1
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Zhong J, Li J, Burton GJ, Koistinen H, Cheung KW, Ng EHY, Yao Y, Yeung WSB, Lee CL, Chiu PCN. The functional roles of protein glycosylation in human maternal-fetal crosstalk. Hum Reprod Update 2024; 30:81-108. [PMID: 37699855 DOI: 10.1093/humupd/dmad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The establishment of maternal-fetal crosstalk is vital to a successful pregnancy. Glycosylation is a post-translational modification in which glycans (monosaccharide chains) are attached to an organic molecule. Glycans are involved in many physiological and pathological processes. Human endometrial epithelium, endometrial gland secretions, decidual immune cells, and trophoblasts are highly enriched with glycoconjugates and glycan-binding molecules important for a healthy pregnancy. Aberrant glycosylation in the placenta and uterus has been linked to repeated implantation failure and various pregnancy complications, but there is no recent review summarizing the functional roles of glycosylation at the maternal-fetal interface and their associations with pathological processes. OBJECTIVE AND RATIONALE This review aims to summarize recent findings on glycosylation, glycosyltransferases, and glycan-binding receptors at the maternal-fetal interface, and their involvement in regulating the biology and pathological conditions associated with endometrial receptivity, placentation and maternal-fetal immunotolerance. Current knowledge limitations and future insights into the study of glycobiology in reproduction are discussed. SEARCH METHODS A comprehensive PubMed search was conducted using the following keywords: glycosylation, glycosyltransferases, glycan-binding proteins, endometrium, trophoblasts, maternal-fetal immunotolerance, siglec, selectin, galectin, repeated implantation failure, early pregnancy loss, recurrent pregnancy loss, preeclampsia, and fetal growth restriction. Relevant reports published between 1980 and 2023 and studies related to these reports were retrieved and reviewed. Only publications written in English were included. OUTCOMES The application of ultrasensitive mass spectrometry tools and lectin-based glycan profiling has enabled characterization of glycans present at the maternal-fetal interface and in maternal serum. The endometrial luminal epithelium is covered with highly glycosylated mucin that regulates blastocyst adhesion during implantation. In the placenta, fucose and sialic acid residues are abundantly presented on the villous membrane and are essential for proper placentation and establishment of maternal-fetal immunotolerance. Glycan-binding receptors, including selectins, sialic-acid-binding immunoglobulin-like lectins (siglecs) and galectins, also modulate implantation, trophoblast functions and maternal-fetal immunotolerance. Aberrant glycosylation is associated with repeated implantation failure, early pregnancy loss and various pregnancy complications. The current limitation in the field is that most glycobiological research relies on association studies, with few studies revealing the specific functions of glycans. Technological advancements in analytic, synthetic and functional glycobiology have laid the groundwork for further exploration of glycans in reproductive biology under both physiological and pathological conditions. WIDER IMPLICATIONS A deep understanding of the functions of glycan structures would provide insights into the molecular mechanisms underlying their involvement in the physiological and pathological regulation of early pregnancy. Glycans may also potentially serve as novel early predictive markers and therapeutic targets for repeated implantation failure, pregnancy loss, and other pregnancy complications.
Collapse
Affiliation(s)
- Jiangming Zhong
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jianlin Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ka Wang Cheung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
3
|
Hulbert SW, Desai P, Jewett MC, DeLisa MP, Williams AJ. Glycovaccinology: The design and engineering of carbohydrate-based vaccine components. Biotechnol Adv 2023; 68:108234. [PMID: 37558188 DOI: 10.1016/j.biotechadv.2023.108234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/12/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Vaccines remain one of the most important pillars in preventative medicine, providing protection against a wide array of diseases by inducing humoral and/or cellular immunity. Of the many possible candidate antigens for subunit vaccine development, carbohydrates are particularly appealing because of their ubiquitous presence on the surface of all living cells, viruses, and parasites as well as their known interactions with both innate and adaptive immune cells. Indeed, several licensed vaccines leverage bacterial cell-surface carbohydrates as antigens for inducing antigen-specific plasma cells secreting protective antibodies and the development of memory T and B cells. Carbohydrates have also garnered attention in other aspects of vaccine development, for example, as adjuvants that enhance the immune response by either activating innate immune responses or targeting specific immune cells. Additionally, carbohydrates can function as immunomodulators that dampen undesired humoral immune responses to entire protein antigens or specific, conserved regions on antigenic proteins. In this review, we highlight how the interplay between carbohydrates and the adaptive and innate arms of the immune response is guiding the development of glycans as vaccine components that act as antigens, adjuvants, and immunomodulators. We also discuss how advances in the field of synthetic glycobiology are enabling the design, engineering, and production of this new generation of carbohydrate-containing vaccine formulations with the potential to prevent infectious diseases, malignancies, and complex immune disorders.
Collapse
Affiliation(s)
- Sophia W Hulbert
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Primit Desai
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Matthew P DeLisa
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA.
| | - Asher J Williams
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
4
|
Sun L, Zhang Y, Li W, Zhang J, Zhang Y. Mucin Glycans: A Target for Cancer Therapy. Molecules 2023; 28:7033. [PMID: 37894512 PMCID: PMC10609567 DOI: 10.3390/molecules28207033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Mucin glycans are an important component of the mucus barrier and a vital defence against physical and chemical damage as well as pathogens. There are 20 mucins in the human body, which can be classified into secreted mucins and transmembrane mucins according to their distributions. The major difference between them is that secreted mucins do not have transmembrane structural domains, and the expression of each mucin is organ and cell-specific. Under physiological conditions, mucin glycans are involved in the composition of the mucus barrier and thus protect the body from infection and injury. However, abnormal expression of mucin glycans can lead to the occurrence of diseases, especially cancer, through various mechanisms. Therefore, targeting mucin glycans for the diagnosis and treatment of cancer has always been a promising research direction. Here, we first summarize the main types of glycosylation (O-GalNAc glycosylation and N-glycosylation) on mucins and the mechanisms by which abnormal mucin glycans occur. Next, how abnormal mucin glycans contribute to cancer development is described. Finally, we summarize MUC1-based antibodies, vaccines, radio-pharmaceuticals, and CAR-T therapies using the best characterized MUC1 as an example. In this section, we specifically elaborate on the recent new cancer therapy CAR-M, which may bring new hope to cancer patients.
Collapse
Affiliation(s)
- Lingbo Sun
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Yuhan Zhang
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Wenyan Li
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Jing Zhang
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Yuecheng Zhang
- Key Laboratory of Analytical Technology and Detection of Yan'an, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| |
Collapse
|
5
|
Kothari N, Postwala H, Pandya A, Shah A, Shah Y, Chorawala MR. Establishing the applicability of cancer vaccines in combination with chemotherapeutic entities: current aspect and achievable prospects. Med Oncol 2023; 40:135. [PMID: 37014489 DOI: 10.1007/s12032-023-02003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Cancer immunotherapy is one of the recently developed cancer treatment modalities. When compared with conventional anticancer drug regimens, immunotherapy has shown significantly better outcomes in terms of quality of life and overall survival. It incorporates a wide range of immunomodulatory modalities that channel the effects of the immune system either by broadly modulating the host immune system or by accurately targeting distinct tumor antigens. One such treatment modality that has gained interest is cancer vaccine therapy which acts by developing antibodies against tumor cells. Cancer vaccines target individual peptides or groups of antigens that are released by tumor cells and presented by the APCs. This also initiates an effective process to activate the host immune responses. Studies on various types of cancer vaccines are conducted, out of which only few are approved by FDA for clinical uses. Despite of documented safety and efficacy of conventional chemotherapy and cancer vaccines, individually they did not produce substantial results in eradication of the cancer as a monotherapy. Hence, the combination approach holds the extensive potential to provide significant improvement in disease outcomes. Certain chemotherapy has immunomodulatory effects and is proven to synergize with cancer vaccines thereby enhancing their anti-tumor activities. Chemotherapeutic agents are known to have immunostimulatory mechanisms apart from its cytotoxic effect and intensify the anti-tumor activities of vaccines by various mechanisms. This review highlights various cancer vaccines, their mechanism, and how their activity gets affected by chemotherapeutic agents. It also aims at summarizing the evidence-based outcome of the combination approach of a cancer vaccine with chemotherapy and a brief on future aspects.
