1
|
Ji L, Meng Z, Dong X, Wang Q, Jiang Y, Zhang J, Hu D, Guo S, Zhou W, Song W. ICA1 affects APP processing through the PICK1-PKCα signaling pathway. CNS Neurosci Ther 2024; 30:e14754. [PMID: 38884369 PMCID: PMC11181291 DOI: 10.1111/cns.14754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024] Open
Abstract
AIMS Islet cell autoantigen 1 (ICA1) is involved in autoimmune diseases and may affect synaptic plasticity as a neurotransmitter. Databases related to Alzheimer's disease (AD) have shown decreased ICA1 expression in patients with AD. However, the role of ICA1 in AD remains unclear. Here, we report that ICA1 expression is decreased in the brains of patients with AD and an AD mouse model. RESULTS The ICA1 increased the expression of amyloid precursor protein (APP), disintegrin and metalloprotease 10 (ADAM10), and disintegrin and metalloprotease 17 (ADAM17), but did not affect protein half-life or mRNA levels. Transcriptome sequencing analysis showed that ICA1 regulates the G protein-coupled receptor signaling pathway. The overexpression of ICA1 increased PKCα protein levels and phosphorylation. CONCLUSION Our results demonstrated that ICA1 shifts APP processing to non-amyloid pathways by regulating the PICK1-PKCα signaling pathway. Thus, this study suggests that ICA1 is a novel target for the treatment of AD.
Collapse
Affiliation(s)
- Liangye Ji
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - ZiJun Meng
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiangjun Dong
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Qunxian Wang
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Yanshuang Jiang
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Jie Zhang
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Dongjie Hu
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Shipeng Guo
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Weihui Zhou
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Weihong Song
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang ProvinceWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| |
Collapse
|
2
|
Gnyliukh N, Johnson A, Nagel MK, Monzer A, Babić D, Hlavata A, Alotaibi SS, Isono E, Loose M, Friml J. Role of the dynamin-related protein 2 family and SH3P2 in clathrin-mediated endocytosis in Arabidopsis thaliana. J Cell Sci 2024; 137:jcs261720. [PMID: 38506228 PMCID: PMC11112126 DOI: 10.1242/jcs.261720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024] Open
Abstract
Clathrin-mediated endocytosis (CME) is vital for the regulation of plant growth and development through controlling plasma membrane protein composition and cargo uptake. CME relies on the precise recruitment of regulators for vesicle maturation and release. Homologues of components of mammalian vesicle scission are strong candidates to be part of the scission machinery in plants, but the precise roles of these proteins in this process are not fully understood. Here, we characterised the roles of the plant dynamin-related protein 2 (DRP2) family (hereafter DRP2s) and SH3-domain containing protein 2 (SH3P2), the plant homologue to recruiters of dynamins, such as endophilin and amphiphysin, in CME by combining high-resolution imaging of endocytic events in vivo and characterisation of the purified proteins in vitro. Although DRP2s and SH3P2 arrive similarly late during CME and physically interact, genetic analysis of the sh3p123 triple mutant and complementation assays with non-SH3P2-interacting DRP2 variants suggest that SH3P2 does not directly recruit DRP2s to the site of endocytosis. These observations imply that, despite the presence of many well-conserved endocytic components, plants have acquired a distinct mechanism for CME.
Collapse
Affiliation(s)
- Nataliia Gnyliukh
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Alexander Johnson
- Division of Anatomy, Centre for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Aline Monzer
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - David Babić
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Annamaria Hlavata
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Erika Isono
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Martin Loose
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| |
Collapse
|
3
|
Zhu H, Sydor AM, Boddy KC, Coyaud E, Laurent EMN, Au A, Tan JMJ, Yan BR, Moffat J, Muise AM, Yip CM, Grinstein S, Raught B, Brumell JH. Salmonella exploits membrane reservoirs for invasion of host cells. Nat Commun 2024; 15:3120. [PMID: 38600106 PMCID: PMC11006906 DOI: 10.1038/s41467-024-47183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Salmonella utilizes a type 3 secretion system to translocate virulence proteins (effectors) into host cells during infection1. The effectors modulate host cell machinery to drive uptake of the bacteria into vacuoles, where they can establish an intracellular replicative niche. A remarkable feature of Salmonella invasion is the formation of actin-rich protuberances (ruffles) on the host cell surface that contribute to bacterial uptake. However, the membrane source for ruffle formation and how these bacteria regulate membrane mobilization within host cells remains unclear. Here, we show that Salmonella exploits membrane reservoirs for the generation of invasion ruffles. The reservoirs are pre-existing tubular compartments associated with the plasma membrane (PM) and are formed through the activity of RAB10 GTPase. Under normal growth conditions, membrane reservoirs contribute to PM homeostasis and are preloaded with the exocyst subunit EXOC2. During Salmonella invasion, the bacterial effectors SipC, SopE2, and SopB recruit exocyst subunits from membrane reservoirs and other cellular compartments, thereby allowing exocyst complex assembly and membrane delivery required for bacterial uptake. Our findings reveal an important role for RAB10 in the establishment of membrane reservoirs and the mechanisms by which Salmonella can exploit these compartments during host cell invasion.
