1
|
Yu W, Wang Q, Liu Z, Gan H, Wu Q, Guo N, Zeng W, Li S, Liu Y. Metal-phenolic network crosslinked nanogel with prolonged biofilm retention for dihydroartemisinin/NIR synergistically enhanced chemodynamic therapy. J Colloid Interface Sci 2025; 678:841-853. [PMID: 39321640 DOI: 10.1016/j.jcis.2024.09.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Chemodynamic therapy (CDT) is emerging as a promising treatment for biofilm infections. However, its effectiveness is significantly hindered by several factors: the body's stable temperature, a limited supply of Fe2+ ions, and inadequate endogenous levels of H2O2 at the infection sites. Herin, our study introduces MPN-crosslinked hyaluronic acid (HA) nanogels as an effective strategy for treating biofilm-associated infections. The DHA@HA-TA/Fe (DHTF) nanogel is synthesized through the coordination reaction between Fe2+ ions and tannic acid (TA)-modified HA, with dihydroartemisinin (DHA) encapsulated within the structure. DHTF exhibits pH-/hyaluronidase-responsiveness in the biofilm infection microenvironment, enabling sustained release of DHA as a substitute for H2O2 and Fe2+ for CDT. The incorporation of Fe2+/TA-based MPN and DHA within the nanogels enables photothermal/DHA dually-enhanced CDT, facilitating efficient disruption of biofilm matrices and bacterial eradication through boosting reactive oxygen species production. In vivo studies demonstrate that DHTF exhibit prolonged retention within biofilms. This ensures a sustained release of therapeutic agents and continuous anti-biofilm activity. Eventually, both in vitro and in vivo evaluations consistently confirm the significant anti-biofilm capacity of DHTF. Our findings highlight the potential of DHTF as a promising nanomedicine for biofilm-related infections, offering efficient treatment strategies that could improve clinical management of these challenging conditions.
Collapse
Affiliation(s)
- Wenhua Yu
- School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Qing Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Zhongjia Liu
- School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Huixuan Gan
- School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Quanxin Wu
- School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Ning Guo
- School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Weishen Zeng
- Dongguan Children's Hospital, Dongguan 523000, China.
| | - Shiying Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Yun Liu
- School of Pharmacy, Guangdong Medical University, Dongguan 523000, China.
| |
Collapse
|
2
|
Dubois-Brissonnet F. Characterization of Bacterial Membrane Fatty Acid Profiles for Biofilm Cells. Methods Mol Biol 2025; 2852:135-141. [PMID: 39235741 DOI: 10.1007/978-1-0716-4100-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
When submitted to environmental stresses, bacteria can modulate its fatty acid composition of membrane phospholipids in order to optimize membrane fluidity. Characterization of bacterial membrane fatty acid profiles is thus an interesting indicator of cellular physiological state. The methodology described here aims to improve the recovering of biofilm cells for the characterization of their fatty acid profiles. The saponification reagent is directly applied on the whole biofilm before the removal of cells from the inert surface. In this way, maximum of the cells and their fatty acids can be recovered from the deepest layers of the biofilm.
Collapse
|
3
|
Huo S, Lyu Z, Wang X, Liu S, Chen X, Yang M, Liu Z, Yin X. Engineering mesoporous polydopamine-based potentiate STING pathway activation for advanced anti-biofilm therapy. Biomaterials 2025; 312:122739. [PMID: 39096840 DOI: 10.1016/j.biomaterials.2024.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
The biofilm-induced "relatively immune-compromised zone" creates an immunosuppressive microenvironment that is a significant contributor to refractory infections in orthopedic endophytes. Consequently, the manipulation of immune cells to co-inhibit or co-activate signaling represents a crucial strategy for the management of biofilm. This study reports the incorporation of Mn2+ into mesoporous dopamine nanoparticles (Mnp) containing the stimulator of interferon genes (STING) pathway activator cGAMP (Mncp), and outer wrapping by M1-like macrophage cell membrane (m-Mncp). The cell membrane enhances the material's targeting ability for biofilm, allowing it to accumulate locally at the infectious focus. Furthermore, m-Mncp mechanically disrupts the biofilm through photothermal therapy and induces antigen exposure through photodynamic therapy-generated reactive oxygen species (ROS). Importantly, the modulation of immunosuppression and immune activation results in the augmentation of antigen-presenting cells (APCs) and the commencement of antigen presentation, thereby inducing biofilm-specific humoral immunity and memory responses. Additionally, this approach effectively suppresses the activation of myeloid-derived suppressor cells (MDSCs) while simultaneously boosting the activity of T cells. Our study showcases the efficacy of utilizing m-Mncp immunotherapy in conjunction with photothermal and photodynamic therapy to effectively mitigate residual and recurrent infections following the extraction of infected implants. As such, this research presents a viable alternative to traditional antibiotic treatments for biofilm that are challenging to manage.
Collapse
Affiliation(s)
- Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoyuan Wang
- Physical Examination Center, Xi'an International Medical Center Hospital, Xi'an, China
| | - Shichang Liu
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xuxu Chen
- Department of Sports Medicine, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ming Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhongkai Liu
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Xinhua Yin
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Barman S, Kurnaz LB, Leighton R, Hossain MW, Decho AW, Tang C. Intrinsic antimicrobial resistance: Molecular biomaterials to combat microbial biofilms and bacterial persisters. Biomaterials 2024; 311:122690. [PMID: 38976935 PMCID: PMC11298303 DOI: 10.1016/j.biomaterials.2024.122690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/13/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The escalating rise in antimicrobial resistance (AMR) coupled with a declining arsenal of new antibiotics is imposing serious threats to global public health. A pervasive aspect of many acquired AMR infections is that the pathogenic microorganisms exist as biofilms, which are equipped with superior survival strategies. In addition, persistent and recalcitrant infections are seeded with bacterial persister cells at infection sites. Together, conventional antibiotic therapeutics often fail in the complete treatment of infections associated with bacterial persisters and biofilms. Novel therapeutics have been attempted to tackle AMR, biofilms, and persister-associated complex infections. This review focuses on the progress in designing molecular biomaterials and therapeutics to address acquired and intrinsic AMR, and the fundamental microbiology behind biofilms and persisters. Starting with a brief introduction of AMR basics and approaches to tackling acquired AMR, the emphasis is placed on various biomaterial approaches to combating intrinsic AMR, including (1) semi-synthetic antibiotics; (2) macromolecular or polymeric biomaterials mimicking antimicrobial peptides; (3) adjuvant effects in synergy; (4) nano-therapeutics; (5) nitric oxide-releasing antimicrobials; (6) antimicrobial hydrogels; (7) antimicrobial coatings. Particularly, the structure-activity relationship is elucidated in each category of these biomaterials. Finally, illuminating perspectives are provided for the future design of molecular biomaterials to bypass AMR and cure chronic multi-drug resistant (MDR) infections.
Collapse
Affiliation(s)
- Swagatam Barman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States; Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Leman Buzoglu Kurnaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Ryan Leighton
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Md Waliullah Hossain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States.
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States.
| |
Collapse
|
5
|
Coenye T, Ahonen M, Anderson S, Cámara M, Chundi P, Fields M, Foidl I, Gnimpieba EZ, Griffin K, Hinks J, Loka AR, Lushbough C, MacPhee C, Nater N, Raval R, Slater-Jefferies J, Teo P, Wilks S, Yung M, Webb JS. Global challenges and microbial biofilms: Identification of priority questions in biofilm research, innovation and policy. Biofilm 2024; 8:100210. [PMID: 39221168 PMCID: PMC11364012 DOI: 10.1016/j.bioflm.2024.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Priority question exercises are increasingly used to frame and set future research, innovation and development agendas. They can provide an important bridge between the discoveries, data and outputs generated by researchers, and the information required by policy makers and funders. Microbial biofilms present huge scientific, societal and economic opportunities and challenges. In order to identify key priorities that will help to advance the field, here we review questions from a pool submitted by the international biofilm research community and from practitioners working across industry, the environment and medicine. To avoid bias we used computational approaches to group questions and manage a voting and selection process. The outcome of the exercise is a set of 78 unique questions, categorized in six themes: (i) Biofilm control, disruption, prevention, management, treatment (13 questions); (ii) Resistance, persistence, tolerance, role of aggregation, immune interaction, relevance to infection (10 questions); (iii) Model systems, standards, regulatory, policy education, interdisciplinary approaches (15 questions); (iv) Polymicrobial, interactions, ecology, microbiome, phage (13 questions); (v) Clinical focus, chronic infection, detection, diagnostics (13 questions); and (vi) Matrix, lipids, capsule, metabolism, development, physiology, ecology, evolution environment, microbiome, community engineering (14 questions). The questions presented are intended to highlight opportunities, stimulate discussion and provide focus for researchers, funders and policy makers, informing future research, innovation and development strategy for biofilms and microbial communities.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
- ESCMID Study Group on Biofilms (ESGB), Basel, Switzerland
| | - Merja Ahonen
- Satakunta University of Applied Sciences, Finland
| | - Skip Anderson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Miguel Cámara
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Matthew Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Ines Foidl
- National Biofilms Innovation Centre, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | | - Kristen Griffin
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Jamie Hinks
- Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | | | | | - Cait MacPhee
- National Biofilms Innovation Centre, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Natasha Nater
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Rasmita Raval
- National Biofilms Innovation Centre, Open Innovation Hub for Antimicrobial Surfaces, Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Jo Slater-Jefferies
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Pauline Teo
- Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | - Sandra Wilks
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Maria Yung
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | | | - Jeremy S. Webb
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
6
|
Aiswarya N, Tabraiz S, Taneja H, Ahmed A, Aravinda Narayanan R. Nonlinear viscoelasticity of filamentous fungal biofilms of Neurospora discreta. Biofilm 2024; 8:100227. [PMID: 39430296 PMCID: PMC11490880 DOI: 10.1016/j.bioflm.2024.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
The picture of bacterial biofilms as a colloidal gel composed of rigid bacterial cells protected by extracellular crosslinked polymer matrix has been pivotal in understanding their ability to adapt their microstructure and viscoelasticity to environmental assaults. This work explores if an analogous perspective exists in fungal biofilms with long filamentous cells. To this end, we consider biofilms of the fungus Neurospora discreta formed on the air-liquid interface, which has shown an ability to remove excess nitrogen and phosphorous from wastewater effectively. We investigated the changes to the viscoelasticity and the microstructure of these biofilms when the biofilms uptake varying concentrations of nitrogen and phosphorous, using large amplitude oscillatory shear flow rheology (LAOS) and field-emission scanning electron microscopy (FESEM), respectively. A distinctive peak in the loss modulus (G″) at 30-50 % shear strain is observed, indicating the transition from an elastic to plastic deformation state. Though a peak in G″ has been observed in several soft materials, including bacterial biofilms, it has eluded interpretation in terms of quantifiable microstructural features. The central finding of this work is that the intensity of the G″ peak, signifying resistance to large deformations, correlates directly with the protein and polysaccharide concentrations per unit biomass in the extracellular matrix and inversely with the shear-induced changes in filament orientation in the hyphal network. These correlations have implications for the rational design of fungal biofilms with tuneable mechanical properties.
