1
|
Wüstmann N, Humberg V, Vieler J, Seitzer K, von Rüden S, Juratli MA, Pascher A, Kemper M, Bleckmann A, Franken A, Neubauer H, Fehm TN, Bögemann M, Schlack K, Schrader AJ, Bernemann C. Enhancing Biomarker Detection in Cancer: A Comparative Analysis of Preanalytical Reverse Transcription Enzymes for Liquid Biopsy Application. J Transl Med 2024; 104:102142. [PMID: 39307310 DOI: 10.1016/j.labinv.2024.102142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Circulating tumor cells and liquid biopsy-based biomarkers might one day play a crucial role in the treatment decision process for patients of several cancer entities. However, clinical studies on liquid biopsy approaches revealed distinct detection rates and thus, different risk scoring for patients. This study delves into the comparison of 2 utilized reverse transcription enzymes, namely, SuperScript IV VILO (VILO) and Sensiscript (SS), aiming to understand their impact on biomarker detection rates. Prostate cancer cell lines were used to assess detection limits, followed by an investigation of biomarker status in clinical liquid biopsy samples of distinct tumor entities. Our findings highlight the superior reverse transcription efficacy of VILO over SS, commonly used in studies employing the AdnaTest platform. The enhanced efficacy of VILO results in a significantly higher number of patients positive for biomarkers. Clinically, the use of a less-sensitive enzyme system may lead to the misclassification of genuinely biomarker-positive patients, potentially altering their prognosis due to inadequate clinical monitoring or inappropriate treatment strategies.
Collapse
Affiliation(s)
- Neele Wüstmann
- Department of Urology, University Hospital Muenster, Münster, Germany
| | - Verena Humberg
- Department of Urology, University Hospital Muenster, Münster, Germany
| | - Julia Vieler
- Department of Urology, University Hospital Muenster, Münster, Germany
| | | | - Sabine von Rüden
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, Münster, Germany
| | - Mazen A Juratli
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, Münster, Germany
| | - Andreas Pascher
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, Münster, Germany
| | - Marcel Kemper
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pneumology, University Hospital Muenster, Münster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pneumology, University Hospital Muenster, Münster, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Duesseldorf, Germany; Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Bonn, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Duesseldorf, Germany; Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Bonn, Germany
| | - Tanja N Fehm
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Duesseldorf, Germany; Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Bonn, Germany
| | - Martin Bögemann
- Department of Urology, University Hospital Muenster, Münster, Germany
| | - Katrin Schlack
- Department of Urology, University Hospital Muenster, Münster, Germany
| | | | | |
Collapse
|
2
|
Cheng X, Cao Y, Liu X, Li Y, Li Q, Gao D, Yu Q. Single-cell and spatial omics unravel the spatiotemporal biology of tumour border invasion and haematogenous metastasis. Clin Transl Med 2024; 14:e70036. [PMID: 39350478 PMCID: PMC11442492 DOI: 10.1002/ctm2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Solid tumours exhibit a well-defined architecture, comprising a differentiated core and a dynamic border that interfaces with the surrounding tissue. This border, characterised by distinct cellular morphology and molecular composition, serves as a critical determinant of the tumour's invasive behaviour. Notably, the invasive border of the primary tumour represents the principal site for intravasation of metastatic cells. These cells, known as circulating tumour cells (CTCs), function as 'seeds' for distant dissemination and display remarkable heterogeneity. Advancements in spatial sequencing technology are progressively unveiling the spatial biological features of tumours. However, systematic investigations specifically targeting the characteristics of the tumour border remain scarce. In this comprehensive review, we illuminate key biological insights along the tumour body-border-haematogenous metastasis axis over the past five years. We delineate the distinctive landscape of tumour invasion boundaries and delve into the intricate heterogeneity and phenotype of CTCs, which orchestrate haematogenous metastasis. These insights have the potential to explain the basis of tumour invasion and distant metastasis, offering new perspectives for the development of more complex and precise clinical interventions and treatments.
Collapse
Affiliation(s)
- Xifu Cheng
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Pathogen Biology and ImmunologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yuke Cao
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xiangyi Liu
- Queen Mary SchoolJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yuanheng Li
- Queen Mary SchoolJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qing Li
- Department of Oncologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Dian Gao
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Pathogen Biology and ImmunologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
3
|
Cao Y, Guan H, Qiu W, Shen L, Liu H, Tian L, Hou D, Zhang G. Quantitative detection of hepatocyte mixture based on terahertz time-domain spectroscopy using spectral image analysis methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125235. [PMID: 39368181 DOI: 10.1016/j.saa.2024.125235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
In recent years, terahertz (THz) technology has received widespread attention and has been leveraged to make breakthroughs in the field of bio-detection. However, studies on its application in mixtures have not yet been extensively conducted. Traditional one-dimensional (1D) spectral feature extraction methods are inefficient in terms of sensitivity and overall performance owing to spectral overlapping and distortions of a mixture. Thus, we adopted the Gramian angular field (GAF) method to map THz 1D spectra to two-dimensional (2D) images using correlation information between sequences. Image features of hepatocyte mixtures with different ratios were extracted using histogram of oriented gradients (HOGs) and gray level histograms (GLHs). A support vector regression (SVR) model was established for quantitative analysis. The method was more stable and accurate than principal component analysis (PCA) method, and RMSE and R2 values reached 0.072 and 0.932, respectively. This study enriches the algorithms of THz detection by combining the advantages of data upscaling and image processing, which is of great significance for the application of THz technology toward mixed-system detection.
Collapse
Affiliation(s)
- Yuqi Cao
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China
| | - Hanxiao Guan
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China
| | - Weihang Qiu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310000, China
| | - Liran Shen
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China
| | - Heng Liu
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China
| | - Liangfei Tian
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310000, China.
| | - Dibo Hou
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China
| | - Guangxin Zhang
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
4
|
Kuo YC, Chuang CH, Kuo HC, Lin CT, Chao A, Huang HJ, Wang HM, Hsieh JCH, Chou HH. Circulating tumor cells help differentiate benign ovarian lesions from cancer before surgery: A literature review and proof of concept study using flow cytometry with fluorescence imaging. Oncol Lett 2024; 27:234. [PMID: 38596263 PMCID: PMC11003220 DOI: 10.3892/ol.2024.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/19/2024] [Indexed: 04/11/2024] Open
Abstract
Current tools are insufficient for distinguishing patients with ovarian cancer from those with benign ovarian lesions before extensive surgery. The present study utilized a readily accessible platform employing a negative selection strategy, followed by flow cytometry, to enumerate circulating tumor cells (CTCs) in patients with ovarian cancer. These counts were compared with those from patients with benign ovarian lesions. CTC counts at baseline, before and after anticancer therapy, and across various clinical scenarios involving ovarian lesions were assessed. A negative-selection protocol we proposed was applied to patients with suspected ovarian cancer and prospectively utilized in those subsequently confirmed to have malignancy. The protocol was implemented before anticancer therapy and at months 3, 6, 9 and 12 post-treatment. A cut-off value for CTC number at 4.75 cells/ml was established to distinguish ovarian malignancy from benign lesions, with an area under the curve of 0.900 (P<0.001). In patients with ovarian cancer, multivariate Cox regression analysis revealed that baseline CTC counts and the decline in CTCs within the first three months post-therapy were significant predictors of prolonged progression-free survival. Additionally, baseline CTC counts independently prognosticated overall survival. CTC counts obtained with the proposed platform, used in the present study, suggest that pre-operative CTC testing may be able to differentiate between malignant and benign tumors. Moreover, CTC counts may indicate oncologic outcomes in patients with ovarian cancer who have undergone cancer therapies.
Collapse
Affiliation(s)
- Yung-Chia Kuo
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal Tucheng Hospital, New Taipei City 236, Taiwan, R.O.C
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Department and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Chi-Hsi Chuang
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City 236, Taiwan, R.O.C
| | - Hsuan-Chih Kuo
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal Tucheng Hospital, New Taipei City 236, Taiwan, R.O.C
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Department and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Cheng-Tao Lin
- Department and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - Angel Chao
- Department and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - Huei-Jean Huang
- Department and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
| | - Hung-Ming Wang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Department and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Jason Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal Tucheng Hospital, New Taipei City 236, Taiwan, R.O.C
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Department and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Hung-Hsueh Chou
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan, R.O.C
- Department and School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan, R.O.C
| |
Collapse
|
5
|
Feng K, Di Y, Han M, Yan W, Guo Y, Huai X, Wang Y. A photoelectrochemical aptasensor based on double Z-scheme α-Fe 2O 3/MoS 2/Bi 2S 3 ternary heterojunction for sensitive detection of circulating tumor cells. Front Bioeng Biotechnol 2024; 12:1372688. [PMID: 38515622 PMCID: PMC10956413 DOI: 10.3389/fbioe.2024.1372688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
A novel photoelectrochemical (PEC) aptasensor based on a dual Z-scheme α-Fe2O3/MoS2/Bi2S3 ternary heterojunction for the ultrasensitive detection of circulating tumor cells (CTCs) was developed. The α-Fe2O3/MoS2/Bi2S3 nanocomposite was prepared via a step-by-step route, and the photoproduced electron/hole transfer path was speculated by conducting trapping experiments of reactive species. α-Fe2O3/MoS2/Bi2S3-modified electrodes exhibited greatly enhanced photocurrent under visible light due to the double Z-scheme charge transfer process, which met the requirement of the PEC sensor for detecting larger targets. After the aptamer was conjugated on the photoelectrode through chitosan (CS) and glutaraldehyde (GA), when MCF-7 cells were presented and captured, the photocurrent of the PEC biosensing system decreased due to steric hindrance. The current intensity had a linear relationship with the logarithm of MCF-7 cell concentration ranging from 10 to 1×105 cells mL-1, with a low detection limit of 3 cell mL-1 (S/N = 3). The dual Z-scheme α-Fe2O3/MoS2/Bi2S3 ternary heterojunction-modified PEC aptasensor exhibited high sensitivity and excellent specificity and stability. Additionally, MCF-7 cells in human serum were determined by this PEC aptasensor, exhibiting great potential as a promising tool for clinical detection.
