nitric oxide). Such a tandem-lock design ensures its high specificity towards M1 macrophages in the tumor microenvironment over those in normal tissues or peripheral blood. Thus, DPDGN permits noninvasive imaging and tracking of M1 TAM in the tumor of living mice during R837 treatment, showing a good correlation with ex vivo methods. This study not only reports a new molecular approach towards highly efficient chemiluminophores but also reveals the first tandem-locked CL probes for enhanced imaging specificity.
Collapse
Affiliation(s)
- Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jie Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Singapore, 636921, Singapore
| |
Collapse
|
26
|
Zhou K, Li G, Pan R, Xin S, Wen W, Wang H, Luo C, Han RPS, Gu Y, Tu Y. Preclinical evaluation of AGTR1-Targeting molecular probe for colorectal cancer imaging in orthotopic and liver metastasis mouse models. Eur J Med Chem 2024; 271:116452. [PMID: 38685142 DOI: 10.1016/j.ejmech.2024.116452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Despite advancements in colorectal cancer (CRC) treatment, the prognosis remains unfavorable for patients with distant liver metastasis. Fluorescence molecular imaging with specific probes is increasingly used to guide CRC surgical resection in real-time and treatment planning. Here, we demonstrate the targeted imaging capacity of an MPA-PEG4-N3-Ang II probe labeled with near-infrared (NIR) fluorescent dye targeting the angiotensin II (Ang II) type 1 receptor (AGTR1) that is significantly upregulated in CRC. MPA-PEG4-N3-Ang II was highly selective and specific to in vitro tumor cells and in vivo tumors in a mouse CRC xenograft model. The favorable ex vivo imaging and in vivo biodistribution of MPA-PEG4-N3-Ang II afforded tumor-specific accumulation with low background and >10 contrast tumor-to-colorectal values in multiple subcutaneous CRC models at 8 h following injection. Biodistribution analysis confirmed the probe's high uptake in HT29 and HCT116 orthotopic and liver metastatic models of CRC with signal-to-noise ratio (SNR) values of tumor-to-colorectal and -liver fluorescence of 5.8 ± 0.6, 5.3 ± 0.7, and 2.7 ± 0.5, 2.6 ± 0.5, respectively, enabling high-contrast intraoperative tumor visualization for surgical navigation. Given its rapid tumor targeting, precise tumor boundary delineation, durable tumor retention and docking study, MPA-PEG4-N3-Ang II is a promising high-contrast imaging agent for the clinical detection of CRC.
Collapse
Affiliation(s)
- Kuncheng Zhou
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Gang Li
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, China
| | - Rongbin Pan
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Sulin Xin
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Weijie Wen
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Huiyi Wang
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Chao Luo
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Ray P S Han
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yuanbiao Tu
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
27
|
Zhang W, Chan C, Zhang K, Qin H, Yu BY, Xue Z, Zheng X, Tian J. Discovering a New Drug Against Acute Kidney Injury by Using a Tailored Photoacoustic Imaging Probe. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311397. [PMID: 38221651 DOI: 10.1002/adma.202311397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/29/2023] [Indexed: 01/16/2024]
Abstract
Acute kidney injury (AKI) has become an increasing concern for patients due to the widespread clinical use of nephrotoxic drugs. Currently, the early diagnosis of AKI is still challenging and the available therapeutic drugs cannot meet the clinical demand. Herein, this work has investigated the key redox couple involved in AKI and develops a tailored photoacoustic (PA) imaging probe (AB-DiOH) which can reversibly respond to hypochlorite (ClO-)/glutathione (GSH) with high specificity and sensitivity. This probe enables the real-time monitoring of AKI by noninvasive PA imaging, with better detection sensitivity than the blood test. Furthermore, this probe is utilized for screening nephroprotective drugs among natural products. For the first time, astragalin is discovered to be a potential new drug for the treatment of AKI. After oral administration, astragalin can be efficiently absorbed by the animal body, alleviate kidney injury, and meanwhile induce no damage to other normal tissues. The treatment mechanism of astragalin has also been revealed to be the simultaneous inhibition of oxidative stress, ferroptosis, and cuproposis. The developed PA imaging probe and the discovered drug candidate provide a promising new tool and strategy for the early diagnosis and effective treatment of AKI.
