1
|
Liu S, Xiang M, Wang X, Li J, Cheng X, Li H, Singh RP, Bhavani S, Huang S, Zheng W, Li C, Yuan F, Wu J, Han D, Kang Z, Zeng Q. Development and application of the GenoBaits WheatSNP16K array to accelerate wheat genetic research and breeding. PLANT COMMUNICATIONS 2025; 6:101138. [PMID: 39318097 PMCID: PMC11783889 DOI: 10.1016/j.xplc.2024.101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Single-nucleotide polymorphisms (SNPs) are widely used as molecular markers for constructing genetic linkage maps in wheat. Compared with available SNP-based genotyping platforms, a genotyping by target sequencing (GBTS) system with capture-in-solution (liquid chip) technology has become the favored genotyping technology because it is less demanding and more cost effective, flexible, and user-friendly. In this study, a new GenoBaits WheatSNP16K (GBW16K) GBTS array was designed using datasets generated by the wheat 660K SNP array and resequencing platforms in our previous studies. The GBW16K array contains 14 868 target SNP regions that are evenly distributed across the wheat genome, and 37 669 SNPs in these regions can be identified in a diversity panel consisting of 239 wheat accessions from around the world. Principal component and neighbor-joining analyses using the called SNPs are consistent with the pedigree information and geographic distributions or ecological environments of the accessions. For the GBW16K marker panel, the average genetic diversity among the 239 accessions is 0.270, which is sufficient for linkage map construction and preliminary mapping of targeted genes or quantitative trait loci (QTLs). A genetic linkage map, constructed using the GBW16K array-based genotyping of a recombinant inbred line population derived from a cross of the CIMMYT wheat line Yaco"S" and the Chinese landrace Mingxian169, enables the identification of Yr27, Yr30, and QYr.nwafu-2BL.4 for adult-plant resistance to stripe rust from Yaco"S" and of Yr18 from Mingxian169. QYr.nwafu-2BL.4 is different from any previously reported gene/QTL. Three haplotypes and six candidate genes have been identified for QYr.nwafu-2BL.4 on the basis of haplotype analysis, micro-collinearity, gene annotation, RNA sequencing, and SNP data. This array provides a new tool for wheat genetic analysis and breeding studies and for achieving durable control of wheat stripe rust.
Collapse
Affiliation(s)
- Shengjie Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingjie Xiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoting Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqi Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiangrui Cheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huaizhou Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Estado de México 56237, Mexico; Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Estado de México 56237, Mexico
| | - Shuo Huang
- Key Laboratory of Plant Design, Chinese Academy of Sciences, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200000, China
| | - Weijun Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunlian Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengping Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianhui Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dejun Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Leroy T, Faux P, Basso B, Eynard S, Wragg D, Vignal A. Inferring Long-Term and Short-Term Determinants of Genetic Diversity in Honey Bees: Beekeeping Impact and Conservation Strategies. Mol Biol Evol 2024; 41:msae249. [PMID: 39692632 DOI: 10.1093/molbev/msae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
Bees are vital pollinators in natural and agricultural landscapes around the globe, playing a key role in maintaining flowering plant biodiversity and ensuring food security. Among the honey bee species, the Western honey bee (Apis mellifera) is particularly significant, not only for its extensive crop pollination services but also for producing economically valuable products such as honey. Here, we analyzed whole-genome sequence data from four Apis species to explore how honey bee evolution has shaped current diversity patterns. Using Approximate Bayesian Computation, we first reconstructed the demographic history of A. mellifera in Europe, finding support for postglacial secondary contacts, therefore predating human-mediated transfers linked to modern beekeeping. However, our analysis of recent demographic changes reveals significant bottlenecks due to beekeeping practices, which have notably affected genetic diversity. Black honey bee populations from conservatories, particularly those on islands, exhibit considerable genetic loss, highlighting the need to evaluate the long-term effectiveness of current conservation strategies. Additionally, we observed a high degree of conservation in the genomic landscapes of nucleotide diversity across the four species, despite a divergence gradient spanning over 15 million years, consistent with a long-term conservation of the recombination landscapes. Taken together, our results provide the most comprehensive assessment of diversity patterns in honey bees to date and offer insights into the optimal management of resources to ensure the long-term persistence of honey bees and their invaluable pollination services.
Collapse
Affiliation(s)
- Thibault Leroy
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| | - Pierre Faux
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| | | | - Sonia Eynard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| | - David Wragg
- Beebytes Analytics CIC, Roslin Innovation Centre, Easter Bush Campus, Midlothian, UK
| | - Alain Vignal
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| |
Collapse
|
3
|
Han G, Xing L, Gu T, Jin Y, Shi F, Yan H, Zhuo S, Shi Z, Wang J, Zhou Y, Liu W, Zhang Y, An D. Molecular identification of a Pm4 allele conferring powdery mildew resistance in durum wheat DR88. BMC PLANT BIOLOGY 2024; 24:1169. [PMID: 39639220 PMCID: PMC11622551 DOI: 10.1186/s12870-024-05884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive wheat diseases worldwide. Durum wheat (Triticum turgidum L. var. durum Desf.) is a crucial gene donor for improving common wheat. RESULTS In this study, we investigated a durum wheat accession, DR88, which exhibits broad and high levels of resistance to powdery mildew. Using bulked segregant RNA-Seq (BSR-Seq), we identified a dominant gene, tentatively designated PmDR88, and localized it to 743-776 Mb interval on chromosome arm 2AL according to the reference genome of durum wheat cv. Svevo. Subsequently, PmDR88 was mapped in a genetic region of 3.9 cM flanked by the markers WGRE77410 and WGRC872 at genetic distances of 1.6 and 2.3 cM, respectively; it also co-segregated with JS717×JS718, the diagnostic marker for the Pm4 locus. Genotyping of a large population comprising 5,174 F2:3 families using JS717×JS718 confirmed that PmDR88 is located at the Pm4 locus on 2AL. Sequence alignment revealed that PmDR88 shares identical amino acid sequences with Pm4d, while qRT-PCR analysis suggested distinct expression patterns for PmDR88 compared with previously reported Pm4 alleles. Two complementary DNA markers, including the dominant co-segregating marker JS717×JS718 and a newly developed closely-linked co-dominant marker WGRE77410, were confirmed to be available for efficiently transferring PmDR88 into the tested wheat backgrounds by marker-assisted selection (MAS) strategy. CONCLUSIONS PmDR88 was mapped in the Pm4 locus. Despite sharing identical amino acid sequences with Pm4d, PmDR88 exhibits distinct expression patterns. Moreover, DR88 shows broad and high levels of resistance to powdery mildew. Two complementary DNA markers were identified for MAS breeding. The molecular identification of PmDR88 will facilitate transfer of this Pm4 allele into susceptible cultivars for resistance improvement or into resistant cultivars for resistance-enhanced pyramiding breeding.
Collapse
Affiliation(s)
- Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Lixian Xing
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Fengyu Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Hanwen Yan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Shiyu Zhuo
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Zhipeng Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Yilin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yelun Zhang
- Institute of Cereal and Oil Crops, Hebei Key Laboratory of Crop Genetics and Breeding, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050031, China.
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China.
| |
Collapse
|
4
|
Elkot AF, Nassar AE, Elmassry EL, Forner-Martínez M, Awal R, Wingen LU, Griffiths S, Alsamman AM, Kehel Z. Assessment of genetic structure and trait associations of Watkins wheat landraces under Egyptian field conditions. Front Genet 2024; 15:1384220. [PMID: 39687740 PMCID: PMC11646717 DOI: 10.3389/fgene.2024.1384220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/09/2024] [Indexed: 12/18/2024] Open
Abstract
Background Wheat landraces represent a reservoir of genetic diversity that can support wheat improvement through breeding. A core panel of 300 Watkins wheat landraces, as well as 16 non-Watkins landraces and elite wheat cultivars, was grown during the 2020-2021 and 2021-2022 seasons at four Agricultural Research Stations in Egypt, Gemmiza, Nubaria, Sakha, and Sids, to evaluate the core panel for agromorphological and yield-related traits. The genetic population structure within these genotypes were assessed using 35,143 single nucleotide polymorphisms (SNPs). Results Cluster analyses using Discriminant Analysis of Principal Components (DAPC) and k-means revealed three clusters with moderate genetic differentiation and population structure, possibly due to wheat breeding systems and geographical isolation. The best ancestry was k = 4, but k = 2 and k = 3 were also significant. A genome-wide association study (GWAS) identified clustered marker trait associations (MTAs) linked to thousand kernel weight on chromosome 5A, plant height on chromosomes 3B and 1D, days to heading on chromosomes 2A, 4B, 5B and 1D, and plant maturity on chromosomes 3A, 2B, and 6B. In the future, these MTAs can be used to accelerate the incorporation of beneficial alleles into locally adapted germplasm through marker-assisted selection. Gene enrichment analysis identified key genes within these loci, including Reduced height-1 (Rht-A1) and stress-related genes. Conclusion These findings underscore significant genetic connections and the involvement of crucial biological pathways.
Collapse
Affiliation(s)
- Ahmed Fawzy Elkot
- Wheat Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ahmed E. Nassar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Elsayed L. Elmassry
- Wheat Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | | | - Rajani Awal
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Luzie U. Wingen
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Alsamman M. Alsamman
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Zakaria Kehel
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| |
Collapse
|
5
|
Wu H, Yu H, Zhang Y, Yang B, Sun W, Ren L, Li Y, Li Q, Liu B, Ding Y, Zhang H. Unveiling RNA structure-mediated regulations of RNA stability in wheat. Nat Commun 2024; 15:10042. [PMID: 39567481 PMCID: PMC11579497 DOI: 10.1038/s41467-024-54172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Despite the critical role of mRNA stability in post-transcriptional gene regulation, research on this topic in wheat, a vital agricultural crop, remains unclear. Our study investigated the mRNA decay landscape of durum wheat (Triticum turgidum L. ssp. durum, BBAA), revealing subgenomic asymmetry in mRNA stability and its impact on steady-state mRNA abundance. Our findings indicate that the 3' UTR structure and homoeolog preference for RNA structural motifs can influence mRNA stability, leading to subgenomic RNA decay imbalance. Furthermore, single-nucleotide variations (SNVs) selected for RNA structural motifs during domestication can cause variations in subgenomic mRNA stability and subsequent changes in steady-state expression levels. Our research on the transcriptome stability of polyploid wheat highlights the regulatory role of non-coding region structures in mRNA stability, and how domestication shaped RNA structure, altering subgenomic mRNA stability. These results illustrate the importance of RNA structure-mediated post-transcriptional gene regulation in wheat and pave the way for its potential use in crop improvement.
Collapse
Affiliation(s)
- Haidan Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Haopeng Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Yueying Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Bibo Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Wenqing Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Lanying Ren
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Yuchen Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Qianqian Li
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China.
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China.
| |
Collapse
|
6
|
Sharma D, Avni R, Gutierrez-Gonzalez J, Kumar R, Sela H, Prusty MR, Shatil-Cohen A, Molnár I, Holušová K, Said M, Doležel J, Millet E, Khazan-Kost S, Landau U, Bethke G, Sharon O, Ezrati S, Ronen M, Maatuk O, Eilam T, Manisterski J, Ben-Yehuda P, Anikster Y, Matny O, Steffenson BJ, Mascher M, Brabham HJ, Moscou MJ, Liang Y, Yu G, Wulff BBH, Muehlbauer G, Minz-Dub A, Sharon A. A single NLR gene confers resistance to leaf and stripe rust in wheat. Nat Commun 2024; 15:9925. [PMID: 39548072 PMCID: PMC11568145 DOI: 10.1038/s41467-024-54068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Nucleotide-binding leucine-rich repeat (NLR) disease resistance genes typically confer resistance against races of a single pathogen. Here, we report that Yr87/Lr85, an NLR gene from Aegilops sharonensis and Aegilops longissima, confers resistance against both P. striiformis tritici (Pst) and Puccinia triticina (Pt) that cause stripe and leaf rust, respectively. Yr87/Lr85 confers resistance against Pst and Pt in wheat introgression as well as transgenic lines. Comparative analysis of Yr87/Lr85 and the cloned Triticeae NLR disease resistance genes shows that Yr87/Lr85 contains two distinct LRR domains and that the gene is only found in Ae. sharonensis and Ae. longissima. Allele mining and phylogenetic analysis indicate multiple events of Yr87/Lr85 gene flow between the two species and presence/absence variation explaining the majority of resistance to wheat leaf rust in both species. The confinement of Yr87/Lr85 to Ae. sharonensis and Ae. longissima and the resistance in wheat against Pst and Pt highlight the potential of these species as valuable sources of disease resistance genes for wheat improvement.
Collapse
Affiliation(s)
- Davinder Sharma
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Raz Avni
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Juan Gutierrez-Gonzalez
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
- Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Rakesh Kumar
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- USDA-ARS, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, USA
| | - Hanan Sela
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Manas Ranjan Prusty
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Arava Shatil-Cohen
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
- Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, Hungary
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
- Field Crops Research Institute, Agricultural Research Centre, Cairo, Egypt
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Eitan Millet
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Sofia Khazan-Kost
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Udi Landau
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Gerit Bethke
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Or Sharon
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Smadar Ezrati
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Ronen
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Oxana Maatuk
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Eilam
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Manisterski
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Pnina Ben-Yehuda
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Yehoshua Anikster
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Oadi Matny
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Helen J Brabham
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
- 2Blades, Evanston, IL, USA
| | - Matthew J Moscou
- USDA-ARS, Cereal Disease Laboratory, University of Minnesota, St. Paul, MN, USA
| | - Yong Liang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Guotai Yu
- John Innes Centre, Norwich Research Park, Norwich, UK
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Brande B H Wulff
- John Innes Centre, Norwich Research Park, Norwich, UK
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gary Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA.
| | - Anna Minz-Dub
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel.
| | - Amir Sharon
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel.