Collapse
Affiliation(s)
- Kai Feng
- The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Ya Di
- The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Meng Han
- The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Weitao Yan
- The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Yulin Guo
- The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xiangqian Huai
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yimin Wang
- The First Hospital of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
6
|
Jin T, Liang PP, Chen ZH, He FJ, Li ZD, Chen ZW, Hu JK, Yang K. Association between circulating tumor cells in the peripheral blood and the prognosis of gastric cancer patients: a meta-analysis. Ther Adv Med Oncol 2023; 15:17588359231183678. [PMID: 37435560 PMCID: PMC10331349 DOI: 10.1177/17588359231183678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/31/2023] [Indexed: 07/13/2023] Open
Abstract
Background Research on the correlation between circulating tumor cells (CTCs) and gastric cancer (GC) has increased rapidly in recent years. However, whether CTCs are associated with GC patient prognosis is highly controversial. Objective This study aims to evaluate the value of CTCs to predict the prognosis of GC patients. Design A meta-analysis. Data Sources and Methods We searched the PubMed, Embase, and Cochrane Library databases for studies that reported the prognostic value of CTCs in GC patients before October 2022. The association between CTCs and overall survival (OS) and disease-free survival (DFS)/recurrence-free survival (RFS) and progression-free survival (PFS) of GC patients was assessed. Subgroup analyses were stratified by sampling times (pre-treatment and post-treatment), detection targets, detection method, treatment method, tumor stage, region, and HR (Hazard Ratio) extraction methods. Sensitivity analysis was performed by removing individual studies to assess the stability of the results. Publication bias was evaluated using funnel plots, Egger's test, and Begg's test. Results We initially screened 2000 studies, of which 28 were available for further analysis, involving 2383 GC patients. The pooled analysis concluded that the detection of CTCs was associated with poor OS (HR = 1.933, 95% CI 1.657-2.256, p < 0.001), DFS/RFS (HR = 3.228, 95% CI 2.475-4.211, p < 0.001), and PFS (HR = 3.272, 95% CI 1.970-5.435, p < 0.001). Furthermore, the subgroup analysis stratified by tumor stage (p < 0.01), HR extraction methods (p < 0.001), detection targets (p < 0.001), detection method (p < 0.001), sampling times (p < 0.001), and treatment method (p < 0.001) all showed that CTC detection was associated with poor OS and DFS/RFS for GC patients. Furthermore, the study showed that CTCs were associated with the poor DFS/RFS of GC when CTCs were detected for patients from Asian or No-Asian regions (p < 0.05). In addition, higher CTCs predicted poorer OS for GC patients who are from Asian regions (p < 0.001), but without statistical difference for GC patients from No-Asian regions (p = 0.490). Conclusion CTC detection in peripheral blood was associated with poor OS, DFS/RFS, and PFS in patients with GC.
Collapse
Affiliation(s)
- Tao Jin
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pan-Ping Liang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ze-Hua Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng-Jun He
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ze-Dong Li
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheng-Wen Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Shah UJ, Alsulimani A, Ahmad F, Mathkor DM, Alsaieedi A, Harakeh S, Nasiruddin M, Haque S. Bioplatforms in liquid biopsy: advances in the techniques for isolation, characterization and clinical applications. Biotechnol Genet Eng Rev 2022; 38:339-383. [PMID: 35968863 DOI: 10.1080/02648725.2022.2108994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue biopsy analysis has conventionally been the gold standard for cancer prognosis, diagnosis and prediction of responses/resistances to treatments. The existing biopsy procedures used in clinical practice are, however, invasive, painful and often associated with pitfalls like poor recovery of tumor cells and infeasibility for repetition in single patients. To circumvent these limitations, alternative non-invasive, rapid and economical, yet sturdy, consistent and dependable, biopsy techniques are required. Liquid biopsy is an emerging technology that fulfills these criteria and potentially much more in terms of subject-specific real-time monitoring of cancer progression, determination of tumor heterogeneity and treatment responses, and specific identification of the type and stages of cancers. The present review first briefly revisits the state-of-the-art technique of liquid biopsy and then proceeds to address in detail, the advances in the potential clinical applications of four major biological agencies present in liquid biopsy samples (circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes and tumor-educated platelets (TEPs)). Finally, the authors conclude with the limitations that need to be addressed in order for liquid biopsy to effectively replace the conventional invasive biopsy methods in the clinical settings.
Collapse
Affiliation(s)
- Ushma Jaykamal Shah
- MedGenome Labs Ltd, Kailash Cancer Hospital and Research Center, Vadodara, India
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ahdab Alsaieedi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Nasiruddin
- MedGenome Labs Ltd, Narayana Health City, Bangalore, India.,Genomics Lab, Orbito Asia Diagnostics, Coimbatore, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
8
|
Comparison of microfluidic platforms for the enrichment of circulating tumor cells in breast cancer patients. Breast Cancer Res Treat 2022; 196:75-85. [PMID: 36074219 PMCID: PMC9550727 DOI: 10.1007/s10549-022-06717-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022]
Abstract
Purpose Circulating tumor cells (CTCs) hold promise to be a non-invasive measurable biomarker in all cancer stages. Because the analysis of CTCs is still a technical challenge, we compared different types of microfluidic enrichment protocols to isolate these rare cells from the blood. Methods Blood samples from patients with early and metastatic breast cancer (BC) were processed using the microfluidic Parsortix® technology employing (i) a single-step cell separation using the standard GEN3D6.5 microfluidic cassette, (ii) a two-step separation with an upfront pre-enrichment, and (iii) a two-step separation with a different type of cassette. In the enriched cells, the gene expression levels of CTC-related transcripts were assessed using quantitative real-time PCR (qPCR) by Taqman® and Lightcycler (LC) technology. Results 23/60 (38.3%) BC samples were assigned as positive due to the presence of at least one gene marker beyond the threshold level. The prevalence of epithelial markers was significantly higher in metastatic compared to early BC (EpCAM: 31.3% vs. 7.3%; CK19: 21.1% vs. 2.4%). A high level of concordance was observed between CK19 assessed by Taqman® and LC technology, and for detection of the BC-specific gene SCGB2A2. An upfront pre-enrichment resulted in lower leukocyte contamination, at the cost of fewer tumor cells captured. Conclusion The Parsortix® system offers both reasonable recovery of tumor cells and depletion of contaminating leukocytes when the single-step separation using the GEN3D6.5 cassette is employed. Careful selection of suitable markers and cut-off thresholds is an essential point for the subsequent molecular analysis of the enriched cells.
Collapse
|
9
|
Ju S, Chen C, Zhang J, Xu L, Zhang X, Li Z, Chen Y, Zhou J, Ji F, Wang L. Detection of circulating tumor cells: opportunities and challenges. Biomark Res 2022; 10:58. [PMID: 35962400 PMCID: PMC9375360 DOI: 10.1186/s40364-022-00403-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and travel through the bloodstream. Studying the functional and molecular characteristics of CTCs may provide in-depth knowledge regarding highly lethal tumor diseases. Researchers are working to design devices and develop analytical methods that can capture and detect CTCs in whole blood from cancer patients with improved sensitivity and specificity. Techniques using whole blood samples utilize physical prosperity, immunoaffinity or a combination of the above methods and positive and negative enrichment during separation. Further analysis of CTCs is helpful in cancer monitoring, efficacy evaluation and designing of targeted cancer treatment methods. Although many advances have been achieved in the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this burgeoning diagnostic approach. In this review, a brief summary of the biological characterization of CTCs is presented. We focus on the current existing CTC detection methods and the potential clinical implications and challenges of CTCs. We also put forward our own views regarding the future development direction of CTCs.
Collapse
Affiliation(s)
- Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Lin Xu
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Feiyang Ji
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| |
Collapse
|
10
|
Dirix L, Buys A, Oeyen S, Peeters D, Liègeois V, Prové A, Rondas D, Vervoort L, Mariën V, Laere SV, Vermeulen P. Circulating tumor cell detection: A prospective comparison between CellSearch® and RareCyte® platforms in patients with progressive metastatic breast cancer. Breast Cancer Res Treat 2022; 193:437-444. [PMID: 35397078 PMCID: PMC9090706 DOI: 10.1007/s10549-022-06585-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/27/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE Circulating tumor cells (CTCs) are prognostic in patients with breast cancer. Several technical platforms exist for their enumeration and characterization. Comparative studies between these platforms are scarce. The RareCyte CTC detection is theoretically more sensitive than the established CellSearch platform, which identifies only CTCs that express EpCAM and cytokeratin. This study prospectively compares CTC enumeration in patients with breast cancer in a paired analysis using these two platforms. It investigates survival outcomes in groups defined by a CTC count threshold. DESIGN CTC enumeration was performed on 100 samples obtained from 86 patients with progressive metastatic breast cancer (MBC) in two independent laboratories each blinded to the clinical data and the results from the other platform. RESULTS One hundred paired samples were collected and CTC counts were determined using the CellSearch and RareCyte CTC platforms. In total, 65% and 75% of samples had at least one detectable CTC in 7.5 mL blood with the CellSearch and the RareCyte systems, respectively. CTC counts with the CellSearch system ranged from 0 to 2289 with a median of 3 CTCs, the RareCyte CTC counts ranged from 0 to 1676 with a median of 3 CTCs. The number of samples with 5 or more CTCs in 7.5 mL of blood (the poor prognosis cut-off validated with the CellSearch system) blood was 45% with the CellSearch test and 48% with the RareCyte test. CTC counts quantified with the CellSearch and the RareCyte systems were strongly correlated (Spearman's r = 0.8235 (0.7450-0.8795) p < 0.001). 86 patients were included for Kaplan-Meier survival analysis. An increased mortality risk in patients with CellSearch of 5 CTCs or more per 7.5 mL blood, with a log-rank hazard ratio of 5.164 (2.579-10.34) (p < 0.001) was confirmed. The survival analysis with RareCyte CTC counts with the identical cut-off showed a significantly impaired survival with a hazard ratio of 4.213 (2.153-8.244) (p < 0.001). CONCLUSION Our data demonstrate the analytical and prognostic equivalence of CellSearch and RareCyte CTC enumeration platforms in patients with MBC using the CellSearch cut-off. This is the first demonstration of prognostic significance using the RareCyte platform.
Collapse
Affiliation(s)
- Luc Dirix
- GZA Sint Augustinus, Oosterveldlaan 24, 2610, Antwerp, Belgium.
| | - Andy Buys
- GZA Sint Augustinus, Oosterveldlaan 24, 2610, Antwerp, Belgium
| | - Steffy Oeyen
- GZA Sint Augustinus, Oosterveldlaan 24, 2610, Antwerp, Belgium
| | - Dieter Peeters
- CellCarta, Sint-Bavostraat 78-80, 2610, Antwerp, Belgium
| | | | - Annemie Prové
- GZA Sint Augustinus, Oosterveldlaan 24, 2610, Antwerp, Belgium
| | - Dieter Rondas
- CellCarta, Sint-Bavostraat 78-80, 2610, Antwerp, Belgium
| | | | | | | | - Peter Vermeulen
- GZA Sint Augustinus, Oosterveldlaan 24, 2610, Antwerp, Belgium
| |
Collapse
|
11
|
Coagulation/fibrinolysis and circulating tumor cells in patients with advanced breast cancer. Breast Cancer Res Treat 2022; 192:583-591. [PMID: 35132503 PMCID: PMC8960658 DOI: 10.1007/s10549-021-06484-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022]
Abstract
Purpose To evaluate the relationship between circulating tumor cells (CTCs) and standard coagulation tests in both a discovery and a validation cohort of patients with advanced breast cancer. Methods In a retrospective (n = 77) and a prospective (n = 92) study of patients with progressive advanced breast cancer, CTC count, platelet number, fibrinogen level, D-dimers, prothrombin time, and activated partial thromboplastin time were measured. The association between these coagulation studies and CTC count was analyzed. The impact of these measurements on overall survival (OS) was assessed. Results In both cohorts, results were similar; absolute CTC count was significantly associated to D-dimer level and inversely with platelet count. In the prospective cohort, quantification of tumor-derived extracellular vesicles (tdEVs) was associated with CTC count, and with coagulation abnormalities (low platelet count and increased D-dimers). tdEVs did not add to CTC count in predicting changes in platelets or D-dimers. In multivariate analysis only CTC ≥ 5 CTC/7.5 mL, ER status, HER2 status and lines of chemotherapy were associated with OS. In patients with terminally metastatic breast cancer, very high CTC counts are prevalent. Conclusion A significant association exists between increasing CTC number and increased D-dimers and decreased platelet counts, suggesting a potential role for CTCs as a direct contributor of intravascular coagulation activation. In patients with advanced and progressive breast cancer, abnormalities in routine coagulation tests is the rule. In patients with terminally advanced breast cancer a “leukemic” phase with high CTC count is prevalent.