Collapse
Affiliation(s)
- Hongxian Zhu
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Andrew M Sydor
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Kirsten C Boddy
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM)-U1192, Université de Lille, Inserm, CHU Lille, Lille, France
| | - Estelle M N Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM)-U1192, Université de Lille, Inserm, CHU Lille, Lille, France
| | - Aaron Au
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Joel M J Tan
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Bing-Ru Yan
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Aleixo M Muise
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
- SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - Christopher M Yip
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
4
|
Shao X, Volk L. PICK1 links KIBRA and AMPA receptors in coiled-coil-driven supramolecular complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584494. [PMID: 38558978 PMCID: PMC10980033 DOI: 10.1101/2024.03.12.584494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The human memory-associated protein KIBRA regulates synaptic plasticity and trafficking of AMPA-type glutamate receptors, and is implicated in multiple neuropsychiatric and cognitive disorders. How KIBRA forms complexes with and regulates AMPA receptors remains unclear. Here, we show that KIBRA does not interact directly with the AMPA receptor subunit GluA2, but that PICK1, a key regulator of AMPA receptor trafficking, can serve as a bridge between KIBRA and GluA2. We identified structural determinants of KIBRA-PICK1-AMPAR complexes by investigating interactions and cellular expression patterns of different combinations of KIBRA and PICK1 domain mutants. We find that the PICK1 BAR domain, a coiled-coil structure, is sufficient for interaction with KIBRA, whereas mutation of the BAR domain disrupts KIBRA-PICK1-GluA2 complex formation. In addition, KIBRA recruits PICK1 into large supramolecular complexes, a process which requires KIBRA coiled-coil domains. These findings reveal molecular mechanisms by which KIBRA can organize key synaptic signaling complexes.
Collapse
|
5
|
Duan HD, Jain BK, Li H, Graham TR, Li H. Structural insight into an Arl1-ArfGEF complex involved in Golgi recruitment of a GRIP-domain golgin. Nat Commun 2024; 15:1942. [PMID: 38431634 PMCID: PMC10908827 DOI: 10.1038/s41467-024-46304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Arl1 is an Arf-like (Arl) GTP-binding protein that interacts with the guanine nucleotide exchange factor Gea2 to recruit the golgin Imh1 to the Golgi. The Arl1-Gea2 complex also binds and activates the phosphatidylserine flippase Drs2 and these functions may be related, although the underlying molecular mechanism is unclear. Here we report high-resolution cryo-EM structures of the full-length Gea2 and the Arl1-Gea2 complex. Gea2 is a large protein with 1459 residues and is composed of six domains (DCB, HUS, SEC7, HDS1-3). We show that Gea2 assembles a stable dimer via an extensive interface involving hydrophobic and electrostatic interactions in the DCB and HUS region. Contrary to the previous report on a Gea2 homolog in which Arl1 binds to the dimerization surface of the DCB domain, implying a disrupted dimer upon Arl1 binding, we find that Arl1 binds to the outside surface of the Gea2 DCB domain, leaving the Gea2 dimer intact. The interaction between Arl1 and Gea2 involves the classic FWY aromatic residue triad as well as two Arl1-specific residues. We show that key mutations that disrupt the Arl1-Gea2 interaction abrogate Imh1 Golgi association. This work clarifies the Arl1-Gea2 interaction and improves our understanding of molecular events in the membrane trafficking.