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Motsnyi II, Halaiev OV, Alіeksіeіeva TG, Chebotar GO, Chebotar SV, Betekhtin A, Hasterok R, Armonienė R, Rahmatov M. Cytogenetic and molecular identification of novel wheat- Elymus sibiricus addition lines with resistance to leaf rust and the presence of leaf pubescence trait. FRONTIERS IN PLANT SCIENCE 2024; 15:1482211. [PMID: 39600899 PMCID: PMC11588455 DOI: 10.3389/fpls.2024.1482211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/03/2024] [Indexed: 11/29/2024]
Abstract
Introduction Emerging new races of leaf rust (Puccinia triticina Eriks) are threatening global wheat (Triticum aestivum L.) production. Identifying additional resistance genes from all available gene pools is crucial to expanding wheat resistance to these virulent leaf rust races. Siberian wild rye (Elymus sibiricus L.) possesses numerous beneficial traits that can be valuable in wheat improvement. Three new wheat-E. sibiricus addition lines, O27-2 (BC8), O27-3 (BC12) and O193-3 (BC12), were developed through a backcrossing scheme in this study, using leaf rust field evaluations, molecular marker assays and cytogenetic analysis. Methods These three lines were derived from progeny of the bread wheat cultivar 'Obriy' (2n = 6x = 42, AABBDD) and partial octoploid amphiploid wheat-E. sibiricus (2n = 8x = 56, AABBDDStSt). Results and discussion The lines (O27-2, O27-3 and O193-3) demonstrated strong specific leaf pubescence (hairiness) and resistance at the adult stage to a local population of leaf rust races. The response to leaf rust in these three lines significantly differed from that of the Lr24 gene, providing evidence for a distinct resistance mechanism associated with the 3St chromosome. This study is the first to report the transfer of an E. sibiricus chromosome into wheat that confers leaf rust resistance. Molecular marker analysis and genomic in situ hybridization confirmed that lines O27-2, O27-3 and O193-3 each possess one pair of E. sibiricus 3St chromosomes. The resistance gene was determined to be on the additional alien chromosome in these lines. Molecular markers (Xwmc221, Lr29F18, Sr24/Lr24) confirmed that the lines O27-2, O27-3, and O193-3 each contain a pair of E. sibiricus 3St chromosomes carrying leaf rust resistance genes. These findings demonstrate that the E. sibiricus 3St chromosome carries the leaf rust resistance gene and that the O27-2, O27-3, and O193-3 lines can serve as novel germplasm sources for introducing this resistance into wheat breeding programs. This study contributes to broadening the genetic diversity of resistance genes available for combating leaf rust in wheat.
Collapse
Affiliation(s)
- Ivan I. Motsnyi
- Department of General and Molecular Genetics, Plant Breeding and Genetics Institute – National Center of Seed and Cultivar Investigation, Odesa, Ukraine
| | - Oleksii V. Halaiev
- Department of Molecular Biology, Biochemistry and Genetics, Odesa I.I. Mechnikov National University, Odesa, Ukraine
| | - Tetiana G. Alіeksіeіeva
- Department of Molecular Biology, Biochemistry and Genetics, Odesa I.I. Mechnikov National University, Odesa, Ukraine
| | - Galyna O. Chebotar
- Department of Molecular Biology, Biochemistry and Genetics, Odesa I.I. Mechnikov National University, Odesa, Ukraine
| | - Sabina V. Chebotar
- Department of General and Molecular Genetics, Plant Breeding and Genetics Institute – National Center of Seed and Cultivar Investigation, Odesa, Ukraine
- Department of Molecular Biology, Biochemistry and Genetics, Odesa I.I. Mechnikov National University, Odesa, Ukraine
| | - Alexander Betekhtin
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Rita Armonienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Mahbubjon Rahmatov
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
8
|
Wang Z, Wang W, He Y, Xie X, Yang Z, Zhang X, Niu J, Peng H, Yao Y, Xie C, Xin M, Hu Z, Sun Q, Ni Z, Guo W. On the evolution and genetic diversity of the bread wheat D genome. MOLECULAR PLANT 2024; 17:1672-1686. [PMID: 39318095 DOI: 10.1016/j.molp.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/05/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Bread wheat (Triticum aestivum) became a globally dominant crop after incorporating the D genome from the donor species Aegilops tauschii, but the evolutionary history that shaped the D genome during this process remains to be clarified. Here, we propose a renewed evolutionary model linking Ae. tauschii and the hexaploid wheat D genome by constructing an ancestral haplotype map covering 762 Ae. tauschii and hexaploid wheat accessions. We dissected the evolutionary trajectories of Ae. tauschii lineages and reported a few independent intermediate accessions, demonstrating that low-frequency inter-sublineage gene flow had enriched the diversity of Ae. tauschii. We discovered that the D genome of hexaploid wheat was inherited from a unified ancestral template, but with a mosaic composition that was highly mixed and derived mainly from three Ae. tauschii L2 sublineages located in the Caspian coastal region. This result suggests that early agricultural activities facilitated innovations in D-genome composition and finalized the success of hexaploidization. We found that the majority (51.4%) of genetic diversity was attributed to novel mutations absent in Ae. tauschii, and we identified large Ae. tauschii introgressions from various lineages, which expanded the diversity of the wheat D genome and introduced beneficial alleles. This work sheds light on the process of wheat hexaploidization and highlights the evolutionary significance of the multi-layered genetic diversity of the bread wheat D genome.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yachao He
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Jianxia Niu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Heuberger M, Bernasconi Z, Said M, Jung E, Herren G, Widrig V, Šimková H, Keller B, Sánchez-Martín J, Wicker T. Analysis of a global wheat panel reveals a highly diverse introgression landscape and provides evidence for inter-homoeologue chromosomal recombination. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:236. [PMID: 39340575 PMCID: PMC11438656 DOI: 10.1007/s00122-024-04721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024]
Abstract
KEY MESSAGE This study highlights the agronomic potential of rare introgressions, as demonstrated by a major QTL for powdery mildew resistance on chromosome 7D. It further shows evidence for inter-homoeologue recombination in wheat. Agriculturally important genes are often introgressed into crops from closely related donor species or landraces. The gene pool of hexaploid bread wheat (Triticum aestivum) is known to contain numerous such "alien" introgressions. Recently established high-quality reference genome sequences allow prediction of the size, frequency and identity of introgressed chromosome regions. Here, we characterise chromosomal introgressions in bread wheat using exome capture data from the WHEALBI collection. We identified 24,981 putative introgression segments of at least 2 Mb across 434 wheat accessions. Detailed study of the most frequent introgressions identified T. timopheevii or its close relatives as a frequent donor species. Importantly, 118 introgressions of at least 10 Mb were exclusive to single wheat accessions, revealing that large populations need to be studied to assess the total diversity of the wheat pangenome. In one case, a 14 Mb introgression in chromosome 7D, exclusive to cultivar Pamukale, was shown by QTL mapping to harbour a recessive powdery mildew resistance gene. We identified multiple events where distal chromosomal segments of one subgenome were duplicated in the genome and replaced the homoeologous segment in another subgenome. We propose that these examples are the results of inter-homoeologue recombination. Our study produced an extensive catalogue of the wheat introgression landscape, providing a resource for wheat breeding. Of note, the finding that the wheat gene pool contains numerous rare, but potentially important introgressions and chromosomal rearrangements has implications for future breeding.
Collapse
Affiliation(s)
- Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Zoe Bernasconi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Mahmoud Said
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
- Agricultural Research Centre, Field Crops Research Institute, Giza, Egypt
| | - Esther Jung
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gerhard Herren
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Victoria Widrig
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Department of Microbiology and Genetics, Spanish-Portuguese Agricultural Research Centre (CIALE), University of Salamanca, Salamanca, Spain
| | - Hana Šimková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| | - Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
- Department of Microbiology and Genetics, Spanish-Portuguese Agricultural Research Centre (CIALE), University of Salamanca, Salamanca, Spain.
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Fan W, Sun M, Zheng Y, Song S, Zhang Z, Bian Y. Karyotypic and phenotypic condensation in allotetraploid wheats accompanied with reproductive strategy transformation: from natural evolution to domestication. PLANTA 2024; 260:83. [PMID: 39212743 DOI: 10.1007/s00425-024-04514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
MAIN CONCLUSION Allotetraploid wheat reflects evolutionary divergence and domestication convergence in the karyotypic and phenotypic evolution, accompanied with the transformation from r- strategy to K- strategy in reproductive fitness. Allotetraploid wheat, the progenitor of hexaploidy bread wheat, has undergone 300,000 years of natural evolution and 10,000 years of domestication. The variations in karyotype and phenotype as well as fertility fitness have not been systematically linked. Here, by combining fluorescent in situ hybridization with the quantification of phenotypic and reproductive traits, we compared the karyotype, vegetative growth phenotype and reproductive fitness among synthesized, wild and domesticated accessions of allotetraploid wheat. We detected that the wild accessions showed dramatically high frequencies of homologous recombination and copy number variations of simple sequence repeats (SSR) comparing with synthetic and domesticated accessions. The phenotypic traits reflected significant differences among the populations shaped by distinct evolutionary processes. The diversity observed in wild accessions was significantly greater than that in domesticated ones, particularly in traits associated with vegetative growth and spike morphology. We found that the active pollen of domesticated accessions exhibited greater potential of germination, despite a lower rate of active pollen compared with the wild accessions, indicating a transformation in reproductive fitness strategy for pollen development in domesticated accessions compared to the wild accessions, from r-strategy to K-strategy. Our results demonstrate the condensation of karyotype and phenotype from natural wild accessions to domesticated accessions in allotetraploid wheats. Ecological strategy transformation should be seriously considered from evolution to domestication in polyploid plants, especially crops, which may provide a perspective on the adaptive evolution of polyploid plants.
Collapse
Affiliation(s)
- Wei Fan
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China
| | - Meiqi Sun
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China
| | - Yongbao Zheng
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China
- Key Laboratory of Plant Biotechnology in Liaoning Province, Dalian, 116000, People's Republic of China
| | - Siwen Song
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China
| | - Zeyao Zhang
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China
| | - Yao Bian
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China.
- Key Laboratory of Plant Biotechnology in Liaoning Province, Dalian, 116000, People's Republic of China.
| |
Collapse
|
11
|
Sigalas PP, Shewry PR, Riche A, Wingen L, Feng C, Siluveru A, Chayut N, Burridge A, Uauy C, Castle M, Parmar S, Philp C, Steele D, Orford S, Leverington-Waite M, Cheng S, Griffiths S, Hawkesford MJ. Improving wheat grain composition for human health by constructing a QTL atlas for essential minerals. Commun Biol 2024; 7:1001. [PMID: 39147896 PMCID: PMC11327371 DOI: 10.1038/s42003-024-06692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
Wheat is an important source of minerals for human nutrition and increasing grain mineral content can contribute to reducing mineral deficiencies. Here, we identify QTLs for mineral micronutrients in grain of wheat by determining the contents of six minerals in a total of eleven sample sets of three biparental populations from crosses between A.E. Watkins landraces and cv. Paragon. Twenty-three of the QTLs are mapped in two or more sample sets, with LOD scores above five in at least one set with the increasing alleles for sixteen of the QTLs being present in the landraces and seven in Paragon. Of these QTLs, the number for each mineral varies between three and five and they are located on 14 of the 21 chromosomes, with clusters on chromosomes 5A (four), 6A (three), and 7A (three). The gene content within 5 megabases of DNA on either side of the marker for the QTL with the highest LOD score is determined and the gene responsible for the strongest QTL (chromosome 5A for Ca) identified as an ATPase transporter gene (TraesCS5A02G543300) using mutagenesis. The identification of these QTLs, together with associated SNP markers and candidate genes, will facilitate the improvement of grain nutritional quality.
Collapse
Affiliation(s)
| | - Peter R Shewry
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Andrew Riche
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Luzie Wingen
- John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | - Cong Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | | | - Noam Chayut
- John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | - Amanda Burridge
- School of Biological Sciences, University of Bristol, Bristol, BS8 1UD, UK
| | | | - March Castle
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Saroj Parmar
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | | | - David Steele
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Simon Orford
- John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | | | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | | | | |
Collapse
|
12
|
Whitener MR, Mangelson H, Sweigart AL. Patterns of genomic variation reveal a single evolutionary origin of the wild allotetraploid Mimulus sookensis. Evolution 2024; 78:1464-1477. [PMID: 38766685 DOI: 10.1093/evolut/qpae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/12/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Polyploidy occurs across the tree of life and is especially common in plants. Because newly formed cytotypes are often incompatible with their progenitors, polyploidy is also said to trigger "instantaneous" speciation. If a polyploid can self-fertilize or reproduce asexually, it is even possible for one individual to produce an entirely new lineage, but how often this scenario occurs is unclear. Here, we investigate the evolutionary history of the wild allotetraploid Mimulus sookensis, which was formed through hybridization between self-compatible, diploid species in the Mimulus guttatus complex. We generate a chromosome-scale reference assembly for M. sookensis and define its distinct subgenomes. Despite previous reports suggesting multiple origins of this highly selfing polyploid, we discover patterns of population genomic variation that provide unambiguous support for a single origin. One M. sookensis subgenome is clearly derived from the selfer Mimulus nasutus, which organellar variation suggests is the maternal progenitor. The ancestor of the other subgenome is less certain, but it shares variation with both Mimulus decorus and M. guttatus, two outcrossing diploids with geographic ranges that overlap broadly with M. sookensis. This study establishes M. sookensis as an example of instantaneous speciation, likely facilitated by the polyploid's predisposition to self-fertilize.