Collapse
|
12
|
Yadav A, Kumar A, Siddiqui MH. Detection of circulating tumour cells in colorectal cancer: Emerging techniques and clinical implications. World J Clin Oncol 2021; 12:1169-1181. [PMID: 35070736 PMCID: PMC8716996 DOI: 10.5306/wjco.v12.i12.1169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Despite several advances in oncological management of colorectal cancer, morbidity and mortality are still high and devastating. The diagnostic evaluation by endoscopy is cumbersome, which is uncomfortable to many. Because of the intra- and inter-tumour heterogeneity and changing tumour dynamics, which is continuous in nature, the diagnostic biopsy and assessment of the pathological sample are difficult and also not adequate. Late manifestation of the disease and delayed diagnosis may lead to relapse or metastases. One of the keys to improving the outcome is early detection of cancer, ease of technology to detect with uniformity, and its therapeutic implications, which are yet to come. "Liquid biopsy" is currently the most recent area of interest in oncology, which may provide important tools regarding the characterization of the primary tumour and its metastasis as cancer cells shed into the bloodstream even at the early stages of the disease. By using this approach, clinicians may be able to find out information about the tumour at a given time. Any of the following three types of sampling of biological material can be used in the "liquid biopsy". These are circulating tumour cells (CTCs), circulating tumour DNA, and exosomes. The most commonly studied amongst the three is CTCs. CTCs with their different applications and prognostic value has been found useful in colorectal cancer detection and therapeutics. In this review, we will discuss various markers for CTCs, the core tools/techniques for detection, and also important findings of clinical studies in colorectal cancer and its clinical implications.
Collapse
Affiliation(s)
- Alka Yadav
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | | |
Collapse
|
13
|
Circulating Tumor Cells: Technologies and Their Clinical Potential in Cancer Metastasis. Biomedicines 2021; 9:biomedicines9091111. [PMID: 34572297 PMCID: PMC8467892 DOI: 10.3390/biomedicines9091111] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs) are single cells or clusters of cells within the circulatory system of a cancer patient. While most CTCs will perish, a small proportion will proceed to colonize the metastatic niche. The clinical importance of CTCs was reaffirmed by the 2008 FDA approval of CellSearch®, a platform that could extract EpCAM-positive, CD45-negative cells from whole blood samples. Many further studies have demonstrated the presence of CTCs to stratify patients based on overall and progression-free survival, among other clinical indices. Given their unique role in metastasis, CTCs could also offer a glimpse into the genetic drivers of metastasis. Investigation of CTCs has already led to groundbreaking discoveries such as receptor switching between primary tumors and metastatic nodules in breast cancer, which could greatly affect disease management, as well as CTC-immune cell interactions that enhance colonization. In this review, we will highlight the growing variety of isolation techniques for investigating CTCs. Next, we will provide clinically relevant context for CTCs, discussing key clinical trials involving CTCs. Finally, we will provide insight into the future of CTC studies and some questions that CTCs are primed to answer.
Collapse
|
14
|
Inertial-Assisted Immunomagnetic Bioplatform towards Efficient Enrichment of Circulating Tumor Cells. BIOSENSORS-BASEL 2021; 11:bios11060183. [PMID: 34198939 PMCID: PMC8228665 DOI: 10.3390/bios11060183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Serving as an effective biomarker in liquid biopsy, circulating tumor cells (CTCs) can provide an accessible source for cancer biology study. For the in-depth evaluation of CTCs in cancer analysis, their efficient enrichment is essential, owing to their low abundance in peripheral blood. In this paper, self-assembled immunomagnetic beads were developed to isolate CTCs from the ordered bundles of cells under the assistance of the spiral inertial effect. Parametric numerical simulations were performed to explore the velocity distribution in the cross section. Based on this chip, rare CTCs could be recovered under the throughput of 500 μL/min, making this device a valuable supplement in cancer analysis, diagnostics, and therapeutics.
Collapse
|
15
|
Obermayr E, Reiner A, Brandt B, Braicu EI, Reinthaller A, Loverix L, Concin N, Woelber L, Mahner S, Sehouli J, Vergote I, Zeillinger R. The Long-Term Prognostic Significance of Circulating Tumor Cells in Ovarian Cancer-A Study of the OVCAD Consortium. Cancers (Basel) 2021; 13:cancers13112613. [PMID: 34073412 PMCID: PMC8198007 DOI: 10.3390/cancers13112613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION We previously reported the prognostic impact of circulating tumor cells (CTCs) in a multicenter study on minimal residual disease in primary ovarian cancer. With additional follow-up data, we evaluated the combined CTC approach (CTCscombo), in particular for the patients who had survived more than five years. MATERIAL AND METHODS Blood samples taken at baseline and six months after adjuvant treatment (follow-up) were assessed by quantitative PCR (qPCR) measuring PPIC transcripts and immunofluorescent staining (IF). A positive result with either IF or qPCR was classified as CTCcombo-positive. Further, PPIC was assessed in the primary tumor tissue. RESULTS The concordance of IF and qPCR was 65% at baseline and 83% after treatment. Results showed that 50.5% of the baseline and 29.5% of the follow-up samples were CTCcombo-positive. CTCscombo after treatment were associated with increased mortality after adjusting for FIGO stage (HR 2.574, 95% CI: 1.227-5.398, p = 0.012), a higher risk of recurrence after adjusting for peritoneal carcinosis (HR 4.068, 95% CI: 1.948-8.498, p < 0.001), and increased mortality after five survived years. DISCUSSION The two-sided analytical approach revealed CTC subpopulations associated with ovarian cancer progression and may illuminate a potential treatment-related shift in molecular phenotypes. That approach can identify patients who have elevated risk of recurrence and death due to ovarian cancer and who may require risk-adapted treatment strategies.
Collapse
Affiliation(s)
- Eva Obermayr
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (A.R.); (R.Z.)
- Correspondence:
| | - Angelika Reiner
- Department of Pathology, Klinikum Donaustadt, 1090 Vienna, Austria;
| | - Burkhard Brandt
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Elena Ioana Braicu
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité, Universitätsmedizin Berlin, 13353 Berlin, Germany; (E.I.B.); (J.S.)
| | - Alexander Reinthaller
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (A.R.); (R.Z.)
| | - Liselore Loverix
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University Hospitals Leuven, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.L.); (I.V.)
| | - Nicole Concin
- Department of Obstetrics and Gynecology, Innsbruck Medical University, 6020 Innsbruck, Austria;
| | - Linn Woelber
- Department of Gynecology and Gynecologic Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.W.); (S.M.)
| | - Sven Mahner
- Department of Gynecology and Gynecologic Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.W.); (S.M.)
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jalid Sehouli
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité, Universitätsmedizin Berlin, 13353 Berlin, Germany; (E.I.B.); (J.S.)
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University Hospitals Leuven, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.L.); (I.V.)
| | - Robert Zeillinger
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (A.R.); (R.Z.)
| |
Collapse
|
16
|
Chu HY, Yang CY, Yeh PH, Hsu CJ, Chang LW, Chan WJ, Lin CP, Lyu YY, Wu WC, Lee CW, Wu JK, Jiang JK, Tseng FG. Highly Correlated Recurrence Prognosis in Patients with Metastatic Colorectal Cancer by Synergistic Consideration of Circulating Tumor Cells/Microemboli and Tumor Markers CEA/CA19-9. Cells 2021; 10:1149. [PMID: 34068719 PMCID: PMC8151024 DOI: 10.3390/cells10051149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Circulation tumor cells (CTCs) play an important role in metastasis and highly correlate with cancer progression; thus, CTCs could be considered as a powerful diagnosis tool. Our previous studies showed that the number of CTCs could be utilized for recurrence prediction in colorectal cancer (CRC); however, the odds ratio was still lower than five. To improve prognosis in CRC patients, we analyzed CTC clusters/microemboli, CTC numbers, and carcinoembryonic antigen (CEA)/carbohydrate antigen 19-9 (CA19-9) levels using a self-assembled cell array (SACA) chip system for recurrence prediction. In CRC patients, the presence of CTC clusters/microemboli may have higher correlation in metastasis when compared to the high number of CTCs. Additionally, when both the number of CTCs and serum CEA levels are high, very high odds ratios of 24.4 and 17.1 are observed in patients at all stages and stage III of CRC, respectively. The high number of CTCs and CTC clusters/microemboli simultaneously suggests the high chance of relapse (odds ratio 8.4). Overall, the characteristic of CTC clusters/microemboli, CEA level, and CTC number have a clinical potential to enhance CRC prognosis.
Collapse
Affiliation(s)
- Hsueh-Yao Chu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Yung Yang
- Department Education Research, Taipei City Hospital, Taipei 10341, Taiwan;
- Center for General Education, National United University, Miaoli 36003, Taiwan
- General Education Center, University of Taipei, Taipei 110014, Taiwan
| | - Ping-Hao Yeh
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
| | - Chun-Jieh Hsu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
| | - Lu-Wei Chang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
| | - Wei-Jen Chan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
| | - Chien-Ping Lin
- Institute of Microbiology and Immunology, National Yang-Ming Chiao-Tung University, Taipei 11221, Taiwan; (C.-P.L.); (Y.-Y.L.)
| | - You-You Lyu
- Institute of Microbiology and Immunology, National Yang-Ming Chiao-Tung University, Taipei 11221, Taiwan; (C.-P.L.); (Y.-Y.L.)
| | - Wei-Cheng Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Wei Lee
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
| | - Jen-Kuei Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
- Biomedical Science and Engineering Center, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Jeng-Kai Jiang
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taiwan School of Medicine, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (P.-H.Y.); (C.-J.H.); (L.-W.C.); (W.-J.C.); (W.-C.W.); (C.-W.L.); (J.-K.W.)
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Department of Engineering and System Science, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan
| |
Collapse
|
17
|
A Direct Comparison between the Lateral Magnetophoretic Microseparator and AdnaTest for Isolating Prostate Circulating Tumor Cells. MICROMACHINES 2020; 11:mi11090870. [PMID: 32961814 PMCID: PMC7570110 DOI: 10.3390/mi11090870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022]
Abstract
Circulating tumor cells (CTCs) are important biomarkers for the diagnosis, prognosis, and treatment of cancer. However, because of their extreme rarity, a more precise technique for isolating CTCs is required to gain deeper insight into the characteristics of cancer. This study compares the performance of a lateral magnetophoretic microseparator (“CTC-μChip”), as a representative microfluidic device, and AdnaTest ProstateCancer (Qiagen), as a commercially available specialized method, for isolating CTCs from the blood of patients with prostate cancer. The enumeration and genetic analysis results of CTCs isolated via the two methods were compared under identical conditions. In the CTC enumeration experiment, the number of CTCs isolated by the CTC-μChip averaged 17.67 CTCs/mL, compared to 1.56 CTCs/mL by the AdnaTest. The number of contaminating white blood cells (WBCs) and the CTC purity with the CTC-μChip averaged 772.22 WBCs/mL and 3.91%, respectively, whereas those with the AdnaTest averaged 67.34 WBCs/mL and 1.98%, respectively. Through genetic analysis, using a cancer-specific gene panel (AR (androgen receptor), AR-V7 (A\androgen receptor variant-7), PSMA (prostate specific membrane antigen), KRT19 (cytokeratin-19), CD45 (PTPRC, Protein tyrosine phosphatase, receptor type, C)) with reverse transcription droplet digital PCR, three genes (AR, AR-V7, and PSMA) were more highly expressed in cells isolated by the CTC-μChip, while KRT19 and CD45 were similarly detected using both methods. Consequently, this study showed that the CTC-μChip can be used to isolate CTCs more reliably than AdnaTest ProstateCancer, as a specialized method for gene analysis of prostate CTCs, as well as more sensitively obtain cancer-associated gene expressions.