Collapse
Affiliation(s)
- H Diessel Duan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
6
|
Sim PF, Chek MF, Nguyen NTH, Nishimura T, Inaba T, Hakoshima T, Suetsugu S. The SH3 binding site in front of the WH1 domain contributes to the membrane binding of the BAR domain protein endophilin A2. J Biochem 2023; 175:57-67. [PMID: 37812440 DOI: 10.1093/jb/mvad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
The Bin-Amphiphysin-Rvs (BAR) domain of endophilin binds to the cell membrane and shapes it into a tubular shape for endocytosis. Endophilin has a Src-homology 3 (SH3) domain at their C-terminal. The SH3 domain interacts with the proline-rich motif (PRM) that is found in proteins such as neural Wiskott-Aldrich syndrome protein (N-WASP). Here, we re-examined the binding sites of the SH3 domain of endophilin in N-WASP by machine learning-based prediction and identified the previously unrecognized binding site. In addition to the well-recognized PRM at the central proline-rich region, we found a PRM in front of the N-terminal WASP homology 1 (WH1) domain of N-WASP (NtPRM) as a binding site of the endophilin SH3 domain. Furthermore, the diameter of the membrane tubules in the presence of NtPRM mutant was narrower and wider than that in the presence of N-WASP and in its absence, respectively. Importantly, the NtPRM of N-WASP was involved in the membrane localization of endophilin A2 in cells. Therefore, the NtPRM contributes to the binding of endophilin to N-WASP in membrane remodeling.
Collapse
Affiliation(s)
- Pei Fang Sim
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Min Fey Chek
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Nhung Thi Hong Nguyen
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tamako Nishimura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Takehiko Inaba
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Toshio Hakoshima
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shiro Suetsugu
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
7
|
Yang LQ, Huang AF, Xu WD. Biology of endophilin and it's role in disease. Front Immunol 2023; 14:1297506. [PMID: 38116012 PMCID: PMC10728279 DOI: 10.3389/fimmu.2023.1297506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Endophilin is an evolutionarily conserved family of protein that involves in a range of intracellular membrane dynamics. This family consists of five isoforms, which are distributed in various tissues. Recent studies have shown that Endophilin regulates diseases pathogenesis, including neurodegenerative diseases, tumors, cardiovascular diseases, and autoimmune diseases. In vivo, it regulates different biological functions such as vesicle endocytosis, mitochondrial morphological changes, apoptosis and autophagosome formation. Functional studies confirmed the role of Endophilin in development and progression of these diseases. In this study, we have comprehensively discussed the complex function of Endophilin and how the family contributes to diseases development. It is hoped that this study will provide new ideas for targeting Endophilin in diseases.
Collapse
Affiliation(s)
- Lu-Qi Yang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Kawano K, Kamasaka K, Yokoyama F, Kawamoto J, Ogawa T, Kurihara T, Matsuzaki K. Structural factors governing binding of curvature-sensing peptides to bacterial extracellular vesicles covered with hydrophilic polysaccharide chains. Biophys Chem 2023; 299:107039. [PMID: 37209609 DOI: 10.1016/j.bpc.2023.107039] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Extracellular vesicles (EVs) have attracted an attention as important targets in the fields of biology and medical science because they contain physiologically active molecules. Curvature-sensing peptides are currently used as novel tools for marker-independent EV detection techniques. A structure-activity correlation study demonstrated that the α-helicity of the peptides is prominently involved in peptide binding to vesicles. However, whether a flexible structure changing from a random coil to an α-helix upon binding to vesicles or a restricted α-helical structure is an important factor in the detection of biogenic vesicles is still unclear. To address this issue, we compared the binding affinities of stapled and unstapled peptides for bacterial EVs with different surface polysaccharide chains. We found that unstapled peptides showed similar binding affinities for bacterial EVs regardless of surface polysaccharide chains, whereas stapled peptides showed substantially decreased binding affinities for bacterial EVs covered with capsular polysaccharides. This is probably because curvature-sensing peptides must pass through the layer of hydrophilic polysaccharide chains prior to binding to the hydrophobic membrane surface. While stapled peptides with restricted structures cannot easily pass through the layer of polysaccharide chains, unstapled peptides with flexible structures can easily approach the membrane surface. Therefore, we concluded that the structural flexibility of curvature-sensing peptides is a key factor for governing the highly sensitive detection of bacterial EVs.