Collapse
Affiliation(s)
- Makenzie R Whitener
- Department of Genetics, University of Georgia, Athens, GA 30602, United States
| | | | - Andrea L Sweigart
- Department of Genetics, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
13
|
Kunz L, Poretti M, Praz CR, Müller MC, Wyler M, Keller B, Wicker T, Bourras S. High-Copy Transposons from a Pathogen Give Rise to a Conserved sRNA Family with a Novel Host Immunity Target. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:545-551. [PMID: 38551853 DOI: 10.1094/mpmi-10-23-0176-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2024]
Abstract
Small RNAs (sRNAs) are involved in gene silencing in multiple ways, including through cross-kingdom transfers from parasites to their hosts. Little is known about the evolutionary mechanisms enabling eukaryotic microbes to evolve functional mimics of host small regulatory RNAs. Here, we describe the identification and functional characterization of SINE_sRNA1, an sRNA family derived from highly abundant short interspersed nuclear element (SINE) retrotransposons in the genome of the wheat powdery mildew pathogen. SINE_sRNA1 is encoded by a sequence motif that is conserved in multiple SINE families and corresponds to a functional plant microRNA (miRNA) mimic targeting Tae_AP1, a wheat gene encoding an aspartic protease only found in monocots. Tae_AP1 has a novel function enhancing both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), thereby contributing to the cross activation of plant defenses. We conclude that SINE_sRNA1 and Tae_AP1 are functional innovations, suggesting the contribution of transposons to the evolutionary arms race between a parasite and its host. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Lukas Kunz
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Manuel Poretti
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Coraline R Praz
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
- Center of Biotechnology and Genomics of Plants, Polytechnic University of Madrid, Campus de Montegancedo, 28223 Madrid, Spain
| | - Marion C Müller
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising-Weihenstephan, Germany
| | - Michele Wyler
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
- MWSchmid GmbH, Hauptstrasse 34, CH-8750 Glarus, Switzerland
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Salim Bourras
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
- Department of Plant Biology, Swedish University of Agricultural Sciences, Almas Allé 5, 75007 Uppsala, Sweden
| |
Collapse
|
14
|
Wu Y, Feng J, Zhang Q, Wang Y, Guan Y, Wang R, Shi F, Zeng F, Wang Y, Chen M, Chang J, He G, Yang G, Li Y. Integrative gene duplication and genome-wide analysis as an approach to facilitate wheat reverse genetics: An example in the TaCIPK family. J Adv Res 2024; 61:19-33. [PMID: 37689241 PMCID: PMC11258669 DOI: 10.1016/j.jare.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
INTRODUCTION Reverse genetic studies conducted in the plant with a complex or polyploidy genome enriched with large gene families (like wheat) often meet challenges in identifying the key candidate genes related to important traits and prioritizing the genes for functional experiments. OBJECTIVE To overcome the above-mentioned challenges of reverse genetics, this work aims to establish an efficient multi-species strategy for genome-wide gene identification and prioritization of the key candidate genes. METHODS We established the integrative gene duplication and genome-wide analysis (iGG analysis) as a strategy for pinpointing key candidate genes deserving functional research. The iGG captures the evolution, and the expansion/contraction of large gene families across phylogeny-related species and integrates spatial-temporal expression information for gene function inference. Transgenic approaches were also employed to functional validation. RESULTS As a proof-of-concept for the iGG analysis, we took the wheat calcineurin B-like protein-interacting protein kinases (CIPKs) family as an example. We identified CIPKs from seven monocot species, established the orthologous relationship of CIPKs between rice and wheat, and characterized Triticeae-specific CIPK duplicates (e.g., CIPK4 and CIPK17). Integrated with our analysis of CBLs and CBL-CIPK interaction, we revealed that divergent expressions of TaCBLs and TaCIPKs could play an important role in keeping the stoichiometric balance of CBL-CIPK. Furthermore, we validated the function of TaCIPK17-A2 in the regulation of drought tolerance by using transgenic approaches. Overexpression of TaCIPK17 enhanced antioxidant capacity and improved drought tolerance in wheat. CONCLUSION The iGG analysis leverages evolutionary and comparative genomics of crops with large genomes to rapidly highlight the duplicated genes potentially associated with speciation, domestication and/or particular traits that deserve reverse-genetic functional studies. Through the identification of Triticeae-specific TaCIPK17 duplicates and functional validation, we demonstrated the effectiveness of the iGG analysis and provided a new target gene for improving drought tolerance in wheat.
Collapse
Affiliation(s)
- Ya'nan Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Jialu Feng
- Hubei Provincial Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yaqiong Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yanbin Guan
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Fu Shi
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Fang Zeng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| |
Collapse
|
15
|
Niu J, Wang W, Wang Z, Chen Z, Zhang X, Qin Z, Miao L, Yang Z, Xie C, Xin M, Peng H, Yao Y, Liu J, Ni Z, Sun Q, Guo W. Tagging large CNV blocks in wheat boosts digitalization of germplasm resources by ultra-low-coverage sequencing. Genome Biol 2024; 25:171. [PMID: 38951917 PMCID: PMC11218387 DOI: 10.1186/s13059-024-03315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND The massive structural variations and frequent introgression highly contribute to the genetic diversity of wheat, while the huge and complex genome of polyploid wheat hinders efficient genotyping of abundant varieties towards accurate identification, management, and exploitation of germplasm resources. RESULTS We develop a novel workflow that identifies 1240 high-quality large copy number variation blocks (CNVb) in wheat at the pan-genome level, demonstrating that CNVb can serve as an ideal DNA fingerprinting marker for discriminating massive varieties, with the accuracy validated by PCR assay. We then construct a digitalized genotyping CNVb map across 1599 global wheat accessions. Key CNVb markers are linked with trait-associated introgressions, such as the 1RS·1BL translocation and 2NvS translocation, and the beneficial alleles, such as the end-use quality allele Glu-D1d (Dx5 + Dy10) and the semi-dwarf r-e-z allele. Furthermore, we demonstrate that these tagged CNVb markers promote a stable and cost-effective strategy for evaluating wheat germplasm resources with ultra-low-coverage sequencing data, competing with SNP array for applications such as evaluating new varieties, efficient management of collections in gene banks, and describing wheat germplasm resources in a digitalized manner. We also develop a user-friendly interactive platform, WheatCNVb ( http://wheat.cau.edu.cn/WheatCNVb/ ), for exploring the CNVb profiles over ever-increasing wheat accessions, and also propose a QR-code-like representation of individual digital CNVb fingerprint. This platform also allows uploading new CNVb profiles for comparison with stored varieties. CONCLUSIONS The CNVb-based approach provides a low-cost and high-throughput genotyping strategy for enabling digitalized wheat germplasm management and modern breeding with precise and practical decision-making.
Collapse
Affiliation(s)
- Jianxia Niu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Zhe Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhen Qin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Ortiz AJ, Sharbrough J. Genome-wide patterns of homoeologous gene flow in allotetraploid coffee. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11584. [PMID: 39184198 PMCID: PMC11342229 DOI: 10.1002/aps3.11584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 08/27/2024]
Abstract
Premise Allopolyploidy-a hybridization-induced whole-genome duplication event-has been a major driver of plant diversification. The extent to which chromosomes pair with their proper homolog vs. with their homoeolog in allopolyploids varies across taxa, and methods to detect homoeologous gene flow (HGF) are needed to understand how HGF has shaped polyploid lineages. Methods The ABBA-BABA test represents a classic method for detecting introgression between closely related species, but here we developed a modified use of the ABBA-BABA test to characterize the extent and direction of HGF in allotetraploid Coffea arabica. Results We found that HGF is abundant in the C. arabica genome, with both subgenomes serving as donors and recipients of variation. We also found that HGF is highly maternally biased in plastid-targeted-but not mitochondrial-targeted-genes, as would be expected if plastid-nuclear incompatibilities exist between the two parent species. Discussion Together, our analyses provide a simple framework for detecting HGF and new evidence consistent with selection favoring overwriting of paternally derived alleles by maternally derived alleles to ameliorate plastid-nuclear incompatibilities. Natural selection therefore appears to shape the direction and intensity of HGF in allopolyploid coffee, indicating that cytoplasmic inheritance has long-term consequences for polyploid lineages.
Collapse
Affiliation(s)
- Andre J. Ortiz
- Department of BiologyNew Mexico Institute of Mining and TechnologySocorroNew MexicoUSA
| | - Joel Sharbrough
- Department of BiologyNew Mexico Institute of Mining and TechnologySocorroNew MexicoUSA
| |
Collapse
|
17
|
Li S, Jiao B, Wang J, Zhao P, Dong F, Yang F, Ma C, Guo P, Zhou S. Identification of Wheat Glutamate Synthetase Gene Family and Expression Analysis under Nitrogen Stress. Genes (Basel) 2024; 15:827. [PMID: 39062606 PMCID: PMC11275450 DOI: 10.3390/genes15070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Nitrogen (N), as the main component of biological macromolecules, maintains the basic process of plant growth and development. GOGAT, as a key enzyme in the N assimilation process, catalyzes α-ketoglutaric acid and glutamine to form glutamate. In this study, six GOGAT genes in wheat (Triticum aestivum L.) were identified and classified into two subfamilies, Fd-GOGAT (TaGOGAT2s) and NADH-GOGAT (TaGOGAT3s), according to the type of electron donor. Subcellular localization prediction showed that TaGOGAT3-D was localized in mitochondria and that the other five TaGOGATs were localized in chloroplasts. Via the analysis of promoter elements, many binding sites related to growth and development, hormone regulation and plant stress resistance regulations were found on the TaGOGAT promoters. The tissue-specificity expression analysis showed that TaGOGAT2s were mainly expressed in wheat leaves and flag leaves, while TaGOGAT3s were highly expressed in roots and leaves. The expression level of TaGOGATs and the enzyme activity of TaGOGAT3s in the leaves and roots of wheat seedlings were influenced by the treatment of N deficiency. This study conducted a systematic analysis of wheat GOGAT genes, providing a theoretical basis not only for the functional analysis of TaGOGATs, but also for the study of wheat nitrogen use efficiency (NUE).
Collapse
Affiliation(s)
- Songshuo Li
- School of Biological Science and Engineering, Hebei University of Science and Technology, Yuxiang Street 26, Shijiazhuang 050018, China;
| | - Bo Jiao
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.J.)
| | - Jiao Wang
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.J.)
| | - Pu Zhao
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.J.)
| | - Fushuang Dong
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.J.)
| | - Fan Yang
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.J.)
| | - Chunhong Ma
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.J.)
| | - Peng Guo
- School of Biological Science and Engineering, Hebei University of Science and Technology, Yuxiang Street 26, Shijiazhuang 050018, China;
| | - Shuo Zhou
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.J.)
| |
Collapse
|
18
|
O'Hara T, Steed A, Goddard R, Gaurav K, Arora S, Quiroz-Chávez J, Ramírez-González R, Badgami R, Gilbert D, Sánchez-Martín J, Wingen L, Feng C, Jiang M, Cheng S, Dreisigacker S, Keller B, Wulff BBH, Uauy C, Nicholson P. The wheat powdery mildew resistance gene Pm4 also confers resistance to wheat blast. NATURE PLANTS 2024; 10:984-993. [PMID: 38898165 PMCID: PMC11208137 DOI: 10.1038/s41477-024-01718-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/06/2024] [Indexed: 06/21/2024]
Abstract
Wheat blast, caused by the fungus Magnaporthe oryzae, threatens global cereal production since its emergence in Brazil in 1985 and recently spread to Bangladesh and Zambia. Here we demonstrate that the AVR-Rmg8 effector, common in wheat-infecting isolates, is recognized by the gene Pm4, previously shown to confer resistance to specific races of Blumeria graminis f. sp. tritici, the cause of powdery mildew of wheat. We show that Pm4 alleles differ in their recognition of different AVR-Rmg8 alleles, and some confer resistance only in seedling leaves but not spikes, making it important to select for those alleles that function in both tissues. This study has identified a gene recognizing an important virulence factor present in wheat blast isolates in Bangladesh and Zambia and represents an important first step towards developing durably resistant wheat cultivars for these regions.