Collapse
|
18
|
Yap K, Cohen EN, Reuben JM, Khoury JD. Circulating Tumor Cells: State-of-the-art Update on Technologies and Clinical Applications. Curr Hematol Malig Rep 2020; 14:353-357. [PMID: 31364034 DOI: 10.1007/s11899-019-00531-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Circulating tumor cells represent rare events in the peripheral blood of patients with cancer that can provide insight into tumor biology. CTC enumeration, isolation, and analysis represent liquid biopsy approaches whose role in the management of patients with cancer continues to evolve in the era of precision medicine. This review presents an overview of technologies central to studying CTCs. RECENT FINDINGS Technologies for CTC isolation can be divided into two categories: label-dependent and label-independent. Label-dependent techniques utilize biological properties such as cell surface proteins, while label-independent techniques utilize distinctive physical properties such as cell size, density, and plasticity. Advances in microfluidics designs as well as hybrid combinations of label-dependent and label-independent techniques have resulted in unprecedented improvements in CTC isolation, permitting not only the detection and enumeration of these rare events but also providing the means for studying them and exploring them as a new dimension of cancer biomarkers. With advances in tools for isolating and studying CTCs in hand, questions regarding the clinical utility of CTC enumeration in peripheral blood, detection of CTC-associated biomarkers, and analysis of dynamic changes in CTCs during the course of cancer therapy represent exciting new opportunities for cancer research.
Collapse
Affiliation(s)
- Kristofor Yap
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA
| | - Evan N Cohen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA
| | - James M Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Harigopal M, Kowalski D, Vosoughi A. Enumeration and molecular characterization of circulating tumor cells as an innovative tool for companion diagnostics in breast cancer. Expert Rev Mol Diagn 2020; 20:815-828. [PMID: 32546017 DOI: 10.1080/14737159.2020.1784009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Circulating tumor cells (CTC) and more recently, CTC clusters are implicated as a fundamental mechanism by which tumor cells break away from the primary site and travel to distant sites. Enumeration of CTC and CTC clusters represents a new approach to prognosis, prediction, and response to therapy in patients with early and metastatic breast cancer. Several recent studies have shown the predictive importance of monitoring CTCs levels in progression-free and overall survival in breast cancer patients. This review will focus on CTC enumeration and characterization in breast cancers. AREAS COVERED We will provide a historical perspective and clinical background of CTC detection in peripheral blood. The current methodologies for studying CTCs and newer technologies for CTC detection will be reviewed together with the current state of the art of CTCs as a biomarker in risk stratification and prognostication in breast cancers. EXPERT OPINION Currently, there is an FDA approved CTC assessment method for clinical use. While CTC enumeration, is a marker for prognostication and survival, molecular characterization of CTC, may be more accurate in monitoring response to treatment due to tumor heterogeneity rather than the tumor phenotype at the primary or metastatic sites.
Collapse
Affiliation(s)
- Malini Harigopal
- Department of Pathology, Yale School of Medicine New Haven, Connecticut ., 06520-8023, New Haven, CT, United States
| | - Diane Kowalski
- Department of Pathology, Yale School of Medicine New Haven, Connecticut ., 06520-8023, New Haven, CT, United States
| | - Aram Vosoughi
- Department of Pathology, Yale School of Medicine New Haven, Connecticut ., 06520-8023, New Haven, CT, United States
| |
Collapse
|
20
|
Mansouri S, Mokhtari-Hesari P, Naghavi-Al-Hosseini F, Majidzadeh-A K, Farahmand L. The Prognostic Value of Circulating Tumor Cells in Primary Breast Cancer Prior to any Systematic Therapy: A Systematic Review. Curr Stem Cell Res Ther 2020; 14:519-529. [PMID: 30843493 DOI: 10.2174/1574888x14666190306103759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/04/2019] [Accepted: 02/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Numerous studies have defined the outstanding role of circulating tumor cells (CTC) in the management of cancer, particularly the ones in association with primary tumor metastases. OBJECTIVE The overall aim of the present study was to investigate whether CTCs may serve as a clinical prognostic marker for survival in primary breast cancer. METHODS Articles Published from June 2011 to July 2017 in PubMed, EMBase, and Cochrane library databases were thoroughly screened for selecting the ones meeting the inclusion criteria. RESULT Studies applying CellSearch® method demonstrated the risk ratios (RR) of 2.51 (95% CI: 1.78- 3.54), 3.98 (95% CI: 2.28- 6.95), 5.59 (95% CI: 3.29- 9.51), and 3.38 (95% CI: 1.88- 6.06) for death rate and relapse rates of 2.48 (95% CI: 1.89 - 3.26), 3.62 (95% CI: 2.37 - 5.51), 4.45 (95% CI: 2.94 - 6.73), and 2.88 (95 % CI: 1.99 - 4.17) at four CTC positive cut points (≥ 1, ≥ 2, ≥ 3, and ≥ 5 CTCs/7.5 ml). Two studies applying the AdnaTest® also documented increased death (RR: 1.38, 95 % CI: 0.42- 4.49) and relapse rates (RR: 2.97, 95 % CI: 1.23 - 7.18)). CONCLUSION Results of this meta-analysis allude CTCs as potent prognostic markers in primary breast cancers prior to any systemic therapy especially when it is studied via CellSearch® administration, considering that the more the CTCs, the greater the death and relapse rates.
Collapse
Affiliation(s)
- Sepideh Mansouri
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Parisa Mokhtari-Hesari
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Naghavi-Al-Hosseini
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
21
|
Yang C, Xia BR, Jin WL, Lou G. Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int 2019; 19:341. [PMID: 31866766 PMCID: PMC6918690 DOI: 10.1186/s12935-019-1067-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Circulating tumor cells (CTCs) are a rare subset of cells found in the blood of patients with solid tumors, which function as a seed for metastases. Cancer cells metastasize through the bloodstream either as single migratory CTCs or as multicellular groupings-CTC clusters. The CTCs preserve primary tumor heterogeneity and mimic tumor properties, and may be considered as clinical biomarker, preclinical model, and therapeutic target. The potential clinical application of CTCs is being a component of liquid biopsy. CTCs are also good candidates for generating preclinical models, especially 3D organoid cultures, which could be applied in drug screening, disease modeling, genome editing, tumor immunity, and organoid biobanks. In this review, we summarize current knowledge on the value and promise of evolving CTC technologies and highlight cutting-edge research on CTCs in liquid biopsy, tumor metastasis, and organoid preclinical models. The study of CTCs offers broad pathways to develop new biomarkers for tumor patient diagnosis, prognosis, and response to therapy, as well as translational models accelerating oncologic drug development.
Collapse
Affiliation(s)
- Chang Yang
- 1Department of Gynecology Oncology, The Tumor Hospital, Harbin Medical University, Harbin, 150086 People's Republic of China
| | - Bai-Rong Xia
- 1Department of Gynecology Oncology, The Tumor Hospital, Harbin Medical University, Harbin, 150086 People's Republic of China
| | - Wei-Lin Jin
- 2Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People's Republic of China.,3National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai, 200240 People's Republic of China
| | - Ge Lou
- 1Department of Gynecology Oncology, The Tumor Hospital, Harbin Medical University, Harbin, 150086 People's Republic of China
| |
Collapse
|
22
|
Yousefi M, Ghaffari P, Nosrati R, Dehghani S, Salmaninejad A, Abarghan YJ, Ghaffari SH. Prognostic and therapeutic significance of circulating tumor cells in patients with lung cancer. Cell Oncol (Dordr) 2019; 43:31-49. [PMID: 31828552 DOI: 10.1007/s13402-019-00470-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Lung cancer is the second most common cancer and the main cause of cancer-related mortality worldwide. In spite of various efforts that have been made to facilitate the early diagnosis of lung cancer, most patients are diagnosed when the disease is already in stage IV, which is generally associated with the occurrence of distant metastases and a poor survival. Moreover, a large proportion of these patients will relapse after treatment, heralding the need for the stratification of lung cancer patients in addition to identifying those who are at a higher risk of relapse and, thus, require alternative and/or additional therapies. Recently, circulating tumor cells (CTCs) have been considered as valuable markers for the early diagnosis, prognosis and risk stratification of cancer patients, and they have been found to be able to predict the survival of patients with various types of cancer, including lung cancer. Additionally, the characterization of CTCs has recently provided fascinating insights into the heterogeneity of tumors, which may be instrumental for the development of novel targeted therapies. CONCLUSIONS Here we review our current understanding of the significance of CTCs in lung cancer metastasis. We also discuss prominent studies reporting the utility of enumeration and characterization of CTCs in lung cancer patients as prognostic and pharmacodynamic biomarkers for those who are at a higher risk of metastasis and drug resistance.
Collapse
Affiliation(s)
- Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parisa Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Dehghani
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Jafari Abarghan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Todenhöfer T, Pantel K, Stenzl A, Werner S. Pathophysiology of Tumor Cell Release into the Circulation and Characterization of CTC. Recent Results Cancer Res 2019; 215:3-24. [PMID: 31605221 DOI: 10.1007/978-3-030-26439-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The traditional model of metastatic progression postulates that the ability to form distant metastases is driven by random mutations in cells of the primary tumor.
Collapse
Affiliation(s)
- Tilman Todenhöfer
- Department of Urology, Eberhard-Karls-University, Tuebingen, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Arnulf Stenzl
- Department of Urology, Eberhard-Karls-University, Tuebingen, Germany
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Nguyen HM, Dao MQ. Detection of human mammaglobin mRNA in breast cancer cells among Vietnamese women. BREAST CANCER-TARGETS AND THERAPY 2019; 11:143-150. [PMID: 30936743 PMCID: PMC6429994 DOI: 10.2147/bctt.s193777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Detecting circulating tumor cells (CTCs) is a promising approach for evaluating the progression of occult metastases as well as the efficacy of treatment therapies among patients with breast cancer. A real-time reverse transcriptase polymerase chain reaction (RT-PCR) technique has been proposed for detecting CTCs due to its high sensitivity. In this study, we aimed to validate the RT-PCR technique for human mammaglobin (hMAM) mRNA detection among Vietnamese women with breast cancer. Patients and methods Peripheral blood samples and breast cancer tissues from 43 patients suffering from breast cancer and 21 patients with fibroids were obtained. Real-time RT-PCR and gene sequencing techniques were employed to detect hMAM gene in CTCs of breast cancer cell lines and cancer tissues. Results hMAM mRNA transcription was detected in 36 out of 43 (83.7%) breast cancer tissues and in blood of 23 out of 43 (53.5%) breast cancer patients, while it was detected in only 9.5% out of tissues and 0% of the blood of fibrosis patients. hMAM mRNA in the peripheral blood of breast cancer patients increased with tumor size, stage of cancer and distant metastasis (P<0.05). No difference in the expression of hMAM mRNA was found in breast cancer tissue regarding age, distant metastasis, lymph node, stages of cancer and histopathology (P>0.05). Conclusion The study highlighted the expression of hMAM mRNA in breast cancer cells and tissues. This reveals the overall picture of the replication of hMAM mRNA in breast cancer, suggesting the role of hMAM mRNA in breast cancer molecular pathology.