Collapse
Affiliation(s)
- Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India.
| |
Collapse
|
6
|
Pu C, Biyuan, Xu K, Zhao Y. Glycosylation and its research progress in endometrial cancer. Clin Transl Oncol 2022; 24:1865-1880. [PMID: 35752750 PMCID: PMC9418304 DOI: 10.1007/s12094-022-02858-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Endometrial cancer (EC) is one of the most common tumors in the female reproductive system, which seriously threatens women's health, particularly in developed countries. 13% of the patients with EC have a poor prognosis due to recurrence and metastasis. Therefore, identifying good predictive biomarkers and therapeutic targets is critical to enable the early detection of metastasis and improve the prognosis. For decades, extensive studies had focused on glycans and glycoproteins in the progression of cancer. The types of glycans that are covalently attached to the polypeptide backbone, usually via nitrogen or oxygen linkages, are known as N‑glycans or O‑glycans, respectively. The degree of protein glycosylation and the aberrant changes in the carbohydrate structures have been implicated in the extent of tumorigenesis and reported to play a critical role in regulating tumor invasion, metabolism, and immunity. This review summarizes the essential biological role of glycosylation in EC, with a focus on the recent advances in glycomics and glycosylation markers, highlighting their implications in the diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Congli Pu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Biyuan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Chang TC, Manabe Y, Ito K, Yamamoto R, Kabayama K, Ohshima S, Kametani Y, Fujimoto Y, Lin CC, Fukase K. Precise immunological evaluation rationalizes the design of a self-adjuvanting vaccine composed of glycan antigen, TLR1/2 ligand, and T-helper cell epitope. RSC Adv 2022; 12:18985-18993. [PMID: 35873332 PMCID: PMC9241363 DOI: 10.1039/d2ra03286d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Sialyl-Tn (STn), overexpressed on various tumors, has been investigated for its application in anti-cancer vaccine therapy. However, Theratope, an STn-based vaccine, failed in the phase III clinical trial due to poor immunogenicity and epitope suppression by the foreign carrier protein. We therefore developed a self-adjuvanting STn based-vaccine, a conjugate of clustered STn (triSTn) antigen, TLR1/2 ligand (Pam3CSK4), and T-helper (Th) cell epitope, and found that this three-component self-adjuvanting vaccine effectively resulted in the production of anti-triSTn IgG antibodies. We herein analyzed immune responses induced by this self-adjuvanting vaccine in detail. We newly synthesized two-component vaccines, i.e., Pam3CSK4- or Th epitope-conjugated triSTn, as references to evaluate the immune-stimulating functions of Pam3CSK4 and Th epitope. Immunological evaluation of the synthesized vaccine candidates revealed that Pam3CSK4 was essential for antibody production, indicating that the uptake of triSTn antigen by antigen-presenting cells (APCs) was promoted by the recognition of Pam3CSK4 by TLR1/2. The function of the Th epitope was also confirmed. Th cell activation was important for boosting antibody production and IgG subclass switching. Furthermore, flow cytometric analyses of immune cells, including T cells, B cells, dendritic cells, and other monocytes, were first employed in the evaluation of self-adjuvanting vaccines and revealed that the three-component vaccine was able to induce antigen-specific immune responses for efficient antibody production without excessive inflammatory responses. Importantly, the co-administration of Freund's adjuvants was suggested to cause excessive myeloid cell accumulation and decreased plasma cell differentiation. These results demonstrate that vaccines can be designed to achieve the desired immune responses via the bottom-up construction of each immune element.
Collapse
Affiliation(s)
- Tsung-Che Chang
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Forefront Research Center, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Keita Ito
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Ryuku Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Forefront Research Center, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Shino Ohshima
- Faculty of Medicine, School of Medicine, Tokai University 143 Shimokasuya Isehara-shi Kanagawa 259-1193 Japan
| | - Yoshie Kametani
- Faculty of Medicine, School of Medicine, Tokai University 143 Shimokasuya Isehara-shi Kanagawa 259-1193 Japan
| | - Yukari Fujimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-8522 Japan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University 101 Sec. 2, Kuang Fu Rd. Hsinchu 30013 Taiwan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Forefront Research Center, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
8
|
Bajaj R, Warner AN, Fradette JF, Gibbons DL. Dance of The Golgi: Understanding Golgi Dynamics in Cancer Metastasis. Cells 2022; 11:1484. [PMID: 35563790 PMCID: PMC9102947 DOI: 10.3390/cells11091484] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
The Golgi apparatus is at the center of protein processing and trafficking in normal cells. Under pathological conditions, such as in cancer, aberrant Golgi dynamics alter the tumor microenvironment and the immune landscape, which enhances the invasive and metastatic potential of cancer cells. Among these changes in the Golgi in cancer include altered Golgi orientation and morphology that contribute to atypical Golgi function in protein trafficking, post-translational modification, and exocytosis. Golgi-associated gene mutations are ubiquitous across most cancers and are responsible for modifying Golgi function to become pro-metastatic. The pharmacological targeting of the Golgi or its associated genes has been difficult in the clinic; thus, studying the Golgi and its role in cancer is critical to developing novel therapeutic agents that limit cancer progression and metastasis. In this review, we aim to discuss how disrupted Golgi function in cancer cells promotes invasion and metastasis.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Amanda N. Warner
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jared F. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
9
|
Berois N, Pittini A, Osinaga E. Targeting Tumor Glycans for Cancer Therapy: Successes, Limitations, and Perspectives. Cancers (Basel) 2022; 14:cancers14030645. [PMID: 35158915 PMCID: PMC8833780 DOI: 10.3390/cancers14030645] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aberrant glycosylation is a common feature of many cancers, and it plays crucial roles in tumor development and biology. Cancer progression can be regulated by several physiopathological processes controlled by glycosylation, such as cell–cell adhesion, cell–matrix interaction, epithelial-to-mesenchymal transition, tumor proliferation, invasion, and metastasis. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs), which are suitable for selective cancer targeting, as well as novel antitumor immunotherapy approaches. This review summarizes the strategies developed in cancer immunotherapy targeting TACAs, analyzing molecular and cellular mechanisms and state-of-the-art methods in clinical oncology. Abstract Aberrant glycosylation is a hallmark of cancer and can lead to changes that influence tumor behavior. Glycans can serve as a source of novel clinical biomarker developments, providing a set of specific targets for therapeutic intervention. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs) suitable for selective cancer-targeting therapy. The best characterized TACAs are truncated O-glycans (Tn, TF, and sialyl-Tn antigens), gangliosides (GD2, GD3, GM2, GM3, fucosyl-GM1), globo-serie glycans (Globo-H, SSEA-3, SSEA-4), Lewis antigens, and polysialic acid. In this review, we analyze strategies for cancer immunotherapy targeting TACAs, including different antibody developments, the production of vaccines, and the generation of CAR-T cells. Some approaches have been approved for clinical use, such as anti-GD2 antibodies. Moreover, in terms of the antitumor mechanisms against different TACAs, we show results of selected clinical trials, considering the horizons that have opened up as a result of recent developments in technologies used for cancer control.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Correspondence: (N.B.); (E.O.)
| | - Alvaro Pittini
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (N.B.); (E.O.)
| |
Collapse
|
10
|
Stergiou N, Urschbach M, Gabba A, Schmitt E, Kunz H, Besenius P. The Development of Vaccines from Synthetic Tumor-Associated Mucin Glycopeptides and their Glycosylation-Dependent Immune Response. CHEM REC 2021; 21:3313-3331. [PMID: 34812564 DOI: 10.1002/tcr.202100182] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022]
Abstract
Tumor-associated carbohydrate antigens are overexpressed as altered-self in most common epithelial cancers. Their glycosylation patterns differ from those of healthy cells, functioning as an ID for cancer cells. Scientists have been developing anti-cancer vaccines based on mucin glycopeptides, yet the interplay of delivery system, adjuvant and tumor associated MUC epitopes in the induced immune response is not well understood. The current state of the art suggests that the identity, abundancy and location of the glycans on the MUC backbone are all key parameters in the cellular and humoral response. This review shares lessons learned by us in over two decades of research in glycopeptide vaccines. By bridging synthetic chemistry and immunology, we discuss efforts in designing synthetic MUC1/4/16 vaccines and focus on the role of glycosylation patterns. We provide a brief introduction into the mechanisms of the immune system and aim to promote the development of cancer subunit vaccines.