Collapse
Affiliation(s)
- Tom O'Hara
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Andrew Steed
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Kumar Gaurav
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sanu Arora
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | | - David Gilbert
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Javier Sánchez-Martín
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
- Department of Microbiology and Genetics, Spanish-Portuguese Agricultural Research Center (CIALE), University of Salamanca, Salamanca, Spain
| | - Luzie Wingen
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Cong Feng
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mei Jiang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shifeng Cheng
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Beat Keller
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Brande B H Wulff
- John Innes Centre, Norwich Research Park, Norwich, UK
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
| | | | | |
Collapse
|
19
|
Hu X, Yasir M, Zhuo Y, Cai Y, Ren X, Rong J. Genomic insights into glume pubescence in durum wheat: GWAS and haplotype analysis implicates TdELD1-1A as a candidate gene. Gene 2024; 909:148309. [PMID: 38417687 DOI: 10.1016/j.gene.2024.148309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Glume pubescence is an important morphological trait for the characterization of wheat cultivars. It shows tolerance to biotic and abiotic stresses to some extent. Hg1 (formerly named Hg) locus on chromosome 1AS controls glume pubescence in wheat. Its genetic analysis, fine-mapping and candidate gene analysis have been widely studied recently, however, the cloning of Hg1 has not yet been reported. Here, we conducted a GWAS between a dense panel of 171,103 SNPs and glume pubescence (Gp) in a durum wheat population of 145 lines, and further analyzed the candidate genes of Hg1 combined with the gene expression, functional annotation, and haplotype analysis. As a results, TRITD0Uv1G104670 (TdELD1-1A), encoding glycosyltransferase-like ELD1/KOBITO 1, was detected as the most promising candidate gene of Hg1 for glume pubescence in durum wheat. Our findings not only contribute to a deeper understanding of its cloning and functional validation but also underscore the significance of accurate genome sequences and annotations. Additionally, our study highlights the relevance of unanchored sequences in chrUn and the application of bioinformatics analysis for gene discovery in durum wheat.
Collapse
Affiliation(s)
- Xin Hu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Muhammad Yasir
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Yujie Zhuo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Yijing Cai
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Junkang Rong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
20
|
Abdullaeva Y, Ratering S, Rosado-Porto D, Ambika Manirajan B, Glatt A, Schnell S, Cardinale M. Domestication caused taxonomical and functional shifts in the wheat rhizosphere microbiota, and weakened the natural bacterial biocontrol against fungal pathogens. Microbiol Res 2024; 281:127601. [PMID: 38218094 DOI: 10.1016/j.micres.2024.127601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Modern crops might have lost some of their functional traits, required for interacting with beneficial microbes, as a result of the genotypic/phenotypic modifications that occurred during domestication. Here, we studied the bacterial and fungal microbiota in the rhizosphere of two cultivated wheat species (Triticum aestivum and T. durum) and their respective ancestors (Aegilops tauschii and T. dicoccoides), in three experimental fields, by using metabarcoding of 16S rRNA genes and ITS2, coupled with co-occurrence network analysis. Moreover, the abundance of bacterial genes involved in N- and P-cycles was estimated by quantitative PCR, and urease, alkaline phosphatase and phosphomonoesterase activities were assessed by enzymatic tests. The relationships between microbiota and environmental metadata were tested by correlation analysis. The assemblage of core microbiota was affected by both site and plant species. No significant differences in the abundance of potential fungal pathogens between wild and cultivated wheat species were found; however, co-occurrence analysis showed more bacterial-fungal negative correlations in the wild species. Concerning functions, the nitrogen denitrification nirS gene was consistently more abundant in the rhizosphere of A. tauschii than T. aestivum. Urease activity was higher in the rhizosphere of each wild wheat species in at least two of the research locations. Several microbiota members, including potentially beneficial taxa such as Lysobacter and new taxa such as Blastocatellaceae, were found to be strongly correlated to rhizospheric soil metadata. Our results showed that a functional microbiome shift occurred as a result of wheat domestication. Notably, these changes also included the reduction of the natural biocontrol potential of rhizosphere-associated bacteria against pathogenic fungi, suggesting that domestication disrupted the equilibrium of plant-microbe relationships that had been established during million years of co-evolution.
Collapse
Affiliation(s)
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
| | - David Rosado-Porto
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
| | | | - Andrea Glatt
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany.
| | - Massimiliano Cardinale
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany; Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Lecce, Italy.
| |
Collapse
|
21
|
Hong Y, Zhang M, Zhu J, Zhang Y, Lv C, Guo B, Wang F, Xu R. Genome-wide association studies reveal novel loci for grain size in two-rowed barley (Hordeum vulgare L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:58. [PMID: 38407646 DOI: 10.1007/s00122-024-04562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
KEY MESSAGE SNP-based and InDel-based GWAS on multi-environment data identified genomic regions associated with barley grain size. Barley yield and quality are greatly influenced by grain size. Improving barley grain size in breeding programs requires knowledge of genetic loci and alleles in germplasm resources. In this study, a collection of 334 worldwide two-rowed barley accessions with extensive genetic diversity was evaluated for grain size including grain length (GL), grain width (GW), and thousand-grain weight (TGW) across six independent field trials. Significant differences were observed in genotype and environments for all measured traits. SNP- and InDel-based GWAS were applied to dissect the genetic architecture of grain size with an SLAF-seq strategy. Two approaches using the FarmCPU model revealed 38 significant marker-trait associations (MTAs) with PVE ranging from 0.01% to 20.68%. Among these MTAs, five were on genomic regions where no previously reported QTL for grain size. Superior alleles of TGW-associated SNP233060 and GL-associated InDel11006 exhibited significantly higher levels of phenotype. The significant MTAs could be used in marker-assisted selection breeding.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yuhang Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
22
|
Li H, Zhu L, Fan R, Li Z, Liu Y, Shaheen A, Nie F, Li C, Liu X, Li Y, Liu W, Yang Y, Guo T, Zhu Y, Bu M, Li C, Liang H, Bai S, Ma F, Guo G, Zhang Z, Huang J, Zhou Y, Song CP. A platform for whole-genome speed introgression from Aegilops tauschii to wheat for breeding future crops. Nat Protoc 2024; 19:281-312. [PMID: 38017137 DOI: 10.1038/s41596-023-00922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 11/30/2023]
Abstract
Breeding new and sustainable crop cultivars of high yields and desirable traits has been a major challenge for ensuring food security for the growing global human population. For polyploid crops such as wheat, introducing genetic variation from wild relatives of its subgenomes is a key strategy to improve the quality of their breeding pools. Over the past decades, considerable progress has been made in speed breeding, genome sequencing, high-throughput phenotyping and genomics-assisted breeding, which now allows us to realize whole-genome introgression from wild relatives to modern crops. Here, we present a standardized protocol to rapidly introgress the entire genome of Aegilops tauschii, the progenitor of the D subgenome of bread wheat, into elite wheat backgrounds. This protocol integrates multiple modern high-throughput technologies and includes three major phases: development of synthetic octaploid wheat, generation of hexaploid A. tauschii-wheat introgression lines (A-WIs) and homozygosis of the generated A-WIs. Our approach readily generates stable introgression lines in 2 y, thus greatly accelerating the generation of A-WIs and the introduction of desirable genes from A. tauschii to wheat cultivars. These A-WIs are valuable for wheat-breeding programs and functional gene discovery. The current protocol can be easily modified and used for introgressing the genomes of wild relatives to other polyploid crops.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Lele Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ruixiao Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zheng Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yifan Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Aaqib Shaheen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Fang Nie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Can Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuqin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wenjuan Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yingying Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tutu Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yu Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengchen Bu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Chenglin Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Huihui Liang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Feifei Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Zhen Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
23
|
Bazile J, Nadaud I, Lasserre-Zuber P, Kitt J, De Oliveira R, Choulet F, Sourdille P. TaRECQ4 contributes to maintain both homologous and homoeologous recombination during wheat meiosis. FRONTIERS IN PLANT SCIENCE 2024; 14:1342976. [PMID: 38348162 PMCID: PMC10859459 DOI: 10.3389/fpls.2023.1342976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/29/2023] [Indexed: 02/15/2024]
Abstract
Introduction Meiotic recombination (or crossover, CO) is essential for gamete fertility as well as for alleles and genes reshuffling that is at the heart of plant breeding. However, CO remains a limited event, which strongly hampers the rapid production of original and improved cultivars. RecQ4 is a gene encoding a helicase protein that, when mutated, contributes to improve recombination rate in all species where it has been evaluated so far. Methods In this study, we developed wheat (Triticum aestivum L.) triple mutant (TM) for the three homoeologous copies of TaRecQ4 as well as mutants for two copies and heterozygous for the last one (Htz-A, Htz-B, Htz-D). Results Phenotypic observation revealed a significant reduction of fertility and pollen viability in TM and Htz-B plants compared to wild type plants suggesting major defects during meiosis. Cytogenetic analyses of these plants showed that complete absence of TaRecQ4 as observed in TM plants, leads to chromosome fragmentation during the pachytene stage, resulting in problems in the segregation of chromosomes during meiosis. Htz-A and Htz-D mutants had an almost normal meiotic progression indicating that both TaRecQ4-A and TaRecQ4-D copies are functional and that there is no dosage effect for TaRecQ4 in bread wheat. On the contrary, the TaRecQ4-B copy seems knocked-out, probably because of a SNP leading to a Threonine>Alanine change at position 539 (T539A) of the protein, that occurs in the crucial helicase ATP bind/DEAD/ResIII domain which unwinds nucleic acids. Occurrence of numerous multivalents in TM plants suggests that TaRecQ4 could also play a role in the control of homoeologous recombination. Discussion These findings provide a foundation for further molecular investigations into wheat meiosis regulation to fully understand the underlying mechanisms of how TaRecQ4 affects chiasma formation, as well as to identify ways to mitigate these defects and enhance both homologous and homoeologous recombination efficiency in wheat.
Collapse
Affiliation(s)
- Jeanne Bazile
- INRAE, UMR 1095 INRAE – UCA Genetics, Diversity & Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Isabelle Nadaud
- INRAE, UMR 1095 INRAE – UCA Genetics, Diversity & Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Pauline Lasserre-Zuber
- INRAE, UMR 1095 INRAE – UCA Genetics, Diversity & Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Jonathan Kitt
- INRAE, UMR 1095 INRAE – UCA Genetics, Diversity & Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Romain De Oliveira
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frédéric Choulet
- INRAE, UMR 1095 INRAE – UCA Genetics, Diversity & Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Pierre Sourdille
- INRAE, UMR 1095 INRAE – UCA Genetics, Diversity & Ecophysiology of Cereals, Clermont-Ferrand, France
| |
Collapse
|
24
|
Gruet C, Alaoui M, Gerin F, Prigent-Combaret C, Börner A, Muller D, Moënne-Loccoz Y. Genomic content of wheat has a higher influence than plant domestication status on the ability to interact with Pseudomonas plant growth-promoting rhizobacteria. PLANT, CELL & ENVIRONMENT 2023; 46:3933-3948. [PMID: 37614118 DOI: 10.1111/pce.14698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/10/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Plant evolutionary history has had profound effects on belowground traits, which is likely to have impacted the ability to interact with microorganisms, but consequences on root colonization and gene expression by plant growth-promoting rhizobacteria (PGPR) remain poorly understood. Here, we tested the hypothesis that wheat genomic content and domestication are key factors determining the capacity for PGPR interaction. Thus, 331 wheat representatives from eight Triticum or Aegilops species were inoculated under standardized conditions with the generalist PGPR Pseudomonas ogarae F113, using an autofluorescent reporter system for monitoring F113 colonization and expression of phl genes coding for the auxinic inducing signal 2,4-diacetylphloroglucinol. The interaction with P. ogarae F113 was influenced by ploidy level, presence of genomes AA, BB, DD, and domestication. While root colonization was higher for hexaploid and tetraploid species, and phl expression level higher for hexaploid wheat, the diploid Ae. tauschii displayed higher phl induction rate (i.e., expression:colonisation ratio) on roots. However, a better potential of interaction with F113 (i.e., under non-stress gnotobiotic conditions) did not translate, after seed inoculation, into better performance of wheat landraces in non-sterile soil under drought. Overall, results showed that domestication and especially plant genomic content modulate the PGPR interaction potential of wheats.
Collapse
Affiliation(s)
- Cécile Gruet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Maroua Alaoui
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Florence Gerin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Claire Prigent-Combaret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
25
|
Niu J, Ma S, Zheng S, Zhang C, Lu Y, Si Y, Tian S, Shi X, Liu X, Naeem MK, Sun H, Hu Y, Wu H, Cui Y, Chen C, Long W, Zhang Y, Gu M, Cui M, Lu Q, Zhou W, Peng J, Akhunov E, He F, Zhao S, Ling HQ. Whole-genome sequencing of diverse wheat accessions uncovers genetic changes during modern breeding in China and the United States. THE PLANT CELL 2023; 35:4199-4216. [PMID: 37647532 PMCID: PMC10689146 DOI: 10.1093/plcell/koad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023]
Abstract
Breeding has dramatically changed the plant architecture of wheat (Triticum aestivum), resulting in the development of high-yielding varieties adapted to modern farming systems. However, how wheat breeding shaped the genomic architecture of this crop remains poorly understood. Here, we performed a comprehensive comparative analysis of a whole-genome resequencing panel of 355 common wheat accessions (representing diverse landraces and modern cultivars from China and the United States) at the phenotypic and genomic levels. The genetic diversity of modern wheat cultivars was clearly reduced compared to landraces. Consistent with these genetic changes, most phenotypes of cultivars from China and the United States were significantly altered. Of the 21 agronomic traits investigated, 8 showed convergent changes between the 2 countries. Moreover, of the 207 loci associated with these 21 traits, more than half overlapped with genomic regions that showed evidence of selection. The distribution of selected loci between the Chinese and American cultivars suggests that breeding for increased productivity in these 2 regions was accomplished by pyramiding both shared and region-specific variants. This work provides a framework to understand the genetic architecture of the adaptation of wheat to diverse agricultural production environments, as well as guidelines for optimizing breeding strategies to design better wheat varieties.