Collapse
Affiliation(s)
- N.M. Aiswarya
- Department of Physics, Birla Institute of Technology and Science Pilani, Hyderabad Campus, India
| | - Shamas Tabraiz
- Section of Natural and Applied Sciences, Canterbury Christ Church University, UK
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, Imperial College Road, SW7 2BU, London, UK
| | - Himani Taneja
- Section of Natural and Applied Sciences, Canterbury Christ Church University, UK
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Asma Ahmed
- Section of Natural and Applied Sciences, Canterbury Christ Church University, UK
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - R. Aravinda Narayanan
- Department of Physics, Birla Institute of Technology and Science Pilani, Hyderabad Campus, India
| |
Collapse
|
7
|
Cai W, Song Y, Xie Q, Wang S, Yin D, Wang S, Wang S, Zhang R, Lee M, Duan J, Zhang X. Dual osmotic controlled release platform for antibiotics to overcome antimicrobial-resistant infections and promote wound healing. J Control Release 2024; 375:627-642. [PMID: 39284525 DOI: 10.1016/j.jconrel.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Methicillin-Resistant Staphylococcus aureus forming into biofilms can trigger chronic inflammation and disrupt skin wound healing processes. Prolonged and excessive use of antibiotics can expedite the development of resistance, primarily because of their limited ability to penetrate microbial membranes and biofilms, especially antibiotics with intracellular drug targets. Herein, we devise a strategy in which virus-inspired nanoparticles control the release of antibiotics through rapid penetration into both bacterial cells and biofilms, thereby combating antimicrobial-resistant infections and promoting skin wound healing. Lipid-based nanoparticles based on stearamine and cholesterol were designed to mimic viral highly ordered nanostructures. To mimic the arginine-rich fragments in viral protein transduction domains, the primary amines on the surface of the lipid-based nanoparticles were exchanged by guanidine segments. Levofloxacin, an antibiotic that inhibits DNA replication, was chosen as the model drug to be incorporated into nanoparticles. Hyaluronic acid was coated on the surface of nanoparticles acting as a capping agent to achieve bacterial-specific degradation and guanidine explosion in the bacterial microenvironment. Our virus-inspired nanoparticles displayed long-acting antibacterial effects and powerful biofilm elimination to overcome antimicrobial-resistant infections and promote skin wound healing. This work demonstrates the ability of virus-inspired nanoparticles to achieve a dual penetration of microbial cell membranes and biofilm structures to address antimicrobial-resistant infections and trigger skin wound healing.
Collapse
Affiliation(s)
- Wanni Cai
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qing Xie
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Shiyu Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Donghong Yin
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Shuyun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Song Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Rui Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Min Lee
- Division of Oral and Systemic Health Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Jinju Duan
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Xiao Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
8
|
Xiong H, Zhou X, Cao Z, Xu A, Dong W, Jiang M. Microbial biofilms as a platform for diverse biocatalytic applications. BIORESOURCE TECHNOLOGY 2024; 411:131302. [PMID: 39173957 DOI: 10.1016/j.biortech.2024.131302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Microbial biofilms have gained significant traction in commercial wastewater treatment due to their inherent resilience, well-organized structure, and potential for collaborative metabolic processes. As our understanding of their physiology deepens, these living catalysts are finding exciting applications beyond wastewater treatment, including the production of bulk and fine chemicals, bioelectricity generation, and enzyme immobilization. While the biological applications of biofilms in different biocatalytic systems have been extensively summarized, the applications of artificially engineered biofilms were rarely discussed. This review aims to bridge this gap by highlighting the untapped potential of engineered microbial biofilms in diverse biocatalytic applications, with a focus on strategies for biofilms engineering. Strategies for engineering biofilm-based systems will be explored, including genetic modification, synthetic biology approaches, and targeted manipulation of biofilm formation processes. Finally, the review will address key challenges and future directions in developing robust biofilm-based biocatalytic platforms for large-scale production of chemicals, pharmaceuticals, and biofuels.
Collapse
Affiliation(s)
- Hongda Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xinyu Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhanqing Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Anming Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
Zou S, Ma Y, Zhao L, Chen X, Gao H, Chen J, Xue Y, Zheng Y. Revealing the regulatory impact of nutrient on the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid by Beauveria bassiana biofilms through comparative transcriptomics analyse. Bioprocess Biosyst Eng 2024; 47:1803-1814. [PMID: 39080012 DOI: 10.1007/s00449-024-03070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 09/29/2024]
Abstract
Carbon and nitrogen play a fundamental role in the architecture of fungal biofilm morphology and metabolite production. However, the regulatory mechanism of nutrients remains to be fully understood. In this study, the formation of Beauveria bassiana biofilm and the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid in two media with different carbon and nitrogen sources (GY: Glucose as a carbon source and yeast extract as a nitrogen source, MT: Mannitol as a carbon source and tryptone as a nitrogen source) were compared. R-HPPA production increased 2.85-fold in media MT than in media GY. Different fungal biofilm morphology and architecture were discovered in media GY and MT. Comparative transcriptomics revealed up-regulation of mitogen-activated protein kinase (MAPK) pathway and polysaccharides degradation genes affecting mycelial morphology and polysaccharides yield of the extracellular polymeric substances (EPS) in MT medium biofilms. Upregulation of genes related to NADH synthesis (carbon metabolism, amino acid metabolism, glutamate cycle) causes NADH accumulation and triggers an increase in R-HPPA production. These data provide a valuable basis for future studies on regulating fungal biofilm morphology and improving the production of high-value compounds.
Collapse
Affiliation(s)
- Shuping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yizhi Ma
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Lixiang Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiaomin Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hailing Gao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Juan Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yaping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
10
|
Zhang X, Zhao B, Zhang Y, Zhang J, Li Y, Zhong J, Diao J, Ma F, Liu H, Duan K. Sources, interactions, influencing factors and ecological risks of microplastics and antibiotic resistance genes in soil: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175226. [PMID: 39098429 DOI: 10.1016/j.scitotenv.2024.175226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are gaining increasing attention as they pose a threat to the ecological environment and human health as emerging contaminants. MPs has been proved to be a hot spot in ARGs, and although it has been extensively studied in water environment, the results of bibliometrics statistical analysis in this paper showed that relevant studies in soil ecological environment are currently in the initial stage. In view of this, the paper provides a systematic review of the sources, interactions, influencing factors, and ecological risks associated with MPs and ARGs in soil environments. Additionally, the mechanism and influencing factors of plastisphere formation and resistance are elaborated in detail. The MPs properties, soil physicochemical properties, soil environmental factors and agricultural activities are the primarily factors affecting the interaction between MPs and ARGs in soil. Challenges and development directions of related research in the future are also prospected. It is hoped that the review could assist in a deeper comprehension and exploration of the interaction mechanism between MPs and ARGs in soil as well as the function of MPs in the transmission process of ARGs among diverse environmental media and organisms, and provide theory basis and reference for the MPs and ARGs pollution control and remediation in soil.
Collapse
Affiliation(s)
- Xin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.
| | - Yin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Yingquan Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jinkui Zhong
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jingru Diao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Fengfeng Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Hui Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Kaixiang Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| |
Collapse
|
11
|
Chen H, Xia A, Yan H, Huang Y, Zhu X, Zhu X, Liao Q. Mass transfer in heterogeneous biofilms: Key issues in biofilm reactors and AI-driven performance prediction. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100480. [PMID: 39309319 PMCID: PMC11416670 DOI: 10.1016/j.ese.2024.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Biofilm reactors, known for utilizing biofilm formation for cell immobilization, offer enhanced biomass concentration and operational stability over traditional planktonic systems. However, the dense nature of biofilms poses challenges for substrate accessibility to cells and the efficient release of products, making mass transfer efficiency a critical issue in these systems. Recent advancements have unveiled the intricate, heterogeneous architecture of biofilms, contradicting the earlier view of them as uniform, porous structures with consistent mass transfer properties. In this review, we explore six biofilm reactor configurations and their potential combinations, emphasizing how the spatial arrangement of biofilms within reactors influences mass transfer efficiency and overall reactor performance. Furthermore, we discuss how to apply artificial intelligence in processing biofilm measurement data and predicting reactor performance. This review highlights the role of biofilm reactors in environmental and energy sectors, paving the way for future innovations in biofilm-based technologies and their broader applications.
Collapse
Affiliation(s)
- Huize Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Huchao Yan
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
12
|
Lin S, Li X, Zhang W, Shu G, Li H, Xu F, Lin J, Peng G, Zhang L, Fu H. Encapsulation nanoarchitectonics of glabridin with sophorolipid micelles for addressing biofilm hazards via extracellular polymeric substance permeation and srtA gene suppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117150. [PMID: 39423506 DOI: 10.1016/j.ecoenv.2024.117150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Biofilm, a common drug-resistant phenotype of Staphylococcus aureus (S. aureus), demonstrates significant drug resistance and recurrence due to its extracellular polymeric substance (EPS) barrier and subsequent bacterial migration. Hence, there is an urgent need for effective solutions to mitigate the hazards posed by biofilms. RESULT This study developed a stable, low-toxicity multifunctional nanomicelle, GLA@SOL/EYL, by encapsulating glabridin (GLA) using sophorolipid (SOL) and egg yolk lecithin (EYL). Optimizations were performed for the hydration medium, the ratio of carrier materials to GLA, and EYL additions. GLA@SOL/EYL exhibited a particle size of 122.1 ± 0.8 nm and a surface potential of -66.4 ± 1.7 mV, endowing it with the ability to permeate biofilms EPS effectively. GLA@SOL/EYL encapsulated 98.3 ± 1.2 % of GLA and demonstrated a slow-release effect, significantly enhancing the bioavailability of GLA. The addition of EYL reduced the hemolytic toxicity of GLA@SOL/EYL and improved its encapsulation rate and stability. GLA@SOL/EYL reduced the minimum inhibitory concentration of GLA to 8 μg/mL and extended its inhibitory effect at low concentrations by rapidly disrupting the structural integrity of S. aureus. GLA@SOL/EYL may penetrate biofilms to disperse EPS and remove twice as much biofilm as GLA alone, thereby eliminating 99.99 % of S. aureus within biofilms, compared to 99 % bactericidal efficacy of GLA. Additionally, GLA@SOL/EYL inhibited 63.8 ± 1.8 % of biofilm formation by affecting the expression of the srtA gene, thereby reducing the expression of cell wall-anchoring protein genes. In contrast, the biofilm inhibition rates of GLA and blank micelles were less than 10 %. CONCLUSION GLA@SOL/EYL utilizes the nanoparticle effect to penetrate biofilms and deliver antimicrobial GLA. The SOL disperses the biofilm matrix while GLA is released to kill S. aureus, preventing bacterial dissemination and colonization. Thus, GLA@SOL/EYL presents an innovative strategy for effectively eradicating S. aureus biofilms and preventing new hazards in a one-step approach.
Collapse
Affiliation(s)
- Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaojuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Li Zhang
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan 610041, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
13
|
Kim S, Mah JH. Variation in heat resistance and biofilm formation of Bacillus cereus spores in various fermented soybean foods. Int J Food Microbiol 2024; 427:110939. [PMID: 39437681 DOI: 10.1016/j.ijfoodmicro.2024.110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
This study investigated the heat resistance of Bacillus cereus spores (as well as spores in intact biofilm) in two types of Korean fermented soybean foods and presumed the potential key parameters (physicochemical and nutritional properties) associated with their heat resistance. For example, the D100°C-values of B. cereus ATCC 10987 and CH3 spores with strong heat resistance and prolific biofilm-forming capability were compared in various Jjigae-type (Cheonggukjang jjigae, Doenjang jjigae, and Gochujang jjigae) and Jang-type (Cheonggukjang, Doenjang, and Gochujang) foods commonly consumed in Korea. The D100°C-values of planktonic spores were significantly different depending on the type of food, that is, Jang and Jjigae. Compared with Jjigae-type foods, a higher heat resistance of B. cereus spores was found in Jang-type foods (particularly Doenjang and Gochujang) with low water activity and high salinity. In Jjigae-type foods, spore heat resistance showed a positive correlation with the pH of Jjigaes, indicating that an acidic environment weakens the spores. A negative correlation between the total fat content and spore heat resistance was found in Jjigae-type foods but not in Jang-type foods. Meanwhile, regarding the heat resistance of B. cereus spores in intact biofilm, the D100°C-values were significantly higher (up to 6.5-fold) than those of planktonic spores in all Jjigae-type foods. The slightly acidic pH and amount of carbohydrates are likely related to the large formation of extracellular polymeric substances and strong heat resistance of B. cereus spores in biofilm. This study may provide a comprehensive understanding of the relationship between the key parameters of foods and heat resistance of B. cereus spores with or without intact biofilm and methods to control their risks in different types of fermented soybean foods.