Collapse
Affiliation(s)
- Kenichi Kawano
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kouhei Kamasaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Fumiaki Yokoyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan; Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Takuya Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Islam SI, Ahmed SS, Sanjida S, Mou MJ, Mahfuj S, Habib N, Ferdous MA, Rahman MDH, Noor MHM. Towards characterizing of Enterocytozoon hepatopenaei (EHP) spore wall proteins with feature identification and analogy modeling. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
10
|
Mougios N, Opazo F, Rizzoli SO, Reshetniak S. Trafficking proteins show limited differences in mobility across different postsynaptic spines. iScience 2023; 26:105971. [PMID: 36718370 PMCID: PMC9883188 DOI: 10.1016/j.isci.2023.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
The function of the postsynaptic compartment is based on the presence and activity of postsynaptic receptors, whose dynamics are controlled by numerous scaffolding, signaling and trafficking proteins. Although the receptors and the scaffolding proteins have received substantial attention, the trafficking proteins have not been investigated extensively. Their mobility rates are unknown, and it is unclear how the postsynaptic environment affects their dynamics. To address this, we analyzed several trafficking proteins (α-synuclein, amphiphysin, calmodulin, doc2a, dynamin, and endophilin), estimating their movement rates in the dendritic shaft, as well as in morphologically distinct "mushroom" and "stubby" postsynapse types. The diffusion parameters were surprisingly similar across dendritic compartments, and a few differences between proteins became evident only in the presence of a synapse neck. We conclude that the movement of trafficking proteins is not strongly affected by the postsynaptic compartment, in stark contrast to the presynapse, which regulates strongly the movement of such proteins.
Collapse
Affiliation(s)
- Nikolaos Mougios
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany,Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany,Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany,NanoTag Biotechnologies GmbH, Göttingen, Germany
| | - Silvio O. Rizzoli
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany,Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany,Corresponding author
| | - Sofiia Reshetniak
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany,Corresponding author
| |
Collapse
|
11
|
Mallik B, Bhat S, Kumar V. Role of Bin‐Amphiphysin‐Rvs (BAR) domain proteins in mediating neuronal signaling and disease. Synapse 2022; 76:e22248. [DOI: 10.1002/syn.22248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Bhagaban Mallik
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| | - Sajad Bhat
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| | - Vimlesh Kumar
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Bhopal Indore Bypass Road Bhopal Madhya Pradesh 462 066 India
| |
Collapse
|
12
|
Meng X, Ye H, Shang Z, Sun L, Guo Y, Li N, Xiao L, Feng Y. Identification and Characterization of Three Spore Wall Proteins of Enterocytozoon Bieneusi. Front Cell Infect Microbiol 2022; 12:808986. [PMID: 35795186 PMCID: PMC9251001 DOI: 10.3389/fcimb.2022.808986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Enterocytozoon bieneusi is the most common microsporidian pathogen in farm animals and humans. Although several spore wall proteins (SWPs) of other human-pathogenic microsporidia have been identified, SWPs of E. bieneusi remain poorly characterized. In the present study, we identified the sequences of three E. bieneusi SWPs from whole genome sequence data, expressed them in Escherichia coli, generated a monoclonal antibody (mAb) against one of them (EbSWP1), and used the mAb in direct immunofluorescence detection of E. bieneusi spores in fecal samples. The amino acid sequence of EbSWP1 shares some identity to EbSWP2 with a BAR2 domain, while the sequence of EbSWP3 contains a MICSWaP domain. No cross-reactivity among the EbSWPs was demonstrated using the polyclonal antibodies generated against them. The mAb against EbSWP1 was shown to react with E. bieneusi spores in fecal samples. Using chromotrope 2R staining-based microscopy as the gold standard, the sensitivity and specificity of the direct immunofluorescence for the detection of E. bieneusi were 91.4 and 73.7%. Data generated from the study could be useful in the characterization of E. bieneusi and immunological detection of the pathogen.
Collapse
Affiliation(s)
- Xinan Meng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haojie Ye
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ziyu Shang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lianjing Sun
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Lihua Xiao, ; Yaoyu Feng,
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Lihua Xiao, ; Yaoyu Feng,
| |
Collapse
|
13
|
Bashkirov PV, Kuzmin PI, Vera Lillo J, Frolov VA. Molecular Shape Solution for Mesoscopic Remodeling of Cellular Membranes. Annu Rev Biophys 2022; 51:473-497. [PMID: 35239417 PMCID: PMC10787580 DOI: 10.1146/annurev-biophys-011422-100054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular membranes self-assemble from and interact with various molecular species. Each molecule locally shapes the lipid bilayer, the soft elastic core of cellular membranes. The dynamic architecture of intracellular membrane systems is based on elastic transformations and lateral redistribution of these elementary shapes, driven by chemical and curvature stress gradients. The minimization of the total elastic stress by such redistribution composes the most basic, primordial mechanism of membrane curvature-composition coupling (CCC). Although CCC is generally considered in the context of dynamic compositional heterogeneity of cellular membrane systems, in this article we discuss a broader involvement of CCC in controlling membrane deformations. We focus specifically on the mesoscale membrane transformations in open, reservoir-governed systems, such as membrane budding, tubulation, and the emergence of highly curved sites of membrane fusion and fission. We reveal that the reshuffling of molecular shapes constitutes an independent deformation mode with complex rheological properties.This mode controls effective elasticity of local deformations as well as stationary elastic stress, thus emerging as a major regulator of intracellular membrane remodeling.