Collapse
Affiliation(s)
- Jianqing Niu
- Hainan Yazhou Bay Seed Laboratory, Hainan, Sanya 572024, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengwei Ma
- Hainan Yazhou Bay Seed Laboratory, Hainan, Sanya 572024, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shusong Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chi Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Yaru Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaoqi Si
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuiquan Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Kashif Naeem
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yafei Hu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Huilan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Cui
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunlin Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenbo Long
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengjun Gu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Man Cui
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiao Lu
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjuan Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junhua Peng
- Huazhi Bio-tech Company Ltd., Changsha, Hunan 410125, China
| | - Eduard Akhunov
- Wheat Genetic Resources Center, Kansas State University, Manhattan, KS 66506, USA
| | - Fei He
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shancen Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Hong-Qing Ling
- Hainan Yazhou Bay Seed Laboratory, Hainan, Sanya 572024, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Liu P, Shi C, Liu S, Lei J, Lu Q, Hu H, Ren Y, Zhang N, Sun C, Chen L, Jiang Y, Feng L, Zhang T, Zhong K, Liu J, Zhang J, Zhang Z, Sun B, Chen J, Tang Y, Chen F, Yang J. A papain-like cysteine protease-released small signal peptide confers wheat resistance to wheat yellow mosaic virus. Nat Commun 2023; 14:7773. [PMID: 38012219 PMCID: PMC10682394 DOI: 10.1038/s41467-023-43643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Wheat yellow mosaic virus (WYMV), a soil-borne pathogen, poses a serious threat to global wheat production. Here, we identify a WYMV resistance gene, TaRD21A, that belongs to the papain-like cysteine protease family. Through genetic manipulation of TaRD21A expression, we establish its positive role in the regulation of wheat to WYMV resistance. Furthermore, our investigation shows that the TaRD21A-mediated plant antiviral response relies on the release of a small peptide catalyzed by TaRD21A protease activity. To counteract wheat resistance, WYMV-encoded nuclear inclusion protease-a (NIa) suppress TaRD21A activity to promote virus infection. In resistant cultivars, a natural variant of TaRD21A features a glycine-to-threonine substitution and this substitution enables the phosphorylation of threonine, thereby weakening the interaction between NIa and TaRD21A, reinforcing wheat resistance against WYMV. Our study not only unveils a WYMV resistance gene but also offers insights into the intricate mechanisms underpinning resistance against WYMV.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Chaonan Shi
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jiajia Lei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Qisen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Haichao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lixiao Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tianye Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jiaqian Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Juan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhuo Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410152, China
| | - Bingjian Sun
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Yimiao Tang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
27
|
Bian Y, Li L, Tian X, Xu D, Sun M, Li F, Xie L, Liu S, Liu B, Xia X, He Z, Cao S. Rht12b, a widely used ancient allele of TaGA2oxA13, reduces plant height and enhances yield potential in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:253. [PMID: 37989964 DOI: 10.1007/s00122-023-04502-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
KEY MESSAGE We identified a new wheat dwarfing allele Rht12b conferring reduced height and higher grain yield, pinpointed its causal variations, developed a breeding-applicable marker, and traced its origin and worldwide distribution. Plant height control is essential to optimize lodging resistance and yield gain in crops. RHT12 is a reduced height (Rht) locus that is identified in a mutationally induced dwarfing mutant and encodes a gibberellin 2-oxidase TaGA2oxA13. However, the artificial dwarfing allele is not used in wheat breeding due to excessive height reduction. Here, we confirmed a stable Rht locus, overlapping with RHT12, in a panel of wheat cultivars and its dwarfing allele reduced plant height by 5.4-8.2 cm, equivalent to Rht12b, a new allele of RHT12. We validated the effect of Rht12b on plant height in a bi-parent mapping population. Importantly, wheat cultivars carrying Rht12b had higher grain yield than those with the contrasting Rht12a allele. Rht12b conferred higher expression level of TaGA2oxA13. Transient activation assays defined SNP-390(C/A) in the promoter of TaGA2oxA13 as the causal variation. An efficient kompetitive allele-specific PCR marker was developed to diagnose Rht12b. Conjoint analysis showed that Rht12b plus the widely used Rht-D1b, Rht8 and Rht24b was the predominant Rht combination and conferred a moderate plant height in tested wheat cultivars. Evolutionary tracking uncovered that RHT12 locus arose from a tandem duplication event with Rht12b firstly appearing in wild emmer. The frequency of Rht12b was approximately 70% (700/1005) in a worldwide wheat panel and comparable to or higher than those of other widely used Rht genes, suggesting it had been subjected to positive selection. These findings not only identify a valuable Rht gene for wheat improvement but also develop a functionally diagnostic tool for marker-assisted breeding.
Collapse
Affiliation(s)
- Yingjie Bian
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Lingli Li
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiuling Tian
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Dengan Xu
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengjing Sun
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Faji Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Lina Xie
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Siyang Liu
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Bingyan Liu
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
- International Maize and Wheat Improvement Center China Office, c/o Chinese Academy Agricultural Sciences, Beijing, 100081, China.
| | - Shuanghe Cao
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
28
|
Li Z, Zhang Y, Ding CH, Chen Y, Wang H, Zhang J, Ying S, Wang M, Zhang R, Liu J, Xie Y, Tang T, Diao H, Ye L, Zhuang Y, Teng W, Zhang B, Huang L, Tong Y, Zhang W, Li G, Benhamed M, Dong Z, Gou JY, Zhang Y. LHP1-mediated epigenetic buffering of subgenome diversity and defense responses confers genome plasticity and adaptability in allopolyploid wheat. Nat Commun 2023; 14:7538. [PMID: 37985755 PMCID: PMC10661560 DOI: 10.1038/s41467-023-43178-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Polyploidization is a major driver of genome diversification and environmental adaptation. However, the merger of different genomes may result in genomic conflicts, raising a major question regarding how genetic diversity is interpreted and regulated to enable environmental plasticity. By analyzing the genome-wide binding of 191 trans-factors in allopolyploid wheat, we identified like heterochromatin protein 1 (LHP1) as a master regulator of subgenome-diversified genes. Transcriptomic and epigenomic analyses of LHP1 mutants reveal its role in buffering the expression of subgenome-diversified defense genes by controlling H3K27me3 homeostasis. Stripe rust infection releases latent subgenomic variations by eliminating H3K27me3-related repression. The simultaneous inactivation of LHP1 homoeologs by CRISPR-Cas9 confers robust stripe rust resistance in wheat seedlings. The conditional repression of subgenome-diversified defenses ensures developmental plasticity to external changes, while also promoting neutral-to-non-neutral selection transitions and adaptive evolution. These findings establish an LHP1-mediated buffering system at the intersection of genotypes, environments, and phenotypes in polyploid wheat. Manipulating the epigenetic buffering capacity offers a tool to harness cryptic subgenomic variations for crop improvement.
Collapse
Affiliation(s)
- Zijuan Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuyun Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Ci-Hang Ding
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, 510006, Guangzhou, China
| | - Haoyu Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
- Henan University, School of Life Science, 457000, Kaifeng, Henan, China
| | - Jinyu Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Songbei Ying
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Meiyue Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Rongzhi Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Ministry of Agriculture, Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Jinan, China
- National Engineering Research Center for Wheat and Maize, Jinan, Shandong, China
| | - Jinyi Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Yilin Xie
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Tengfei Tang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
- Henan University, School of Life Science, 457000, Kaifeng, Henan, China
| | - Huishan Diao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Luhuan Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
| | - Yili Zhuang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
| | - Wan Teng
- University of the Chinese Academy of Sciences, 100049, Beijing, China
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bo Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Wenjiang, Chengdu, China
| | - Yiping Tong
- University of the Chinese Academy of Sciences, 100049, Beijing, China
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, 210095, Nanjing, Jiangsu, China
| | - Genying Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Ministry of Agriculture, Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Jinan, China
- National Engineering Research Center for Wheat and Maize, Jinan, Shandong, China
| | - Moussa Benhamed
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), F-75006, Paris, France.
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, 510006, Guangzhou, China.
| | - Jin-Ying Gou
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China.
| |
Collapse
|
29
|
Xie Y, Ying S, Li Z, Zhang Y, Zhu J, Zhang J, Wang M, Diao H, Wang H, Zhang Y, Ye L, Zhuang Y, Zhao F, Teng W, Zhang W, Tong Y, Cho J, Dong Z, Xue Y, Zhang Y. Transposable element-initiated enhancer-like elements generate the subgenome-biased spike specificity of polyploid wheat. Nat Commun 2023; 14:7465. [PMID: 37978184 PMCID: PMC10656477 DOI: 10.1038/s41467-023-42771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Transposable elements (TEs) comprise ~85% of the common wheat genome, which are highly diverse among subgenomes, possibly contribute to polyploid plasticity, but the causality is only assumed. Here, by integrating data from gene expression cap analysis and epigenome profiling via hidden Markov model in common wheat, we detect a large proportion of enhancer-like elements (ELEs) derived from TEs producing nascent noncoding transcripts, namely ELE-RNAs, which are well indicative of the regulatory activity of ELEs. Quantifying ELE-RNA transcriptome across typical developmental stages reveals that TE-initiated ELE-RNAs are mainly from RLG_famc7.3 specifically expanded in subgenome A. Acquisition of spike-specific transcription factor binding likely confers spike-specific expression of RLG_famc7.3-initiated ELE-RNAs. Knockdown of RLG_famc7.3-initiated ELE-RNAs resulted in global downregulation of spike-specific genes and abnormal spike development. These findings link TE expansion to regulatory specificity and polyploid developmental plasticity, highlighting the functional impact of TE-driven regulatory innovation on polyploid evolution.
Collapse
Affiliation(s)
- Yilin Xie
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Songbei Ying
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu'e Zhang
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiafu Zhu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jinyu Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiyue Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Huishan Diao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Haoyu Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- Henan University, School of Life Science, Kaifeng, Henan, 457000, China
| | - Yuyun Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Luhuan Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yili Zhuang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan Teng
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Yiping Tong
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jungnam Cho
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom.
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Yongbiao Xue
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing, 100101, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
30
|
Sharma PK, Ahmed HI, Heuberger M, Koo DH, Quiroz-Chavez J, Adhikari L, Raupp J, Cauet S, Rodde N, Cravero C, Callot C, Yadav IS, Kathiresan N, Athiyannan N, Ramirez-Gonzalez RH, Uauy C, Wicker T, Abrouk M, Gu YQ, Poland J, Krattinger SG, Lazo GR, Tiwari VK. An online database for einkorn wheat to aid in gene discovery and functional genomics studies. Database (Oxford) 2023; 2023:baad079. [PMID: 37971714 PMCID: PMC10653128 DOI: 10.1093/database/baad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/02/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
Diploid A-genome wheat (einkorn wheat) presents a nutrition-rich option as an ancient grain crop and a resource for the improvement of bread wheat against abiotic and biotic stresses. Realizing the importance of this wheat species, reference-level assemblies of two einkorn wheat accessions were generated (wild and domesticated). This work reports an einkorn genome database that provides an interface to the cereals research community to perform comparative genomics, applied genetics and breeding research. It features queries for annotated genes, the use of a recent genome browser release, and the ability to search for sequence alignments using a modern BLAST interface. Other features include a comparison of reference einkorn assemblies with other wheat cultivars through genomic synteny visualization and an alignment visualization tool for BLAST results. Altogether, this resource will help wheat research and breeding. Database URL https://wheat.pw.usda.gov/GG3/pangenome.