Collapse
Affiliation(s)
- Natascha Stergiou
- Radionuclide Center, Radiology and Nuclear medicine Amsterdam UMC, VU University, De Boelelaan 1085c, 1081 HV, Amsterdam, the Netherlands
| | - Moritz Urschbach
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Adele Gabba
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Edgar Schmitt
- Institute of Immunology, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Horst Kunz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
11
|
Blois SM, Prince PD, Borowski S, Galleano M, Barrientos G. Placental Glycoredox Dysregulation Associated with Disease Progression in an Animal Model of Superimposed Preeclampsia. Cells 2021; 10:800. [PMID: 33916770 PMCID: PMC8066545 DOI: 10.3390/cells10040800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 01/17/2023] Open
Abstract
Pregnancies carried by women with chronic hypertension are at increased risk of superimposed preeclampsia, but the placental pathways involved in disease progression remain poorly understood. In this study, we used the stroke-prone spontaneously hypertensive rat (SHRSP) model to investigate the placental mechanisms promoting superimposed preeclampsia, with focus on cellular stress and its influence on galectin-glycan circuits. Our analysis revealed that SHRSP placentas are characterized by a sustained activation of the cellular stress response, displaying significantly increased levels of markers of lipid peroxidation (i.e., thiobarbituric acid reactive substances (TBARS)) and protein nitration and defective antioxidant enzyme expression as early as gestation day 14 (which marks disease onset). Further, lectin profiling showed that such redox imbalance was associated with marked alterations of the placental glycocode, including a prominent decrease of core 1 O-glycan expression in trophoblasts and increased decidual levels of sialylation in SHRSP placentas. We also observed significant changes in the expression of galectins 1, 3 and 9 with pregnancy progression, highlighting the important role of the galectin signature as dynamic interpreters of placental microenvironmental challenges. Collectively, our findings uncover a new role for the glycoredox balance in the pathogenesis of superimposed preeclampsia representing a promising target for interventions in hypertensive disorders of pregnancy.
Collapse
Affiliation(s)
- Sandra M. Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Paula D. Prince
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina; (P.D.P.); (M.G.)
- Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Sophia Borowski
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, and the Charité—Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina; (P.D.P.); (M.G.)
- Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán—Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1118AAT, Argentina
| |
Collapse
|
12
|
Gupta R, Leon F, Rauth S, Batra SK, Ponnusamy MP. A Systematic Review on the Implications of O-linked Glycan Branching and Truncating Enzymes on Cancer Progression and Metastasis. Cells 2020; 9:E446. [PMID: 32075174 PMCID: PMC7072808 DOI: 10.3390/cells9020446] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022] Open
Abstract
Glycosylation is the most commonly occurring post-translational modifications, and is believed to modify over 50% of all proteins. The process of glycan modification is directed by different glycosyltransferases, depending on the cell in which it is expressed. These small carbohydrate molecules consist of multiple glycan families that facilitate cell-cell interactions, protein interactions, and downstream signaling. An alteration of several types of O-glycan core structures have been implicated in multiple cancers, largely due to differential glycosyltransferase expression or activity. Consequently, aberrant O-linked glycosylation has been extensively demonstrated to affect biological function and protein integrity that directly result in cancer growth and progression of several diseases. Herein, we provide a comprehensive review of several initiating enzymes involved in the synthesis of O-linked glycosylation that significantly contribute to a number of different cancers.
Collapse
Affiliation(s)
- Rohitesh Gupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
| | - Frank Leon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 681980-5900, USA
- Department of Pathology and Microbiology, UNMC, Omaha, NE 68198-5900, USA
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 681980-5900, USA
| |
Collapse
|
13
|
Song C, Zheng XJ, Guo H, Cao Y, Zhang F, Li Q, Ye XS, Zhou Y. Fluorine-modified sialyl-Tn-CRM197 vaccine elicits a robust immune response. Glycoconj J 2019; 36:399-408. [PMID: 31267246 DOI: 10.1007/s10719-019-09884-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 01/28/2023]
Abstract
Even though a vaccine that targets tumor-associated carbohydrate antigens on epithelial carcinoma cells presents an attractive therapeutic approach, relatively poor immunogenicity limits its development. In this study, we investigated the immunological activity of a fluoro-substituted Sialyl-Tn (F-STn) analogue coupled to the non-toxic cross-reactive material of diphtheria toxin197 (CRM197). Our results indicate that F-STn-CRM197 promotes a greater immunogenicity than non-fluorinated STn-CRM197. In the presence or absence of adjuvant, F-STn-CRM197 remarkably enhances both cellular and humoral immunity against STn by increasing antigen-specific lymphocyte proliferation and inducing a mixed Th1/Th2 response leading to production of IFN-γ and IL-4 cytokines, as well as STn-specific antibodies. Furthermore, antisera produced from F-STn-CRM197 immunization significantly recognizes STn-positive tumor cells and increases cancer cell lysis induced by antibody-dependent cell-mediated cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC) pathways. Our data suggest that this F-STn vaccine may be useful for cancer immunotherapy and possibly for prophylactic prevention of cancer.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Neoplasm/isolation & purification
- Antibodies, Neoplasm/pharmacology
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Bacterial Proteins/chemistry
- Bacterial Proteins/immunology
- Bacterial Proteins/pharmacology
- Cancer Vaccines/chemical synthesis
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Cell Line, Tumor
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/therapy
- Female
- Gene Expression
- Glycoconjugates/chemical synthesis
- Glycoconjugates/immunology
- Glycoconjugates/pharmacology
- Halogenation
- Humans
- Immune Sera/chemistry
- Immune Sera/pharmacology
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunization
- Immunogenicity, Vaccine
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukin-4/genetics
- Interleukin-4/immunology
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Mice
- Mice, Inbred BALB C
- Spleen/drug effects
- Spleen/immunology
- Th1-Th2 Balance
Collapse
Affiliation(s)
- Chengcheng Song
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Haili Guo
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yafei Cao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Fan Zhang
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Qin Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
14
|
Freitas D, Balmaña M, Poças J, Campos D, Osório H, Konstantinidi A, Vakhrushev SY, Magalhães A, Reis CA. Different isolation approaches lead to diverse glycosylated extracellular vesicle populations. J Extracell Vesicles 2019; 8:1621131. [PMID: 31236201 PMCID: PMC6571546 DOI: 10.1080/20013078.2019.1621131] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/17/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of small secreted particles involved in intercellular communication and mediating a broad spectrum of biological functions. EVs cargo is composed of a large repertoire of molecules, including glycoconjugates. Herein, we report the first study on the impact of the isolation strategy on the EV populations’ glycosylation profile. The use of different state-of-the-art protocols, namely differential ultracentrifugation (UC), total exosome isolation (TEI), OptiPrepTM density gradient (ODG) and size exclusion chromatography (SEC) resulted in EV populations displaying different sets of glycoconjugates. The EV populations obtained by UC, ODG and SEC methods displayed similar protein and glycan profiles, whereas TEI methodology isolated the most distinct EV population. In addition, ODG and SEC isolation protocols provided an enhanced EV glycoproteins detection. Remarkably, proteins displaying the tumour-associated glycan sialyl-Tn (STn) were identified as packaged cargo into EVs independently of the isolation methodology. STn carrying EV samples isolated by UC, ODG and SEC presented a considerable set of cancer-related proteins that were not detected in EVs isolated by TEI. Our work demonstrates the impact of using different isolation methodologies in the populations of EVs that are obtained, with consequences in the glycosylation profile of the isolated population. Furthermore, our results highlight the importance of selecting adequate EV isolation protocols and cell culture conditions to determine the structural and functional complexity of the EV glycoconjugates.