Collapse
Affiliation(s)
- Sohyeon Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
14
|
Bankar N, Latta L, Loretz B, Reda B, Dudek J, Hähl H, Hannig M, Lehr CM. Antimicrobial and antibiotic-potentiating effect of calcium peroxide nanoparticles on oral bacterial biofilms. NPJ Biofilms Microbiomes 2024; 10:106. [PMID: 39406727 PMCID: PMC11480382 DOI: 10.1038/s41522-024-00569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/15/2024] [Indexed: 10/18/2024] Open
Abstract
Bacterial biofilms represent a prominent biological barrier against physical and chemical attacks. Disturbing the anaerobic microenvironment within biofilms by co-delivery of oxygen appears as a promising strategy to enhance the activity of an antibiotic. Here, we report the effect of oxygen-producing calcium peroxide nanoparticles (CaO2 NP) in combination with tobramycin sulfate (Tob). On Pseudomonas aeruginosa PAO1 biofilms in vitro, the additive effect of CaO2 NP towards Tob activity enhanced biofilm eradication by 2 log compared to Tob alone. For natural biofilms grown in the oral cavity of human volunteers in situ, treatment by CaO2 NP alone slightly increased the fraction of dead bacteria from 44% in various controls, including Tob alone, to 57%. However, the combination of CaO2 NP with Tob further increased the fraction of dead bacteria to 69%. These data confirm the intrinsic antimicrobial and antibiotic-potentiating effect of CaO2 NP also in a clinically relevant setting.
Collapse
Affiliation(s)
- Neha Bankar
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Lorenz Latta
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany.
| | - Bashar Reda
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421, Homburg/Saar, Germany
- Department of Periodontology, School of Dentistry, Al- Shahbaa Private University, 66123, Aleppo, Syria
| | - Johanna Dudek
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421, Homburg/Saar, Germany
| | - Hendrik Hähl
- Experimental Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421, Homburg/Saar, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
15
|
Squyres GR, Newman DK. Real-time high-resolution microscopy reveals how single-cell lysis shapes biofilm matrix morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618105. [PMID: 39463994 PMCID: PMC11507769 DOI: 10.1101/2024.10.13.618105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
During development, multiscale patterning requires that cells organize their behavior in space and time. Bacteria in biofilms must similarly dynamically pattern their behavior with a simpler toolkit. Like in eukaryotes, morphogenesis of the extracellular matrix is essential for biofilm development, but how it is patterned has remained unclear. Here, we explain how the architecture of eDNA, a key matrix component, is controlled by single cell lysis events during Pseudomonas aeruginosa biofilm development. We extend single-cell imaging methods to capture complete biofilm development, characterizing the stages of biofilm development and visualizing eDNA matrix morphogenesis. Mapping the spatiotemporal distribution of single cell lysis events reveals that cell lysis is restricted to a specific biofilm zone. Simulations indicate that this patterning couples cell lysis to growth, more uniformly distributing eDNA throughout the biofilm. Finally, we find that patterning of cell lysis is organized by nutrient gradients that act as positioning cues.
Collapse
|
16
|
Tran HH, Jaruchotiratanasakul N, Xiang Z, Pandey NK, Oh MJ, Liu Y, Ren Z, Babeer A, Zdilla MJ, Cormode DP, Karabucak B, Lee D, Steager EB, Koo H. Nanozyme-Shelled Microcapsules for Targeting Biofilm Infections in Confined Spaces. Adv Healthc Mater 2024:e2402306. [PMID: 39402785 DOI: 10.1002/adhm.202402306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/08/2024] [Indexed: 10/30/2024]
Abstract
Bacterial infections in irregular and branched confinements pose significant therapeutic challenges. Despite their high antimicrobial efficacy, enzyme-mimicking nanoparticles (nanozymes) face difficulties in achieving localized catalysis at distant infection sites within confined spaces. Incorporating nanozymes into microrobots enables the delivery of catalytic agents to hard-to-reach areas, but poor nanoparticle dispersibility and distribution during fabrication hinder their catalytic performance. To address these challenges, a nanozyme-shelled microrobotic platform is introduced using magnetic microcapsules with collective and adaptive mobility for automated navigation and localized catalysis within complex confinements. Using double emulsions produced from microfluidics as templates, iron oxide and silica nanoparticles are assembled into 100-µm microcapsules, which self-organize into multi-unit, millimeter-size assemblies under rotating magnetic fields. These microcapsules exhibit high peroxidase-like activity, efficiently catalyzing hydrogen peroxide to generate reactive oxygen species (ROS). Notably, microcapsule assemblies display remarkable collective navigation within arched and branched confinements, reaching the targeted apical regions of the tooth canal with high accuracy. Furthermore, these nanozyme-shelled microrobots perform rapid catalysis in situ and effectively kill biofilms on contact via ROS generation, enabling localized antibiofilm action. This study demonstrates a facile method of integrating nanozymes onto a versatile microrobotic platform to address current needs for targeted therapeutic catalysis in complex and confined microenvironments.
Collapse
Affiliation(s)
- Hong Huy Tran
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nadasinee Jaruchotiratanasakul
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | - Zhenting Xiang
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nil Kanatha Pandey
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Min Jun Oh
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuan Liu
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhi Ren
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alaa Babeer
- Department of Oral Biology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Michael J Zdilla
- Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - David P Cormode
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bekir Karabucak
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daeyeon Lee
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward B Steager
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- GRASP Laboratory, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyun Koo
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
17
|
Du X, Li P, Fan C, Tian J, Lin Y, Xie J, Cheng J, Fu Y, Jiang D, Yuan M, Yu X, Tsuda K, Li B. Holliday junction resolvase RuvC targets biofilm eDNA and confers plant resistance to vascular pathogens. NATURE PLANTS 2024:10.1038/s41477-024-01817-6. [PMID: 39384943 DOI: 10.1038/s41477-024-01817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
A biofilm lifestyle is critical for bacterial pathogens to colonize and protect themselves from host immunity and antimicrobial chemicals in plants and animals. The formation and regulation mechanisms of phytobacterial biofilm are still obscure. Here we found that the protein Ralstonia solanacearum resistance to ultraviolet C (RuvC) is highly abundant in biofilm and positively regulates pathogenicity by controlling systemic movement in tomato xylem. RuvC protein accumulates at the later stage of biofilm development and specifically targets Holliday junction (HJ)-like structures to disrupt the biofilm extracellular DNA (eDNA) lattice, thus facilitating biofilm dispersal. Recombinant RuvC protein can resolve extracellular HJ to prevent bacterial biofilm formation. Heterologous expression of R. solanacearum or Xanthomonas oryzae pv. oryzae RuvC with plant secretion signal in tomato or rice confers resistance to bacterial wilt or bacterial blight disease, respectively. Plant chloroplast-localized HJ resolvase monokaryotic chloroplast 1 (MOC1), which shares structural similarity with bacterial RuvC, shows a strong inhibitory effect on bacterial biofilm formation. Relocalization of SlMOC1 to apoplast in tomato roots leads to increased resistance to bacterial wilt. Our novel finding reveals a critical pathogenesis mechanism of R. solanacearum and provides an efficient biotechnology strategy to improve plant resistance to bacterial vascular disease.
Collapse
Affiliation(s)
- Xinya Du
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Pengyue Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Changqiu Fan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jingjing Tian
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Meng Yuan
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Das S, Pradhan T, Panda SK, Behera AD, Kumari S, Mallick S. Bacterial biofilm-mediated environmental remediation: Navigating strategies to attain Sustainable Development Goals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122745. [PMID: 39383746 DOI: 10.1016/j.jenvman.2024.122745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
Bacterial biofilm is a structured bacterial community enclosed within a three-dimensional polymeric matrix, governed by complex signaling pathways, including two-component systems, quorum sensing, and c-di-GMP, which regulate its development and resistance in challenging environments. The genetic configurations within biofilm empower bacteria to exhibit significant pollutant remediation abilities, offering a promising strategy to tackle diverse ecological challenges and expedite progress toward Sustainable Development Goals (SDGs). Biofilm-based technologies offer advantages such as high treatment efficiency, cost-effectiveness, and sustainability compared to conventional methods. They significantly contribute to agricultural improvement, soil fertility, nutrient cycling, and carbon sequestration, thereby supporting SDG 1 (No poverty), SDG 2 (Zero hunger), SDG 13 (Climate action), and SDG 15 (Life on land). In addition, biofilm facilitates the degradation of organic-inorganic pollutants from contaminated environments, aligning with SDG 6 (Clean water and sanitation) and SDG 14 (Life below water). Bacterial biofilm also has potential applications in industrial innovation, aligning SDG 7 (Affordable and clean energy), SDG 8 (Decent work and economic growth), and SDG 9 (Industry, innovation, and infrastructure). Besides, bacterial biofilm prevents several diseases, aligning with SDG 3 (Good health and well-being). Thus, bacterial biofilm-mediated remediation provides advanced opportunities for addressing environmental issues and progressing toward achieving the SDGs. This review explores the potential of bacterial biofilms in addressing soil pollution, wastewater, air quality improvement, and biodiversity conservation, emphasizing their critical role in promoting sustainable development.
Collapse
Affiliation(s)
- Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| | - Trisnehi Pradhan
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Sourav Kumar Panda
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Abhaya Dayini Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Swetambari Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Souradip Mallick
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| |
Collapse
|
19
|
Huang L, Pu H, Sun DW. Spatiotemporally Guided Single-Atom Bionanozyme for Targeted Antibiofilm Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407747. [PMID: 39370579 DOI: 10.1002/smll.202407747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Indexed: 10/08/2024]
Abstract
The heterogeneous and dynamic microenvironment of biofilms complicates bacterial infection treatment. Nanozyme catalytic therapy has recently been promising in treating biofilm infections. However, active nanozymes designed with the required precision targeting the biofilm microenvironment are lacking. This work proposes a spatiotemporally guided single-atom bionanozyme (BioSAzyme) for targeted antibiofilm therapy based on protein engineering of copper single-atom nanozyme (Cu SAzyme). The Cu SAzyme, synthesized via a novel mechanochemistry-assisted method, features highly accessible Cu-N4 active sites exposed on 2D N-doped carbon, exhibiting excellent triple enzyme-like activities according to experimental results and density functional theory calculations. Inheriting biofunctionality from both glucose oxidase and concanavalin A, BioSAzyme can localize the biofilm glycocalyx and catalyze endogenous glucose into H₂O₂ and gluconic acid, thus triggering multiplex cascade reactions with pH self-adaption to consume glucose and glutathione and generate •OH radicals. This spatiotemporally guided bionanocatalytic agent effectively inhibits E. coli O157: H7 and methicillin-resistant S. aureus biofilms in vitro and in vivo. Taking together, this work opens up new avenues for the rational design of single-atom nanozymes for precise antibiofilm therapy.