Collapse
Affiliation(s)
- Parva Kumar Sharma
- Department of Plant Science and Landscape Architecture, University of Maryland, Fieldhouse Dr. College Park, MD 20742, USA
| | - Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, KAUST, 4700 KAUST, Thuwal, Kingdom of Saudi Arabia 23955-6900, Saudi Arabia
| | - Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, 107, Zurich, Zollikerstrasse CH-8008, Switzerland
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, 4024 Throckmorton, 1712 Claflin Road, Manhattan, KS 66506, USA
| | - Jesus Quiroz-Chavez
- John Innes Centre John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Laxman Adhikari
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, KAUST, 4700 KAUST, Thuwal, Kingdom of Saudi Arabia 23955-6900, Saudi Arabia
| | - John Raupp
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, 4024 Throckmorton, 1712 Claflin Road, Manhattan, KS 66506, USA
| | - Stéphane Cauet
- INRAE, CNRGV French Plant Genomic Resource Center, 24 Chemin de Borde Rouge, Castanet Tolosan F-31320, France
| | - Nathalie Rodde
- INRAE, CNRGV French Plant Genomic Resource Center, 24 Chemin de Borde Rouge, Castanet Tolosan F-31320, France
| | - Charlotte Cravero
- INRAE, CNRGV French Plant Genomic Resource Center, 24 Chemin de Borde Rouge, Castanet Tolosan F-31320, France
| | - Caroline Callot
- INRAE, CNRGV French Plant Genomic Resource Center, 24 Chemin de Borde Rouge, Castanet Tolosan F-31320, France
| | - Inderjit Singh Yadav
- Department of Plant Science and Landscape Architecture, University of Maryland, Fieldhouse Dr. College Park, MD 20742, USA
| | - Nagarajan Kathiresan
- Supercomputing Core Lab, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, KAUST, 4700 KAUST, Thuwal, Kingdom of Saudi Arabia 23955-6900, Saudi Arabia
| | | | - Cristobal Uauy
- John Innes Centre John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, 107, Zurich, Zollikerstrasse CH-8008, Switzerland
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, KAUST, 4700 KAUST, Thuwal, Kingdom of Saudi Arabia 23955-6900, Saudi Arabia
| | - Yong Q Gu
- United States Department of Agriculture—Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA 94710, USA
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, KAUST, 4700 KAUST, Thuwal, Kingdom of Saudi Arabia 23955-6900, Saudi Arabia
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, KAUST, 4700 KAUST, Thuwal, Kingdom of Saudi Arabia 23955-6900, Saudi Arabia
| | - Gerard R Lazo
- United States Department of Agriculture—Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA 94710, USA
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, Fieldhouse Dr. College Park, MD 20742, USA
| |
Collapse
|
31
|
Tang W, Dong Z, Gao L, Wang X, Li T, Sun C, Chu Z, Cui D. Genetic diversity and population structure of modern wheat (Triticum aestivum L.) cultivars in Henan Province of China based on SNP markers. BMC PLANT BIOLOGY 2023; 23:542. [PMID: 37924000 PMCID: PMC10625233 DOI: 10.1186/s12870-023-04537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Henan is the province with the greatest wheat production in China. Although more than 100 cultivars are used for production, many cultivars are still insufficient in quality, disease resistance, adaptability and yield potential. To overcome these limitations, it is necessary to constantly breed new cultivars to maintain the continuous and stable growth of wheat yield and quality. To improve breeding efficiency, it is important to evaluate the genetic diversity and population genetic structure of its cultivars. However, there are no such reports from Henan Province. Therefore, in this study, single nucleotide polymorphism (SNP) markers were used to study the population genetic structure and genetic diversity of 243 wheat cultivars included in a comparative test of wheat varieties in Henan Province, aiming to provide a reference for the utilization of backbone parents and the selection of hybrid combinations in the genetic improvement of wheat cultivars. RESULTS In this study, 243 wheat cultivars from Henan Province of China were genotyped by the Affymetrix Axiom Wheat660K SNP chip, and 21 characteristics were investigated. The cultivars were divided into ten subgroups; each subgroup had distinct characteristics and unique utilization value. Furthermore, based on principal component analysis, Zhoumai cultivars were the main hybrid parents, followed by Aikang 58, high-quality cultivars, and Shandong cultivars. Genetic diversity analysis showed that 61.3% of SNPs had a high degree of genetic differentiation, whereas 33.4% showed a moderate degree. The nucleotide diversity of subgenome B was relatively high, with an average π value of 3.91E-5; the nucleotide diversity of subgenome D was the lowest, with an average π value of 2.44E-5. CONCLUSION The parents used in wheat cross-breeding in Henan Province are similar, with a relatively homogeneous genetic background and low genetic diversity. These results will not only contribute to the objective evaluation and utilization of the tested cultivars but also provide insights into the current conditions and existing challenges of wheat cultivar breeding in Henan Province, thereby facilitating the scientific formulation of breeding objectives and strategies to improve breeding efficiency.
Collapse
Affiliation(s)
- Wenjing Tang
- College of Agronomy/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Agricultural Remote Sensing Monitoring Center, Zhengzhou, 450002, China
| | - Zhongdong Dong
- College of Agronomy/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xicheng Wang
- Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Tianbao Li
- College of Agronomy/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Congwei Sun
- College of Agronomy/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zongli Chu
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Dangqun Cui
- College of Agronomy/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
32
|
Wang Z, Miao L, Chen Y, Peng H, Ni Z, Sun Q, Guo W. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective. J Genet Genomics 2023; 50:846-860. [PMID: 37611848 DOI: 10.1016/j.jgg.2023.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Bread wheat provides an essential fraction of the daily calorific intake for humanity. Due to its huge and complex genome, progress in studying on the wheat genome is substantially trailed behind those of the other two major crops, rice and maize, for at least a decade. With rapid advances in genome assembling and reduced cost of high-throughput sequencing, emerging de novo genome assemblies of wheat and whole-genome sequencing data are leading to a paradigm shift in wheat research. Here, we review recent progress in dissecting the complex genome and germplasm evolution of wheat since the release of the first high-quality wheat genome. New insights have been gained in the evolution of wheat germplasm during domestication and modern breeding progress, genomic variations at multiple scales contributing to the diversity of wheat germplasm, and complex transcriptional and epigenetic regulations of functional genes in polyploid wheat. Genomics databases and bioinformatics tools meeting the urgent needs of wheat genomics research are also summarized. The ever-increasing omics data, along with advanced tools and well-structured databases, are expected to accelerate deciphering the germplasm and gene resources in wheat for future breeding advances.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Yu Y, Zhang L, Wu Y, He L. Genome-wide identification of ETHYLENE INSENSITIVE 2 in Triticeae species reveals that TaEIN2-4D.1 regulates cadmium tolerance in Triticum aestivum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108009. [PMID: 37696193 DOI: 10.1016/j.plaphy.2023.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
ETHYLENE INSENSITIVE 2 (EIN2), as the core component of the ethylene signaling pathway, can widely regulate plant growth, development, and stress responses. However, the comprehensive study and function of EIN2 in wheat Cadmium (Cd) stress remain largely unexplored. Here, we identified 33 EIN2 genes and designated as TaEIN2-2B to TaEIN2-Un.3 in Triticum aestivum. The analysis of cis-regulatory elements in promoter regions and RNA-Seq showed that TaEIN2s were functionally related to plant growth and development, as well as the response to biotic and abiotic stress. qRT-PCR analysis of TaEIN2s indicated their sensitivity to Cd stress. Compared with WT plants, TaEIN2-4D.1-RNAi transgenic wheat lines showed enhanced shoot and root elongation, dry weight and chlorophyll accumulation, together with a reduced accumulation of Cd in wheat grain. In addition, TaEIN2-4D.1-RNAi transgenic wheat lines showed enhanced Reactive Oxygen Species (ROS) scavenging capacity compared with WT plants. In conclusion, our research indicates that TaEIN2 plays a key role in response to cadmium stress in wheat, which provides valuable information for crop improvement.
Collapse
Affiliation(s)
- Yongang Yu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Lei Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yanxia Wu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lingyun He
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| |
Collapse
|
34
|
Meng X, Zhang Z, Wang H, Nai F, Wei Y, Li Y, Wang X, Ma X, Tegeder M. Multi-scale analysis provides insights into the roles of ureide permeases in wheat nitrogen use efficiency. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5564-5590. [PMID: 37478311 DOI: 10.1093/jxb/erad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
The ureides allantoin and allantoate serve as nitrogen (N) transport compounds in plants, and more recently, allantoin has been shown to play a role in signaling. In planta, tissue ureide levels are controlled by the activity of enzymes of the purine degradation pathway and by ureide transporters called ureide permeases (UPS). Little is known about the physiological function of UPS proteins in crop plants, and especially in monocotyledon species. Here, we identified 13 TaUPS genes in the wheat (Triticum aestivum L.) genome. Phylogenetic and genome location analyses revealed a close relationship of wheat UPSs to orthologues in other grasses and a division into TaUPS1, TaUPS2.1, and TaUPS2.2 groups, each consisting of three homeologs, with a total of four tandem duplications. Expression, localization, and biochemical analyses resolved spatio-temporal expression patterns of TaUPS genes, transporter localization at the plasma membrane, and a role for TaUPS2.1 proteins in cellular import of ureides and phloem and seed loading. In addition, positive correlations between TaUPS1 and TaUPS2.1 transcripts and ureide levels were found. Together the data support that TaUPSs function in regulating ureide pools at source and sink, along with source-to-sink transport. Moreover, comparative studies between wheat cultivars grown at low and high N strengthened a role for TaUPS1 and TaUPS2.1 transporters in efficient N use and in controlling primary metabolism. Co-expression, protein-protein interaction, and haplotype analyses further support TaUPS involvement in N partitioning, N use efficiency, and domestication. Overall, this work provides a new understanding on UPS transporters in grasses as well as insights for breeding resilient wheat varieties with improved N use efficiency.
Collapse
Affiliation(s)
- Xiaodan Meng
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
- National Engineering Research Centre for Wheat, Henan Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhiyong Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huali Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Furong Nai
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yihao Wei
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yongchun Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- National Engineering Research Centre for Wheat, Henan Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaochun Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinming Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
35
|
Mahmood MA, Mansoor S. Einkorn genomics reveals ancient roots of domesticated wheat. CELL GENOMICS 2023; 3:100406. [PMID: 37719140 PMCID: PMC10504668 DOI: 10.1016/j.xgen.2023.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Wheat is an important staple food crop that underwent complex genome duplications. During domestication, genetic changes occurred, improving modern wheat, but understanding its phylogenetic history has been lacking. Mahmood and Mansoor discuss a recent publication demonstrating the evolutionary history of domesticated wheat (Triticum monococcum), providing opportunities for advancements in cereal improvement.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Shahid Mansoor
- International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| |
Collapse
|
36
|
Tyrka M, Krajewski P, Bednarek PT, Rączka K, Drzazga T, Matysik P, Martofel R, Woźna-Pawlak U, Jasińska D, Niewińska M, Ługowska B, Ratajczak D, Sikora T, Witkowski E, Dorczyk A, Tyrka D. Genome-wide association mapping in elite winter wheat breeding for yield improvement. J Appl Genet 2023; 64:377-391. [PMID: 37120451 PMCID: PMC10457411 DOI: 10.1007/s13353-023-00758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 05/01/2023]
Abstract
Increased grain yield (GY) is the primary breeding target of wheat breeders. We performed the genome-wide association study (GWAS) on 168 elite winter wheat lines from an ongoing breeding program to identify the main determinants of grain yield. Sequencing of Diversity Array Technology fragments (DArTseq) resulted in 19,350 single-nucleotide polymorphism (SNP) and presence-absence variation (PAV) markers. We identified 15 main genomic regions located in ten wheat chromosomes (1B, 2B, 2D, 3A, 3D, 5A, 5B, 6A, 6B, and 7B) that explained from 7.9 to 20.3% of the variation in grain yield and 13.3% of the yield stability. Loci identified in the reduced genepool are important for wheat improvement using marker-assisted selection. We found marker-trait associations between three genes involved in starch biosynthesis and grain yield. Two starch synthase genes (TraesCS2B03G1238800 and TraesCS2D03G1048800) and a sucrose synthase gene (TraesCS3D03G0024300) were found in regions of QGy.rut-2B.2, QGy.rut-2D.1, and QGy.rut-3D, respectively. These loci and other significantly associated SNP markers found in this study can be used for pyramiding favorable alleles in high-yielding varieties or to improve the accuracy of prediction in genomic selection.
Collapse
Affiliation(s)
- Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959, Rzeszów, Poland.
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Piotr Tomasz Bednarek
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland
| | - Kinga Rączka
- Department of Biotechnology and Bioinformatics, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959, Rzeszów, Poland
| | - Tadeusz Drzazga
- Małopolska Plant Breeding Ltd, Sportowa 21, 55-040, Kobierzyce, Poland
| | - Przemysław Matysik
- Plant Breeding Strzelce Group IHAR Ltd, Główna 20, 99-307, Strzelce, Poland
| | - Róża Martofel
- Poznań Plant Breeding Ltd, Kasztanowa 5, 63-004, Tulce, Poland
| | | | - Dorota Jasińska
- Poznań Plant Breeding Ltd, Kasztanowa 5, 63-004, Tulce, Poland
| | | | | | | | - Teresa Sikora
- DANKO Plant Breeders Ltd, Ks. Strzybnego 23, 47-411, Rudnik, Poland
| | - Edward Witkowski
- Plant Breeding Smolice Ltd, Smolice 146, 63-740, Kobylin, Poland
| | - Ada Dorczyk
- Plant Breeding Smolice Ltd, Smolice 146, 63-740, Kobylin, Poland
| | - Dorota Tyrka
- Department of Biotechnology and Bioinformatics, Rzeszow University of Technology, Powstańców Warszawy 6, 35-959, Rzeszów, Poland
| |
Collapse
|
37
|
Wang D, Zuo J, Liu S, Wang W, Lu Q, Hao X, Fang Z, Liang T, Sun Y, Guo C, Zhao C, Tang Y. BRI1 EMS SUPPRESSOR1 genes regulate abiotic stress and anther development in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1219856. [PMID: 37621887 PMCID: PMC10446898 DOI: 10.3389/fpls.2023.1219856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023]
Abstract
BRI1 EMS SUPPRESSOR1 (BES1) family members are crucial downstream regulators that positively mediate brassinosteroid signaling, playing vital roles in the regulation of plant stress responses and anther development in Arabidopsis. Importantly, the expression profiles of wheat (Triticum aestivum L.) BES1 genes have not been analyzed comprehensively and systematically in response to abiotic stress or during anther development. In this study, we identified 23 BES1-like genes in common wheat, which were unevenly distributed on 17 out of 21 wheat chromosomes. Phylogenetic analysis clustered the BES1 genes into four major clades; moreover, TaBES1-3A2, TaBES1-3B2 and TaBES1-3D2 belonged to the same clade as Arabidopsis BES1/BZR1 HOMOLOG3 (BEH3) and BEH4, which participate in anther development. The expression levels of 23 wheat BES1 genes were assessed using real-time quantitative PCR under various abiotic stress conditions (drought, salt, heat, and cold), and we found that most TaBES1-like genes were downregulated under abiotic stress, particularly during drought stress. We therefore used drought-tolerant and drought-sensitive wheat cultivars to explore TaBES1 expression patterns under drought stress. TaBES1-3B2 and TaBES1-3D2 expression was high in drought-tolerant cultivars but substantially repressed in drought-sensitive cultivars, while TaBES1-6D presented an opposite pattern. Among genes preferentially expressed in anthers, TaBES1-3B2 and TaBES1-3D2 expression was substantially downregulated in thermosensitive genic male-sterile wheat lines compared to common wheat cultivar under sterile conditions, while we detected no obvious differences under fertile conditions. This result suggests that TaBES1-3B2 and TaBES1-3D2 might not only play roles in regulating drought tolerance, but also participate in low temperature-induced male sterility.