Collapse
Affiliation(s)
- Hien Minh Nguyen
- Department of Biochemistry, Thanh Nhan Hospital, Hanoi, Vietnam,
| | - Minh Quang Dao
- Department of Oncology, Thanh Nhan Hospital, Hanoi, Vietnam
| |
Collapse
|
25
|
Rothé F, Maetens M, Rouas G, Paesmans M, Van den Eynde M, Van Laethem JL, Vergauwe P, Deboever G, Bareche Y, Vandeputte C, Ignatiadis M, Hendlisz A. CTCs as a prognostic and predictive biomarker for stage II/III Colon Cancer: a companion study to the PePiTA trial. BMC Cancer 2019; 19:304. [PMID: 30943928 PMCID: PMC6446374 DOI: 10.1186/s12885-019-5528-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Adjuvant therapy improves the prognosis of stage II & III colon cancer patients. Unfortunately, most patients do not benefit from this treatment. PePITA (NCT00994864) is a prospective, multicenter, non-randomized study whose primary objective is to predict the outcome of adjuvant therapy in colon cancer. METHODS The primary objective was to determine the prognostic and predictive value of circulating tumor cell (CTC) detection before therapy and after one course of preoperative FOLFOX. RESULTS Out of the 58 first patients accrued in PePiTA trial, 36 patients participated in the CTC companion study, of whom 32 had at least one evaluable sample. Only 5 patients (14, 95% CI = 5-30%) had ≥1 CTC/22.5 ml blood in at least one of the two timepoints with 2 patients having ≥1 CTC/22.5 ml at baseline (6, 95% CI: 1-19%). The detection rate of patients with CTCs at baseline being lower than expected, the inclusion of patients in the PePiTA CTC substudy was stopped. The limited sample size did not allow us to investigate the prognostic and predictive value of CTCs in locally advanced colon cancer. CONCLUSIONS Our data illustrate the need for further standardized studies in order to find the most reliable prognostic/predictive biomarker in early-stage colon cancer. TRIAL REGISTRATION This trial was prospectively registered at Jules Bordet institute ( NCT00994864 ) on the October 14, 2009.
Collapse
Affiliation(s)
- Françoise Rothé
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Marion Maetens
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ghizlane Rouas
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Marianne Paesmans
- Data centre, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Marc Van den Eynde
- Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | | | - Philippe Vergauwe
- Department of Gastroenterology, General Hospital Groeninge, Kortrijk, Belgium
| | - Guido Deboever
- Department of Gastroenterology, Digestive Oncology, AZ Damiaan Ziekenhuis, Oostende, Belgium
| | - Yacine Bareche
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Caroline Vandeputte
- Gastrointestinal Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Michail Ignatiadis
- Medical Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Hendlisz
- Medical Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
26
|
Kuvendjiska J, Bronsert P, Martini V, Lang S, Pitman MB, Hoeppner J, Kulemann B. Non-Metastatic Esophageal Adenocarcinoma: Circulating Tumor Cells in the Course of Multimodal Tumor Treatment. Cancers (Basel) 2019; 11:cancers11030397. [PMID: 30901891 PMCID: PMC6468610 DOI: 10.3390/cancers11030397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Isolation of circulating tumor cells (CTC) holds the promise to improve response-prediction and personalization of cancer treatment. In this study, we test a filtration device for CTC isolation in patients with non-metastatic esophageal adenocarcinoma (EAC) within recent multimodal treatment protocols. METHODS Peripheral blood specimens were drawn from EAC patients before and after neoadjuvant chemotherapy (FLOT)/chemoradiation (CROSS) as well as after surgery. Filtration using ScreenCell® devices captured CTC for cytologic analysis. Giemsa-stained specimens were evaluated by a cytopathologist; the cut-off was 1 CTC/specimen (6 mL). Immunohistochemistry with epithelial (pan-CK) and mesenchymal markers (vimentin) was performed. RESULTS Morphologically diverse malignant CTCs were found in 12/20 patients in at least one blood specimen. CTCs were positive for both vimentin and pan-CK. More patients were CTC positive after neoadjuvant therapy (6/20 vs. 9/15) and CTCs per/ml increased in most of the CTC-positive patients. After surgery, 8/13 patients with available blood specimens were still CTC positive. In clinical follow-up, 5/9 patients who died were CTC-positive. CONCLUSIONS Detection of CTC by filtration within multimodal treatment protocols of non-metastatic EAC is feasible. The rate of CTC positive findings and the quantity of CTCs changes in the course of multimodal neoadjuvant chemoradiation/chemotherapy and surgery.
Collapse
Affiliation(s)
- Jasmina Kuvendjiska
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany.
- Medical Faculty, University of Freiburg, 79106 Freiburg, Germany.
| | - Peter Bronsert
- Medical Faculty, University of Freiburg, 79106 Freiburg, Germany.
- Institute for Surgical Pathology, Medical Center-University of Freiburg, 79106 Freiburg, Germany.
| | - Verena Martini
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany.
- Medical Faculty, University of Freiburg, 79106 Freiburg, Germany.
| | - Sven Lang
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany.
- Medical Faculty, University of Freiburg, 79106 Freiburg, Germany.
| | - Martha B Pitman
- Department of Pathology & Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA.
| | - Jens Hoeppner
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany.
- Medical Faculty, University of Freiburg, 79106 Freiburg, Germany.
| | - Birte Kulemann
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany.
- Medical Faculty, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
27
|
Markiewicz A, Topa J, Nagel A, Skokowski J, Seroczynska B, Stokowy T, Welnicka-Jaskiewicz M, Zaczek AJ. Spectrum of Epithelial-Mesenchymal Transition Phenotypes in Circulating Tumour Cells from Early Breast Cancer Patients. Cancers (Basel) 2019; 11:cancers11010059. [PMID: 30634453 PMCID: PMC6356662 DOI: 10.3390/cancers11010059] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 01/05/2023] Open
Abstract
Circulating tumour cells (CTCs) can provide valuable prognostic information in a number of epithelial cancers. However, their detection is hampered due to their molecular heterogeneity, which can be induced by the epithelial-mesenchymal transition (EMT) process. Therefore, current knowledge about CTCs from clinical samples is often limited due to an inability to isolate wide spectrum of CTCs phenotypes. In the current work, we aimed at isolation and molecular characterization of CTCs with different EMT status in order to establish their clinical significance in early breast cancer patients. We have obtained CTCs-enriched blood fraction from 83 breast cancer patients in which we have tested the expression of epithelial, mesenchymal and general breast cancer CTCs markers (MGB1/HER2/CK19/CDH1/CDH2/VIM/PLS3), cancer stem cell markers (CD44, NANOG, ALDH1, OCT-4, CD133) and cluster formation gene (plakoglobin). We have shown that in the CTCs-positive patients, epithelial, epithelial-mesenchymal and mesenchymal CTCs markers were detected at a similar rate (in 28%, 24% and 24%, respectively). Mesenchymal CTCs were characterized by the most aggressive phenotype (significantly higher expression of CXCR4, uPAR, CD44, NANOG, p < 0.05 for all), presence of lymph node metastases (p = 0.043), larger tumour size (p = 0.023) and 7.33 higher risk of death in the multivariate analysis (95% CI 1.06–50.41, p = 0.04). Epithelial-mesenchymal subtype, believed to correspond to highly plastic and aggressive state, did not show significant impact on survival. Gene expression profile of samples with epithelial-mesenchymal CTCs group resembled pure epithelial or pure mesenchymal phenotypes, possibly underlining degree of EMT activation in particular patient’s sample. Molecular profiling of CTCs EMT phenotype provides more detailed and clinically informative results, proving the role of EMT in malignant cancer progression in early breast cancer.
Collapse
Affiliation(s)
- Aleksandra Markiewicz
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and Medical University of Gdansk, 80-211 Gdańsk, Poland.
| | - Justyna Topa
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and Medical University of Gdansk, 80-211 Gdańsk, Poland.
| | - Anna Nagel
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and Medical University of Gdansk, 80-211 Gdańsk, Poland.
| | - Jaroslaw Skokowski
- Department of Surgical Oncology, Medical University of Gdansk, 80-210 Gdańsk, Poland.
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-210 Gdańsk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.PL), 80-210 Gdansk, Poland.
| | - Barbara Seroczynska
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-210 Gdańsk, Poland.
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway.
| | | | - Anna J Zaczek
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and Medical University of Gdansk, 80-211 Gdańsk, Poland.
| |
Collapse
|
28
|
The role of circulating tumor cells in metastatic breast cancer: prognostic and predictive value. Mol Biol Rep 2018; 45:2025-2035. [DOI: 10.1007/s11033-018-4359-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022]
|
29
|
Khetani S, Mohammadi M, Nezhad AS. Filter-based isolation, enrichment, and characterization of circulating tumor cells. Biotechnol Bioeng 2018; 115:2504-2529. [DOI: 10.1002/bit.26787] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Sultan Khetani
- Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory; University of Calgary; Calgary Canada
- Center for BioEngineering Research and Education, University of Calgary; Calgary Canada
| | - Mehdi Mohammadi
- Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory; University of Calgary; Calgary Canada
- Center for BioEngineering Research and Education, University of Calgary; Calgary Canada
- Department of Biological Sciences; University of Calgary; Calgary Canada
| | - Amir Sanati Nezhad
- Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory; University of Calgary; Calgary Canada
- Center for BioEngineering Research and Education, University of Calgary; Calgary Canada
| |
Collapse
|
30
|
Gao W, Huang T, Yuan H, Yang J, Jin Q, Jia C, Mao G, Zhao J. Highly sensitive detection and mutational analysis of lung cancer circulating tumor cells using integrated combined immunomagnetic beads with a droplet digital PCR chip. Talanta 2018; 185:229-236. [DOI: 10.1016/j.talanta.2018.03.083] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/14/2018] [Accepted: 03/25/2018] [Indexed: 12/24/2022]
|
31
|
Ren X, Foster BM, Ghassemi P, Strobl JS, Kerr BA, Agah M. Entrapment of Prostate Cancer Circulating Tumor Cells with a Sequential Size-Based Microfluidic Chip. Anal Chem 2018; 90:7526-7534. [PMID: 29790741 PMCID: PMC6830444 DOI: 10.1021/acs.analchem.8b01134] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circulating tumor cells (CTCs) are broadly accepted as an indicator for early cancer diagnosis and disease severity. However, there is currently no reliable method available to capture and enumerate all CTCs as most systems require either an initial CTC isolation or antibody-based capture for CTC enumeration. Many size-based CTC detection and isolation microfluidic platforms have been presented in the past few years. Here we describe a new size-based, multiple-row cancer cell entrapment device that captured LNCaP-C4-2 prostate cancer cells with >95% efficiency when in spiked mouse whole blood at ∼50 cells/mL. The capture ratio and capture limit on each row was optimized and it was determined that trapping chambers with five or six rows of micro constriction channels were needed to attain a capture ratio >95%. The device was operated under a constant pressure mode at the inlet for blood samples which created a uniform pressure differential across all the microchannels in this array. When the cancer cells deformed in the constriction channel, the blood flow temporarily slowed down. Once inside the trapping chamber, the cancer cells recovered their original shape after the deformation created by their passage through the constriction channel. The CTCs reached the cavity region of the trapping chamber, such that the blood flow in the constriction channel resumed. On the basis of this principle, the CTCs will be captured by this high-throughput entrapment chip (CTC-HTECH), thus confirming the potential for our CTC-HTECH to be used for early stage CTC enrichment and entrapment for clinical diagnosis using liquid biopsies.