Collapse
Affiliation(s)
- Daniela Freitas
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Meritxell Balmaña
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Juliana Poças
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Diana Campos
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Hugo Osório
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Andriana Konstantinidi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ana Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Celso A Reis
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Subbarayan K, Seliger B. Tumor-dependent Effects of Proteoglycans and Various Glycosaminoglycan Synthesizing Enzymes and Sulfotransferases on Patients’ Outcome. Curr Cancer Drug Targets 2019; 19:210-221. [DOI: 10.2174/1568009618666180706165845] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Background: The small leucine-rich proteoglycans (SLRPs) biglycan (BGN) and decorin (DCN) linked with sulfated glycosaminoglycan (GAG) chains exhibit oncogenic or tumor suppressive potentials depending on the cellular context and association with GAGs. </P><P> Objective: We hypothesized that structural alterations and expression levels of BGN, DCN and their associated chondroitin sulfate (CS) polymerizing enzymes, dermatan sulfate (DS) epimerases and various sulfatases might be correlated with the tumor (sub)type and patients’ survival. </P><P> Methods: We acquired breast cancer (BC) and glioma patients’ datasets from cBioPortal and R2 Genomics. Structural alterations and the expression pattern of CS polymerizing enzymes, DS epimerases and carbohydrate sulfotransferases (CHST) were compared to that of BGN and DCN and correlated to their clinical relevance. </P><P> Results: In BC, no mutations, but amplifications (0.2 – 2.1 %) and deletions (0.05 – 0.4 %) were found in BGN, DCN and CS/DS enzymes. In contrast, missense and/or truncated mutations (0.1 – 0.5 %), but a reduced amplification rate (0 – 1.5 %) were found in glioma. When compared to BC, the structural abnormalities caused altered mRNA expression levels of BGN, DCN, GAG synthesizing enzymes and CHST. Mutations in SLPRs, CHSY1, CHST4 and CHSY3 were correlated with a poor prognosis in glioma, while lack of mutations and copy number variations in the SLRPs, CHSY3, CHST15 and DSE displayed an increased survival in BC. </P><P> Conclusion: A distinct association of BGN and DCN with CHST, CS polymerizing enzymes and DS epimerases was found in BC and glioma. Thus, a unique pattern of structural alterations and expression, which has clinical relevance, was found for PGs and GAG synthesizing enzymes and CHST in BC and glioma, which might help to identify high-risk patients and to develop personalized therapeutics.
Collapse
Affiliation(s)
- Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| |
Collapse
|
16
|
Freitas D, Campos D, Gomes J, Pinto F, Macedo JA, Matos R, Mereiter S, Pinto MT, Polónia A, Gartner F, Magalhães A, Reis CA. O-glycans truncation modulates gastric cancer cell signaling and transcription leading to a more aggressive phenotype. EBioMedicine 2019; 40:349-362. [PMID: 30662000 PMCID: PMC6413340 DOI: 10.1016/j.ebiom.2019.01.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Changes in glycosylation are known to play critical roles during gastric carcinogenesis. Expression of truncated O-glycans, such as the Sialyl-Tn (STn) antigen, is a common feature shared by many cancers and is associated with cancer aggressiveness and poor-prognosis. METHODS Glycoengineered cell lines were used to evaluate the impact of truncated O-glycans in cancer cell biology using in vitro functional assays, transcriptomic analysis and in vivo models. Tumor patients 'samples and datasets were used for clinical translational significance evaluation. FINDINGS In the present study, we demonstrated that gastric cancer cells expressing truncated O-glycans display major phenotypic alterations associated with higher cell motility and cell invasion. Noteworthy, the glycoengineered cancer cells overexpressing STn resulted in tumor xenografts with less cohesive features which had a critical impact on mice survival. Furthermore, truncation of O-glycans induced activation of EGFR and ErbB2 receptors and a transcriptomic signature switch of gastric cancer cells. The disclosed top activated genes were further validated in gastric tumors, revealing that SRPX2 and RUNX1 are concomitantly overexpressed in gastric carcinomas and its expression is associated with patients' poor-survival, highlighting their prognosis potential in clinical practice. INTERPRETATION This study discloses novel molecular links between O-glycans truncation frequently observed in cancer and key cellular regulators with major impact in tumor progression and patients' clinical outcome.
Collapse
Affiliation(s)
- Daniela Freitas
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, Porto 4050-313, Portugal
| | - Diana Campos
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Joana Gomes
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Filipe Pinto
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Joana A Macedo
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Rita Matos
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Stefan Mereiter
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Marta T Pinto
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - António Polónia
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Fátima Gartner
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, Porto 4050-313, Portugal
| | - Ana Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal.
| | - Celso A Reis
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, Porto 4050-313, Portugal; Faculty of Medicine of the University of Porto, Al. Prof. Hernâni Monteiro, Porto 4200-319, Portugal.
| |
Collapse
|
17
|
Kang H, Wu Q, Sun A, Liu X, Fan Y, Deng X. Cancer Cell Glycocalyx and Its Significance in Cancer Progression. Int J Mol Sci 2018; 19:ijms19092484. [PMID: 30135409 PMCID: PMC6163906 DOI: 10.3390/ijms19092484] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer is a malignant tumor that threatens the health of human beings, and has become the leading cause of death in urban and rural residents in China. The glycocalyx is a layer of multifunctional glycans that covers the surfaces of a variety of cells, including vascular endothelial cells, smooth muscle cells, stem cells, epithelial, osteocytes, as well as cancer cells. The glycosylation and syndecan of cancer cell glycocalyx are unique. However, heparan sulfate (HS), hyaluronic acid (HA), and syndecan are all closely associated with the processes of cancer progression, including cell migration and metastasis, tumor cell adhesion, tumorigenesis, and tumor growth. The possible underlying mechanisms may be the interruption of its barrier function, its radical role in growth factor storage, signaling, and mechanotransduction. In the later sections, we discuss glycocalyx targeting therapeutic approaches reported in animal and clinical experiments. The study concludes that cancer cells’ glycocalyx and its role in cancer progression are beginning to be known by more groups, and future studies should pay more attention to its mechanotransduction of interstitial flow-induced shear stress, seeking promising therapeutic targets with less toxicity but more specificity.