Collapse
Affiliation(s)
- Dezhou Wang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Jinghong Zuo
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Shan Liu
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Weiwei Wang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Qing Lu
- Agriculture College, Yangtze University, Jingzhou, China
| | - Xiaocong Hao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Zhaofeng Fang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Ting Liang
- Agriculture College, Yangtze University, Jingzhou, China
| | - Yue Sun
- Agriculture College, Yangtze University, Jingzhou, China
| | - Chunman Guo
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Changping Zhao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| | - Yimiao Tang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Hubei Collaborative Innovation Center for Grain Industry, Beijing, China
| |
Collapse
|
38
|
Mulugeta B, Ortiz R, Geleta M, Hailesilassie T, Hammenhag C, Hailu F, Tesfaye K. Harnessing genome-wide genetic diversity, population structure and linkage disequilibrium in Ethiopian durum wheat gene pool. FRONTIERS IN PLANT SCIENCE 2023; 14:1192356. [PMID: 37546270 PMCID: PMC10400094 DOI: 10.3389/fpls.2023.1192356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Yanyang Liu, Henan Academy of Agricultural Sciences (HNAAS), China; Landraces are an important genetic source for transferring valuable novel genes and alleles required to enhance genetic variation. Therefore, information on the gene pool's genetic diversity and population structure is essential for the conservation and sustainable use of durum wheat genetic resources. Hence, the aim of this study was to assess genetic diversity, population structure, and linkage disequilibrium, as well as to identify regions with selection signature. Five hundred (500) individuals representing 46 landraces, along with 28 cultivars were evaluated using the Illumina Infinium 25K wheat SNP array, resulting in 8,178 SNPs for further analysis. Gene diversity (GD) and the polymorphic information content (PIC) ranged from 0.13-0.50 and 0.12-0.38, with mean GD and PIC values of 0.34 and 0.27, respectively. Linkage disequilibrium (LD) revealed 353,600 pairs of significant SNPs at a cut-off (r2 > 0.20, P < 0.01), with an average r2 of 0.21 for marker pairs. The nucleotide diversity (π) and Tajima's D (TD) per chromosome for the populations ranged from 0.29-0.36 and 3.46-5.06, respectively, with genome level, mean π values of 0.33 and TD values of 4.43. Genomic scan using the Fst outlier test revealed 85 loci under selection signatures, with 65 loci under balancing selection and 17 under directional selection. Putative candidate genes co-localized with regions exhibiting strong selection signatures were associated with grain yield, plant height, host plant resistance to pathogens, heading date, grain quality, and phenolic content. The Bayesian Model (STRUCTURE) and distance-based (principal coordinate analysis, PCoA, and unweighted pair group method with arithmetic mean, UPGMA) methods grouped the genotypes into five subpopulations, where landraces from geographically non-adjoining environments were clustered in the same cluster. This research provides further insights into population structure and genetic relationships in a diverse set of durum wheat germplasm, which could be further used in wheat breeding programs to address production challenges sustainably.
Collapse
Affiliation(s)
- Behailu Mulugeta
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Sinana Agricultural Research Center, Oromia Agricultural Research Institute, Bale-Robe, Ethiopia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Cecilia Hammenhag
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Faris Hailu
- Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology and Biotechnology, Wollo University, Dessie, Ethiopia
| |
Collapse
|
39
|
Gao Z, Bian J, Lu F, Jiao Y, He H. Triticeae crop genome biology: an endless frontier. FRONTIERS IN PLANT SCIENCE 2023; 14:1222681. [PMID: 37546276 PMCID: PMC10399237 DOI: 10.3389/fpls.2023.1222681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023]
Abstract
Triticeae, the wheatgrass tribe, includes several major cereal crops and their wild relatives. Major crops within the Triticeae are wheat, barley, rye, and oat, which are important for human consumption, animal feed, and rangeland protection. Species within this tribe are known for their large genomes and complex genetic histories. Powered by recent advances in sequencing technology, researchers worldwide have made progress in elucidating the genomes of Triticeae crops. In addition to assemblies of high-quality reference genomes, pan-genome studies have just started to capture the genomic diversities of these species, shedding light on our understanding of the genetic basis of domestication and environmental adaptation of Triticeae crops. In this review, we focus on recent signs of progress in genome sequencing, pan-genome analyses, and resequencing analysis of Triticeae crops. We also propose future research avenues in Triticeae crop genomes, including identifying genome structure variations, the association of genomic regions with desired traits, mining functions of the non-coding area, introgression of high-quality genes from wild Triticeae resources, genome editing, and integration of genomic resources.
Collapse
Affiliation(s)
- Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuling Jiao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| |
Collapse
|
40
|
Song C, Xie K, Hu X, Zhou Z, Liu A, Zhang Y, Du J, Jia J, Gao L, Mao H. Genome wide association and haplotype analyses for the crease depth trait in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1203253. [PMID: 37465391 PMCID: PMC10350514 DOI: 10.3389/fpls.2023.1203253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023]
Abstract
Wheat grain has a complex structure that includes a crease on one side, and tissues within the crease region play an important role in nutrient transportation during wheat grain development. However, the genetic architecture of the crease region is still unclear. In this study, 413 global wheat accessions were resequenced and a method was developed for evaluating the phenotypic data of crease depth (CD). The CD values exhibited continuous and considerable large variation in the population, and the broad-sense heritability was 84.09%. CD was found to be positively correlated with grain-related traits and negatively with quality-related traits. Analysis of differentiation of traits between landraces and cultivars revealed that grain-related traits and CD were simultaneously improved during breeding improvement. Moreover, 2,150.8-Mb genetic segments were identified to fall within the selective sweeps between the landraces and cultivars; they contained some known functional genes for quality- and grain-related traits. Genome-wide association study (GWAS) was performed using around 10 million SNPs generated by genome resequencing and 551 significant SNPs and 18 QTLs were detected significantly associated with CD. Combined with cluster analysis of gene expression, haplotype analysis, and annotated information of candidate genes, two promising genes TraesCS3D02G197700 and TraesCS5A02G292900 were identified to potentially regulate CD. To the best of our knowledge, this is the first study to provide the genetic basis of CD, and the genetic loci identified in this study may ultimately assist in wheat breeding programs.
Collapse
Affiliation(s)
- Chengxiang Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Kaidi Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhihua Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ankui Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yuwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jiale Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
41
|
Niu KX, Chang CY, Zhang MQ, Guo YT, Yan Y, Sun HJ, Zhang GL, Li XM, Gong YL, Ding CH, Wang ML, Ni Z, Sun Q, Gou JY. Suppressing ASPARTIC PROTEASE 1 prolongs photosynthesis and increases wheat grain weight. NATURE PLANTS 2023; 9:965-977. [PMID: 37277438 DOI: 10.1038/s41477-023-01432-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
The elongation of photosynthesis, or functional staygreen, represents a feasible strategy to propel metabolite flux towards cereal kernels. However, achieving this goal remains a challenge in food crops. Here we report the cloning of wheat CO2 assimilation and kernel enhanced 2 (cake2), the mechanism underlying the photosynthesis advantages and natural alleles amenable to breeding elite varieties. A premature stop mutation in the A-genome copy of the ASPARTIC PROTEASE 1 (APP-A1) gene increased the photosynthesis rate and yield. APP1 bound and degraded PsbO, the protective extrinsic member of photosystem II critical for increasing photosynthesis and yield. Furthermore, a natural polymorphism of the APP-A1 gene in common wheat reduced APP-A1's activity and promoted photosynthesis and grain size and weight. This work demonstrates that the modification of APP1 increases photosynthesis, grain size and yield potentials. The genetic resources could propel photosynthesis and high-yield potentials in elite varieties of tetraploid and hexaploid wheat.
Collapse
Affiliation(s)
- Ke-Xin Niu
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chao-Yan Chang
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Mei-Qi Zhang
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yue-Ting Guo
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yan Yan
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Hao-Jie Sun
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Guo-Liang Zhang
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiao-Ming Li
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yi-Lin Gong
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Ci-Hang Ding
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Meng-Lu Wang
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jin-Ying Gou
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China.
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China.
| |
Collapse
|
42
|
Kong C, Zhao G, Gao L, Kong X, Wang D, Liu X, Jia J. Epigenetic Landscape Is Largely Shaped by Diversiform Transposons in Aegilops tauschii. Int J Mol Sci 2023; 24:9349. [PMID: 37298301 PMCID: PMC10253722 DOI: 10.3390/ijms24119349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Transposons (TEs) account for more than 80% of the wheat genome, the highest among all known crop species. They play an important role in shaping the elaborate genomic landscape, which is the key to the speciation of wheat. In this study, we analyzed the association between TEs, chromatin states, and chromatin accessibility in Aegilops tauschii, the D genome donor of bread wheat. We found that TEs contributed to the complex but orderly epigenetic landscape as chromatin states showed diverse distributions on TEs of different orders or superfamilies. TEs also contributed to the chromatin state and openness of potential regulatory elements, affecting the expression of TE-related genes. Some TE superfamilies, such as hAT-Ac, carry active/open chromatin regions. In addition, the histone mark H3K9ac was found to be associated with the accessibility shaped by TEs. These results suggest the role of diversiform TEs in shaping the epigenetic landscape and in gene expression regulation in Aegilops tauschii. This has positive implications for understanding the transposon roles in Aegilops tauschii or the wheat D genome.
Collapse
Affiliation(s)
- Chuizheng Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
| | - Guangyao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
| | - Lifeng Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
| | - Xiuying Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China;
| | - Xu Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.K.); (G.Z.); (L.G.); (X.K.)
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China;
| |
Collapse
|
43
|
Zhang N, Wang S, Zhao S, Chen D, Tian H, Li J, Zhang L, Li S, Liu L, Shi C, Yu X, Ren Y, Chen F. Global crotonylatome and GWAS revealed a TaSRT1- TaPGK model regulating wheat cold tolerance through mediating pyruvate. SCIENCE ADVANCES 2023; 9:eadg1012. [PMID: 37163591 PMCID: PMC10171821 DOI: 10.1126/sciadv.adg1012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Here, we reported the complete profiling of the crotonylation proteome in common wheat. Through a combination of crotonylation and multi-omics analysis, we identified a TaPGK associated with wheat cold stress. Then, we confirmed the positive role of TaPGK-modulating wheat cold tolerance. Meanwhile, we found that cold stress induced lysine crotonylation of TaPGK. Moreover, we screened a lysine decrotonylase TaSRT1 interacting with TaPGK and found that TaSRT1 negatively regulated wheat cold tolerance. We subsequently demonstrated TaSRT1 inhibiting the accumulation of TaPGK protein, and this inhibition was possibly resulted from decrotonylation of TaPGK by TaSRT1. Transcriptome sequencing indicated that overexpression of TaPGK activated glycolytic key genes and thereby increased pyruvate content. Moreover, we found that exogenous application of pyruvate sharply enhanced wheat cold tolerance. These findings suggest that the TaSRT1-TaPGK model regulating wheat cold tolerance is possibly through mediating pyruvate. This study provided two valuable cold tolerance genes and dissected diverse mechanism of glycolytic pathway involving in wheat cold stress.