Collapse
Affiliation(s)
- Pavel V Bashkirov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Peter I Kuzmin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Javier Vera Lillo
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain;
| | - Vadim A Frolov
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
14
|
Kong C, Ni X, Wang Y, Zhang A, Zhang Y, Lin F, Li S, Lv Y, Zhu J, Yao X, Dai Q, Mo Y, Wang J. ICA69 aggravates ferroptosis causing septic cardiac dysfunction via STING trafficking. Cell Death Dis 2022; 8:187. [PMID: 35397620 PMCID: PMC8994779 DOI: 10.1038/s41420-022-00957-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/03/2022] [Accepted: 03/16/2022] [Indexed: 12/30/2022]
Abstract
Previous studies have demonstrated that cardiomyocyte apoptosis, ferroptosis, and inflammation participate in the progress of sepsis-induced cardiomyopathy (SIC). Although Islet cell autoantigen 69 (ICA69) is an imperative molecule that could regulate inflammation and immune response in numerous illnesses, its function in cardiovascular disease, particularly in SIC, is still elusive. We confirmed that LPS significantly enhanced the expression of ICA69 in wild-type (WT) mice, macrophages, and cardiomyocytes. The knockout of ICA69 in lipopolysaccharide(LPS)-induced mice markedly elevated survival ratio and heart function, while inhibiting cardiac muscle and serum inflammatory cytokines, reactive oxygen (ROS), and ferroptosis biomarkers. Mechanistically, increased expression of ICA69 triggered the production of STING, which further resulted in the production of intracellular lipid peroxidation, eventually triggering ferroptosis and heart injury. Intriguingly, ICA69 deficiency only reversed the ferroptotic marker levels, such as prostaglandin endoperoxide synthase 2 (PTGS2), malonaldehyde (MDA), 4-hydroxynonenal (4HNE), glutathione peroxidase 4 (GPX4), superoxide dismutase (SOD), iron and lipid ROS, but had no effects on the xCT-dependent manner. Additionally, greater ICA69 level was identified in septic patients peripheralblood mononuclear cells (PBMCs) than in normal control groups. Generally, we unveil that ICA69 deficiency can relieve inflammation and ferroptosis in LPS-induced murine hearts and macrophages, making targeting ICA69 in heart a potentially promising treatment method for SIC.
Collapse
|
15
|
Gasilina A, Yoon HY, Jian X, Luo R, Randazzo PA. A lysine-rich cluster in the N-BAR domain of ARF GTPase-activating protein ASAP1 is necessary for binding and bundling actin filaments. J Biol Chem 2022; 298:101700. [PMID: 35143843 PMCID: PMC8902617 DOI: 10.1016/j.jbc.2022.101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/05/2022] Open
Abstract
Actin filament maintenance is critical for both normal cell homeostasis and events associated with malignant transformation. The ADP-ribosylation factor GTPase-activating protein ASAP1 regulates the dynamics of filamentous actin-based structures, including stress fibers, focal adhesions, and circular dorsal ruffles. Here, we have examined the molecular basis for ASAP1 association with actin. Using a combination of structural modeling, mutagenesis, and in vitro and cell-based assays, we identify a putative-binding interface between the N-Bin-Amphiphysin-Rvs (BAR) domain of ASAP1 and actin filaments. We found that neutralization of charges and charge reversal at positions 75, 76, and 79 of ASAP1 reduced the binding of ASAP1 BAR-pleckstrin homology tandem to actin filaments and abrogated actin bundle formation in vitro. In addition, overexpression of actin-binding defective ASAP1 BAR-pleckstrin homology [K75, K76, K79] mutants prevented cellular actin remodeling in U2OS cells. Exogenous expression of [K75E, K76E, K79E] mutant of full-length ASAP1 did not rescue the reduction of cellular actin fibers consequent to knockdown of endogenous ASAP1. Taken together, our results support the hypothesis that the lysine-rich cluster in the N-BAR domain of ASAP1 is important for regulating actin filament organization.