Collapse
Affiliation(s)
- Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Qiuhong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Anqiang Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Xiao Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
- National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| |
Collapse
|
18
|
Loureiro LR, Sousa DP, Ferreira D, Chai W, Lima L, Pereira C, Lopes CB, Correia VG, Silva LM, Li C, Santos LL, Ferreira JA, Barbas A, Palma AS, Novo C, Videira PA. Novel monoclonal antibody L2A5 specifically targeting sialyl-Tn and short glycans terminated by alpha-2-6 sialic acids. Sci Rep 2018; 8:12196. [PMID: 30111774 PMCID: PMC6093877 DOI: 10.1038/s41598-018-30421-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/30/2018] [Indexed: 11/09/2022] Open
Abstract
Incomplete O-glycosylation is a feature associated with malignancy resulting in the expression of truncated glycans such as the sialyl-Tn (STn) antigen. Despite all the progress in the development of potential anti-cancer antibodies, their application is frequently hindered by low specificities and cross-reactivity. In this study, a novel anti-STn monoclonal antibody named L2A5 was developed by hybridoma technology. Flow cytometry analysis showed that L2A5 specifically binds to sialylated structures on the cell surface of STn-expressing breast and bladder cancer cell lines. Moreover, immunoblotting assays demonstrated reactivity to tumour-associated O-glycosylated proteins, such as MUC1. Tumour recognition was further observed using immunohistochemistry assays, which demonstrated a high sensitivity and specificity of L2A5 mAb towards cancer tissue, using bladder and colorectal cancer tissues. L2A5 staining was exclusively tumoural, with a remarkable reactivity in invasive and metastasis sites, not detectable by other anti-STn mAbs. Additionally, it stained 20% of cases of triple-negative breast cancers, suggesting application in diseases with unmet clinical needs. Finally, the fine specificity was assessed using glycan microarrays, demonstrating a highly specific binding of L2A5 to core STn antigens and additional ability to bind 2-6-linked sialyl core-1 probes. In conclusion, this study describes a novel anti-STn antibody with a unique binding specificity that can be applied for cancer diagnostic and future development of new antibody-based therapeutic applications.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Antigens, Tumor-Associated, Carbohydrate/physiology
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Female
- Glycosylation
- Humans
- Hybridomas
- Mice
- Mice, Inbred BALB C
- Neoplasm Proteins/metabolism
- Polysaccharides/chemistry
- Polysaccharides/immunology
- Sialic Acids/metabolism
- Urinary Bladder Neoplasms/pathology
Collapse
Affiliation(s)
- Liliana R Loureiro
- UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, 2780, Portugal
| | - Diana P Sousa
- UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology of Porto, Porto, 4200, Portugal
| | - Wengang Chai
- Glycosciences Laboratory - Department of Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology of Porto, Porto, 4200, Portugal
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, 4200, Portugal
- Institute for Research and Innovation in Health (I3S), University of Porto, 4200, Porto, Portugal
| | - Carina Pereira
- CINTESIS - Center for Health Technology and Services Research, University of Porto, Porto, 4200, Portugal
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center, Portuguese Oncology Institute of Porto, Porto, 4200, Portugal
| | - Carla B Lopes
- Joaquim Chaves Saúde, Anatomical Pathology Laboratory, Lisboa, 1170, Portugal
| | - Viviana G Correia
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal
| | - Lisete M Silva
- Glycosciences Laboratory - Department of Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Chunxia Li
- Key Laboratory of Marine Drugs of Ministry of Education, and Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology of Porto, Porto, 4200, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050, Portugal
- Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, 4200, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology of Porto, Porto, 4200, Portugal
- Institute for Research and Innovation in Health (I3S), University of Porto, 4200, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050, Portugal
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715, Portugal
| | - Ana Barbas
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, 2780, Portugal
- Bayer Portugal, Carnaxide, 2790, Portugal
| | - Angelina S Palma
- Glycosciences Laboratory - Department of Medicine, Imperial College London, London, W12 0NN, United Kingdom
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal
| | - Carlos Novo
- UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal.
- UEIPM, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, 1349, Portugal.
| | - Paula A Videira
- UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal.
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, 2829, Portugal.
| |
Collapse
|
19
|
Townsend MH, Shrestha G, Robison RA, O’Neill KL. The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res 2018; 37:163. [PMID: 30031396 PMCID: PMC6054736 DOI: 10.1186/s13046-018-0817-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Biomarkers are an integral part of cancer management due to their use in risk assessment, screening, differential diagnosis, prognosis, prediction of response to treatment, and monitoring progress of disease. Recently, with the advent of Chimeric Antigen Receptor (CAR) T cell therapy, a new category of targetable biomarkers has emerged. These biomarkers are associated with the surface of malignant cells and serve as targets for directing cytotoxic T cells. The first biomarker target used for CAR T cell therapy was CD19, a B cell marker expressed highly on malignant B cells. With the success of CD19, the last decade has shown an explosion of new targetable biomarkers on a range of human malignancies. These surface targets have made it possible to provide directed, specific therapy that reduces healthy tissue destruction and preserves the patient's immune system during treatment. As of May 2018, there are over 100 clinical trials underway that target over 25 different surface biomarkers in almost every human tissue. This expansion has led to not only promising results in terms of patient outcome, but has also led to an exponential growth in the investigation of new biomarkers that could potentially be utilized in CAR T cell therapy for treating patients. In this review, we discuss the biomarkers currently under investigation and point out several promising biomarkers in the preclinical stage of development that may be useful as targets.
Collapse
Affiliation(s)
- Michelle H. Townsend
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Gajendra Shrestha
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
- Thunder Biotech, Highland, UT USA
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| |
Collapse
|
20
|
Starbuck K, Al-Alem L, Eavarone DA, Hernandez SF, Bellio C, Prendergast JM, Stein J, Dransfield DT, Zarrella B, Growdon WB, Behrens J, Foster R, Rueda BR. Treatment of ovarian cancer by targeting the tumor stem cell-associated carbohydrate antigen, Sialyl-Thomsen-nouveau. Oncotarget 2018; 9:23289-23305. [PMID: 29796189 PMCID: PMC5955411 DOI: 10.18632/oncotarget.25289] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/08/2018] [Indexed: 01/29/2023] Open
Abstract
Recurrent ovarian cancer (OvCa) is thought to result in part from the inability to eliminate rare quiescent cancer stem cells (CSCs) that survive cytotoxic chemotherapy and drive tumor resurgence. The Sialyl-Thomsen-nouveau antigen (STn) is a carbohydrate moiety present on protein markers of CSCs in pancreatic, colon, and gastric malignancies. We have demonstrated that human OvCa cell lines contain varying levels of cells that independently express either STn or the ovarian CSC marker CD133. Here we determine co-expression of STn and CD133 in a subset of human OvCa cell lines. Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn+ cells display some CSC features. The effect of the anti-STn antibody-drug conjugates (ADCs) S3F-CL-MMAE and 2G12-2B2-CL-MMAE on OvCa cell viability in vitro and in vivo was also assessed. Treatment with S3F-CL-MMAE reduced the viability of two of three OvCa cell lines in vitro and exposure to either S3F-CL-MMAE or 2G12-2B2-CL-MMAE reduced OVCAR3-derived xenograft volume in vivo, depleting STn+ tumor cells. In summary, STn+ cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn+ CSC and STn+ non-CSC populations.
Collapse
Affiliation(s)
- Kristen Starbuck
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Linah Al-Alem
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Silvia Fatima Hernandez
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Chiara Bellio
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | | | | | - Bianca Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Whitfield B. Growdon
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Division of Gynecologic Oncology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Rosemary Foster
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Division of Gynecologic Oncology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bo R. Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Division of Gynecologic Oncology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Song C, Zheng XJ, Liu CC, Zhou Y, Ye XS. A cancer vaccine based on fluorine-modified sialyl-Tn induces robust immune responses in a murine model. Oncotarget 2018; 8:47330-47343. [PMID: 28537884 PMCID: PMC5564568 DOI: 10.18632/oncotarget.17646] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Development of an effective vaccine to target tumor associated carbohydrate antigens, aberrantly expressed on the cell surface of various carcinomas, is an appealing approach toward cancer immunotherapy. However, a major problem of carbohydrate antigens is their poor immunogenicity. Immunization with modified-carbohydrate antigens could improve the immunogenicity and induce cross reaction with the native carbohydrate antigens. In this study, we investigated the antitumor ability of three fluoro-substituted sialyl-Tn (STn) analogues (2, 3, 4) coupled to KLH (keyhole limpet hemocyanin) and studied the mechanism of tumor immunotherapy of the vaccines in a murine model of colon cancer. Vaccination with 4-KLH, in which the two N-acetyl groups of STn are substituted with N-fluoroacetyl groups, could remarkably prolong the survival of tumor-bearing mouse and resulted in a significant reduction in tumor burden of lungs compared with STn-KLH (1-KLH). The vaccine 4-KLH could provoke stronger cytotoxic T lymphocytes immune response, T helper (Th) cell-mediated immune response and an earlier-stage Th1 immune response than 1-KLH, thus breaking immune tolerance and generating a therapeutic response. The 4-KLH vaccine induced strong tumor-specific anti-STn antibodies which could mediate complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity against human tumor cells. Moreover, in the absence of adjuvant, 4-KLH still elicited stronger immune responses than 1-KLH. Our data suggested that 4-KLH is superior in tumor prevention. The strategic hapten fluorination may be a potential approach applicable to the vaccines development for the cancer immunotherapy.