Collapse
Affiliation(s)
- Wangning Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chenming Chan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Kaiyu Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Haifeng Qin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xianchuang Zheng
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
28
|
Jiang W, Hou X, Qi Y, Wang Z, Liu Y, Gao XJ, Wu T, Guo J, Fan K, Shang W. pH-Activatable Pre-Nanozyme Mediated H 2S Delivery for Endo-Exogenous Regulation of Oxidative Stress in Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303901. [PMID: 38445847 PMCID: PMC11095207 DOI: 10.1002/advs.202303901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/19/2023] [Indexed: 03/07/2024]
Abstract
Oxidative stress induced by excess reactive oxygen species (ROS) is a primary pathogenic cause of acute kidney injury (AKI). Development of an effective antioxidation system to mitigate oxidative stress for alleviating AKI remains to be investigated. This study presents the synthesis of an ultra-small Platinum (Pt) sulfur cluster (Pt5.65S), which functions as a pH-activatable prefabricated nanozyme (pre-nanozyme). This pre-nanozyme releases hydrogen sulfide (H2S) and transforms into a nanozyme (Ptzyme) that mimics various antioxidant enzymes, including superoxide dismutase and catalase, within the inflammatory microenvironment. Notably, the Pt5.65S pre-nanozyme exhibits an endo-exogenous synergy-enhanced antioxidant therapeutic mechanism. The Ptzyme reduces oxidative damage and inflammation, while the released H2S gas promotes proneurogenesis by activating Nrf2 and upregulating the expression of antioxidant molecules and enzymes. Consequently, the Pt5.65S pre-nanozyme shows cytoprotective effects against ROS/reactive nitrogen species (RNS)-mediated damage at remarkably low doses, significantly improving treatment efficacy in mouse models of kidney ischemia-reperfusion injury and cisplatin-induced AKI. Based on these findings, the H2S-generating pre-nanozyme may represent a promising therapeutic strategy for mitigating inflammatory diseases such as AKI and others.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450001China
- Nanozyme Medical CenterSchool of Basic Medical SciencesAcademy of Medical ScienceZhengzhou UniversityZhengzhou450001China
| | - Xinyue Hou
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450001China
| | - Yuanbo Qi
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450001China
| | - Zhigang Wang
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450001China
| | - Ying Liu
- Nanozyme Medical CenterSchool of Basic Medical SciencesAcademy of Medical ScienceZhengzhou UniversityZhengzhou450001China
| | - Xuejiao J. Gao
- College of Chemistry and Chemical EngineeringJiangxi Normal UniversityNanchang330022P. R. China
| | - Tingting Wu
- Nanozyme Medical CenterSchool of Basic Medical SciencesAcademy of Medical ScienceZhengzhou UniversityZhengzhou450001China
| | - Jiancheng Guo
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450001China
| | - Kelong Fan
- Nanozyme Medical CenterSchool of Basic Medical SciencesAcademy of Medical ScienceZhengzhou UniversityZhengzhou450001China
- CAS Engineering Laboratory for NanozymeKey Laboratory of Protein and Peptide PharmaceuticalsInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Wenjun Shang
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450001China
| |
Collapse
|
29
|
Luo Y, Li C, Ye F, Tian J, Tan X, Hu S, Zhao S. A Macrophage Membrane-Coated Cu-WO 3-x-Hydro820 Nanoreactor for Treatment and Photoacoustic/Fluorescence Dual-Mode Imaging of Inflamed Liver Tissue. Anal Chem 2024; 96:6483-6492. [PMID: 38613481 DOI: 10.1021/acs.analchem.4c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
A disease-targeting nanoplatform that integrates imaging with therapeutic activity would facilitate early diagnosis, treatment, and therapeutic monitoring. To this end, a macrophage membrane-coated Cu-WO3-x-Hydro820 (CWHM) nanoreactor was prepared. This reactor was shown to target inflammatory tissues. The reactive oxygen species (ROS) such as H2O2 and ·OH in inflammatory tissues can react with Hydro820 in the reactor to form the NIR fluorophore IR820. This process allowed photoacoustic/fluorescence dual-mode imaging of H2O2 and ·OH, and it is expected to permit visual diagnosis of inflammatory diseases. The Cu-WO3-x nanoparticles within the nanoreactor shown catalase and superoxide enzyme mimetic activity, allowing the nanoreactor to catalyze the decomposition of H2O2 and ·O2- in inflammatory cells of hepatic tissues in a mouse model of liver injury, thus alleviating the oxidative stress of damaged liver tissue. This nanoreactor illustrates a new strategy for the diagnosis and treatment of hepatitis and inflammatory liver injury.
Collapse
Affiliation(s)
- Yanni Luo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Caiying Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jianniao Tian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xuecai Tan
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical and Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
30
|
Yu M, Meng Z, Yi S, Chen J, Xu W, Ruan B, Wang J, Han F, Huang J. A β-Galactosidase-Activated Fluorogenic Reporter for the Detection of Gastric Cancer In Vivo and in Urine. Anal Chem 2024; 96:6390-6397. [PMID: 38608159 DOI: 10.1021/acs.analchem.4c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Although gastric cancer (GC) is one of the most frequent malignant tumors in the digestive tract with high morbidity and mortality, it remains a diagnostic dilemma due to its reliance on invasive biopsy or insensitive assays. Herein, we report a fluorescent gastric cancer reporter (FGCR) with activatable near-infrared fluorescence (NIRF) signals and high renal-clearance efficiency for the detection of orthotopic GC in a murine model via real-time imaging and remote urinalysis. In the presence of gastric-tumor-associated β-galactosidase (β-Gal), FGCR can be fluorescently activated for in vivo NIRF imaging. Relying on its high renal-clearance efficiency (∼95% ID), it can be rapidly excreted through kidneys to urine for the ultrasensitive detection of tumors with a diameter down to ∼2.1 mm and for assessing the prognosis of oxaliplatin-based chemotherapy. This study not only provides a new approach for noninvasive auxiliary diagnosis and prognosis of GC but also provides guidelines for the development of fluorescence probes for cancer diagnosis.