Collapse
Affiliation(s)
- Anjelika Gasilina
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Hye-Young Yoon
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ruibai Luo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
16
|
van der Beek J, de Heus C, Liv N, Klumperman J. Quantitative correlative microscopy reveals the ultrastructural distribution of endogenous endosomal proteins. J Cell Biol 2022; 221:212877. [PMID: 34817533 PMCID: PMC8624803 DOI: 10.1083/jcb.202106044] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023] Open
Abstract
The key endosomal regulators Rab5, EEA1, and APPL1 are frequently applied in fluorescence microscopy to mark early endosomes, whereas Rab7 is used as a marker for late endosomes and lysosomes. However, endogenous levels of these proteins localize poorly in immuno-EM, and systematic studies on their native ultrastructural distributions are lacking. To address this gap, we here present a quantitative, on-section correlative light and electron microscopy (CLEM) approach. Using the sensitivity of fluorescence microscopy, we label hundreds of organelles that are subsequently visualized by EM and classified by ultrastructure. We show that Rab5 predominantly marks small, endocytic vesicles and early endosomes. EEA1 colocalizes with Rab5 on early endosomes, but unexpectedly also labels Rab5-negative late endosomes, which are positive for PI(3)P but lack Rab7. APPL1 is restricted to small Rab5-positive, tubulo-vesicular profiles. Rab7 primarily labels late endosomes and lysosomes. These data increase our understanding of the structural-functional organization of the endosomal system and introduce quantitative CLEM as a sensitive alternative for immuno-EM.
Collapse
Affiliation(s)
- Jan van der Beek
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Cecilia de Heus
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
17
|
Cagnetta F, Škultéty V, Evans MR, Marenduzzo D. Universal properties of active membranes. Phys Rev E 2022; 105:L012604. [PMID: 35193286 DOI: 10.1103/physreve.105.l012604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
We put forward a general field theory for nearly flat fluid membranes with embedded activators and analyze their critical properties using renormalization group techniques. Depending on the membrane-activator coupling, we find a crossover between acoustic and diffusive scaling regimes, with mean-field dynamical critical exponents z=1 and 2, respectively. We argue that the acoustic scaling, which is exact in all spatial dimensions, leads to an early-time behavior, which is representative of the spatiotemporal patterns observed at the leading edge of motile cells, such as oscillations superposed on the growth of the membrane width. In the case of mean-field diffusive scaling, one-loop corrections to the mean-field exponents reveal universal behavior distinct from the Kardar-Parisi-Zhang scaling of passive interfaces and signs of strong-coupling behavior.
Collapse
Affiliation(s)
- Francesco Cagnetta
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, Scotland, United Kingdom
| | - Viktor Škultéty
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, Scotland, United Kingdom
| | - Martin R Evans
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, Scotland, United Kingdom
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, Scotland, United Kingdom
| |
Collapse
|
18
|
Cagnetta F, Škultéty V, Evans MR, Marenduzzo D. Renormalization group study of the dynamics of active membranes: Universality classes and scaling laws. Phys Rev E 2022; 105:014610. [PMID: 35193300 DOI: 10.1103/physreve.105.014610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Motivated by experimental observations of patterning at the leading edge of motile eukaryotic cells, we introduce a general model for the dynamics of nearly-flat fluid membranes driven from within by an ensemble of activators. We include, in particular, a kinematic coupling between activator density and membrane slope which generically arises whenever the membrane has a nonvanishing normal speed. We unveil the phase diagram of the model by means of a perturbative field-theoretical renormalization group analysis. Due to the aforementioned kinematic coupling the natural early-time dynamical scaling is acoustic, that is the dynamical critical exponent is 1. However, as soon as the the normal velocity of the membrane is tuned to zero, the system crosses over to diffusive dynamic scaling in mean field. Distinct critical points can be reached depending on how the limit of vanishing velocity is realized: in each of them corrections to scaling due to nonlinear coupling terms must be taken into account. The detailed analysis of these critical points reveals novel scaling regimes which can be accessed with perturbative methods, together with signs of strong coupling behavior, which establishes a promising ground for further nonperturbative calculations. Our results unify several previous studies on the dynamics of active membrane, while also identifying nontrivial scaling regimes which cannot be captured by passive theories of fluctuating interfaces and are relevant for the physics of living membranes.