Collapse
Affiliation(s)
- Chengcheng Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chang-Cheng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
22
|
Kwa MJ, Adams S. Checkpoint inhibitors in triple-negative breast cancer (TNBC): Where to go from here. Cancer 2018; 124:2086-2103. [DOI: 10.1002/cncr.31272] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/22/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Maryann J. Kwa
- Laura and Issac Perlmutter Cancer Center; NYU Langone Medical Center; New York New York
| | - Sylvia Adams
- Laura and Issac Perlmutter Cancer Center; NYU Langone Medical Center; New York New York
| |
Collapse
|
23
|
Balmaña M, Duran A, Gomes C, Llop E, López-Martos R, Ortiz MR, Barrabés S, Reis CA, Peracaula R. Analysis of sialyl-Lewis x on MUC5AC and MUC1 mucins in pancreatic cancer tissues. Int J Biol Macromol 2018; 112:33-45. [PMID: 29408556 DOI: 10.1016/j.ijbiomac.2018.01.148] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic adenocarcinoma (PDAC) lacks efficient biomarkers. Mucins are glycoproteins that can carry aberrant glycosylation in cancer. Our objective was to identify cancer-related glycan epitopes on MUC1 and MUC5AC mucins in PDAC as potential biomarkers. We have analysed the tumour-associated carbohydrate antigens sialyl-Lewis x (SLex) and sialyl-Tn (STn) on MUC1 and MUC5AC in PDAC tissues. The selected cohort for this study consisted of twenty-one PDAC tissues positive for SLex antigen and three normal pancreas specimens as controls. STn expression was shown in 76% of the PDAC tissues. MUC1 and MUC5AC were detected in 90% of PDAC tissues. We performed in situ proximity ligation assay combining antibodies against mucins and glycan epitopes to identify specific mucin glycoforms. MUC1-SLex and MUC5AC-SLex were found in 68% and 84% respectively, of the mucin expressing PDAC tissues, while STn hardly colocalized with any of the evaluated mucins. Further analysis by Western blot of MUC5AC and SLex in eight PDAC tissue lysates showed that six out of eight cases were positive for both markers. Moreover, immunoprecipitation of MUC5AC from positive PDAC tissues and subsequent SLex immunodetection confirmed the presence of SLex on MUC5AC. Altogether, MUC5AC-SLex glycoform is present in PDAC and can be regarded as potential biomarker.
Collapse
Affiliation(s)
- Meritxell Balmaña
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain; Instituto de Investigação e Inovação em Saúde, I3S, Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal
| | - Adrià Duran
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Catarina Gomes
- Instituto de Investigação e Inovação em Saúde, I3S, Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal
| | - Esther Llop
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Raquel López-Martos
- Department of Anatomic Pathology, Dr. Trueta University Hospital, Girona, Spain
| | - M Rosa Ortiz
- Department of Anatomic Pathology, Dr. Trueta University Hospital, Girona, Spain
| | - Sílvia Barrabés
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, I3S, Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal; Medical Faculty, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar - ICBAS, University of Porto, Porto, Portugal.
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain.
| |
Collapse
|
24
|
Li X, Bu X. Progress in Vaccine Therapies for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:315-330. [DOI: 10.1007/978-981-10-6020-5_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Prendergast JM, Galvao da Silva AP, Eavarone DA, Ghaderi D, Zhang M, Brady D, Wicks J, DeSander J, Behrens J, Rueda BR. Novel anti-Sialyl-Tn monoclonal antibodies and antibody-drug conjugates demonstrate tumor specificity and anti-tumor activity. MAbs 2017; 9:615-627. [PMID: 28281872 PMCID: PMC5419082 DOI: 10.1080/19420862.2017.1290752] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Targeted therapeutics that can differentiate between normal and malignant tumor cells represent the ideal standard for the development of a successful anti-cancer strategy. The Sialyl-Thomsen-nouveau antigen (STn or Sialyl-Tn, also known as CD175s) is rarely seen in normal adult tissues, but it is abundantly expressed in many types of human epithelial cancers. We have identified novel antibodies that specifically target with high affinity the STn glycan independent of its carrier protein, affording the potential to recognize a wider array of cancer-specific sialylated proteins. A panel of murine monoclonal anti-STn therapeutic antibodies were generated and their binding specificity and efficacy were characterized in vitro and in in vivo murine cancer models. A subset of these antibodies were conjugated to monomethyl auristatin E (MMAE) to generate antibody-drug conjugates (ADCs). These ADCs demonstrated in vitro efficacy in STn-expressing cell lines and significant tumor growth inhibition in STn-expressing tumor xenograft cancer models with no evidence of overt toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Mai Zhang
- a Siamab Therapeutics, Inc. , Newton , MA , USA
| | - Dane Brady
- b Alizée Pathology, LLC , Thurmont , MD , USA
| | - Joan Wicks
- b Alizée Pathology, LLC , Thurmont , MD , USA
| | | | | | - Bo R Rueda
- c Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology , Massachusetts General Hospital , Boston , MA , USA.,d Harvard Medical School , Boston , MA , USA
| |
Collapse
|
26
|
Fristedt R, Borg D, Hedner C, Berntsson J, Nodin B, Eberhard J, Micke P, Jirström K. Prognostic impact of tumour-associated B cells and plasma cells in oesophageal and gastric adenocarcinoma. J Gastrointest Oncol 2016; 7:848-859. [PMID: 28078109 DOI: 10.21037/jgo.2016.11.07] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND While it is well established that the cell-mediated immune response plays an important role in cancer progression and spread, the role of the humoral immune response in this regard has been less studied. According to the existing literature, dense infiltration of B cells or plasma cells appears to correlate mainly with an improved prognosis in several types of cancer, but their prognostic impact in oesophageal and gastric cancer has not yet been described. METHODS Immunohistochemistry was applied on tissue microarrays (TMA) to assess the stromal density of B cells (CD20+) and plasma cells [CD138+ or immunoglobulin kappa C (IGKC+)] in chemo-/radiotherapy-naive tumours from a consecutive cohort of 174 patients with resected oesophageal or gastric adenocarcinoma. Cox proportional hazard's modelling was applied to examine the impact of the investigated markers on overall survival (OS) and time to recurrence (TTR). RESULTS In curatively treated patients with oesophageal adenocarcinoma, high expression of IGKC was an independent predictor of a prolonged OS [hazard ratio (HR) 0.10; 95% confidence interval (CI), 0.02-0.57], and TTR (HR 0.15; 95% CI, 0.03-0.71). In curatively treated patients with gastric adenocarcinoma, high expression of IGKC independently predicted a prolonged OS (HR 0.46; 95% CI, 0.24-0.87) and TTR (HR 0.46; 95% CI, 0.21-0.98). Expression of CD20 was not prognostic, and CD138 expression was only prognostic in unadjusted analysis of TTR in gastric cancer. CONCLUSIONS These results demonstrate, for the first time, that abundant infiltration of IGKC+ plasma cells independently predicts a prolonged survival in both oesophageal and gastric cancer.