Collapse
Affiliation(s)
- Mengya Yu
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Zhenqi Meng
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Shujuan Yi
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianjiao Chen
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Weiping Xu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bankang Ruan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Fanghai Han
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jiaguo Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
31
|
Jiang G, Liu H, Deng G, Liu H, Zhou Z, Ren TB, Wang L, Zhang XB, Yuan L. "Zero" Intrinsic Fluorescence Sensing-Platforms Enable Ultrasensitive Whole Blood Diagnosis and In Vivo Imaging. Angew Chem Int Ed Engl 2024; 63:e202400637. [PMID: 38409519 DOI: 10.1002/anie.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Abnormal physiological processes and diseases can lead to content or activity fluctuations of biocomponents in organelles and whole blood. However, precise monitoring of these abnormalities remains extremely challenging due to the insufficient sensitivity and accuracy of available fluorescence probes, which can be attributed to the background fluorescence arising from two sources, 1) biocomponent autofluorescence (BCAF) and 2) probe intrinsic fluorescence (PIF). To overcome these obstacles, we have re-engineered far-red to NIR II rhodol derivatives that possess weak BCAF interference. And a series of "zero" PIF sensing-platforms were created by systematically regulating the open-loop/spirocyclic forms. Leveraging these advancements, we devised various ultra-sensitive NIR indicators, achieving substantial fluorescence boosts (190 to 1300-fold). Among these indicators, 8-LAP demonstrated accurate tracking and quantifying of leucine aminopeptidase (LAP) in whole blood at various stages of tumor metastasis. Furthermore, coupling 8-LAP with an endoplasmic reticulum-targeting element enabled the detection of ERAP1 activity in HCT116 cells with p53 abnormalities. This delicate design of eliminating PIF provides insights into enhancing the sensitivity and accuracy of existing fluorescence probes toward the detection and imaging of biocomponents in abnormal physiological processes and diseases.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Guohui Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Zhixuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Lu Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
32
|
Feng X, Wang G, Pan J, Wang X, Wang J, Sun SK. Purification-free synthesis of bright lactoglobulin@dye nanoprobe for second near-infrared fluorescence imaging of kidney dysfunction in vivo. Colloids Surf B Biointerfaces 2024; 236:113796. [PMID: 38368756 DOI: 10.1016/j.colsurfb.2024.113796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Kidney disease is currently prevalent worldwide but only shows insidious symptoms in the early stages. The second near-infrared window (NIR-II) fluorescence imaging has become a widely used preclinical technology for evaluating renal dysfunction due to its high resolution and sensitivity. However, bright renal clearable NIR-II fluorescence nanoprobes with a simple synthesis process are still lacking. Herein, we develop a lactoglobulin (LG)@dye nanoprobe for NIR-II fluorescence imaging of kidney dysfunction in vivo based on a purification-free method. The nanoprobe was synthesized by simply mixing LG and IR820 in aqueous solutions at 70 °C for 2 h based on the covalent interaction between the meso-Cl in IR820 and LG. The synthesized LG@IR820 nanoprobe has bright and stable NIR-II fluorescence, ultra-small size (<5 nm), low toxicity, and renal-clearable ability. The high reaction efficiency and pure aqueous reaction media make the synthesis method purification-free. In a unilateral ureteral obstruction mouse model, incipient renal dysfunction assessment was achieved by LG@IR820 nanoprobe, which couldn't be diagnosed with conventional kidney function indicators. This study provides a bright and purification-free NIR-II LG@IR820 nanoprobe to visualize kidney dysfunction at the early stage.
Collapse
Affiliation(s)
- Xinyu Feng
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guohe Wang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xu Wang
- Tianjin Key Laboratory of Technologies Enabling Development on Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Junping Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
33
|
Liu Y, Diao S, Ruan B, Zhou Y, Yu M, Dong G, Xu W, Ning L, Zhou W, Jiang Y, Xie C, Fan Q, Huang J. Molecular Engineering of Activatable NIR-II Hemicyanine Reporters for Early Diagnosis and Prognostic Assessment of Inflammatory Bowel Disease. ACS NANO 2024; 18:8437-8451. [PMID: 38501308 DOI: 10.1021/acsnano.3c13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Molecular imaging in the second near-infrared window (NIR-II) provides high-fidelity visualization of biopathological events in deep tissue. However, most NIR-II probes produce "always-on" output and demonstrate poor signal specificity toward biomarkers. Herein, we report a series of hemicyanine reporters (HBCs) with tunable emission to NIR-II window (715-1188 nm) and structurally amenable to constructing activatable probes. Such manipulation of emission wavelengths relies on rational molecular engineering by integrating benz[c,d]indolium, benzo[b]xanthonium, and thiophene moieties to a conventional hemicyanine skeleton. In particular, HBC4 and HBC5 possess bright and record long emission over 1050 nm, enabling improved tissue penetration depth and superior signal to background ratio for intestinal tract mapping than NIR-I fluorophore HC1. An activatable inflammatory reporter (AIR-PE) is further constructed for pH-triggered site-specific release in colon. Due to minimized background interference, oral gavage of AIR-PE allows clear delineation of irritated intestines and assessment of therapeutic responses in a mouse model of inflammatory bowel disease (IBD) through real-time NIRF-II imaging. Benefiting from its high fecal clearance efficiency (>90%), AIR-PE can also detect IBD and evaluate the effectiveness of colitis treatments via in vitro optical fecalysis, which outperforms typical clinical assays including fecal occult blood testing and histological examination. This study thus presents NIR-II molecular scaffolds that are not only applicable to developing versatile activatable probes for early diagnosis and prognostic monitoring of deeply seated diseases but also hold promise for future clinical translations.
Collapse
Affiliation(s)
- Yi Liu
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanchao Diao
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Bankang Ruan
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Ya Zhou
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengya Yu
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Guoqi Dong
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Weiping Xu
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| | - Lulu Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wen Zhou
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yuyan Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford 94305, California, United States
| | - Chen Xie
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Quli Fan
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jiaguo Huang
- School of Pharmaceutical Sciencese, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
34
|
Wang SY, Qu YC, Shao N, Niu LY, Yang QZ. Reversible Dual Fluorescence-Lifetime Imaging of Mitochondrial GSH and Microviscosity: Real-Time Evaluation of Ferroptosis Status. Anal Chem 2024; 96:4570-4579. [PMID: 38441542 DOI: 10.1021/acs.analchem.3c05430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Ferroptosis, as a new form of regulated cell death, is implicated in various physiological and pathological processes. Developing a single probe for an independent analysis of multiple analytes related to ferroptosis can provide more accurate information and simplify the detection procedures, but it faces great challenges. In this work, we develop a fluorescent probe for the simultaneous detection of GSH through ratiometric fluorescence response and microviscosity via a fluorescence lifetime model. Based on the reversible Michael addition reaction between GSH and unsaturated C═C bond, the probe responds reversibly to GSH with a ratiometric fluorescence variation and a fast response time (t1/2 = 4.7 s). At the same time, the probe is sensitive to environmental viscosity by changing its fluorescence lifetimes. The probe was applied to monitor the drug-induced ferroptosis process through both the classical Xc-/GSH/GPX4- and DHODH-mediated defense mechanisms. We hope that the probe will provide a useful molecular tool for the real-time live-cell imaging of GSH dynamics, which is benefit to unveiling related physiological and pathological processes.