Collapse
Affiliation(s)
- Lunjie Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin, D04 V1W8, Ireland
| |
Collapse
|
20
|
Zhu S, Yang B, Yu F, Zhang J, Wang Z, Liu Y. Investigation of the impact of widely used pesticides on conjugative transfer of multidrug resistance plasmids. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135436. [PMID: 39141944 DOI: 10.1016/j.jhazmat.2024.135436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Plasmid-mediated conjugative transfer has emerged as a major driver accounting for the dissemination of antibiotic resistance genes (ARGs). In addition to the use of antimicrobial agents, there is growing evidence that non-antibiotic factors also play an important role. Pesticides are widely used to protect crops against vectors of diseases, and are indispensable agents in agricultural production, whereas the impact of pesticide pollution on the transmission of antimicrobial resistance remains poorly understood. Here we reveal that the pesticides at environmentally relevant concentrations, especially cyromazine (Cyr) and kresoxim-methyl (Kre), greatly facilitate the conjugative transfer of antibiotic-resistance plasmids carrying clinically important ARGs. Mechanistic studies indicate that Cyr and Kre treatments trigger reactive oxygen species (ROS) production and SOS response, increase membrane permeability, upregulate bacterial proton motive force (PMF) and promote ATP supply. Further non-targeted metabolomics and biochemical analysis demonstrate that the addition of Cyr and Kre accelerates tricarboxylic acid (TCA) cycle and electron transport chain (ETC), thereby activating bacterial energy metabolism. In the constructed soil model, we prove that two pesticides contribute to the dissemination of resistance plasmids in the soil microbiota. 16S rRNA sequencing analyses indicate that pesticides alter transconjugant microbial communities, and enable more opportunistic pathogens, such as Pseudomonas and Enterobacter, to acquire the multidrug resistance plasmids. Collectively, our work indicates the potential risk in accelerating the spread of antimicrobial resistance owing to pesticide pollution, highlighting the importance of continuous surveillance of pesticide residues in complex environmental settings.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Feiyu Yu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiayi Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
21
|
da Cruz Nizer WS, Allison KN, Adams ME, Vargas MA, Ahmed D, Beaulieu C, Raju D, Cassol E, Howell PL, Overhage J. The role of exopolysaccharides Psl and Pel in resistance of Pseudomonas aeruginosa to the oxidative stressors sodium hypochlorite and hydrogen peroxide. Microbiol Spectr 2024; 12:e0092224. [PMID: 39194290 PMCID: PMC11448232 DOI: 10.1128/spectrum.00922-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/01/2024] [Indexed: 08/29/2024] Open
Abstract
Pseudomonas aeruginosa is well-known for its antimicrobial resistance and the ability to survive in harsh environmental conditions due to an abundance of resistance mechanisms, including the formation of biofilms and the production of exopolysaccharides. Exopolysaccharides are among the major components of the extracellular matrix in biofilms and aggregates of P. aeruginosa. Although their contribution to antibiotic resistance has been previously shown, their roles in resistance to oxidative stressors remain largely elusive. Here, we studied the function of the exopolysaccharides Psl and Pel in the resistance of P. aeruginosa to the commonly used disinfectants and strong oxidizing agents NaOCl and H2O2. We observed that the simultaneous inactivation of Psl and Pel in P. aeruginosa PAO1 mutant strain ∆pslA pelF resulted in a significant increase in susceptibility to both NaOCl and H2O2. Further analyses revealed that Pel is more important for oxidative stress resistance in P. aeruginosa and that the form of Pel (i.e., cell-associated or cell-free) did not affect NaOCl susceptibility. Additionally, we show that Psl/Pel-negative strains are protected against oxidative stress in co-culture biofilms with P. aeruginosa PAO1 WT. Taken together, our results demonstrate that the EPS matrix and, more specifically, Pel exhibit protective functions against oxidative stressors such as NaOCl and H2O2 in P. aeruginosa. IMPORTANCE Biofilms are microbial communities of cells embedded in a self-produced polymeric matrix composed of polysaccharides, proteins, lipids, and extracellular DNA. Biofilm bacteria have been shown to possess unique characteristics, including increased stress resistance and higher antimicrobial tolerance, leading to failures in bacterial eradication during chronic infections or in technical settings, including drinking and wastewater industries. Previous studies have shown that in addition to conferring structure and stability to biofilms, the polysaccharides Psl and Pel are also involved in antibiotic resistance. This work provides evidence that these biofilm matrix components also contribute to the resistance of Pseudomonas aeruginosa to oxidative stressors including the widely used disinfectant NaOCl. Understanding the mechanisms by which bacteria escape antimicrobial agents, including strong oxidants, is urgently needed in the fight against antimicrobial resistance and will help in developing new strategies to eliminate resistant strains in any environmental, industrial, and clinical setting.
Collapse
Affiliation(s)
| | - Kira N. Allison
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Madison E. Adams
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Mario A. Vargas
- Program in Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Carole Beaulieu
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Deepa Raju
- Program in Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - P. Lynne Howell
- Program in Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Wang B, Zhang C, Shi C, Zhai T, Zhu J, Wei D, Shen J, Liu Z, Jia K, Zhao L. Mechanisms of oral microflora in Parkinson's disease. Behav Brain Res 2024; 474:115200. [PMID: 39134178 DOI: 10.1016/j.bbr.2024.115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease with complex pathogenesis and no effective treatment. Recent studies have shown that dysbiosis of the oral microflora is closely related to the development of PD. The abnormally distributed oral microflora of PD patients cause degenerative damage and necrosis of dopamine neurons by releasing their own components and metabolites, intervening in the oral-gut-brain axis, crossing the biofilm, inducing iron dysregulation, activating inter-microflora interactions, and through the mediation of saliva,ultimately influencing the development of the disease. This article reviews the structure of oral microflora in patients with PD, the mechanism of development of PD caused by oral microflora, and the potential value of targeting oral microflora in developing a new strategy for PD prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Bingbing Wang
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Can Zhang
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Caizhen Shi
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Tianyu Zhai
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Jinghui Zhu
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Dongmin Wei
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Juan Shen
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Zehao Liu
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Kunpeng Jia
- Yan'an University Affiliated Hospital, Yan'an, Shaanxi, China.
| | - Lin Zhao
- Medical School of Yan'an University, Yan'an, Shaanxi, China.
| |
Collapse
|
23
|
Liu HY, Prentice EL, Webber MA. Mechanisms of antimicrobial resistance in biofilms. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:27. [PMID: 39364333 PMCID: PMC11445061 DOI: 10.1038/s44259-024-00046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Most bacteria in nature exist in aggregated communities known as biofilms, and cells within a biofilm demonstrate major physiological changes compared to their planktonic counterparts. Biofilms are associated with many different types of infections which can have severe impacts on patients. Infections involving a biofilm component are often chronic and highly recalcitrant to antibiotic therapy as a result of intrinsic physical factors including extracellular matrix production, low growth rates, altered antibiotic target production and efficient exchange of resistance genes. This review describes the biofilm lifecycle, phenotypic characteristics of a biofilm, and contribution of matrix and persister cells to biofilms intrinsic tolerance to antimicrobials. We also describe how biofilms can evolve antibiotic resistance and transfer resistance genes within biofilms. Multispecies biofilms and the impacts of various interactions, including cooperation and competition, between species on tolerance to antimicrobials in polymicrobial biofilm communities are also discussed.
Collapse
Affiliation(s)
- Ho Yu Liu
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, Norfolk NR4 7UG UK
| | - Emma L Prentice
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
| | - Mark A Webber
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, Norfolk NR4 7UG UK
| |
Collapse
|
24
|
Mu Y, Tran HH, Xiang Z, Majumder A, Hsu E, Steager E, Koo H, Lee D. Spiky Magnetic Microparticles Synthesized from Microrod-Stabilized Pickering Emulsion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402292. [PMID: 38864236 DOI: 10.1002/smll.202402292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Tailoring the microstructure of magnetic microparticles is of vital importance for their applications. Spiky magnetic particles, such as those made from sunflower pollens, have shown promise in single cell treatment and biofilm removal. Synthetic methods that can replicate or extend the functionality of such spiky particles would be advantageous for their widespread utilization. In this work, a wet-chemical method is introduced for spiky magnetic particles that are templated from microrod-stabilized Pickering emulsions. The spiky morphology is generated by the upright attachment of silica microrods at the oil-water interface of oil droplets. Spiky magnetic microparticles with control over the length of the spikes are obtained by dispersing hydrophobic magnetic nanoparticles in the oil phase and photopolymerizing the monomer. The spiky morphology dramatically enhances colloidal stability of these particles in high ionic strength solutions and physiologic media such as human saliva and saline-based biofilm suspension. To demonstrate their utility, the spiky magnetic particles are applied for magnetically controlled removal of oral biofilms and retrieval of bacteria for diagnostic sampling. This method expands the toolbox for engineering microparticle morphology and could promote the fabrication of functional magnetic microrobots.
Collapse
Affiliation(s)
- Yijiang Mu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hong-Huy Tran
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhenting Xiang
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anirban Majumder
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emery Hsu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward Steager
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyun Koo
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
25
|
Zahra SA, Persiani R, Dueholm MK, van Loosdrecht M, Nielsen PH, Seviour TW, Lin Y. Rethinking characterization, application, and importance of extracellular polymeric substances in water technologies. Curr Opin Biotechnol 2024; 89:103192. [PMID: 39216163 DOI: 10.1016/j.copbio.2024.103192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Biofilms play important roles in water technologies such as membrane treatments and activated sludge. The extracellular polymeric substances (EPS) are key components of biofilms. However, the precise nature of these substances and how they influence biofilm formation and behavior remain critical knowledge gaps. EPS are produced by many different microorganisms and span multiple biopolymer classes, which each require distinct strategies for characterization. The biopolymers additionally associate with each other to form insoluble complexes. Here, we explore recent progress toward resolving the structures and functions of EPS, where a shift towards direct functional assessments and advanced characterization techniques is necessary. This will enable integration with better microbial community and omics analyses to understand EPS biosynthesis pathways and create further opportunities for EPS control and valorization.
Collapse
Affiliation(s)
- Sasmitha A Zahra
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Rozalia Persiani
- Department of Biotechnology, Delft University of Technology, 2628 Delft, the Netherlands
| | - Morten Kd Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, 2628 Delft, the Netherlands
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Thomas W Seviour
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark.
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, 2628 Delft, the Netherlands.
| |
Collapse
|
26
|
Hu R, Qian H, Wang X, Peng B, Huang D. Nicotine promotes pathogenic bacterial growth and biofilm formation in peri-implant. J Med Microbiol 2024; 73. [PMID: 39360709 DOI: 10.1099/jmm.0.001897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Introduction. Peri-implantitis is a plaque-associated disease that leads to implant loss and arises from bacterial biofilms on the surface of the implant. Smoking is a risk factor for peri-implantitis and impedes treatment effectiveness. Additionally, aryl hydrocarbon receptor (AHR), IL-6, and IL-22 levels are related to peri-implantitis.Aim. We aimed to investigate the effects of nicotine on inflammatory response, bacterial growth and biofilm formation.Hypothesis/Gap Statement. We hypothesized that nicotine promoted pathogenic bacterial growth and biofilm formation, thereby aggravating inflammation.Methodology. The expression of AHR, IL-6 and IL-22 was measured in peri-implant sulci fluid using quantitative PCR and Western blot analyses. The cementum was incubated with bacterial suspension including Porphyromonas gingivalis, Streptococcus sanguinis and Fusobacterium nucleatum and treated with 100, 200, 250 and 300 µg ml-1 nicotine, and then, the absorbance and number of colony-forming units were detected. Biofilm formation was evaluated using the tissue culture plate method and safranin O staining. Carbohydrates and proteins were measured by the phenol-sulfuric acid method and the bicinchoninic acid method, respectively.Results. The results indicated that smoking increased the levels of AHR, IL-6 and IL-22. Functionally, nicotine promoted the growth of P. gingivalis, S. sanguinis and F. nucleatum. Additionally, it promoted the biofilm formation of these bacteria and increased the contents of carbohydrates and proteins.Conclusion. Nicotine promoted bacterial growth and biofilm build-up, suggesting that smoking may aggravate the progression of peri-implantitis.