Collapse
Affiliation(s)
- Xiang Ren
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Brittni M. Foster
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Parham Ghassemi
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jeannine S. Strobl
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bethany A. Kerr
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Masoud Agah
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
32
|
Opoku-Damoah Y, Assanhou AG, Sooro MA, Baduweh CA, Sun C, Ding Y. Functional Diagnostic and Therapeutic Nanoconstructs for Efficient Probing of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14231-14247. [PMID: 29557165 DOI: 10.1021/acsami.7b17896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The circulation of tumor cells in peripheral blood is mostly recognized as a prerequisite for cancer progression or systemic invasion, and it correlates with the pivotal hallmark of malignancies known as metastasis. Multiple detection schemes for circulating tumor cells (CTCs) have emerged as the most discerning criteria for monitoring the outcome of anticancer therapy. Therefore, there has been a tremendous increase in the use of robust nanostructured platforms for observation of these mobile tumor cells through various simultaneous diagnosis and treatment regimens developed from conventional techniques. This review seeks to give detailed information about the nature of CTCs as well as techniques for exploiting specific biomarkers to help monitor cancer via detection, capturing, and analysis of unstable tumor cells. We will further discuss nanobased diagnostic interventions and novel platforms which have recently been developed from versatile nanomaterials such as polymer nanocomposites, metal organic frameworks, bioderived nanomaterials and other physically responsive particles with desirable intrinsic and external properties. Herein, we will also include in vivo nanotheranostic platforms which have received a lot of attention because of their enormous clinical potential. In all, this review sums up the general potential of key promising nanoinspired systems as well as other advanced strategies under research and those in clinical use.
Collapse
Affiliation(s)
- Yaw Opoku-Damoah
- Australian Institute for Bioengineering & Nanotechnology , The University of Queensland , St. Lucia , Brisbane, QLD 4072
| | - Assogba G Assanhou
- UFR Pharmacie, Falculté des Sciences de la Santé , Université d'Abomey-Calavi , 01BP188 Cotonou , Benin
| | | | | | | | | |
Collapse
|
33
|
Tunca B, Egeli U, Cecener G, Tezcan G, Gokgoz S, Tasdelen I, Bayram N, Tolunay S, Umut G, Demirdogen E, Erturk E, Ak S, Cetintas S, Evrensel T. CK19, CK20, EGFR and HER2 Status of Circulating Tumor Cells in Patients with Breast Cancer. TUMORI JOURNAL 2018; 98:243-51. [DOI: 10.1177/030089161209800211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aims and background The major cause of death in breast cancer patients is metastasis. Various biomarkers have been used for the early detection of circulating tumor cells in the peripheral blood of breast cancer patients. The aims of the current study were to analyze circulating tumor cells in the blood of breast cancer patients by investigating EGFR, CK19, CK20 and HER2 expression profiles and to evaluate their prognostic importance. Methods CK19, CK20 and EGFR gene expression profiles were evaluated in the blood samples of 84 female patients with primary invasive ductal breast cancer and 20 healthy female volunteers using SYBR green-based real-time qPCR assays. HER2 expression analyses were conducted in 46 patients who had an HER2-positive primary tumor and in 30 healthy women to determine the cutoff level of positivity. Results The positive rates of CK20, EGFR, CK19 and HER2 mRNA expression in the peripheral blood were 28.57% (24/84), 20.23% (17/84), 5.95% (5/84) and 2.17% (1/46), respectively. The high positive ratio of CK20 mRNA expression in the peripheral blood of breast cancer was identified for the first time in the current study. Significant differences were identified in CK20 expression status and several clinical parameters related with aggressiveness of tumors using a binary logistic regression analysis. Higher CK20-positive levels were observed in patients who had lymph node metastasis and advanced-grade primary tumors, which were estrogen receptor-negative. We have demonstrated that CK20 may be a novel biomarker that is useful to identify circulating tumor cells and predict breast cancer progression. Conclusions The results suggest that the investigation of CK20 mRNA with other biomarkers in the peripheral blood of breast cancer patients may be useful to monitor the presence of disseminated tumor cells in the blood circulation and to predict the prognosis of breast cancer.
Collapse
Affiliation(s)
- Berrin Tunca
- Department of Medical Biology, Medical
Faculty, Medical Faculty, Uludag University, Bursa, Turkey
| | - Unal Egeli
- Department of Medical Biology, Medical
Faculty, Medical Faculty, Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Department of Medical Biology, Medical
Faculty, Medical Faculty, Uludag University, Bursa, Turkey
| | - Gulcin Tezcan
- Department of Medical Biology, Medical
Faculty, Medical Faculty, Uludag University, Bursa, Turkey
| | - Sehsuvar Gokgoz
- Department of General Surgery, Medical
Faculty, Medical Faculty, Uludag University, Bursa, Turkey
| | - Ismet Tasdelen
- Department of General Surgery, Medical
Faculty, Medical Faculty, Uludag University, Bursa, Turkey
| | - Nuran Bayram
- Department of Econometrics, Faculty of
Economics and Administrative, Medical Faculty, Uludag University, Bursa,
Turkey
| | - Sahsine Tolunay
- Department of Pathology, Medical
Faculty, Medical Faculty, Uludag University, Bursa, Turkey
| | - Gorkem Umut
- Department of Medical Biology, Medical
Faculty, Medical Faculty, Uludag University, Bursa, Turkey
| | - Elif Demirdogen
- Department of Medical Biology, Medical
Faculty, Medical Faculty, Uludag University, Bursa, Turkey
| | - Elif Erturk
- Department of Medical Biology, Medical
Faculty, Medical Faculty, Uludag University, Bursa, Turkey
| | - Secil Ak
- Department of Medical Biology, Medical
Faculty, Medical Faculty, Uludag University, Bursa, Turkey
| | - Sibel Cetintas
- Department of Radiation Oncology,
Medical Faculty, Medical Faculty, Uludag University, Bursa, Turkey
| | - Turkkan Evrensel
- Department of Medical Oncology,
Medical Faculty, Uludag University, Bursa, Turkey
| |
Collapse
|
34
|
Rana A, Zhang Y, Esfandiari L. Advancements in microfluidic technologies for isolation and early detection of circulating cancer-related biomarkers. Analyst 2018; 143:2971-2991. [DOI: 10.1039/c7an01965c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Isolation of circulating biomarkers using microfluidic devices for cancer diagnosis.
Collapse
Affiliation(s)
- Ankit Rana
- Department of Electrical Engineering and Computer Science
- College of Engineering and Applied Sciences
- University of Cincinnati
- Cincinnati
- USA
| | - Yuqian Zhang
- Department of Electrical Engineering and Computer Science
- College of Engineering and Applied Sciences
- University of Cincinnati
- Cincinnati
- USA
| | - Leyla Esfandiari
- Department of Electrical Engineering and Computer Science
- College of Engineering and Applied Sciences
- University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
35
|
Feng X, Ashley J, Zhou T, Halder A, Sun Y. Molecularly imprinted nanoparticles for inhibiting ribonuclease in reverse transcriptase polymerase chain reaction. Analyst 2018; 143:2750-2754. [DOI: 10.1039/c8an00711j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We showed that molecularly imprinted nanoparticles (nanoMIPs) could efficiently inhibit the activities of the RNase in RT-PCR reactions, demonstrating that the tailor-made nanomaterials are very promising for use in routine biological assays.
Collapse
Affiliation(s)
- Xiaotong Feng
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- DK- 2800 Kgs, Lyngby
- Denmark
| | - Jon Ashley
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- DK- 2800 Kgs, Lyngby
- Denmark
| | - Tongchang Zhou
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- DK- 2800 Kgs, Lyngby
- Denmark
| | - Arnab Halder
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- DK- 2800 Kgs, Lyngby
- Denmark
| | - Yi Sun
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- DK- 2800 Kgs, Lyngby
- Denmark
| |
Collapse
|
36
|
Molecular Profiling and Significance of Circulating Tumor Cell Based Genetic Signatures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:143-167. [PMID: 28560673 DOI: 10.1007/978-3-319-55947-6_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer kills by metastasizing beyond the primary site. Early detection, surgical intervention and other treatments have improved the survival rates of patients with cancer, however, once metastasis occurs, responses to conventional therapies become significantly less effective, and this remains the leading cause of death. Circulating tumor cells (CTCs) are tumor cells that have preferentially disseminated from the primary tumor mass into the hematological system, and are en route to favorable distant sites where if they survive, can develop into metastases. They may be the earliest detectable cells with metastatic ability, and are gaining increasing attention because of their prognostic value in many types of cancers including breast, prostate, colon and lung. Recent technological advances have removed barriers that previously hindered the detection and isolation of these rare cells from blood, and have exponentially improved the genetic resolution at which we can characterize signatures that define CTCs. Some of the most significant observations from such examinations are described here. Firstly, aberrations that were thought to be unique to CTCs are detected at subclonal frequencies within primary tumors with measurable heterogeneity, indicating pre-existing genetic signatures for metastasis. Secondly, these subclonal events are enriched in CTCs and metastases, pointing towards the selection of a more 'fit' component of tumor cells with survival advantages. Lastly, this component of cancer cells may also be the chemoresistant portion that escapes systemic treatment, or acquires resistance during progression of the disease. The future of cancer management may include a standardized method of measuring intratumor heterogeneity of the primary as well as matched CTCs. This will help identify and target rare aberrations within primary tumors that make them more adept to disseminate, and also to monitor the development of treatment resistant subclones as cancer progresses.
Collapse
|
37
|
Bredemeier M, Edimiris P, Mach P, Kubista M, Sjöback R, Rohlova E, Kolostova K, Hauch S, Aktas B, Tewes M, Kimmig R, Kasimir-Bauer S. Gene Expression Signatures in Circulating Tumor Cells Correlate with Response to Therapy in Metastatic Breast Cancer. Clin Chem 2017; 63:1585-1593. [PMID: 28778937 DOI: 10.1373/clinchem.2016.269605] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Abstract
BACKGROUND
Circulating tumor cells (CTCs) are thought to be an ideal surrogate marker to monitor disease progression in metastatic breast cancer (MBC). We investigated the prediction of treatment response in CTCs of MBC patients on the basis of the expression of 46 genes.
METHODS
From 45 MBC patients and 20 healthy donors (HD), 2 × 5 mL of blood was collected at the time of disease progression (TP0) and at 2 consecutive clinical staging time points (TP1 and TP2) to proceed with the AdnaTest EMT-2/StemCellSelectTM (QIAGEN). Patients were grouped into (a) responder (R) and non-responder (NR) at TP1 and (b) overall responder (OR) and overall non-responder (ONR) at TP2. A 46-gene PCR assay was used for preamplification and high-throughput gene expression profiling. Data were analyzed by use of GenEx (MultiD) and SAS.
RESULTS
The CTC positivity was defined by the four-gene signature (EPCAM, KRT19, MUC1, ERBB2 positivity). Fourteen genes were identified as significantly differentially expressed between CTC+ and CTC− patients (KRT19, FLT1, EGFR, EPCAM, GZMM, PGR, CD24, KIT, PLAU, ALDH1A1, CTSD, MKI67, TWIST1, and ERBB2). KRT19 was highly expressed in CTC+ patients and ADAM17 in the NR at TP1. A significant differential expression of 4 genes (KRT19, EPCAM, CDH1, and SCGB2A2) was observed between OR and ONR when stratifying the samples into CTC+ or CTC−.