Collapse
Affiliation(s)
- Richard Fristedt
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, SE-221 85 Lund, Sweden
| | - David Borg
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, SE-221 85 Lund, Sweden
| | - Charlotta Hedner
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, SE-221 85 Lund, Sweden
| | - Jonna Berntsson
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, SE-221 85 Lund, Sweden
| | - Björn Nodin
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, SE-221 85 Lund, Sweden
| | - Jakob Eberhard
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, SE-221 85 Lund, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 85 Uppsala, Sweden
| | - Karin Jirström
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, SE-221 85 Lund, Sweden
| |
Collapse
|
27
|
Fu C, Zhao H, Wang Y, Cai H, Xiao Y, Zeng Y, Chen H. Tumor-associated antigens: Tn antigen, sTn antigen, and T antigen. HLA 2016; 88:275-286. [PMID: 27679419 DOI: 10.1111/tan.12900] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023]
Abstract
Glycosylation is one of the major posttranslational modifications of proteins. N-glycosylation (Asn-linked) and O-glycosylation (Ser/Thr-linked) are the two main forms. Abnormal O-glycosylation is frequently observed on the surface of tumor cells, and is associated with an adverse outcome and poor prognosis in patients with cancer. O-glycans (Tn, sTn, and T antigen) can be synthesized in the Golgi apparatus with the aid of several glycosyltransferases (such as T-synthase and ST6GalNAc-I) in a suitable environment. The unique molecular chaperone of T-synthase is Cosmc, which helps T-synthase to fold correctly in the endoplasmic reticulum. Dysregulation of these glycosyltransferases, molecular chaperones, or the environment is involved in the dysregulation of O-glycans. Tn, sTn, and T antigen neo- or over-expression occurs in many types of cancer including gastric, colon, breast, lung, esophageal, prostate, and endometrial cancer. This review discusses the major synthetic pathway of O-glycans and the mechanism by which Tn, sTn, and T antigens promote tumor metastasis.
Collapse
Affiliation(s)
- C Fu
- Institute of Spinal Medicine and Trauma, Department of Spinal Surgery Ward/Center for Minimally Invasive Spine Surgery, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - H Zhao
- Institute of Spinal Medicine and Trauma, Department of Spinal Surgery Ward/Center for Minimally Invasive Spine Surgery, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Y Wang
- The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - H Cai
- Department of Hematology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Y Xiao
- Institute of Spinal Medicine and Trauma, Department of Spinal Surgery Ward/Center for Minimally Invasive Spine Surgery, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Y Zeng
- Medical College of China Three Gorges University, Yichang, China
| | - H Chen
- Institute of Spinal Medicine and Trauma, Department of Spinal Surgery Ward/Center for Minimally Invasive Spine Surgery, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
28
|
Sanchez K, Page D, McArthur HL. Immunotherapy in breast cancer: An overview of modern checkpoint blockade strategies and vaccines. Curr Probl Cancer 2016; 40:151-162. [PMID: 27855963 DOI: 10.1016/j.currproblcancer.2016.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 12/29/2022]
Abstract
Immune therapy has recently emerged as a standard-of-care strategy for the treatment of melanoma, lung cancer, bladder cancer, among other malignancies. However, the role of immune therapy in the treatment of breast cancer is still being determined. Two current strategies for harnessing the immune system to treat cancer include drugs that modulate key T cell inhibitory checkpoints and vaccines. Specifically, modern immune therapy strategies can facilitate T-cell mediated tumor regression by priming the immune system against specific tumor associated antigens, by modulating immunoregulatory signals, or both. In breast cancer, preliminary data from preclinical and early clinical studies are promising. In fact, clinical data with checkpoint blockade as monotherapy has been reported in multiple breast cancer subtypes to date, with durable responses observed in a significant proportion of women with chemotherapy resistant disease. However, because the number of genetic mutations and thus, the number of neoantigens available for immune response are modest in most breast cancers when compared with other cancers, most breast cancers may not be inherently sensitive to immune modulation and therefore may require strategies that enhance tumor associated antigen presentation if immune modulation strategies are to be effective. To that end, studies that combine checkpoint blockade with other strategies including established systemic therapies (including hormone therapy and chemotherapy), radiation therapy, and localized therapy including tumor freezing (cryoablation) are underway in breast cancer. Studies that combine checkpoint blockade with vaccines are also planned. Herein, we provide a brief summary of key components of the immune response against cancer, a rationale for the use of immune therapy in breast cancer, data from early clinical trials of checkpoint blockade and vaccine strategies in breast cancer, and future directions in the field.
Collapse
Affiliation(s)
- Katherine Sanchez
- Providence Cancer Center / Earle A. Chiles Research Institute, Portland, OR
| | - David Page
- Providence Cancer Center / Earle A. Chiles Research Institute, Portland, OR
| | | |
Collapse
|
29
|
Dotz V, Wuhrer M. Histo-blood group glycans in the context of personalized medicine. Biochim Biophys Acta Gen Subj 2016; 1860:1596-607. [PMID: 26748235 PMCID: PMC7117023 DOI: 10.1016/j.bbagen.2015.12.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND A subset of histo-blood group antigens including ABO and Lewis are oligosaccharide structures which may be conjugated to lipids or proteins. They are known to be important recognition motifs not only in the context of blood transfusions, but also in infection and cancer development. SCOPE OF REVIEW Current knowledge on the molecular background and the implication of histo-blood group glycans in the prevention and therapy of infectious and non-communicable diseases, such as cancer and cardiovascular disease, is presented. MAJOR CONCLUSIONS Glycan-based histo-blood groups are associated with intestinal microbiota composition, the risk of various diseases as well as therapeutic success of, e.g., vaccination. Their potential as prebiotic or anti-microbial agents, as disease biomarkers and vaccine targets should be further investigated in future studies. For this, recent and future technological advancements will be of particular importance, especially with regard to the unambiguous structural characterization of the glycan portion in combination with information on the protein and lipid carriers of histo-blood group-active glycans in large cohorts. GENERAL SIGNIFICANCE Histo-blood group glycans have a unique linking position in the complex network of genes, oncodevelopmental biological processes, and disease mechanisms. Thus, they are highly promising targets for novel approaches in the field of personalized medicine. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Viktoria Dotz
- Division of Bioanalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Division of Bioanalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
30
|
Berntsson J, Nodin B, Eberhard J, Micke P, Jirström K. Prognostic impact of tumour-infiltrating B cells and plasma cells in colorectal cancer. Int J Cancer 2016; 139:1129-39. [DOI: 10.1002/ijc.30138] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/23/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Jonna Berntsson
- Division of Oncology and Pathology; Department of Clinical Sciences; Lund University; SE-221 85 Lund Sweden
| | - Björn Nodin
- Division of Oncology and Pathology; Department of Clinical Sciences; Lund University; SE-221 85 Lund Sweden
| | - Jakob Eberhard
- Division of Oncology and Pathology; Department of Clinical Sciences; Lund University; SE-221 85 Lund Sweden
| | - Patrick Micke
- Department of Immunology; Genetics and Pathology, Uppsala University; SE-751 85 Uppsala Sweden
| | - Karin Jirström
- Division of Oncology and Pathology; Department of Clinical Sciences; Lund University; SE-221 85 Lund Sweden
| |
Collapse
|
31
|
Chia J, Goh G, Bard F. Short O-GalNAc glycans: regulation and role in tumor development and clinical perspectives. Biochim Biophys Acta Gen Subj 2016; 1860:1623-39. [PMID: 26968459 DOI: 10.1016/j.bbagen.2016.03.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND While the underlying causes of cancer are genetic modifications, changes in cellular states mediate cancer development. Tumor cells display markedly changed glycosylation states, of which the O-GalNAc glycans called the Tn and TF antigens are particularly common. How these antigens get over-expressed is not clear. The expression levels of glycosylation enzymes fail to explain it. SCOPE OF REVIEW We describe the regulation of O-GalNAc glycosylation initiation and extension with emphasis on the initiating enzymes ppGalNAcTs (GALNTs), and introduce the GALA pathway--a change in GALNTs compartmentation within the secretory pathway that regulates Tn levels. We discuss the roles of O-GalNAc glycans and GALNTs in tumorigenic processes and finally consider diagnostic and therapeutic perspectives. MAJOR CONCLUSIONS Contrary to a common hypothesis, short O-glycans in tumors are not the result of an incomplete glycosylation process but rather reveal the activation of regulatory pathways. Surprisingly, high Tn levels reveal a major shift in the O-glycoproteome rather than a shortening of O-glycans. These changes are driven by membrane trafficking events. GENERAL SIGNIFICANCE Many attempts to use O-glycans for biomarker, antibody and therapeutic vaccine development have been made, but suffer limitations including poor sensitivity and/or specificity that may in part derive from lack of a mechanistic understanding. Deciphering how short O-GalNAc glycans are regulated would open new perspectives to exploit this biology for therapeutic usage. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Germaine Goh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge, Road, 119077, Singapore.