Collapse
Affiliation(s)
- Rong Hu
- Department of Stomatology, Affiliated Hospital of Yunnan University, Kunming, Yunnan 650000, PR China
| | - Huifen Qian
- Department of Stomatology, Affiliated Hospital of Yunnan University, Kunming, Yunnan 650000, PR China
| | - Xiangyun Wang
- Department of Stomatology, Affiliated Hospital of Yunnan University, Kunming, Yunnan 650000, PR China
| | - Bei Peng
- Department of Stomatology, Affiliated Hospital of Yunnan University, Kunming, Yunnan 650000, PR China
| | - Dahai Huang
- Department of Stomatology, Affiliated Hospital of Yunnan University, Kunming, Yunnan 650000, PR China
| |
Collapse
|
27
|
Sun Y, Lu T, Pan J, He H, Xu M, Chen Y, Chen Y, Fang P, Ye X, Li S, Hu H, Yu S. Dual tobramycin and docosahexaenoic acid loaded nanoemulsions combating Pseudomonas aeruginosa-induced pulmonary infection. Colloids Surf B Biointerfaces 2024; 242:114088. [PMID: 39003845 DOI: 10.1016/j.colsurfb.2024.114088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) typically forms biofilms in vivo, which exhibit high resistance and complicate eradication efforts. Additionally, persistent inflammation and excessive oxidative stress can lead to severe lung dysfunction, facilitating bacterial colonization and infection. Herein, we prepared oil-in-water (O/W) nanoemulsions (TD-αT NEs) by using PEG5k-block-PCL5k and α-tocopherol to encapsulate tobramycin (TOB). To enhance TOB's drug load, a hydrophobic ion pair (TDIP) composed of TOB and docosahexaenoic acid (DHA) was pre-prepared. TD-αT NEs was not only easily prepared and aerosolized, but stable in both physics and chemistry. The negatively charged TD-αT NEs facilitated penetration through mucus, reaching infection sites. Subsequently, TD-αT NEs permeated biofilms due to their small size and released drugs via lipase-triggered carrier dissociation, aiding in eradicating internal bacteria within biofilms (with a 16-fold reduction in CFU vs. free TOB group). TD-αT NEs simultaneously exerted superior anti-inflammatory effects, reducing levels of pro-inflammatory cytokines (NO, IL-6, IL-8, and TNF-α) while increasing the level of anti-inflammatory cytokine (IL-10). It was achieved through the upregulation of PPAR-γ and downregulation of NF-κB signaling, thus mitigating the lung damage. In addition, TD-αT NEs demonstrated strong antioxidant activity, alleviating the oxidative stress induced by P. aeruginosa. Notably, when administered via inhalation, TD-αT NEs significantly reduced the lung bacterial burden, lung inflammation, and oxidative stress in vivo compared to TOB solution. TD-αT NEs could prove beneficial in treating chronic pulmonary infections induced by P. aeruginosa through a comprehensive strategy, specifically enhancing biofilm eradication, reducing inflammation, and alleviating oxidative stress.
Collapse
Affiliation(s)
- Yingying Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Tianli Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Jieyi Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Haonan He
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Mao Xu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Yujun Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Yan Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Pengchao Fang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Xiaoxing Ye
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Shuxuan Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China.
| | - Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China.
| |
Collapse
|
28
|
Chai L, Zaburdaev V, Kolter R. How bacteria actively use passive physics to make biofilms. Proc Natl Acad Sci U S A 2024; 121:e2403842121. [PMID: 39264745 PMCID: PMC11459164 DOI: 10.1073/pnas.2403842121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Modern molecular microbiology elucidates the organizational principles of bacterial biofilms via detailed examination of the interplay between signaling and gene regulation. A complementary biophysical approach studies the mesoscopic dependencies at the cellular and multicellular levels with a distinct focus on intercellular forces and mechanical properties of whole biofilms. Here, motivated by recent advances in biofilm research and in other, seemingly unrelated fields of biology and physics, we propose a perspective that links the biofilm, a dynamic multicellular organism, with the physical processes occurring in the extracellular milieu. Using Bacillus subtilis as an illustrative model organism, we specifically demonstrate how such a rationale explains biofilm architecture, differentiation, communication, and stress responses such as desiccation tolerance, metabolism, and physiology across multiple scales-from matrix proteins and polysaccharides to macroscopic wrinkles and water-filled channels.
Collapse
Affiliation(s)
- Liraz Chai
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD4000, Australia
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen91058, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen91058, Germany
| | - Roberto Kolter
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
29
|
Santana JS, Delbem ACB, Pessan JP, Sampaio C, de Morais LA, Pereira TL, Monteiro DR, Hosida TY. Dual-species biofilm of Streptococcus mutans and Candida albicans produces subsurface caries lesions on bovine enamel. Arch Oral Biol 2024; 166:106029. [PMID: 38924874 DOI: 10.1016/j.archoralbio.2024.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES To develop a protocol for forming subsurface caries lesions on bovine enamel by dual-species biofilms of Streptococcus mutans and Candida albicans in vitro. DESIGN Biofilms were grown on bovine enamel specimens in artificial saliva (AS) for seven days. After 24 h of formation, the AS was supplemented or not with fluoride (F) using sodium fluoride (0.005 or 0.008 ppm F), and the biofilms were exposed or not to a 20 % sucrose solution (reproducing a cariogenic challenge) once/day. On the seventh day, the biofilms were harvested and had their extracellular polysaccharides (EPS) and inorganic components analyzed. The specimens were subjected to computed X-ray microtomography analysis to determine their mineral concentration. Data were compared using two-way analyses of variance, followed by Fisher's LSD or Student-Newman-Keuls tests (p < 0.05). RESULTS Biofilms exposed to the cariogenic challenge had significantly higher EPS concentrations than those not exposed, regardless of the presence of F. For biofilms grown with 0.008 ppm F, those exposed to the cariogenic challenge had lower F levels than those not exposed. For biofilms exposed to the cariogenic challenge, those grown with 0.008 ppm F had lower lesion depths and integrated mineral loss, and higher outer layers than those grown without F. CONCLUSIONS The dual biofilm model assessed was able to create subsurface caries lesions in bovine enamel in vitro, which was influenced by the presence of F in the culture medium and exposure to sucrose.
Collapse
Affiliation(s)
- Jéssica Silva Santana
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Caio Sampaio
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Leonardo Antônio de Morais
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Taynara Leandro Pereira
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Douglas Roberto Monteiro
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Thayse Yumi Hosida
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
30
|
Jeong GJ, Khan F, Tabassum N, Cho KJ, Kim YM. Marine-derived bioactive materials as antibiofilm and antivirulence agents. Trends Biotechnol 2024; 42:1288-1304. [PMID: 38637243 DOI: 10.1016/j.tibtech.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Microbial infections are major human health issues, and, recently, the mortality rate owing to bacterial and fungal infections has been increasing. In addition to intrinsic and extrinsic antimicrobial resistance mechanisms, biofilm formation is a key adaptive resistance mechanism. Several bioactive compounds from marine organisms have been identified for use in biofilm therapy owing to their structural complexity, biocompatibility, and economic viability. In this review, we discuss recent trends in the application of marine natural compounds, marine-bioinspired nanomaterials, and marine polymer conjugates as possible therapeutic agents for controlling biofilms and virulence factors. We also comprehensively discuss the mechanisms underlying biofilm formation and inhibition of virulence factors by marine-derived materials and propose possible applications of novel and effective antibiofilm and antivirulence agents.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
31
|
Dias GR, Freitas-Silva J, de Carvalho MM, Ramos VFDS, Muricy G, Rodrigues JCF, Costa BRFV, de Oliveira BFR, Laport MS. Bioemulsifier from sponge-associated bacteria reduces staphylococcal biofilm. Microb Pathog 2024; 195:106856. [PMID: 39153576 DOI: 10.1016/j.micpath.2024.106856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Biofilm formation is a major health concern and studies have been pursued to find compounds able to prevent biofilm establishment and remove pre-existing biofilms. While biosurfactants (BS) have been well-known for possessing antibiofilm activities, bioemulsifiers (BE) are still scarcely explored for this purpose. The present study aimed to evaluate the bioemulsifying properties of cell-free supernatants produced by Bacillaceae and Vibrio strains isolated from marine sponges and investigate their antiadhesive and antibiofilm activities against different pathogenic Gram-positive and Gram-negative bacteria. The BE production by the marine strains was confirmed by the emulsion test, drop-collapsing, oil-displacement, cell hydrophobicity and hemolysis assays. Notably, Bacillus cereus 64BHI1101 displayed remarkable emulsifying activity and the ultrastructure analysis of its BE extract (BE64-1) revealed the presence of structures typically observed in macromolecules composed of polysaccharides and proteins. BE64-1 showed notable antiadhesive and antibiofilm activities against Staphylococcus aureus, with a reduction of adherence of up to 100 % and a dispersion of biofilm of 80 %, without affecting its growth. BE64-1 also showed inhibition of Staphylococcus epidermidis and Escherichia coli biofilm formation and adhesion. Thus, this study provides a starting point for exploring the antiadhesive and antibiofilm activities of BE from sponge-associated bacteria, which could serve as a valuable tool for future research to combat S. aureus biofilms.
Collapse
Affiliation(s)
- Gabriel Rodrigues Dias
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária 21941-590, Rio de Janeiro, Brazil
| | - Jéssyca Freitas-Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária 21941-590, Rio de Janeiro, Brazil
| | - Marianna Machado de Carvalho
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária 21941-590, Rio de Janeiro, Brazil
| | - Victor Feliciano Dos Santos Ramos
- Núcleo Multidisciplinar de Pesquisas em Biologia, Campus UFRJ-Duque de Caxias Prof. Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, km 104, 5. 25240-005, Duque de Caxias, RJ, Brazil
| | - Guilherme Muricy
- Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro. Quinta da Boa Vista, s/nº, São Cristóvão. 20940-040 Rio de Janeiro, RJ, Brazil; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, 22460-030, RJ, Brazil
| | - Juliany Cola Fernandes Rodrigues
- Núcleo Multidisciplinar de Pesquisas em Biologia, Campus UFRJ-Duque de Caxias Prof. Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, km 104, 5. 25240-005, Duque de Caxias, RJ, Brazil
| | - Brunno Renato Farias Verçoza Costa
- Núcleo Multidisciplinar de Pesquisas em Biologia, Campus UFRJ-Duque de Caxias Prof. Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, km 104, 5. 25240-005, Duque de Caxias, RJ, Brazil
| | | | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária 21941-590, Rio de Janeiro, Brazil.
| |
Collapse
|
32
|
Hou Z, Ren X, Sun Z, An R, Huang M, Gao C, Yin M, Liu G, He D, Du H, Tang R. Trash into Treasure: Nano-coating of Catheter Utilizes Urine to Deprive H 2S Against Persister and Rip Biofilm Matrix. Adv Healthc Mater 2024; 13:e2401067. [PMID: 39030869 DOI: 10.1002/adhm.202401067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/27/2024] [Indexed: 07/22/2024]
Abstract
Bacteria-derived hydrogen sulfide (H2S) often contributes to the emergence of antibiotic-recalcitrant bacteria, especially persister (a sub-population of dormant bacteria), thus causing the treatment failure of Catheter-associated urinary tract infection (CAUTI). Here, an H2S harvester nanosystem to prevent the generation of persister bacteria and disrupt the dense biofilm matrix by the self-adaptive ability of shape-morphing is prepared. The nanosystem possesses a core-shell structure that is composed of liquid metal nanoparticle (LM NP), AgNPs, and immobilized urease. The nanosystem decomposes urea contained in urine to generate ammonia for eliminating bacteria-derived H2S. Depending on the oxidative layer of liquid metal, the nanosystem also constitutes a long-lasting reservoir for temporarily storing bacteria-derived H2S, when urease transiently overloads or in the absence of urine in a catheter. Depriving H2S can prevent the emergence of persistent bacteria, enhancing the bacteria-killing efficiency of Ga3+ and Ag+ ions. Even when the biofilm has formed, the urine flow provides heat to trigger shape morphing of the LM NP, tearing the biofilm matrix. Collectively, this strategy can turn trash (urea) into treasure (H2S scavengers and biofilm rippers), and provides a new direction for the antibacterial materials application in the medical field.