CONCLUSIONS
ADAM17 could be a key marker in distinguishing R from NR, and KRT19 was powerful in identifying CTCs.
Collapse
Affiliation(s)
- Maren Bredemeier
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Philippos Edimiris
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Pawel Mach
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Mikael Kubista
- TATAA Biocenter, Goeteborg, Sweden
- Institute of Biotechnology CAS, Prague, Czech Republic
| | | | | | - Katarina Kolostova
- Department of Laboratory Genetics, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | | | - Bahriye Aktas
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Mitra Tewes
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| |
Collapse
|
38
|
Schott AF, Goldstein LJ, Cristofanilli M, Ruffini PA, McCanna S, Reuben JM, Perez RP, Kato G, Wicha M. Phase Ib Pilot Study to Evaluate Reparixin in Combination with Weekly Paclitaxel in Patients with HER-2-Negative Metastatic Breast Cancer. Clin Cancer Res 2017; 23:5358-5365. [PMID: 28539464 PMCID: PMC5600824 DOI: 10.1158/1078-0432.ccr-16-2748] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/14/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023]
Abstract
Purpose: Chemokine receptor 1 (CXCR1) is recognized as an actionable receptor selectively expressed by breast cancer stem cells (BCSCs). Reparixin is an investigational allosteric inhibitor of chemokine receptors 1 and 2 (CXCR1/2), and demonstrates activity against BCSCs in human breast cancer xenografts. This phase Ib clinical trial examined dose, safety, and pharmacokinetics of paclitaxel plus reparixin therapy, and explored effects of reparixin on BCSCs in patients with metastatic breast cancer (MBC) (trial registration ID: NCT02001974).Experimental Design: Eligible patients had MBC and were candidates for paclitaxel therapy. Study treatment included a 3-day run-in with reparixin oral tablets three times a day, followed by paclitaxel 80 mg/m2/week (days 1, 8, and 15 for 28-day cycle) + reparixin tablets three times a day for 21/28 days; three dose cohorts were examined in a 3+3 dose escalation schema. Additional patients were recruited into an expansion cohort at the recommended phase II dose to further explore pharmacokinetics, safety, and biological effects of the combination therapy.Results: There were neither G4-5 adverse events nor serious adverse events related to study therapy and no interactions between reparixin and paclitaxel to influence their respective pharmacokinetic profiles. A 30% response rate was recorded, with durable responses >12 months in two patients. Exploratory biomarker analysis was inconclusive for therapy effect on BCSCs.Conclusions: Weekly paclitaxel plus reparixin in MBC appeared to be safe and tolerable, with demonstrated responses in the enrolled population. Dose level 3, 1200 mg orally three times a day, was selected for further study in a randomized phase II trial (NCT02370238). Clin Cancer Res; 23(18); 5358-65. ©2017 AACR.
Collapse
Affiliation(s)
- Anne F Schott
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Lori J Goldstein
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Massimo Cristofanilli
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | | | - Susan McCanna
- Project Management, Dompé Farmaceutici S.p.A., Milano, Italy
| | - James M Reuben
- Department of Hematopathology - Research, MD Anderson Cancer Center, Houston, Texas
| | | | - Giraldo Kato
- Pinnacle Oncology Hematology, Scottsdale, Arizona
| | - Max Wicha
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
39
|
Sun D, Chen Z, Wu M, Zhang Y. Nanomaterial-based Microfluidic Chips for the Capture and Detection of Circulating Tumor Cells. Nanotheranostics 2017; 1:389-402. [PMID: 29071201 PMCID: PMC5647762 DOI: 10.7150/ntno.21268] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/25/2017] [Indexed: 01/27/2023] Open
Abstract
Circulating tumor cells (CTCs), a type of cancer cells that spreads from primary or metastatic tumors into the bloodstream, can lead to a new fatal metastasis. As a new type of liquid biopsy, CTCs have become a hot pursuit and detection of CTCs offers the possibility for early diagnosis of cancers, earlier evaluation of chemotherapeutic efficacy and cancer recurrence, and choice of individual sensitive anti-cancer drugs. The fundamental challenges of capturing and characterizing CTCs are the extremely low number of CTCs in the blood and the intrinsic heterogeneity of CTCs. A series of microfluidic devices have been proposed for the analysis of CTCs with automation capability, precise flow behaviors, and significant advantages over the conventional larger scale systems. This review aims to provide in-depth insights into CTCs analysis, including various nanomaterial-based microfluidic chips for the capture and detection of CTCs based on the specific biochemical and physical properties of CTCs. The current developmental trends and promising research directions in the establishment of microfluidic chips for the capture and detection of CTCs are also discussed.
Collapse
Affiliation(s)
- Duanping Sun
- Institute of Medical Instrument and Application, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zuanguang Chen
- Institute of Medical Instrument and Application, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Minhao Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Yuanqing Zhang
- Institute of Medical Instrument and Application, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
40
|
Chen S, El-Heliebi A, Kroneis T. Biological and Molecular Characterization of Circulating Tumor Cells: A Creative Strategy for Precision Medicine? Adv Clin Chem 2017; 82:71-103. [PMID: 28939214 DOI: 10.1016/bs.acc.2017.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells (CTCs) are a group of rare cells disseminated from either primary or metastatic tumors into the blood stream. CTCs are considered to be the precursor of cancer metastasis. As a critical component of liquid biopsies, CTCs are a unique tool to understand the formation of metastasis and a valuable source of information on intratumor heterogeneity. Much effort has been invested in technologies for the detection of CTCs because they are rare cells among the vast number of blood cells. Studies in various cancers have repeatedly demonstrated that increased CTC counts prior to or during treatment are significantly associated with poor outcomes. In the new era of precision medicine, the study of CTCs reaches far beyond detection and counting. The rapidly growing field of analytical platforms for rare-cell analysis allows in-depth characterization of CTCs at the bulk cell and single-cell level. Genetic profiling of CTCs may provide an insight into the real-time tumor status, may allow the monitoring and evaluation of treatment response in clinical routine, and may lead to the development of novel therapeutic targets as well.
Collapse
Affiliation(s)
- Shukun Chen
- Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Graz, Austria.
| | - Amin El-Heliebi
- Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Graz, Austria
| | - Thomas Kroneis
- Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Graz, Austria
| |
Collapse
|
41
|
Werner S, Stenzl A, Pantel K, Todenhöfer T. Expression of Epithelial Mesenchymal Transition and Cancer Stem Cell Markers in Circulating Tumor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:205-228. [DOI: 10.1007/978-3-319-55947-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Skerenova M, Mikulova V, Capoun O, Zima T, Tesarova P. Circulating tumor cells and serum levels of MMP-2, MMP-9 and VEGF as markers of the metastatic process in patients with high risk of metastatic progression. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:272-280. [PMID: 28529342 DOI: 10.5507/bp.2017.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/28/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND AIMS Metastases are a severe complication in cancer patients and biomarkers predicting their progression are still lacking for specific groups of patients. HER2 positive breast cancer (HER2 BC) patients on trastuzumab therapy are at risk of the development of unpredictable and often fatal central nervous system (CNS) metastases and castration resistant prostate cancer (CRPC) patients urgently need a marker of disease progression during therapy. Proposed metastatic markers: circulating tumor cells (CTC), serum levels of matrix metalloproteinase 2 (MMP-2), 9 (MMP-9) and vascular endothelial growth factor (VEGF) were prospectively studied to confirm their utility in these two narrowly defined groups of cancer patients. PATIENTS AND METHODS The groups comprised 44 advanced HER2 BC, 24 CRPC patients and 42 healthy controls. An immunomagnetic separation method followed by PCR and electrophoretic detection (AdnaGen, Germany) were used for CTC determination. Serum marker levels were determined by the ELISAs (R&D System, USA). RESULTS MMP-2 serum level was significantly higher in HER2 BC patients who developed CNS metastases, especially if there were also bone metastases. CTCs were a negative predictive marker for overall survival in HER2 BC patients. MMP-9 serum level was significantly higher in CRPC patients in whom disease progression occurred. CTC vanished from the blood of most of the CRPC patients (from 88% to 37%) during chemotherapy. CONCLUSION MMP-2 serum level and CTCs show the potential to predict CNS metastases and overall survival in BC patients. CTCs and MMP-9 serum level could be a promising therapy response marker in CRPC patients.
Collapse
Affiliation(s)
- Marketa Skerenova
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Mikulova
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Otakar Capoun
- Department of Urology, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic Coresponding author: Marketa Skerenova, e-mail
| | - Tomas Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petra Tesarova
- Department of Oncology, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
43
|
Xu W, Wu B, Fu L, Chen J, Wang Z, Huang F, Chen J, Zhang M, Zhang Z, Lin J, Lan R, Chen R, Chen W, Chen L, Hong J, Zhang W, Ding Y, Okunieff P, Lin J, Zhang L. Comparison of three different methods for the detection of circulating tumor cells in mice with lung metastasis. Oncol Rep 2017; 37:3219-3226. [PMID: 28498481 PMCID: PMC5442393 DOI: 10.3892/or.2017.5613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor cells (CTCs) represent the key step of cancer cell dissemination. The alteration of CTCs correlates with the treatment outcome and prognosis. To enrich and identify CTCs from billions of blood cells renders a very challenging task, which triggers development of several methods, including lysis of RBC plus negative or positive enrichment using antibodies, and filter membrane or spiral microfluidics to capture CTCs. To compare the advantages of different enrichment methods for CTCs, we utilized the 4T1 breast cancer cells transfected with both green fluorescent protein (GFP) and luciferase to trace CTCs in the experimental lung metastasis model. Three methods were used to detect CTCs at the same time: bioluminescence assay, smearing method, and membrane filter method. The in vivo alive mouse imaging was used to dynamically monitor the growth of lung metastases. The sensitivity and accuracy of three detection methods were compared side-by-side. Our results showed that 1) the sensitivity of bioluminescence assay was the highest, but there was no information of CTC morphology; 2) the smearing method and membrane filter method could observe the detail of CTC morphology, such as in single or in cluster, while their sensitivity was lower than bioluminescence assay; 3) A dynamic observation at a 7-day intervals, the lung metastatic cancer grew at a log speed, while CTCs were increased at a low speed. This might be due to the activated immune cells eliminating the CTCs at a speed much faster than CTCs were generated. This comparison of three CTC detection methods in mouse model suggests that bioluminescence assay could be used in quantitative study of the effect of certain agent on the suppression of CTCs, while GFP-based morphological assays could be used to study the dissemination mechanism of CTCs. The combination of both bioluminescence assay and GFP-based assay would generate more information for quantity and quality of CTCs.