Collapse
Affiliation(s)
- Francesco Cagnetta
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD Scotland, United Kingdom
| | - Viktor Škultéty
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD Scotland, United Kingdom
| | - Martin R Evans
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD Scotland, United Kingdom
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD Scotland, United Kingdom
| |
Collapse
|
19
|
Kawano K, Yokoyama F, Kamasaka K, Kawamoto J, Ogawa T, Kurihara T, Futaki S. Design of the N-Terminus Substituted Curvature-Sensing Peptides That Exhibit Highly Sensitive Detection Ability of Bacterial Extracellular Vesicles. Chem Pharm Bull (Tokyo) 2021; 69:1075-1082. [PMID: 34719589 DOI: 10.1248/cpb.c21-00516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular vesicles (EVs) have emerged as important targets in biological and medical studies because they are involved in diverse human diseases and bacterial pathogenesis. Although antibodies targeting the surface biomarkers are widely used to detect EVs, peptide-based curvature sensors are currently attracting an attention as a novel tool for marker-free EV detection techniques. We have previously created a curvature-sensing peptide, FAAV and applied it to develop a simple and rapid method for detection of bacterial EVs in cultured media. The method utilized the fluorescence/Förster resonance energy transfer (FRET) phenomenon to achieve the high sensitivity to changes in the EV amount. In the present study, to develop a practical and easy-to-use approach that can detect bacterial EVs by peptides alone, we designed novel curvature-sensing peptides, N-terminus-substituted FAAV (nFAAV) peptides. The nFAAV peptides exerted higher α-helix-stabilizing effects than FAAV upon binding to vesicles while maintaining a random coil structure in aqueous solution. One of the nFAAV peptides showed a superior binding affinity for bacterial EVs and detected changes in the EV amount with 5-fold higher sensitivity than FAAV even in the presence of the EV-secretory bacterial cells. We named nFAAV5, which exhibited the high ability to detect bacterial EVs, as an EV-sensing peptide. Our finding is that the coil-α-helix structural transition of the nFAAV peptides serve as a key structural factor for highly sensitive detection of bacterial EVs.
Collapse
Affiliation(s)
- Kenichi Kawano
- Laboratory of Biofunctional Design Chemistry, Institute for Chemical Research, Kyoto University
| | - Fumiaki Yokoyama
- Laboratory of Molecular Microbial Science, Institute for Chemical Research, Kyoto University
| | - Kouhei Kamasaka
- Laboratory of Molecular Microbial Science, Institute for Chemical Research, Kyoto University
| | - Jun Kawamoto
- Laboratory of Molecular Microbial Science, Institute for Chemical Research, Kyoto University
| | - Takuya Ogawa
- Laboratory of Molecular Microbial Science, Institute for Chemical Research, Kyoto University
| | - Tatsuo Kurihara
- Laboratory of Molecular Microbial Science, Institute for Chemical Research, Kyoto University
| | - Shiroh Futaki
- Laboratory of Biofunctional Design Chemistry, Institute for Chemical Research, Kyoto University
| |
Collapse
|
20
|
Wang Z, Mim C. Optimizing purification of the peripheral membrane protein FAM92A1 fused to a modified spidroin tag. Protein Expr Purif 2021; 189:105992. [PMID: 34648955 DOI: 10.1016/j.pep.2021.105992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Cryo-electron microscopy has revolutionized structural biology. In particular structures of proteins at the membrane interface have been a major contribution of cryoEM. Yet, visualization and characterization of peripheral membrane proteins remains challenging; mostly because there is no unified purification strategy for these proteins. FAM92A1 is a novel peripheral membrane protein that binds to the mitochondrial inner membrane. There, FAM92A1 dimers bind to the membrane and play an essential role in regulating the mitochondrial ultrastructure. Curiously, FAM92A1 has also an important function in ciliogenesis. FAM92A1 is part of the membrane bending Bin1/Amphiphsyin/RVS (BAR) domain protein family. Currently, there is no structure of FAM92A1, mostly because FAM92A1 is unstable and insoluble at high concentrations, like many BAR domain proteins. Yet, pure and concentrated protein is a necessity for screening to generate samples suitable for structure determination. Here, we present an optimized purification and expression strategy for dimeric FAM92A1. To our knowledge, we are the first to use the spidroin tag NT* to successfully purify a peripheral membrane protein. Our results show that NT* not only increases solubility but stabilizes FAM92A1 as a dimer. FAM92A1 fused to NT* is active because it is able to efficiently bend membranes. Taken together, our strategy indicates that this is a possible avenue to express and purify other challenging BAR domain proteins.