Collapse
Affiliation(s)
- Zhiming Hou
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Xinyu Ren
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Zhuangzhuang Sun
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Ruoqi An
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Mingzhi Huang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Cen Gao
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Mengying Yin
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Guangxiu Liu
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| | - Dengqi He
- Department of Stomatology, The First Hospital of Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hongliang Du
- Department of Stomatology, The First Hospital of Lanzhou University, Lanzhou, 730000, P. R. China
| | - Rongbing Tang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
33
|
Samaniego LVB, Scandelau SL, Silva CR, Pratavieira S, de Oliveira Arnoldi Pellegrini V, Dabul ANG, Esmerino LA, de Oliveira Neto M, Hernandes RT, Segato F, Pileggi M, Polikarpov I. Thermothelomyces thermophilus exo- and endo-glucanases as tools for pathogenic E. coli biofilm degradation. Sci Rep 2024; 14:22576. [PMID: 39343957 PMCID: PMC11439960 DOI: 10.1038/s41598-024-70144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/13/2024] [Indexed: 10/01/2024] Open
Abstract
The escalating prevalence of drug-resistant pathogens not only jeopardizes the effectiveness of existing treatments but also increases the complexity and severity of infectious diseases. Escherichia coli is one the most common pathogens across all healthcare-associated infections. Enzymatic treatment of bacterial biofilms, targeting extracellular polymeric substances (EPS), can be used for EPS degradation and consequent increase in susceptibility of pathogenic bacteria to antibiotics. Here, we characterized three recombinant cellulases from Thermothelomyces thermophilus: a cellobiohydrolase I (TthCel7A), an endoglucanase (TthCel7B), and a cellobiohydrolase II (TthCel6A) as tools for hydrolysis of E. coli and Gluconacetobacter hansenii biofilms. Using a design mixture approach, we optimized the composition of cellulases, enhancing their synergistic activity to degrade the biofilms and significantly reducing the enzymatic dosage. In line with the crystalline and ordered structure of bacterial cellulose, the mixture of exo-glucanases (0.5 TthCel7A:0.5 TthCel6A) is effective in the hydrolysis of G. hansenii biofilm. Meanwhile, a mixture of exo- and endo-glucanases is required for the eradication of E. coli 042 and clinical E. coli biofilms with significantly different proportions of the enzymes (0.56 TthCel7B:0.44 TthCel6A and 0.6 TthCel7A:0.4 TthCel7B, respectively). X-ray diffraction pattern and crystallinity index of E. coli cellulose are comparable to those of carboxymethyl cellulose (CMC) substrate. Our results illustrate the complexity of E. coli biofilms and show that successful hydrolysis is achieved by a specific combination of cellulases, with consistent recurrence of TthCel7B endoglucanase.
Collapse
Affiliation(s)
| | - Samuel Luis Scandelau
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil
| | - Caroline Rosa Silva
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Sebastião Pratavieira
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil
| | | | - Andrei Nicoli Gebieluca Dabul
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil
| | - Luís Antônio Esmerino
- Microbiology Laboratory, Clinical Analysis Department, Life Sciences and Health Institute, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Mario de Oliveira Neto
- Institute of Biosciences, Sao Paulo State University, District of Rubiao Jr., Botucatu, SP, 18618-970, Brazil
| | - Rodrigo Tavanelli Hernandes
- Institute of Biosciences, Sao Paulo State University, District of Rubiao Jr., Botucatu, SP, 18618-970, Brazil
| | - Fernando Segato
- Lorena School of Engineering, University of Sao Paulo, Estrada Municipal do Campinho, Lorena, SP, 12602-810, Brazil
| | - Marcos Pileggi
- Environmental Microbiology Laboratory, Structural and Molecular Biology, and Genetics Department, Life Sciences and Health Institute, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Igor Polikarpov
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil.
| |
Collapse
|
34
|
Flemming HC, van Hullebusch ED, Little BJ, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. Microbial extracellular polymeric substances in the environment, technology and medicine. Nat Rev Microbiol 2024:10.1038/s41579-024-01098-y. [PMID: 39333414 DOI: 10.1038/s41579-024-01098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/29/2024]
Abstract
Microbial biofilms exhibit a self-produced matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA and lipids. EPS promote interactions of the biofilm with other cells and sorption of organics, metals and chemical pollutants, and they facilitate cell adhesion at interfaces and ensure matrix cohesion. EPS have roles in various natural environments, such as soils, sediments and marine habitats. In addition, EPS are relevant in technical environments, such as wastewater and drinking water treatment facilities, and water distribution systems, and they contribute to biofouling and microbially influenced corrosion. In medicine, EPS protect pathogens within the biofilm against the host immune system and antimicrobials, and emerging evidence suggests that EPS can represent potential virulence factors. By contrast, EPS yield a wide range of valuable products that include their role in self-repairing concrete. In this Review, we aim to explore EPS as a functional unit of biofilms in the environment, in technology and in medicine.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
- Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.
| | | | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Thomas Seviour
- Aarhus University Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Paul Stoodley
- Department of Microbial Infection and Immunity and the Department of Orthopaedics, the Ohio State University, Columbus, OH, USA
- National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton, UK
| | - Jost Wingender
- University of Duisburg-Essen, Faculty of Chemistry, Environmental Microbiology and Biotechnology, Essen, Germany
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
35
|
Byeon CH, Kinney T, Saricayir H, Hansen KH, Scott F, Srinivasa S, Wells MK, Mentink-Vigier F, Kim W, Akbey Ü. High-Sensitivity Analysis of Native Bacterial Biofilms Using Dynamic Nuclear Polarization-Enhanced Solid-State NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614951. [PMID: 39386544 PMCID: PMC11463664 DOI: 10.1101/2024.09.25.614951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Bacterial biofilms cause persistent infections that are difficult to treat and contribute greatly to antimicrobial resistance. However, high-resolution structural information on native bacterial biofilms remain very limited. This limitation is primarily due to methodological constraints associated with analyzing complex native samples. Although solid-state NMR (ssNMR) is a promising method in this regard, its conventional applications typically suffer from sensitivity limitations, particularly for unlabeled native samples. Through the use of Dynamic Nuclear Polarization (DNP), we applied sensitivity enhanced ssNMR to characterize native Pseudomonas fluorescens colony biofilms. The increased ssNMR sensitivity by DNP enabled ultrafast structural characterization of the biofilm samples without isotope-labelling, and chemical or physical modification. We collected 1D 13 C and 15 N, and 2D 1 H- 13 C, 1 H- 15 N and 13 C- 13 C ssNMR spectra within seconds/minutes or hours, respectively which enabled us to identify biofilm components as polysaccharides, proteins, and eDNA effectively. This study represents the first application of ultrasensitive DNP ssNMR to characterize a native bacterial biofilm and expands the technical scope of ssNMR towards obtaining insights into the composition and structure of a wide array of in vitro and ex vivo biofilm applications. Such versatility should greatly boost efforts to develop structure-guided approaches for combating infections caused by biofilm-forming microbes.
Collapse
|
36
|
Antunes Filho S, Pizzorno Backx B, Foguel D. Green nanotechnology in phytosynthesis and its efficiency in inhibiting bacterial biofilm formation: implications for medicine. BIOFOULING 2024:1-15. [PMID: 39319552 DOI: 10.1080/08927014.2024.2407036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/07/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Nanotechnology is used in several biomedical applications, including antimicrobial and antibiofilm applications using nanomaterials. Bacterial biofilm varies according to the strain; the matrix is very strong and resistant. In this sense, phytosynthesis is an important method for combating bacterial biofilms through the use of metallic nanoparticles (silver, gold, or copper) with increased marketing and technical-scientific potential. In this review, we seek to gather the leading publications on the use of phytosynthesized metallic nanoparticles against bacterial biofilms. Furthermore, this study aims to understand the main characteristics and parameters of these nanomaterials, their antibiofilm efficiency, and the presence or absence of cytotoxicity in these developed technologies.
Collapse
Affiliation(s)
- Sérgio Antunes Filho
- NUMPEX - UFRJ, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Débora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Vishwakarma A, Narayanan A, Kumar N, Chen Z, Dang F, Menefee J, Dhinojwala A, Joy A. Coacervate Dense Phase Displaces Surface-Established Pseudomonas aeruginosa Biofilms. J Am Chem Soc 2024; 146:26397-26407. [PMID: 39259884 PMCID: PMC11440510 DOI: 10.1021/jacs.4c09311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
For millions of years, barnacles and mussels have successfully adhered to wet rocks near tide-swept seashores. While the chemistry and mechanics of their underwater adhesives are being thoroughly investigated, an overlooked aspect of marine organismal adhesion is their ability to remove underlying biofilms from rocks and prepare clean surfaces before the deposition of adhesive anchors. Herein, we demonstrate that nonionic, coacervating synthetic polymers that mimic the physicochemical features of marine underwater adhesives remove ∼99% of Pseudomonas aeruginosa (P. aeruginosa) biofilm biomass from underwater surfaces. The efficiency of biofilm removal appears to align with the compositional differences between various bacterial biofilms. In addition, the surface energy influences the ability of the polymer to displace the biofilm, with biofilm removal efficiency decreasing for surfaces with lower surface energies. These synthetic polymers weaken the biofilm-surface interactions and exert shear stress to fracture the biofilms grown on surfaces with diverse surface energies. Since bacterial biofilms are 1000-fold more tolerant to common antimicrobial agents and pose immense health and economic risks, we anticipate that our unconventional approach inspired by marine underwater adhesion will open a new paradigm in creating antibiofilm agents that target the interfacial and viscoelastic properties of established bacterial biofilms.
Collapse
Affiliation(s)
- Apoorva Vishwakarma
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Nityanshu Kumar
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Zixi Chen
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02120, United States
| | - Francis Dang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Joshua Menefee
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02120, United States
| |
Collapse
|
38
|
Holt JD, Schultz D, Nadell CD. Dispersal of a dominant competitor can drive multispecies coexistence in biofilms. Curr Biol 2024; 34:4129-4142.e4. [PMID: 39163856 DOI: 10.1016/j.cub.2024.07.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/25/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Despite competition for both space and nutrients, bacterial species often coexist within structured, surface-attached communities termed biofilms. While these communities play important, widespread roles in ecosystems and are agents of human infection, understanding how multiple bacterial species assemble to form these communities and what physical processes underpin the composition of multispecies biofilms remains an active area of research. Using a model three-species community composed of Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis, we show with cellular-scale resolution that biased dispersal of the dominant community member, P. aeruginosa, prevents competitive exclusion from occurring, leading to the coexistence of the three species. A P. aeruginosa bqsS deletion mutant no longer undergoes periodic mass dispersal, leading to the local competitive exclusion of E. coli. Introducing periodic, asymmetric dispersal behavior into minimal models, parameterized by only maximal growth rate and local density, supports the intuition that biased dispersal of an otherwise dominant competitor can permit coexistence generally. Colonization experiments show that WT P. aeruginosa is superior at colonizing new areas, in comparison to ΔbqsS P. aeruginosa, but at the cost of decreased local competitive ability against E. coli and E. faecalis. Overall, our experiments document how one species' modulation of a competition-dispersal-colonization trade-off can go on to influence the stability of multispecies coexistence in spatially structured ecosystems.