Collapse
Affiliation(s)
- Si-Yu Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yu-Chen Qu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Na Shao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
35
|
An W, Xu W, Zhou Y, Huang C, Huang W, Huang J. Renal-clearable nanoprobes for optical imaging and early diagnosis of diseases. Biomater Sci 2024; 12:1357-1370. [PMID: 38374725 DOI: 10.1039/d3bm01776a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Optical imaging has played an indispensable role in clinical diagnostics and fundamental biomedical research due to its high sensitivity, high spatiotemporal resolution, cost-effectiveness, and easy accessibility. However, the issues of light scattering and low tissue penetration make them effective only for superficial imaging. To overcome these issues, renal-clearable optical nanoprobes have recently emerged, which are activated by abnormal disease-associated biomarkers and initiate a pharmacokinetic switch by undergoing degradation and eventually releasing signal reporters into urine, for simple imaging and sensitive optical in vitro urinalysis. In this review, we focus on the advancements of renal-clearable organic nanoprobes for optical imaging and remote urinalysis. The versatile design strategies of these nanoprobes are discussed along with their sensing mechanisms toward biomolecules of interest as well as their unique biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation renal-clearable nanoprobes for in vivo imaging and in vitro urinalysis.
Collapse
Affiliation(s)
- Wei An
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weiping Xu
- Department School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Ya Zhou
- Department School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Changwen Huang
- General surgery department, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiaguo Huang
- Department School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
36
|
Li T, Zhang Y, Wu F, Chen G, Li C, Wang Q. Rational Design of NIR-II Ratiometric Fluorescence Probes for Accurate Bioimaging and Biosensing In Vivo. SMALL METHODS 2024:e2400132. [PMID: 38470209 DOI: 10.1002/smtd.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Intravital fluorescence imaging in the second near-infrared window (NIR-II, 900-1700 nm) has emerged as a promising method for non-invasive diagnostics in complex biological systems due to its advantages of less background interference, high tissue penetration depth, high imaging contrast, and sensitivity. However, traditional NIR-II fluorescence imaging, which is characterized by the "always on" or "turn on" mode, lacks the ability of quantitative detection, leading to low reproducibility and reliability during bio-detection. In contrast, NIR-II ratiometric fluorescence imaging can realize quantitative and reliable analysis and detection in vivo by providing reference signals for fluorescence correction, generating new opportunities and prospects during in vivo bioimaging and biosensing. In this review, the current design strategies and sensing mechanisms of NIR-II ratiometric fluorescence probes for bioimaging and biosensing applications are systematically summarized. Further, current challenges, future perspectives and opportunities for designing NIR-II ratiometric fluorescence probes are also discussed. It is hoped that this review can provide effective guidance for the design of NIR-II ratiometric fluorescence probes and promote its adoption in reliable biological imaging and sensing in vivo.
Collapse
Affiliation(s)
- Tuanwei Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
37
|
Zhu J, Chen W, Yang L, Zhang Y, Cheng B, Gu W, Li Q, Miao Q. A Self-Sustaining Near-Infrared Afterglow Chemiluminophore for High-Contrast Activatable Imaging. Angew Chem Int Ed Engl 2024; 63:e202318545. [PMID: 38247345 DOI: 10.1002/anie.202318545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
Afterglow imaging holds great promise for ultrasensitive bioimaging due to its elimination of autofluorescence. Self-sustaining afterglow molecules (SAMs), which enable all-in-one photon sensitization, chemical defect formation and afterglow generation, possess a simplified, reproducible, and efficient superiority over commonly used multi-component systems. However, there is a lack of SAMs, particularly those with much brighter near-infrared (NIR) emission and structural flexibility for building high-contrast activatable imaging probes. To address these issues, this study for the first time reports a methylene blue derivative-based self-sustaining afterglow agent (SAN-M) with brighter NIR afterglow chemiluminescence peaking at 710 nm. By leveraging the structural flexibility and tunability, an activatable nanoprobe (SAN-MO) is customized for simultaneously activatable fluoro-photoacoustic and afterglow imaging of peroxynitrite (ONOO- ), notably with a superior activation ratio of 4523 in the afterglow mode, which is at least an order of magnitude higher than other reported activatable afterglow systems. By virtue of the elimination of autofluorescence and ultrahigh activation contrast, SAN-MO enables early monitoring of the LPS-induced acute inflammatory response within 30 min upon LPS stimulation and precise image-guided resection of tiny metastatic tumors, which is unattainable for fluorescence imaging.