Collapse
Affiliation(s)
- Weifeng Xu
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Bing Wu
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lengxi Fu
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Junying Chen
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Zeng Wang
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Fei Huang
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jinrong Chen
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Mei Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32610, USA
| | - Zhenhuan Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32610, USA
| | - Jingan Lin
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ruilong Lan
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ruiqing Chen
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Wei Chen
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Long Chen
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jinsheng Hong
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Weijian Zhang
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yuxiong Ding
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Paul Okunieff
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32610, USA
| | - Jianhua Lin
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lurong Zhang
- First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
44
|
Detection of Circulating Tumour Cells in Urothelial Cancers and Clinical Correlations: Comparison of Two Methods. DISEASE MARKERS 2017; 2017:3414910. [PMID: 28321147 PMCID: PMC5340956 DOI: 10.1155/2017/3414910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/15/2017] [Indexed: 12/21/2022]
Abstract
Circulating tumour cells (CTC) are identified exploiting their protein/gene expression patterns or distinct size compared to blood cells. Data on CTC in bladder cancer (BC) are still scarce. We comparatively analyzed CTC enrichment by AdnaTest ProstateCancerSelect (AT) and ScreenCell®Cyto (SC) kits, combined with identification by EPCAM, MUC1, and ERBB2 expression and by cytological criteria, respectively, in 19 nonmetastatic (M0) and 47 metastatic (M+) BC patients, at baseline (T0) and during treatment (T1). At T0, CTC positivity rates by AT were higher in M+ compared to M0 cases (57.4% versus 25%, p = 0.041). EPCAM was detected in 75% of CTC-positive samples by AT, showing increasing expression levels from T0 to T1 (median (interquartile range, IQR): 0.18 (0.07-0.42) versus 0.84 (0.33-1.84), p = 0.005) in M+ cases. Overall, CTC positivity by SC was around 80% regardless of clinical setting and time point of analysis, except for a lower occurrence at T1 in M0 cases. At T0, circulating tumour microemboli were more frequently (25% versus 8%) detected and more numerous in M+ compared to M0 patients. The approach used for CTC detection impacts the outcome of CTC studies. Further investigations are required to clarify the clinical validity of AT and SC in specific BC clinical contexts.
Collapse
|
45
|
In situ single cell detection via microfluidic magnetic bead assay. PLoS One 2017; 12:e0172697. [PMID: 28222140 PMCID: PMC5319813 DOI: 10.1371/journal.pone.0172697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/08/2017] [Indexed: 01/13/2023] Open
Abstract
We present a single cell detection device based on magnetic bead assay and micro Coulter counters. This device consists of two successive micro Coulter counters, coupled with a high gradient magnetic field generated by an external magnet. The device can identify single cells in terms of the transit time difference of the cell through the two micro Coulter counters. Target cells are conjugated with magnetic beads via specific antibody and antigen binding. A target cell traveling through the two Coulter counters interacts with the magnetic field, and have a longer transit time at the 1st counter than that at the 2nd counter. In comparison, a non-target cell has no interaction with the magnetic field, and hence has nearly the same transit times through the two counters. Each cell passing through the two counters generates two consecutive voltage pulses one after the other; the pulse widths and magnitudes indicating the cell’s transit times through the counters and the cell’s size respectively. Thus, by measuring the pulse widths (transit times) of each cell through the two counters, each single target cell can be differentiated from non-target cells even if they have similar sizes. We experimentally proved that the target human umbilical vein endothelial cells (HUVECs) and non-target rat adipose-derived stem cells (rASCs) have significant different transit time distribution, from which we can determine the recognition regions for both cell groups quantitatively. We further demonstrated that within a mixed cell population of rASCs and HUVECs, HUVECs can be detected in situ and the measured HUVECs ratios agree well with the pre-set ratios. With the simple device structure and easy sample preparation, this method is expected to enable single cell detection in a continuous flow and can be applied to facilitate general cell detection applications such as stem cell identification and enumeration.
Collapse
|
46
|
Clinical significance of circulating tumor cells in patients with small-cell lung cancer. TUMORI JOURNAL 2017; 103:242-248. [PMID: 28218384 DOI: 10.5301/tj.5000601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND This study investigated the correlation of the presence of circulating tumor cells (CTCs) with clinical characteristics, and the predictive value of CTCs for progression-free survival (PFS) in patients with small-cell lung cancer (SCLC). METHODS Samples were obtained from 42 patients with SCLC before and after the first cycle of chemotherapy. CTCs were quantitated by negative immunomagnetic enrichment and immunocytochemistry using anti-CD45 and anti-pancytokeratin antibodies. RESULTS CTCs were positive (≥2) in 76.19% of patients with SCLC and negative in the control group. The presence of CTCs was positively correlated with 6 clinical characteristics. PFS was 6.055 and 10.670 months for patients with ≥2 and <2 CTCs/7.5 mL of blood before chemotherapy; after chemotherapy PFS was 4.862 and 10.535 months, respectively. CONCLUSIONS This study showed that both baseline CTC numbers and the change in CTC numbers after 1 cycle of chemotherapy are significant prognostic factors of PFS for SCLC.
Collapse
|
47
|
Park HS, Han HJ, Lee S, Kim GM, Park S, Choi YA, Lee JD, Kim GM, Sohn J, Kim SI. Detection of Circulating Tumor Cells in Breast Cancer Patients Using Cytokeratin-19 Real-Time RT-PCR. Yonsei Med J 2017; 58:19-26. [PMID: 27873491 PMCID: PMC5122637 DOI: 10.3349/ymj.2017.58.1.19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/12/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The roles of circulating tumor cells (CTCs) as predictive and prognostic factors, as well as key mediators in the metastatic cascade, have been investigated. This study aimed to validate a method to quantify CTCs in peripheral blood using a real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay for cytokeratin (CK)-19 and to evaluate the utility of this assay in detecting CTCs in breast cancer patients. MATERIALS AND METHODS Real-time monitoring PCR of fluorescently labeled specific hybridization probes for CK-19 mRNA was established. Peripheral blood samples from 30 healthy donors, 69 patients with early breast cancer, 47 patients with locally advanced breast cancer, and 126 patients with metastatic breast cancer were prospectively obtained and analyzed for CTC detection. RESULTS CK-19 mRNA was not detectable in healthy subjects using the real-time RT-PCR method. The detection rates of CK-19 mRNA in breast cancer patients were 47.8% for early breast cancer (33/69), 46.8% for locally advanced breast cancer (22/47), and 61.1% for metastatic breast cancer (77/129). The detection rate of CK-19-positive CTCs in metastatic disease was slightly higher than early or locally advanced breast cancer; however, the detection rate according to disease burden was not statistically different (p=0.097). The detection rate was higher in patients with pleural metastasis (p=0.045). CTC detection was associated with poor survival (p=0.014). CONCLUSION A highly specific and sensitive CK-19 mRNA-based method to detect CTCs in peripheral blood in breast cancer patients can be used in further prospective studies to evaluate the predictive and prognostic importance of CTCs.
Collapse
Affiliation(s)
- Hyung Seok Park
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ju Han
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Soohyeon Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Gun Min Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seho Park
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Yeon A Choi
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Dong Lee
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Gi Moon Kim
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Joohyuk Sohn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Seung Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
48
|
Li J, Wang J, Wang Y, Trau M. Simple and rapid colorimetric detection of melanoma circulating tumor cells using bifunctional magnetic nanoparticles. Analyst 2017; 142:4788-4793. [DOI: 10.1039/c7an01102d] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The rapid and sensitive detection of melanoma circulating tumor cells was achieved utilizing the nanozyme activity and separation property of magnetic nanoparticles.
Collapse
Affiliation(s)
- Junrong Li
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| | - Jing Wang
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| | - Yuling Wang
- Department of Molecular Sciences
- ARC Centre of Excellence for Nanoscale BioPhotonics
- Faculty of Science and Engineering
- Macquarie University
- Sydney
| | - Matt Trau
- Centre for Personalized Nanomedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
| |
Collapse
|
49
|
Huang X, O'Connor R, Kwizera EA. Gold Nanoparticle Based Platforms for Circulating Cancer Marker Detection. Nanotheranostics 2017; 1:80-102. [PMID: 28217434 PMCID: PMC5313055 DOI: 10.7150/ntno.18216] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Detection of cancer-related circulating biomarkers in body fluids has become a cutting-edge technology that has the potential to noninvasively screen cancer, diagnose cancer at early stage, monitor tumor progression, and evaluate therapy responses. Traditional molecular and cellular detection methods are either insensitive for early cancer intervention or technically costly and complicated making them impractical for typical clinical settings. Due to their exceptional structural and functional properties that are not available from bulk materials or discrete molecules, nanotechnology is opening new horizons for low cost, rapid, highly sensitive, and highly specific detection of circulating cancer markers. Gold nanoparticles have emerged as a unique nanoplatform for circulating biomarker detection owning to their advantages of easy synthesis, facile surface chemistry, excellent biocompatibility, and remarkable structure and environment sensitive optical properties. In this review, we introduce current gold nanoparticle-based technology platforms for the detection of four major classes of circulating cancer markers - circulating tumor cells, vesicles, nucleic acids, and proteins. The techniques will be summarized in terms of signal detection strategies. Distinctive examples are provided to highlight the state-of-the-art technologies that significantly advance basic and clinical cancer research.
Collapse
Affiliation(s)
- Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152
| | - Ryan O'Connor
- Department of Chemistry, The University of Memphis, Memphis, TN 38152
| | | |
Collapse
|
50
|
Pagliarulo V, Ancona P, Petitti T, Salerno A, Spadavecchia R, Di Stasi S, Cormio L, Maurizio B, Carrieri G, Ditonno P. Detection and Clinical Significance of Circulating Tumor Cells in Patients Undergoing Radical Cystectomy for Urothelial Bladder Cancer. Clin Genitourin Cancer 2016; 15:455-462. [PMID: 28024950 DOI: 10.1016/j.clgc.2016.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/02/2016] [Accepted: 11/20/2016] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Estimation of prognosis is patients undergoing radical cystectomy is often unreliable, as occult disease remains undetected by conventional diagnostic tools. The purpose of this study was to evaluate the feasibility and the clinical significance of a polymerase chain reaction assay to detect cytokeratin 7 (CK7) mRNA expression in peripheral blood cells of patients undergoing radical cystectomy for clinically nonmetastatic bladder cancer. PATIENTS AND METHODS From 2005 to 2009, 59 patients undergoing radical cystectomy and pelvic lymph node dissection were prospectively investigated. Peripheral blood was collected prior to surgery, and a nested polymerase chain reaction assay was developed to identify patients with circulating cells expressing CK7 mRNA. Preoperative, histopathologic data and clinical outcome were compared with CK7 findings. RESULTS CK7 expression was detected in 23 (38.9%) of 59 patients and correlated to T stage and lymph node status. After a median follow-up of 42 months, 29 patients experienced a recurrence, whereas 36 died. The presence of CK7-positive cells was significantly associated with an increased risk for recurrence and decreased survival as compared with patients who were CK7-negative (P < .001 and P < .001, respectively; hazard ratios of 8.77 and 5.2 for recurrence and overall death, respectively). The detection of CK7-positive cells was an independent predictor of recurrence and death in a multivariable analysis. CONCLUSION The detection of CK7 mRNA in the circulating cells of patients undergoing radical cystectomy for urothelial cancer identifies those with significantly increased risk of cancer recurrence and death.
Collapse
Affiliation(s)
- Vincenzo Pagliarulo
- Urology and Andrology Unit, Department of Emergency and Organ Transplantation, University "Aldo Moro", Bari, Italy.
| | - Patrizia Ancona
- Urology and Andrology Unit, Department of Emergency and Organ Transplantation, University "Aldo Moro", Bari, Italy
| | - Tommasangelo Petitti
- Department of Hygiene, Public Health, and Statistics, Campus Biomedico University, Rome, Italy
| | | | - Rossana Spadavecchia
- Urology and Andrology Unit, Department of Emergency and Organ Transplantation, University "Aldo Moro", Bari, Italy
| | - Savino Di Stasi
- Department of Surgery/Urology, Tor Vergata University, Rome, Italy
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | | | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | - Pasquale Ditonno
- Urology and Andrology Unit, Department of Emergency and Organ Transplantation, University "Aldo Moro", Bari, Italy
| |
Collapse
|