Collapse
Affiliation(s)
- Jacob D Holt
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
39
|
Mattos MMG, Filho SA, Martins GR, Venturi LS, Canetti VB, Ferreira FA, Foguel D, Silva ASD. Antimicrobial and antibiofilm properties of procyanidins: potential for clinical and biotechnological applications. Crit Rev Microbiol 2024:1-24. [PMID: 39301598 DOI: 10.1080/1040841x.2024.2404509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/29/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Procyanidins (PCs) have emerged as agents with potential antimicrobial and antibiofilm activities, although their mechanisms of action and structure-activity relationships remain poorly understood. This review assessed the potential mechanisms of action and applications of these compounds to explore these aspects. Studies on the antimicrobial properties of PCs suggest that they are involved in osmotic imbalance, DNA interactions and metabolic disruption. Although less studied, their antibiofilm activities include antiadhesive effects and the modulation of mobility and quorum sensing. However, most research has used uncharacterized plant extracts for in vitro assays, limiting the understanding of the structure-activity relationships of PCs and their in vivo mechanisms. Clinical trials on the antimicrobial and antibiofilm properties of PCs have not clarified these issues due to nonstandardized methodologies, inadequate chemical characterization, and the limited number of studies, preventing a consensus and evaluation of the in vivo effects. Additionally, patent analysis revealed that technological developments in the antimicrobial and antibiofilm uses of PCs are concentrated in health care and dental care, but new biotechnological uses are emerging. Therefore, while PCs are promising antimicrobial and antibiofilm compounds, further research into their chemical structures and mechanisms of action is crucial for evidence-based applications in biotechnology and health care.
Collapse
Affiliation(s)
- Mariana M G Mattos
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sérgio Antunes Filho
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel R Martins
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lara Souza Venturi
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Benjamim Canetti
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabienne Antunes Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ayla Sant'Ana da Silva
- Divisão de Catálise, Biocatálise e Processos Químicos (DICAP), Instituto Nacional de Tecnologia, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Javadi K, Emadzadeh MR, Mohammadzadeh Hosseini Moghri SAH, Halaji M, Parsian H, Rajabnia M, Pournajaf A. Anti-biofilm and antibacterial effect of bacteriocin derived from Lactobacillus plantarum on the multidrug-resistant Acinetobacter baumannii. Protein Expr Purif 2024; 226:106610. [PMID: 39306312 DOI: 10.1016/j.pep.2024.106610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
This research examines the impact of bacteriocin derived from Lactobacillus plantarum PTCC 1745 on the biofilm formations of A. baumannii isolates. Bacteriocin derived from L. plantarum PTCC 1745 was obtained through ammonium sulfate precipitation, cation-exchange chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC). Testing for bacteriocin susceptibility has been conducted using the broth dilution method. The anti-biofilm activity of bacteriocin was evaluated using a microtiter plate method. Quantitative real-time PCR assay evaluated bap gene expression in bacteriocin-treated cells. According to SDS-PAGE, bacteriocin from L. plantarum has a 25-kDa apparent molecular weight. The MICs of bacteriocin ranged from 30 to 120 μg/mL, while the MBCs varied between 60 and 120 μg/mL. Compared to the non-treated group, strains bacteriocin-treated isolates had 59 % less ability to form biofilm. The mean relative expression of the bap gene among the MDR A. baumannii isolates decreased by 52 % compared to the untreated control. This study demonstrated that bacteriocin derived from L. plantarum PTCC 1745 had antibacterial and antibiofilm activity against MDR A. baumannii isolates.
Collapse
Affiliation(s)
- Kasra Javadi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | | | | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abazar Pournajaf
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
41
|
Dong Q, Chang Y, Goodwin PH, Liu Q, Xu W, Xia M, Zhang J, Sun R, Xu S, Wu C, Wu K, Yang L. Double-Wing Motif Protein is a Novel Biofilm Regulatory Factor of the Plant Disease Biocontrol Agent, Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20273-20285. [PMID: 39226040 DOI: 10.1021/acs.jafc.4c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Transposon mutagenesis screening of Bacillus subtilis YB-1471, a novel rhizosphere biocontrol agent of Fusarium crown rot (FCR) of wheat, resulted in the identification of orf04391, linked to reduced biofilm formation. The gene encodes a protein possessing a putative tertiary structure of a "double-wing" DNA-binding domain. Expression of orf04391 increased during biofilm development in stationary cultures and during rapid growth in shaking cultures. An orf04391 deletion strain showed reduced biofilm production related to lower levels of the extracellular matrix, and the mutant also had reduced sporulation, adhesion, root colonization, and FCR biocontrol efficiency. Transcriptome analysis of YB-1471 and Δorf04391 in stationary culture showed that the loss of orf04391 resulted in altered expression of numerous genes, including sinI, an initiator of biofilm formation. DNA binding was shown with his-tagged Orf04391 binding to the sinIR operon in vivo and in vitro. Orf04391 appears to be a transcriptional regulator of biofilm formation in B. subtilis through the Spo0A-SinI/SinR pathway.
Collapse
Affiliation(s)
- Qianqian Dong
- Henan Biopesticide Engineering Research Center, Henan Agricultural Microbiology Innovation Center, Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yinghang Chang
- Henan Biopesticide Engineering Research Center, Henan Agricultural Microbiology Innovation Center, Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Qingxiang Liu
- Henan Biopesticide Engineering Research Center, Henan Agricultural Microbiology Innovation Center, Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Wen Xu
- Henan Biopesticide Engineering Research Center, Henan Agricultural Microbiology Innovation Center, Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Mingcong Xia
- Henan Biopesticide Engineering Research Center, Henan Agricultural Microbiology Innovation Center, Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jie Zhang
- Henan Biopesticide Engineering Research Center, Henan Agricultural Microbiology Innovation Center, Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Runhong Sun
- Henan Biopesticide Engineering Research Center, Henan Agricultural Microbiology Innovation Center, Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shuxia Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Wu
- Henan Biopesticide Engineering Research Center, Henan Agricultural Microbiology Innovation Center, Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Kun Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Lirong Yang
- Henan Biopesticide Engineering Research Center, Henan Agricultural Microbiology Innovation Center, Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
42
|
Guéneau V, Jiménez G, Castex M, Briandet R. Insights into the genomic and phenotypic characteristics of Bacillus spp. strains isolated from biofilms in broiler farms. Appl Environ Microbiol 2024; 90:e0066324. [PMID: 39158314 PMCID: PMC11409695 DOI: 10.1128/aem.00663-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
The characterization of surface microbiota living in biofilms within livestock buildings has been relatively unexplored, despite its potential impact on animal health. To enhance our understanding of these microbial communities, we characterized 11 spore-forming strains isolated from two commercial broiler chicken farms. Sequencing of the strains revealed them to belong to three species Bacillus velezensis, Bacillus subtilis, and Bacillus licheniformis. Genomic analysis revealed the presence of antimicrobial resistance genes and genes associated with antimicrobial secretion specific to each species. We conducted a comprehensive characterization of the biofilm formed by these strains under various conditions, and we revealed significant structural heterogeneity across the different strains. A macro-colony interaction model was employed to assess the compatibility of these strains to coexist in mixed biofilms. We identified highly competitive B. velezensis strains, which cannot coexist with other Bacillus spp. Using confocal laser scanning microscopy along with a specific dye for extracellular DNA, we uncovered the importance of extracellular DNA for the formation of B. licheniformis biofilms. Altogether, the results highlight the heterogeneity in both genome and biofilm structure among Bacillus spp. isolated from biofilms present within livestock buildings.IMPORTANCELittle is known about the microbial communities that develop on farms in direct contact with animals. Nonpathogenic strains of Bacillus velezensis, Bacillus subtilis, and Bacillus licheniformis were found in biofilm samples collected from surfaces in contact with animals. Significant genetic and phenotypic diversity was described among these Bacillus strains. The strains do not possess mobile antibiotic resistance genes in their genomes and have a strong capacity to form structured biofilms. Among these species, B. velezensis was noted for its high competitiveness compared with the other Bacillus spp. Additionally, the importance of extracellular DNA in the formation of B. licheniformis biofilms was observed. These findings provide insights for the management of these surface microbiota that can influence animal health, such as the use of competitive strains to minimize the establishment of undesirable bacteria or enzymes capable of specifically deconstructing biofilms.
Collapse
Affiliation(s)
- Virgile Guéneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Lallemand SAS, Blagnac, France
| | | | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
43
|
Ohguro H, Watanabe M, Sato T, Nishikiori N, Umetsu A, Higashide M, Yano T, Suzuki H, Miyazaki A, Takada K, Uhara H, Furuhashi M, Hikage F. Application of Single Cell Type-Derived Spheroids Generated by Using a Hanging Drop Culture Technique in Various In Vitro Disease Models: A Narrow Review. Cells 2024; 13:1549. [PMID: 39329734 PMCID: PMC11430518 DOI: 10.3390/cells13181549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Cell culture methods are indispensable strategies for studies in biological sciences and for drug discovery and testing. Most cell cultures have been developed using two-dimensional (2D) culture methods, but three-dimensional (3D) culture techniques enable the establishment of in vitro models that replicate various pathogenic conditions and they provide valuable insights into the pathophysiology of various diseases as well as more precise results in tests for drug efficacy. However, one difficulty in the use of 3D cultures is selection of the appropriate 3D cell culture technique for the study purpose among the various techniques ranging from the simplest single cell type-derived spheroid culture to the more sophisticated organoid cultures. In the simplest single cell type-derived spheroid cultures, there are also various scaffold-assisted methods such as hydrogel-assisted cultures, biofilm-assisted cultures, particle-assisted cultures, and magnet particle-assisted cultures, as well as non-assisted methods, such as static suspension cultures, floating cultures, and hanging drop cultures. Since each method can be differently influenced by various factors such as gravity force, buoyant force, centrifugal force, and magnetic force, in addition to non-physiological scaffolds, each method has its own advantages and disadvantages, and the methods have different suitable applications. We have been focusing on the use of a hanging drop culture method for modeling various non-cancerous and cancerous diseases because this technique is affected only by gravity force and buoyant force and is thus the simplest method among the various single cell type-derived spheroid culture methods. We have found that the biological natures of spheroids generated even by the simplest method of hanging drop cultures are completely different from those of 2D cultured cells. In this review, we focus on the biological aspects of single cell type-derived spheroid culture and its applications in in vitro models for various diseases.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Toshiyuki Yano
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Hiromu Suzuki
- Departments of Molecular Biology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Akihiro Miyazaki
- Departments of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Kohichi Takada
- Departments of Medical Oncology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Hisashi Uhara
- Departments of Dermatology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| |
Collapse
|
44
|
Zhu L, Zhang H, Xiao X, Sun S, Tong Y, Zhuang S, Sheng Z, Fan Y, Ma W, Liu Y, Qing S, Zhang W. Shuanghuanglian volatile oil exerts antipyretic, anti-inflammatory, and antibacterial synergistic effects through multiple pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118795. [PMID: 39278293 DOI: 10.1016/j.jep.2024.118795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM) has a rich history spanning 2000 years. Shuanghuanglian, a traditional Chinese herbal formula composed of three botanicals, is primarily used to treat colds, respiratory infections (including bacterial pneumonia), and pharyngitis. Previous research has found that the volatile oil of Shuanghuanglian is crucial for its efficacy. However, there is a lack of studies investigating its mechanisms. AIM OF THE STUDY This study aims to explore the antibacterial and anti-inflammatory mechanisms of Shuanghuanglian volatile oil and its potential to enhance the antibacterial effects when used in conjunction with antibiotics. METHODS Determination of the GC-MS fingerprint of SVO using Gas Chromatography-Mass Spectrometry (GC-MS), The antibacterial effects of SVO on multidrug-resistant Klebsiella pneumoniae (MDR-KP) were assessed by detecting MIC, checkerboard method assay, time-kill curves, resistance growth curves, transcriptome sequencing analysis, scanning electron microscopy(SEM), purification, and quantitative analysis of extracellular polysaccharides(EPS). In vivo part, an MDR-KP induced mouse pneumonia model was established to evaluate the mitigating effects of SVO on mouse pneumonia, using comprehensive network pharmacology and bioinformatics to identify genes related to bacterial pneumonia and potential targets of SVO. Validation was performed through molecular docking, qPCR, and ELISA tests. RESULTS SVO modulates the expression of MDR-KP mRNA for wecB, wecC, murA, murD, murE, murF, inhibiting the synthesis of O-antigen polysaccharides and peptidoglycans, thereby compromising bacterial cell wall integrity and affecting the synthesis of biofilms. These actions not only exhibit antibacterial effects but also enhance antibacterial activity, restoring the sensitivity of CEF to MDR-KP. SVO suppresses the biological activity of PTGS2, reducing the production of Prostaglandin E2 (PGE2), thereby exerting antipyretic and anti-inflammatory effects, providing new insights for the development of natural non-steroidal anti-inflammatory drugs (NSAIDs). CONCLUSIONS Our research indicates that SVO exerts antipyretic, anti-inflammatory, and antibacterial synergistic effects through multiple pathways.