Collapse
Affiliation(s)
- Jieli Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Li Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yuyang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Baoliang Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wei Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
38
|
Jiang G, Liu H, Liu H, Ke G, Ren TB, Xiong B, Zhang XB, Yuan L. Chemical Approaches to Optimize the Properties of Organic Fluorophores for Imaging and Sensing. Angew Chem Int Ed Engl 2024; 63:e202315217. [PMID: 38081782 DOI: 10.1002/anie.202315217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/30/2023]
Abstract
Organic fluorophores are indispensable tools in cells, tissue and in vivo imaging, and have enabled much progress in the wide range of biological and biomedical fields. However, many available dyes suffer from insufficient performances, such as short absorption and emission wavelength, low brightness, poor stability, small Stokes shift, and unsuitable permeability, restricting their application in advanced imaging technology and complex imaging. Over the past two decades, many efforts have been made to improve these performances of fluorophores. Starting with the luminescence principle of fluorophores, this review clarifies the mechanisms of the insufficient performance for traditional fluorophores to a certain extent, systematically summarizes the modified approaches of optimizing properties, highlights the typical applications of the improved fluorophores in imaging and sensing, and indicates existing problems and challenges in this area. This progress not only proves the significance of improving fluorophores properties, but also provide a theoretical guidance for the development of high-performance fluorophores.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
39
|
Liu J, Huang J, Wei X, Cheng P, Pu K. Near-Infrared Chemiluminescence Imaging of Chemotherapy-Induced Peripheral Neuropathy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310605. [PMID: 38040414 DOI: 10.1002/adma.202310605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) has a high prevalence but is poorly managed for cancer patients due to the lack of reliable and sensitive diagnostic techniques. Molecular optical imaging can provide a noninvasive way for real-time monitoring of CIPN; However, this is not reported, likely due to the absence of optical probes capable of imaging deep into the spinal canal and possessing sufficient sensitivity for minimal dosage through local injection into the dorsal root ganglia. Herein, a near-infrared (NIR) chemiluminophore (MPBD) with a chemiluminescence quantum yield higher than other reported probes is synthesized and a NIR activatable chemiluminescent probe (CalCL) is developed for in vivo imaging of CIPN. CalCL is constructed by caging MPBD with calpain-cleavable peptide moiety while conjugating polyethylene glycol chain to endow water solubility. Due to the deep-tissue penetration of chemiluminescence and specific turn-on response of CalCL toward calpain (a hallmark of CIPN), it allows for sensitive detection of paclitaxel-mediated CIPN in living mice, which is unattainable by fluorescence imaging. This study thus not only develops a highly efficient chemiluminescent probe, but also presents the first optical imaging approach toward high-throughput screening of neurotoxic drugs.
Collapse
Affiliation(s)
- Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
40
|
Long Q, Liao F, Yi H, Wang M, Zhuang J, Zheng Y, Guo W, Zhang DY. Biodegradable Osmium Nanoantidotes for Photothermal-/Chemo- Combined Treatment and to Prevent Chemotherapy-Induced Acute Kidney Injury. Adv Healthc Mater 2024; 13:e2302729. [PMID: 38097368 DOI: 10.1002/adhm.202302729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Indexed: 12/26/2023]
Abstract
Acute kidney injury (AKI) is a common adverse event in chemotherapy patients. AKI is accompanied by the generation of reactive oxygen species (ROS) and inflammation. Therefore, the management of ROS and inflammation is a potential strategy for AKI mitigation. Herein, polyethylene glycol-coated osmium nanozyme-based antidotes (Os) are developed for imaging-guided photothermal therapy (PTT) in combination with cisplatin (Pt); while, avoiding AKI induced by high-dose Pt. Os nanoantidotes can enhance the efficiency of tumor treatment during combined PTT and chemotherapy and inhibit tumor metastasis by improving the hypoxic and inflammatory tumor microenvironment. Os nanoantidotes preferentially accumulate in the kidney because of their 2-nm size distribution; and then, regulate inflammation by scavenging ROS and generating oxygen to alleviate Pt-induced AKI. Os nanoantidotes can be cleared from the kidneys by urine excretion but can be degraded under hydrogen peroxide stimulation, reducing the bio-retention of these compounds. By integrating PTT with inflammatory regulation, Os nanoantidotes have the potential to reduce the side effects of chemotherapy, offering an alternative route for the clinical management of cancer patients with chemotherapy-induced AKI.
Collapse
Affiliation(s)
- Qi Long
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fangling Liao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huixi Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mingcheng Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiani Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yue Zheng
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Weisheng Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Dong-Yang Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
41
|
Luo X, Shi J, Wang R, Cao L, Gao Y, Wang J, Hong M, Sun X, Zhang Y. Near-Infrared Persistent Luminescence Nanoprobe for Early Detection of Atherosclerotic Plaque. ACS NANO 2024; 18:6500-6512. [PMID: 38348833 DOI: 10.1021/acsnano.3c12136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Atherosclerosis (AS) is a crucial contributor to various cardiovascular diseases (CVDs), which seriously threaten human life and health. Early and accurate recognition of AS plaques is essential for the prevention and treatment of CVD. Herein, we introduce an AS-targeting nanoprobe based on near-infrared (NIR) persistent luminescence nanoparticles (PLNPs), developing a highly sensitive NIR persistent luminescence (PersL) AS plaque imaging technique and successfully realizing early AS plaque detection. The nanoprobe exhibits good monodispersity and regular spherical morphology and also owns exceptional NIR PersL performance upon repetitive irradiation by biological window light. The surface-conjugated antibody (anti-osteopontin) endowed nanoprobe excellent targeting ability to foam cells within plaques. After intravenously injected nanoprobe into AS model mice, the highly sensitive PersL imaging technique can accurately detect AS plaques prior to ultrasonography (US) and magnetic resonance imaging (MRI). Specifically, the NIR PersL imaging reveals AS plaques at the earliest within 2 weeks, with higher signal-to-background ratio (SBR) up to 5.72. Based on this technique, the nanoprobe has great potential for applications in the prevention and treatment of CVD, the study of AS pathogenesis, and the screening of anti-AS drugs.