Collapse
Affiliation(s)
- Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Sisheng Wang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Simin Zhao
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Daiying Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Hongyan Tian
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Jia Li
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lingran Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Songgang Li
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lu Liu
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Chaonan Shi
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Xiaodong Yu
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
44
|
Ma H, Lin J, Mei F, Mao H, Li QQ. Differential alternative polyadenylation of homoeologous genes of allohexaploid wheat ABD subgenomes during drought stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:499-518. [PMID: 36786697 DOI: 10.1111/tpj.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 05/10/2023]
Abstract
Because allohexaploid wheat genome contains ABD subgenomes, how the expression of homoeologous genes is coordinated remains largely unknown, particularly at the co-transcriptional level. Alternative polyadenylation (APA) is an important part of co-transcriptional regulation, which is crucial in developmental processes and stress responses. Drought stress is a major threat to the stable yield of wheat. Focusing on APA, we used poly(A) tag sequencing to track poly(A) site dynamics in wheat under drought stress. The results showed that drought stress led to extensive APA involving 37-47% of differentially expressed genes in wheat. Significant poly(A) site switching was found in stress-responsive genes. Interestingly, homoeologous genes exhibit unequal numbers of poly(A) sites, divergent APA patterns with tissue specificity and time-course dynamics, and distinct 3'-UTR length changes. Moreover, differentially expressed transcripts in leaves and roots used different poly(A) signals, the up- and downregulated isoforms had distinct preferences for non-canonical poly(A) sites. Genes that encode key polyadenylation factors showed differential expression patterns under drought stress. In summary, poly(A) signals and the changes in core poly(A) factors may widely affect the selection of poly(A) sites and gene expression levels during the response to drought stress, and divergent APA patterns among homoeologous genes add extensive plasticity to this responsive network. These results not only reveal the significant role of APA in drought stress response, but also provide a fresh perspective on how homoeologous genes contribute to adaptability through transcriptome diversity. In addition, this work provides information about the ends of transcripts for a better annotation of the wheat genome.
Collapse
Affiliation(s)
- Hui Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Fangming Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| |
Collapse
|
45
|
Bellec A, Sow MD, Pont C, Civan P, Mardoc E, Duchemin W, Armisen D, Huneau C, Thévenin J, Vernoud V, Depège-Fargeix N, Maunas L, Escale B, Dubreucq B, Rogowsky P, Bergès H, Salse J. Tracing 100 million years of grass genome evolutionary plasticity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36919199 DOI: 10.1111/tpj.16185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/29/2023] [Accepted: 02/24/2023] [Indexed: 05/17/2023]
Abstract
Grasses derive from a family of monocotyledonous plants that includes crops of major economic importance such as wheat, rice, sorghum and barley, sharing a common ancestor some 100 million years ago. The genomic attributes of plant adaptation remain obscure and the consequences of recurrent whole genome duplications (WGD) or polyploidization events, a major force in plant evolution, remain largely speculative. We conducted a comparative analysis of omics data from ten grass species to unveil structural (inversions, fusions, fissions, duplications, substitutions) and regulatory (expression and methylation) basis of genome plasticity, as possible attributes of plant long lasting evolution and adaptation. The present study demonstrates that diverged polyploid lineages sharing a common WGD event often present the same patterns of structural changes and evolutionary dynamics, but these patterns are difficult to generalize across independent WGD events as a result of non-WGD factors such as selection and domestication of crops. Polyploidy is unequivocally linked to the evolutionary success of grasses during the past 100 million years, although it remains difficult to attribute this success to particular genomic consequences of polyploidization, suggesting that polyploids harness the potential of genome duplication, at least partially, in lineage-specific ways. Overall, the present study clearly demonstrates that post-polyploidization reprogramming is more complex than traditionally reported in investigating single species and calls for a critical and comprehensive comparison across independently polyploidized lineages.
Collapse
Affiliation(s)
- Arnaud Bellec
- INRAE/CNRGV US 1258, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Mamadou Dia Sow
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Caroline Pont
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Peter Civan
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Emile Mardoc
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | | | - David Armisen
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Cécile Huneau
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Johanne Thévenin
- INRAE/AgroParisTech-UMR 1318. Bat 2. Centre INRA de Versailles, route de Saint Cyr, 78026, Versailles CEDEX, France
| | - Vanessa Vernoud
- INRAE/CNRS/ENS/Univ. Lyon-UMR 879, 46 allée d'Italie, 69364, Lyon Cedex 07, France
| | | | - Laurent Maunas
- Arvalis-Institut du végétal, 21 chemin de Pau, 64121 Montardon, France
| | - Brigitte Escale
- Arvalis-Institut du végétal, 21 chemin de Pau, 64121 Montardon, France
- Direction de l'agriculture de Polynésie française, Route de l'Hippodrome, 98713, Papeete, France
| | - Bertrand Dubreucq
- INRAE/AgroParisTech-UMR 1318. Bat 2. Centre INRA de Versailles, route de Saint Cyr, 78026, Versailles CEDEX, France
| | - Peter Rogowsky
- INRAE/CNRS/ENS/Univ. Lyon-UMR 879, 46 allée d'Italie, 69364, Lyon Cedex 07, France
| | - Hélène Bergès
- INRAE/CNRGV US 1258, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Jerome Salse
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| |
Collapse
|
46
|
Huang S, Zhang Y, Ren H, Zhang X, Yu R, Liu S, Zeng Q, Wang Q, Yuan F, Singh RP, Bhavani S, Wu J, Han D, Kang Z. High density mapping of wheat stripe rust resistance gene QYrXN3517-1BL using QTL mapping, BSE-Seq and candidate gene analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:39. [PMID: 36897402 DOI: 10.1007/s00122-023-04282-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/21/2022] [Indexed: 06/18/2023]
Abstract
Fine mapping of a major stripe rust resistance locus QYrXN3517-1BL to a 336 kb region that includes 12 candidate genes. Utilization of genetic resistance is an effective strategy to control stripe rust disease in wheat. Cultivar XINONG-3517 (XN3517) has remained highly resistant to stripe rust since its release in 2008. To understand the genetic architecture of stripe rust resistance, Avocet S (AvS) × XN3517 F6 RIL population was assessed for stripe rust severity in five field environments. The parents and RILs were genotyped by using the GenoBaits Wheat 16 K Panel. Four stable QTL from XINONG-3517 were detected on chromosome arms 1BL, 2AL, 2BL, and 6BS, named as QYrXN3517-1BL, QYrXN3517-2AL, QYrXN3517-2BL, and QYrXN3517-6BS, respectively. Based on the Wheat 660 K array and bulked segregant exome sequencing (BSE-Seq), the most effective QTL on chromosome 1BL is most likely different from the known adult plant resistance gene Yr29 and was mapped to a 1.7 cM region [336 kb, including twelve candidate genes in International Wheat Genome Sequencing Consortium (IWGSC) RefSeq version 1.0]. The 6BS QTL was identified as Yr78, and the 2AL QTL was probably same as QYr.caas-2AL or QYrqin.nwafu-2AL. The novel QTL on 2BL was effective in seedling stage against the races used in phenotyping. In addition, allele-specifc quantitative PCR (AQP) marker nwafu.a5 was developed for QYrXN3517-1BL to assist marker-assisted breeding.
Collapse
Affiliation(s)
- Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yibo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hui Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Rui Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Fengping Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, 56237, Texcoco, Estado de Mexico, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, 56237, Texcoco, Estado de Mexico, Mexico
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
47
|
Tian G, Wang S, Wu J, Wang Y, Wang X, Liu S, Han D, Xia G, Wang M. Allelic variation of TaWD40-4B.1 contributes to drought tolerance by modulating catalase activity in wheat. Nat Commun 2023; 14:1200. [PMID: 36864053 PMCID: PMC9981739 DOI: 10.1038/s41467-023-36901-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Drought drastically restricts wheat production, so to dissect allelic variations of drought tolerant genes without imposing trade-offs between tolerance and yield is essential to cope with the circumstance. Here, we identify a drought tolerant WD40 protein encoding gene TaWD40-4B.1 of wheat via the genome-wide association study. The full-length allele TaWD40-4B.1C but not the truncated allele TaWD40-4B.1T possessing a nonsense nucleotide variation enhances drought tolerance and grain yield of wheat under drought. TaWD40-4B.1C interacts with canonical catalases, promotes their oligomerization and activities, and reduces H2O2 levels under drought. The knock-down of catalase genes erases the role of TaWD40-4B.1C in drought tolerance. TaWD40-4B.1C proportion in wheat accessions is negatively correlative with the annual rainfall, suggesting this allele may be selected during wheat breeding. The introgression of TaWD40-4B.1C enhances drought tolerance of the cultivar harboring TaWD40-4B.1T. Therefore, TaWD40-4B.1C could be useful for molecular breeding of drought tolerant wheat.
Collapse
Affiliation(s)
- Geng Tian
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, 266237, Qingdao, Shandong, P. R. China
| | - Shubin Wang
- Institute of Vegetable Research, Shandong Academy of Agricultural Sciences, 250100, Jinan, Shandong, P. R. China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Yanxia Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, 050050, Shijiazhuang, Hebei, P. R. China
| | - Xiutang Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, 050050, Shijiazhuang, Hebei, P. R. China
| | - Shuwei Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, 266237, Qingdao, Shandong, P. R. China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, 266237, Qingdao, Shandong, P. R. China.
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, 266237, Qingdao, Shandong, P. R. China.
| |
Collapse
|
48
|
Zhao X, Guo Y, Kang L, Yin C, Bi A, Xu D, Zhang Z, Zhang J, Yang X, Xu J, Xu S, Song X, Zhang M, Li Y, Kear P, Wang J, Liu Z, Fu X, Lu F. Population genomics unravels the Holocene history of bread wheat and its relatives. NATURE PLANTS 2023; 9:403-419. [PMID: 36928772 DOI: 10.1038/s41477-023-01367-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 02/08/2023] [Indexed: 05/06/2023]
Abstract
Deep knowledge of crop biodiversity is essential to improving global food security. Despite bread wheat serving as a keystone crop worldwide, the population history of bread wheat and its relatives, both cultivated and wild, remains elusive. By analysing whole-genome sequences of 795 wheat accessions, we found that bread wheat originated from the southwest coast of the Caspian Sea and underwent a slow speciation process, lasting ~3,300 yr owing to persistent gene flow from its relatives. Soon after, bread wheat spread across Eurasia and reached Europe, South Asia and East Asia ~7,000 to ~5,000 yr ago, shaping a diversified but occasionally convergent adaptive landscape in novel environments. By contrast, the cultivated relatives of bread wheat experienced a population decline by ~82% over the past ~2,000 yr due to the food choice shift of humans. Further biogeographical modelling predicted a continued population shrinking of many bread wheat relatives in the coming decades because of their vulnerability to the changing climate. These findings will guide future efforts in protecting and utilizing wheat biodiversity to enhance global wheat production.
Collapse
Affiliation(s)
- Xuebo Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yafei Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lipeng Kang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Aoyue Bi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daxing Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiliang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jijin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohan Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Song Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyue Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Ming Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Philip Kear
- International Potato Center-China Center for Asia and the Pacific, Beijing, China
| | - Jing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
49
|
Gruet C, Abrouk D, Börner A, Muller D, Moënne-Loccoz Y. Wheat genome architecture influences interactions with phytobeneficial microbial functional groups in the rhizosphere. PLANT, CELL & ENVIRONMENT 2023; 46:1018-1032. [PMID: 36494920 DOI: 10.1111/pce.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Wheat has undergone a complex evolutionary history, which led to allopolyploidization and the hexaploid bread wheat Triticum aestivum. However, the significance of wheat genomic architecture for beneficial plant-microbe interactions is poorly understood, especially from a functional standpoint. In this study, we tested the hypothesis that wheat genomic architecture was an overriding factor determining root recruitment of microorganisms with particular plant-beneficial traits. We chose five wheat species representing genomic profiles AA (Triticum urartu), BB {SS} (Aegilops speltoides), DD (Aegilops tauschii), AABB (Triticum dicoccon) and AABBDD (Triticum aestivum) and assessed by quantitative polymerase chain reaction their ability to interact with free-nitrogen fixers, 1-aminocyclopropane-1-carboxylate deaminase producers, 2,4-diacetylphloroglucinol producers and auxin producers via the phenylpyruvate decarboxylase pathway, in combination with Illumina MiSeq metabarcoding analysis of N fixers (and of the total bacterial community). We found that the abundance of the microbial functional groups could fluctuate according to wheat genomic profile, as did the total bacterial abundance. N fixer diversity and total bacterial diversity were also influenced significantly by wheat genomic profile. Often, rather similar results were obtained for genomes DD (Ae. tauschii) and AABBDD (T. aestivum), pointing for the first time that the D genome could be particularly important for wheat-bacteria interactions.
Collapse
Affiliation(s)
- Cécile Gruet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Danis Abrouk
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
50
|
Abstract
KEY MESSAGE Chromatin state, and dynamic loading of pro-crossover protein HEI10 at recombination intermediates shape meiotic chromosome patterning in plants. Meiosis is the basis of sexual reproduction, and its basic progression is conserved across eukaryote kingdoms. A key feature of meiosis is the formation of crossovers which result in the reciprocal exchange of segments of maternal and paternal chromosomes. This exchange generates chromosomes with new combinations of alleles, increasing the efficiency of both natural and artificial selection. Crossovers also form a physical link between homologous chromosomes at metaphase I which is critical for accurate chromosome segregation and fertility. The patterning of crossovers along the length of chromosomes is a highly regulated process, and our current understanding of its regulation forms the focus of this review. At the global scale, crossover patterning in plants is largely governed by the classically observed phenomena of crossover interference, crossover homeostasis and the obligatory crossover which regulate the total number of crossovers and their relative spacing. The molecular actors behind these phenomena have long remained obscure, but recent studies in plants implicate HEI10 and ZYP1 as key players in their coordination. In addition to these broad forces, a wealth of recent studies has highlighted how genomic and epigenomic features shape crossover formation at both chromosomal and local scales, revealing that crossovers are primarily located in open chromatin associated with gene promoters and terminators with low nucleosome occupancy.
Collapse
Affiliation(s)
- Andrew Lloyd
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, SY23 3DA, Ceredigion, UK.
| |
Collapse
|