Collapse
Affiliation(s)
- Leixin Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China
| | - Hanwen Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Xinglan Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China
| | - Shaoqiang Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Yinchao Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China
| | - Shen Zhuang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China
| | - Zhenwei Sheng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China
| | - Suzhu Qing
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China.
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
45
|
Krzyżek P, Migdał P, Krzyżanowska B, Duda-Madej A. Optimization of Helicobacter pylori Biofilm Formation in In Vitro Conditions Mimicking Stomach. Int J Mol Sci 2024; 25:9839. [PMID: 39337326 PMCID: PMC11432336 DOI: 10.3390/ijms25189839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Helicobacter pylori is one of the most common bacterial pathogens worldwide and the main etiological agent of numerous gastric diseases. The frequency of multidrug resistance of H. pylori is growing and the leading factor related to this phenomenon is its ability to form biofilm. Therefore, the establishment of a proper model to study this structure is of critical need. In response to this, the aim of this original article is to validate conditions of the optimal biofilm development of H. pylori in monoculture and co-culture with a gastric cell line in media simulating human fluids. Using a set of culture-based and microscopic techniques, we proved that simulated transcellular fluid and simulated gastric fluid, when applied in appropriate concentrations, stimulate autoaggregation and biofilm formation of H. pylori. Additionally, using a co-culture system on semi-permeable membranes in media imitating the stomach environment, we were able to obtain a monolayer of a gastric cell line with H. pylori biofilm on its surface. We believe that the current model for H. pylori biofilm formation in monoculture and co-culture with gastric cells in media containing host-mimicking fluids will constitute a platform for the intensification of research on H. pylori biofilms in in vitro conditions that simulate the human body.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (B.K.); (A.D.-M.)
| | - Paweł Migdał
- Department of Bees Breeding, Institute of Animal Husbandry, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Barbara Krzyżanowska
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (B.K.); (A.D.-M.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (B.K.); (A.D.-M.)
| |
Collapse
|
46
|
Jia T, Bi X, Li M, Zhang C, Ren A, Li S, Zhou T, Zhang Y, Liu Y, Liu X, Deng Y, Liu B, Li G, Yang L. Hfq-binding small RNA PqsS regulates Pseudomonas aeruginosa pqs quorum sensing system and virulence. NPJ Biofilms Microbiomes 2024; 10:82. [PMID: 39261499 PMCID: PMC11391009 DOI: 10.1038/s41522-024-00550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Pseudomonas aeruginosa is a widespread nosocomial pathogen with a significant to cause both severe planktonic acute and biofilm-related chronic infections. Small RNAs (sRNAs) are noncoding regulatory molecules that are stabilized by the RNA chaperone Hfq to trigger various virulence-related signaling pathways. Here, we identified an Hfq-binding sRNA in P. aeruginosa PAO1, PqsS, which promotes bacterial pathogenicity and pseudomonas quinolone signal quorum sensing (pqs QS) system. Specifically, PqsS enhanced acute bacterial infections by inducing host cell death and promoting rhamnolipid-regulated swarming motility. Meanwhile, PqsS reduced chronic infection traits including biofilm formation and antibiotic resistance. Moreover, PqsS repressed pqsL transcript, increasing PQS levels for pqs QS. A PQS-rich environment promoted PqsS expression, thus forming a positive feedback loop. Furthermore, we demonstrated that the PqsS interacts and destabilizes the pqsL mRNA by recruiting RNase E to drive degradation. These findings provide insights for future research on P. aeruginosa pathogenesis and targeted treatment.
Collapse
Affiliation(s)
- Tianyuan Jia
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Xianbiao Bi
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Menglu Li
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Chenhui Zhang
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Anmin Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Shangru Li
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Tian Zhou
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Yingdan Zhang
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Yang Liu
- Medical Research Center, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Xue Liu
- Department of Pharmacology, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Guobao Li
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Liang Yang
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China.
| |
Collapse
|
47
|
Cui Y, Wang D, Zhang L, Qu X. Research progress on the regulatory mechanism of biofilm formation in probiotic lactic acid bacteria. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39244761 DOI: 10.1080/10408398.2024.2400593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Probiotic lactic acid bacteria (LAB) must undergo three key stages of testing, including food processing, storage, and gastrointestinal tract environment, their beneficial effects could exert. The biofilm formation of probiotic LAB is helpful for improving their stress resistances, survival rates, and colonization abilities under adverse environmental conditions, laying an important foundation for their probiotic effects. In this review, the formation process, the composition and function of basic components of probiotic LAB biofilm have been summarized. This review focuses on the regulatory mechanism of probiotic LAB biofilm formation. In addition, the characteristics and related mechanisms of probiotics in biofilm state have been analyzed to guide the application of probiotic LAB biofilms in the field of health and food. The biofilm formation of LAB is an extremely complex process involving multiple regulatory factors. Besides quorum sensing (QS), other regulatory factors are not yet fully understood. The probiotic LAB in biofilm state exhibit superior survival rate, adhesion performance, and immunomodulation ability, attribute to various metabolic processes, including stress response, exopolysaccharide (EPS) metabolism, amino acid and protein metabolisms, etc. The understanding about regulatory mechanism of biofilm formation of different probiotic species and strains will accelerate the development and application of probiotics products.
Collapse
Affiliation(s)
- Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Dongqi Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| |
Collapse
|
48
|
Hu Q, Huang L, Yang Y, Xiang Y, Liu J. Essential phage component induces resistance of bacterial community. SCIENCE ADVANCES 2024; 10:eadp5057. [PMID: 39231230 PMCID: PMC11373596 DOI: 10.1126/sciadv.adp5057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Despite extensive knowledge on phage resistance at bacterium level, the resistance of bacterial communities is still not well-understood. Given its ubiquity, it is essential to understand resistance at the community level. We performed quantitative investigations on the dynamics of phage infection in Klebsiella pneumoniae biofilms. We found that the biofilms quickly developed resistance and resumed growth. Instead of mutations, the resistance was caused by unassembled phage tail fibers released by the phage-lysed bacteria. The tail fibers degraded the bacterial capsule essential for infection and induced spreading of capsule loss in the biofilm, and tuning tail fiber and capsule levels altered the resistance. Latent infections sustained in the biofilm despite resistance, allowing stable phage-bacteria coexistence. Last, we showed that the resistance exposed vulnerabilities in the biofilm. Our findings indicate that phage lysate plays important roles in shaping phage-biofilm interactions and open more dimensions for the rational design of strategies to counter bacteria with phage.
Collapse
Affiliation(s)
- Qianyu Hu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Liang Huang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yaoyu Yang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ye Xiang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jintao Liu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
49
|
Chang B, Wan Q, Wu G, Cheng Y, Wang J, Huang T, Wen G. Formation of filamentous fungal biofilms in water and the transformation of resistance to chlor(am)ine disinfection. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135138. [PMID: 38996681 DOI: 10.1016/j.jhazmat.2024.135138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Biofilms are composed of complex multi-species in nature, potentially threatening drinking water safety. In this work, the formation of single- and multi-species fungal biofilms formed by Aspergillus niger (A. niger) and Aspergillus flavus (A. flavus), and the inactivation of mature biofilms using chlor(am)ine were firstly investigated. Results revealed that the antagonistic interaction occurred between A. niger and A. flavus. Chloramination at 20 mg/L for 30 min achieved 74.74 % and 76.04 % inactivation of A. flavus and multi-species biofilm, which were 1.69- and 1.84-fold higher than that of chlorine at the same condition. However, no significant difference was observed in the inactivation of A. niger biofilm between chlorine and monochloramine disinfection due to the lower amount of extracellular polymeric substance produced by it (p > 0.05). The inactivation of biofilm by monochloramine fitted the Weibull model well. According to the Weibull model, the monochloramine resistance of biofilm were as follows: A. flavus > multi-species > A. niger biofilm. Besides, an increase in reactive oxygen levels, damage of cell membrane, and leakage of intracellular substances in biofilms were observed after chlor(am)ination. More intracellular polysaccharides and proteins were leaked in chloramination inactivation (p < 0.05). This study provides important implications for controlling fungal biofilm.
Collapse
Affiliation(s)
- Baochun Chang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiqi Wan
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gehui Wu
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ya Cheng
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jingyi Wang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
50
|
Carter MD, Tran TM, Cope-Arguello ML, Weinstein S, Li H, Hendrich CG, Prom JL, Li J, Chu LT, Bui L, Manikantan H, Lowe-Power TM, Allen C. Lectins and polysaccharide EPS I have flow-responsive roles in the attachment and biofilm mechanics of plant pathogenic Ralstonia. PLoS Pathog 2024; 20:e1012358. [PMID: 39312573 PMCID: PMC11449490 DOI: 10.1371/journal.ppat.1012358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Bacterial biofilm formation and attachment to hosts are mediated by carbohydrate-binding lectins, exopolysaccharides, and their interactions in the extracellular matrix (ECM). During tomato infection Ralstonia pseudosolanacearum (Rps) GMI1000 highly expresses three lectins: LecM, LecF, and LecX. The latter two are uncharacterized. We evaluated the roles in bacterial wilt disease of LecF, a fucose-binding lectin, LecX, a xylose-binding lectin, and the Rps exopolysaccharide EPS I. Interestingly, single and double lectin mutants attached to tomato roots better and formed more biofilm under static conditions in vitro. Consistent with this finding, static bacterial aggregation was suppressed by heterologous expression of lecFGMI1000 and lecXGMI1000 in other Ralstonia strains that naturally lack these lectins. Crude ECM from a ΔlecF/X double mutant was more adhesive than the wild-type ECM, and LecF and LecX increased Rps attachment to ECM. The enhanced adhesiveness of the ΔlecF/X ECM could explain the double mutant's hyper-attachment in static conditions. Unexpectedly, mutating lectins decreased Rps attachment and biofilm viscosity under shear stress, which this pathogen experiences in plant xylem. LecF, LecX, and EPS I were all essential for biofilm development in xylem fluid flowing through cellulose-coated microfluidic channels. These results suggest that under shear stress, LecF and LecX increase Rps attachment by interacting with the ECM and plant cell wall components like cellulose. In static conditions such as on root surfaces and in clogged xylem vessels, the same lectins suppress attachment to facilitate pathogen dispersal. Thus, Rps lectins have a dual biological function that depends on the physical environment.
Collapse
Affiliation(s)
- Mariama D. Carter
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tuan M. Tran
- Department of Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Matthew L. Cope-Arguello
- Department of Plant Pathology, University of California-Davis, Davis, California, United States of America
| | - Sofia Weinstein
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hanlei Li
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Connor G. Hendrich
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jessica L. Prom
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jiayu Li
- Department of Chemical Engineering, University of California-Davis, Davis, California, United States of America
| | - Lan Thanh Chu
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Loan Bui
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Harishankar Manikantan
- Department of Chemical Engineering, University of California-Davis, Davis, California, United States of America
| | - Tiffany M. Lowe-Power
- Department of Plant Pathology, University of California-Davis, Davis, California, United States of America
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|