Collapse
Affiliation(s)
- Xiaofang Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, People's Republic of China
| | - Junpeng Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, People's Republic of China
| | - Ruoping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Longlong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Yan Gao
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, People's Republic of China
| | - Jinyuan Wang
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, People's Republic of China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, People's Republic of China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| |
Collapse
|
42
|
Shang Q, Li SH, He YT, Zhang Y, Fu T, Han SS, Huang W, Wang XQ, Xu JH. High Contrast Bioimaging of Tumor and Inflammation with a Bicyclic Dioxetane Chemiluminescent Probe. Anal Chem 2024; 96:2286-2291. [PMID: 38289025 DOI: 10.1021/acs.analchem.3c05062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The link between inflammation and the evolution of cancer is well established. Visualizing and tracking both tumor proliferation and the associated inflammatory response within a living organism are vital for dissecting the nexus between these two processes and for crafting precise treatment modalities. We report the creation and synthesis of an advanced NIR chemiluminescence probe that stands out for its exceptional selectivity, extraordinary sensitivity at nanomolar concentrations, swift detection capabilities, and broad application prospects. Crucially, this probe has been successfully utilized to image endogenous ONOO- across different inflammation models, including abdominal inflammation triggered by LPS, subcutaneous inflammatory conditions, and tumors grafted onto mice. These findings highlight the significant promise of chemiluminescence imaging in enhancing our grasp of the intricate interplay between cancer and inflammation and in steering the development of potent, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Qian Shang
- Department of Nuclear Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Kangning Road No. 79, Zhuhai 519000, People's Republic of China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemo-metrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Shen-Huan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemo-metrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yu-Ting He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemo-metrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yun Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemo-metrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemo-metrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Shi-Song Han
- Department of Nuclear Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Kangning Road No. 79, Zhuhai 519000, People's Republic of China
| | - Wenshan Huang
- Department of Nuclear Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Kangning Road No. 79, Zhuhai 519000, People's Republic of China
| | - Xue-Qiang Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemo-metrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jie-Hua Xu
- Department of Nuclear Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Kangning Road No. 79, Zhuhai 519000, People's Republic of China
| |
Collapse
|
43
|
Wang Y, Zhang Y, Li M, Gao X, Su D. An Efficient Strategy for Constructing Fluorescent Nanoprobes for Prolonged and Accurate Tumor Imaging. Anal Chem 2024; 96:2481-2490. [PMID: 38293931 DOI: 10.1021/acs.analchem.3c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Activatable near-infrared (NIR) fluorescent probes possess advantages of high selectivity, sensitivity, and deep imaging depth, holding great potential in the early diagnosis and prognosis assessment of tumors. However, small-molecule fluorescent probes are largely limited due to the rapid diffusion and metabolic clearance of activated fluorophores in vivo. Herein, we propose an efficient and reproducible novel strategy to construct activatable fluorescent nanoprobes through bioorthogonal reactions and the strong gold-sulfur (Au-S) interactions to achieve an enhanced permeability and retention (EPR) effect, thereby achieving prolonged and high-contrast tumor imaging in vivo. To demonstrate the merits of this strategy, we prepared an activatable nanoprobe, hCy-ALP@AuNP, for imaging alkaline phosphatase (ALP) activity in vivo, whose nanoscale properties facilitate accumulation and long-term retention in tumor lesions. Tumor-overexpressed ALP significantly increased the fluorescence signal of hCy-ALP@AuNP in the NIR region. More importantly, compared with the small-molecule probe hCy-ALP-N3, the nanoprobe hCy-ALP@AuNP significantly improved the distribution and retention time in the tumor, thus improving the imaging window and accuracy. Therefore, this nanoprobe platform has great potential in the efficient construction of biomarker-responsive fluorescent nanoprobes to realize precise tumor diagnosis in vivo.
Collapse
Affiliation(s)
- Yaling Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Yong Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Mingrui Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| |
Collapse
|
44
|
Zhou L, Yang Z, Guo L, Zou Q, Zhang H, Sun SK, Ye Z, Zhang C. Noninvasive Assessment of Kidney Injury by Combining Structure and Function Using Artificial Intelligence-Based Manganese-Enhanced Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5474-5485. [PMID: 38271189 DOI: 10.1021/acsami.3c14936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Contrast-enhanced magnetic resonance imaging (MRI) is seriously limited in kidney injury detection due to the nephrotoxicity of clinically used gadolinium-based contrast agents. Herein, we propose a noninvasive method for the assessment of kidney injury by combining structure and function information based on manganese (Mn)-enhanced MRI for the first time. As a proof of concept, the Mn-melanin nanoprobe with good biocompatibility and excellent T1 relaxivity is applied in MRI of a unilateral ureteral obstruction mice model. The abundant renal structure and function information is obtained through qualitative and quantitative analysis of MR images, and a brand new comprehensive assessment framework is proposed to precisely identify the degree of kidney injury successfully. Our study demonstrates that Mn-enhanced MRI is a promising approach for the highly sensitive and biosafe assessment of kidney injury in vivo.