| |
Collapse
|
32
|
Abstract
Activation of an aberrant glycosylation pathway in cancer cells can lead to expression of the onco-foetal sialyl-Tn (sTn) antigen. STn is a truncated O-glycan containing a sialic acid α-2,6 linked to GalNAc α-O-Ser/Thr and is associated with an adverse outcome and poor prognosis in cancer patients. The biosynthesis of the sTn antigen has been linked to the expression of the sialytransferase ST6GalNAc1, and also to mutations in and loss of heterozygosity of the COSMC gene. sTn neo- or over-expression occurs in many types of epithelial cancer including gastric, colon, breast, lung, oesophageal, prostate and endometrial cancer. sTn is believed to be carried by a variety of glycoproteins and may influence protein function and be involved in tumour development. This review discusses how the role of sTn in cancer development and tumour cell invasiveness might be organ specific and occur through different mechanisms depending on each cancer type or subtype. As the sTn-antigen is expressed early in carcinogenesis targeting sTn in cancer may enable the targeting of tumours from the earliest stage.
Collapse
|
33
|
Rangappa S, Artigas G, Miyoshi R, Yokoi Y, Hayakawa S, Garcia-Martin F, Hinou H, Nishimura SI. Effects of the multiple O-glycosylation states on antibody recognition of the immunodominant motif in MUC1 extracellular tandem repeats. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00100a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The conformational impact of the clusteredO-glycans strongly influences recognition by antibodies of the cancer-relevant epitope in the MUC1 extracellular tandem repeat domain.
Collapse
Affiliation(s)
- Shobith Rangappa
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Gerard Artigas
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Risho Miyoshi
- Medicinal Chemistry Pharmaceuticals Co., Ltd
- Sapporo 001-0021
- Japan
| | - Yasuhiro Yokoi
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Shun Hayakawa
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Fayna Garcia-Martin
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| |
Collapse
|
34
|
Yin Z, Chowdhury S, McKay C, Baniel C, Wright WS, Bentley P, Kaczanowska K, Gildersleeve JC, Finn M, BenMohamed L, Huang X. Significant Impact of Immunogen Design on the Diversity of Antibodies Generated by Carbohydrate-Based Anticancer Vaccine. ACS Chem Biol 2015; 10:2364-72. [PMID: 26262839 DOI: 10.1021/acschembio.5b00406] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of an effective vaccine targeting tumor associated carbohydrate antigens (TACAs) is an appealing approach toward tumor immunotherapy. While much emphasis has been typically placed on generating high antibody titers against the immunizing antigen, the impact of immunogen design on the diversity of TACA-specific antibodies elicited has been overlooked. Herein, we report that the immunogen structure can significantly impact the breadth and the magnitude of humoral responses. Vaccine constructs that induced diverse TACA-binding antibodies provided much stronger recognition of a variety of Tn positive tumor cells. Optimization of the breadth of the antibody response led to a vaccine construct that demonstrated long lasting efficacy in a mouse tumor model. After challenged with the highly aggressive TA3Ha cells, mice immunized with the new construct exhibited a statistically significant improvement in survival relative to controls (0% vs 50% survival; p < 0.0001). Furthermore, the surviving mice developed long-term immunity against TA3Ha. Thus, both the magnitude and the breadth of antibody reactivity should be considered when designing TACA-based antitumor vaccines.
Collapse
Affiliation(s)
- Zhaojun Yin
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Sudipa Chowdhury
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Craig McKay
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Claire Baniel
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - W. Shea Wright
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Philip Bentley
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Katarzyna Kaczanowska
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jeffrey C. Gildersleeve
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - M.G. Finn
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lbachir BenMohamed
- Cellular
and Molecular Immunology Laboratory, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California 92697, United States
| | - Xuefei Huang
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
35
|
Abstract
Decades of research are now leading to therapeutics that target the molecular mechanisms of the cancer-specific immune response. These therapeutics include tumor antigen vaccines, dendritic cell activators, adjuvants that activate innate immunity, adoptive cellular therapy, and checkpoint blockade. The advances in targeted immunotherapy have led to clinical advances in the treatment of solid tumors such as melanoma, prostate cancer, lung cancer, and hematologic malignancies. Preclinical and translational studies suggest that patients with breast cancer may also benefit from augmenting effective immune responses. These results have led to early-phase clinical trials of tumor antigen vaccines, adjuvants, and combinations of checkpoint inhibitor blockade to boost breast cancer-specific immunity in patients. This review focuses on the current and emerging development of cancer immunotherapy for breast cancer.
Collapse
|
36
|
Abstract
Despite recent progress in understanding the cancer genome, there is still a relative delay in understanding the full aspects of the glycome and glycoproteome of cancer. Glycobiology has been instrumental in relevant discoveries in various biological and medical fields, and has contributed to the deciphering of several human diseases. Glycans are involved in fundamental molecular and cell biology processes occurring in cancer, such as cell signalling and communication, tumour cell dissociation and invasion, cell-matrix interactions, tumour angiogenesis, immune modulation and metastasis formation. The roles of glycans in cancer have been highlighted by the fact that alterations in glycosylation regulate the development and progression of cancer, serving as important biomarkers and providing a set of specific targets for therapeutic intervention. This Review discusses the role of glycans in fundamental mechanisms controlling cancer development and progression, and their applications in oncology.
Collapse
Affiliation(s)
- Salomé S Pinho
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, 4050-313 Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
37
|
|
38
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and (6108=6108)*5040# ieds] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
|
40
|
|
41
|
|
42
|
|
43
|
|
44
|
|
45
|
|
46
|
|
47
|
Abstract
The carbohydrate antigens Tn and sialyl-Tn (STn) are expressed in most carcinomas and usually absent in healthy tissues. These antigens have been correlated with cancer progression and poor prognosis, and associated with immunosuppressive microenvironment. Presently they are used in clinical trials as therapeutic vaccination, but with limited success due to their low immunogenicity. Alternatively, anti-Tn and/or STn antibodies may be used to harness the immune system against tumor cells. Whilst the development of antibodies against these antigens had a boost two decades ago for diagnostic use, so far no such antibody entered into clinical trials. Possible limitations are the low specificity and efficiency of existing antibodies and that novel antibodies are still necessary. The vast array of methodologies available today will allow rapid antibody development and novel formats. Following the advent of hybridoma technology, the immortalization of human B cells became a methodology to obtain human monoclonal antibodies with better specificity. Advances in molecular biology including phage display technology for high throughput screening, transgenic mice and more recently molecularly engineered antibodies enhanced the field of antibody production. The development of novel antibodies against Tn and STn taking advantage of innovative technologies and engineering techniques may result in innovative therapeutic antibodies for cancer treatment.
Collapse
|
48
|
|
49
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 or not 3512=3512# hidk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
|