Collapse
Affiliation(s)
- Li Zhou
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300052, China
| | - Zizhen Yang
- Department of Radiology, Ningbo No.2 Hospital, Ningbo 315012, China
| | - Li Guo
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Quan Zou
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Hong Zhang
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Zhaoxiang Ye
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Cai Zhang
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
45
|
Feng R, Fan Y, Zhang X, Chen L, Zhong ZF, Wang Y, Yu H, Zhang QW, Li G. A Biomimetic Multifunctional Nanoframework for Symptom Relief and Restorative Treatment of Acute Liver Failure. ACS NANO 2024. [PMID: 38294834 PMCID: PMC10883031 DOI: 10.1021/acsnano.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Acute liver failure (ALF) is a rare and serious condition characterized by major hepatocyte death and liver dysfunction. Owing to the limited therapeutic options, this disease generally has a poor prognosis and a high mortality rate. When ALF cannot be reversed by medications, liver transplantation is often needed. However, transplant rejection and the shortage of donor organs still remain major challenges. Most recently, stem cell therapy has emerged as a promising alternative for the treatment of liver diseases. However, the limited cell delivery routes and poor stability of live cell products have greatly hindered the feasibility and therapeutic efficacy of stem cell therapy. Inspired by the functions of mesenchymal stem cells (MSCs) primarily through the secretion of several factors, we developed an MSC-inspired biomimetic multifunctional nanoframework (MBN) that encapsulates the growth-promoting factors secreted by MSCs via combination with hydrophilic or hydrophobic drugs. The red blood cell (RBC) membrane was coated with the MBN to enhance its immunological tolerance and prolong its circulation time in blood. Importantly, the MBN can respond to the oxidative microenvironment, where it accumulates and degrades to release the payload. In this work, two biomimetic nanoparticles, namely, rhein-encapsulated MBN (RMBN) and N-acetylcysteine (NAC)-encapsulated MBN (NMBN), were designed and synthesized. In lipopolysaccharide (LPS)/d-galactosamine (D-GalN)-induced and acetaminophen (APAP)-induced ALF mouse models, RMBN and NMBN could effectively target liver lesions, relieve the acute symptoms of ALF, and promote liver cell regeneration by virtue of their strong antioxidative, anti-inflammatory, and regenerative activities. This study demonstrated the feasibility of the use of an MSC-inspired biomimetic nanoframework for treating ALF.
Collapse
Affiliation(s)
- Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
| | - Yu Fan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, P.R. China
| | - Xinya Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, P.R. China
| | - Lanmei Chen
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Zhang-Feng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, P. R. China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, P.R. China
| |
Collapse
|
46
|
Yu B, Jin Q, Ji J. Natural products applied in acute kidney injury treatment: polymer matters. Biomater Sci 2024; 12:621-633. [PMID: 38131274 DOI: 10.1039/d3bm01772a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Acute kidney injury (AKI) is a global health threat due to its high morbidity and mortality. There is still a lack of effective therapeutic methods to deal with AKI clinically. Natural products with outstanding accessibility and bioactivity are potential candidates for AKI treatment. Natural product-based prodrugs or nano-structures with improved properties are frequently fabricated for maximizing bioavailability and decreasing side effects, in which natural polymers are selected as carriers, or natural drugs are loaded as cargos on designed polymers. In this review, the etiologies of AKI are briefly presented, and emerging natural products delivered rationally for AKI therapy, as either carriers or cargos, are both introduced. Moreover, the challenges of the future development of nature-based nanodrugs or prodrugs for AKI have also been discussed.
Collapse
Affiliation(s)
- Bo Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
47
|
Rojas-Vázquez S, Lozano-Torres B, García-Fernández A, Galiana I, Perez-Villalba A, Martí-Rodrigo P, Palop MJ, Domínguez M, Orzáez M, Sancenón F, Blandez JF, Fariñas I, Martínez-Máñez R. A renal clearable fluorogenic probe for in vivo β-galactosidase activity detection during aging and senolysis. Nat Commun 2024; 15:775. [PMID: 38278798 PMCID: PMC10817927 DOI: 10.1038/s41467-024-44903-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
Accumulation of senescent cells with age leads to tissue dysfunction and related diseases. Their detection in vivo still constitutes a challenge in aging research. We describe the generation of a fluorogenic probe (sulfonic-Cy7Gal) based on a galactose derivative, to serve as substrate for β-galactosidase, conjugated to a Cy7 fluorophore modified with sulfonic groups to enhance its ability to diffuse. When administered to male or female mice, β-galactosidase cleaves the O-glycosidic bond, releasing the fluorophore that is ultimately excreted by the kidneys and can be measured in urine. The intensity of the recovered fluorophore reliably reflects an experimentally controlled load of cellular senescence and correlates with age-associated anxiety during aging and senolytic treatment. Interestingly, our findings with the probe indicate that the effects of senolysis are temporary if the treatment is discontinued. Our strategy may serve as a basis for developing fluorogenic platforms designed for easy longitudinal monitoring of enzymatic activities in biofluids.
Collapse
Affiliation(s)
- Sara Rojas-Vázquez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Beatriz Lozano-Torres
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Irene Galiana
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain
| | - Ana Perez-Villalba
- Laboratory of Animal Behavior Phenotype (L.A.B.P.). Facultad de Psicología, Universidad Católica de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Pablo Martí-Rodrigo
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - M José Palop
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Marcia Domínguez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - Mar Orzáez
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain
| | - Juan F Blandez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain
| | - Isabel Fariñas
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain.
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain.
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain.
| |
Collapse
|
48
|
Gong J, Wang X, Fan HE, Wang J, Zhang F, Mao Z. Engineering an activatable fluorescent probe for studying ONOO - in pyroptotic process. Talanta 2024; 267:125216. [PMID: 37722344 DOI: 10.1016/j.talanta.2023.125216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Pyroptosis, a recently discovered form of programmed cell death, plays a pivotal role in oncological treatment. Howbeit, the mechanisms underlying pyroptosis in tumor treatment remain unclear. Previous research has demonstrated that the occurrence of pyroptosis generally accompanies a surge of reactive oxygen species (ROS) generation, with ONOO- being one of these ROS and closely linked to numerous diseases. Therefore, it is imperative to investigate the potential association between ONOO- and pyroptosis. Herein, a highly sensitive and rapidly responsive near-infrared (NIR) probe, Rd700-PN, is fabricated for exploring unrevealed relationships between ONOO- and pyroptosis. We successfully harness Rd700-PN to detect ONOO- fluctuation during cellular pyroptosis for the first time. Furthermore, the results demonstrate that Rd700-PN can scout the chemotherapeutic drug's induction ability of tumor pyroptosis in vivo. Notably, this study provides an excellent means to shed light on the correlation between ONOO- and pyroptosis and to screen antitumor drugs activating pyroptosis.
Collapse
Affiliation(s)
- Jiankang Gong
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Xiaoyu Wang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Hai-En Fan
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Jiaxuan Wang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Fan Zhang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Zhiqiang Mao
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
49
|
Qiang B, Xu Q, Pan Y, Wang J, Shen C, Peng X, Shen W, Zhang Y, Zhu X. Shear wave elastography: A noninvasive approach for assessing acute kidney injury in critically ill patients. PLoS One 2024; 19:e0296411. [PMID: 38206919 PMCID: PMC10783713 DOI: 10.1371/journal.pone.0296411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Traditional markers, such as serum creatinine and blood urea nitrogen, frequently show delayed elevations following acute kidney injury (AKI), limiting their utility for prompt detection and timely intervention in AKI management. Shear wave elastography (SWE) exhibits potential for AKI diagnosis by measuring tissue stiffness. Our study aimed to evaluate the diagnostic performance of SWE in detecting AKI by measuring the stiffness of kidney tissue. Between July 2022 and December 2022, a total of 103 consecutive participants who met the eligibility criteria were prospectively enrolled, underwent SWE measurements, and were classified into AKI or non-AKI groups based on the 2012 Kidney Disease: Improving Global Outcomes (KDIGO) criteria. A receiver operating characteristic (ROC) curve was drawn to examine the feasibility of differentiating between AKI and non-AKI patients and assessing diagnostic performance. The effects of tissue anisotropy on SWE measurements were also examined. Our results revealed that patients in the AKI group exhibited significantly increased stiffness values in specific kidney regions compared with those in the non-AKI group. For the diagnosis of AKI, the optimal cut-off values were identified as 9.9 kPa, 2.9 kPa, and 4.4 kPa for the upper pole medulla, middle cortex, and middle medulla, respectively, in the longitudinal plane. Correspondingly, the areas under the ROC curves for these regions were 0.737 (95% confidence interval [CI]: 0.637, 0.822), 0.736 (95% CI: 0.637, 0.821), and 0.784 (95% CI: 0.688, 0.861). Additionally, we observed a significant variability in stiffness values due to tissue anisotropy, specifically in the segments of the upper pole cortex, and medulla across both longitudinal and transverse planes. SWE serves as a noninvasive approach for the quantification of tissue stiffness and shows promise as an adjunctive tool for the assessment of AKI.
Collapse
Affiliation(s)
- Banghong Qiang
- Anhui Medical University, Hefei, Anhui, China
- Department of Ultrasound Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Department of Ultrasound Medicine, Wuhu Hospital, East China Normal University (The Second People’s Hospital, Wuhu), Wuhu, Anhui, China
| | - Qiancheng Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Youjun Pan
- Department of Critical Care Medicine, Wuhu Hospital, East China Normal University (The Second People’s Hospital, Wuhu), Wuhu, Anhui, China
| | - Junli Wang
- Department of Ultrasound Medicine, Wuhu Hospital, East China Normal University (The Second People’s Hospital, Wuhu), Wuhu, Anhui, China
| | - Chunyun Shen
- Department of Ultrasound Medicine, Wuhu Hospital, East China Normal University (The Second People’s Hospital, Wuhu), Wuhu, Anhui, China
| | - Xiaozhuang Peng
- Department of Critical Care Medicine, Wuhu Hospital, East China Normal University (The Second People’s Hospital, Wuhu), Wuhu, Anhui, China
| | - Wenwen Shen
- Department of Critical Care Medicine, Wuhu Hospital, East China Normal University (The Second People’s Hospital, Wuhu), Wuhu, Anhui, China
| | - Yu Zhang
- Department of Ultrasound Medicine, Wuhu Hospital, East China Normal University (The Second People’s Hospital, Wuhu), Wuhu, Anhui, China
| | - Xiangming Zhu
- Anhui Medical University, Hefei, Anhui, China
- Department of Ultrasound Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| |
Collapse
|
50
|
Wang N, Lu X, Wang J, Fan G, Han R, Zhang B, Zhao W, Zhang J. Precisely Constructing Renal-Clearable and LAP-Activatable Ratiometric Molecular Probes for Early Diagnosis of Acute and Chronic Kidney Injury Via Optimizing Asymmetric DPP Dyes. Anal Chem 2024; 96:272-280. [PMID: 38131222 DOI: 10.1021/acs.analchem.3c03967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Fluorescence analysis is an increasingly important contributor to the early diagnosis of kidney diseases. To achieve precise visualization of the kidneys and early diagnosis of related diseases, an asymmetric pyrrolopyrrolidone (DPP) dye platform with C-aromatic substituents and N-lipophilic/hydrophilic modification was constructed. Based on these, we developed the renal-clearable, water-soluble, and kidney injury biomarker leucine aminopeptidase (LAP) activated ratiometric fluorescent probe DPP-S-L. In the mouse model of cisplatin-induced acute kidney injury and during the development of type 2 diabetes to diabetic kidney disease, we visualized for the first time the upregulation of LAP in the kidney and urine by dual-channel ratiometric fluorescence signal and diagnosed the kidney injury earlier and more sensitively than blood/urine enzyme detection and tissue analysis. This study showcases an excellent asymmetric DPP dye platform and renal-clearable ratiometric fluorescent probe design strategy that is extended to determination and visualization of other biomarkers for early disease diagnosis.
Collapse
Affiliation(s)
- Nannan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Xiaoyan Lu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China
| | - Jiamin Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, P. R. China
| | - Guanwen Fan
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China
| | - Ruiqi Han
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China
| | - Bo Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai 201203, P. R. China
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|