Collapse
Affiliation(s)
- Zuoneng Wang
- Department of Biomedical Engineering and Health Systems, Royal Technical Institute (KTH), Hälsovägen 11C, 141 2 Huddinge, Sweden
| | - Carsten Mim
- Department of Biomedical Engineering and Health Systems, Royal Technical Institute (KTH), Hälsovägen 11C, 141 2 Huddinge, Sweden.
| |
Collapse
|
21
|
Phillips DA, Zacharoff LA, Hampton CM, Chong GW, Malanoski AP, Metskas LA, Xu S, Bird LJ, Eddie BJ, Miklos AE, Jensen GJ, Drummy LF, El-Naggar MY, Glaven SM. A bacterial membrane sculpting protein with BAR domain-like activity. eLife 2021; 10:60049. [PMID: 34643180 PMCID: PMC8687657 DOI: 10.7554/elife.60049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Bin/Amphiphysin/RVS (BAR) domain proteins belong to a superfamily of coiled-coil proteins influencing membrane curvature in eukaryotes and are associated with vesicle biogenesis, vesicle-mediated protein trafficking, and intracellular signaling. Here, we report a bacterial protein with BAR domain-like activity, BdpA, from Shewanella oneidensis MR-1, known to produce redox-active membrane vesicles and micrometer-scale outer membrane extensions (OMEs). BdpA is required for uniform size distribution of membrane vesicles and influences scaffolding of OMEs into a consistent diameter and curvature. Cryo-TEM reveals that a strain lacking BdpA produces lobed, disordered OMEs rather than membrane tubules or narrow chains produced by the wild-type strain. Overexpression of BdpA promotes OME formation during planktonic growth of S. oneidensis where they are not typically observed. Heterologous expression results in OME production in Marinobacter atlanticus and Escherichia coli. Based on the ability of BdpA to alter membrane architecture in vivo, we propose that BdpA and its homologs comprise a newly identified class of bacterial BAR domain-like proteins.
Collapse
Affiliation(s)
- Daniel A Phillips
- Oak Ridge Institute for Science and Education / US Army DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, United States
| | - Lori A Zacharoff
- Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
| | - Cheri M Hampton
- Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, United States
| | - Grace W Chong
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Anthony P Malanoski
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| | - Lauren Ann Metskas
- Biological Sciences, Chemistry, California Institute of Technology, Pasadena, United States
| | - Shuai Xu
- Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
| | - Lina J Bird
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| | - Brian J Eddie
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| | - Aleksandr E Miklos
- BioSciences Division, BioChemistry Branch, US Army DEVCOM Chemical Biological Center, Aberdeen Proving Ground, United States
| | - Grant J Jensen
- Biology and Bioengineering, California Institute of Technology, Pasadena, United States
| | - Lawrence F Drummy
- Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, United States
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, Biological Sciences, and Chemistry, University of Southern California, Los Angeles, United States
| | - Sarah M Glaven
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
| |
Collapse
|
22
|
Sechi S, Karimpour-Ghahnavieh A, Frappaolo A, Di Francesco L, Piergentili R, Schininà E, D’Avino PP, Giansanti MG. Identification of GOLPH3 Partners in Drosophila Unveils Potential Novel Roles in Tumorigenesis and Neural Disorders. Cells 2021; 10:cells10092336. [PMID: 34571985 PMCID: PMC8468827 DOI: 10.3390/cells10092336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor prognosis in several cancers, but the molecular mechanisms that link GOLPH3 to malignant transformation are poorly understood. We recently showed that PI(4)P-GOLPH3 couples membrane trafficking with contractile ring assembly during cytokinesis in dividing Drosophila spermatocytes. Here, we use affinity purification coupled with mass spectrometry (AP-MS) to identify the protein-protein interaction network (interactome) of Drosophila GOLPH3 in testes. Analysis of the GOLPH3 interactome revealed enrichment for proteins involved in vesicle-mediated trafficking, cell proliferation and cytoskeleton dynamics. In particular, we found that dGOLPH3 interacts with the Drosophila orthologs of Fragile X mental retardation protein and Ataxin-2, suggesting a potential role in the pathophysiology of disorders of the nervous system. Our findings suggest novel molecular targets associated with GOLPH3 that might be relevant for therapeutic intervention in cancers and other human diseases.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Laura Di Francesco
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Roberto Piergentili
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Eugenia Schininà
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Pier Paolo D’Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK;
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
- Correspondence: ; Tel.: +39-064-991-2555
| |
Collapse
|
23
|
Clathrin: the molecular shape shifter. Biochem J 2021; 478:3099-3123. [PMID: 34436540 DOI: 10.1042/bcj20200740] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Clathrin is best known for its contribution to clathrin-mediated endocytosis yet it also participates to a diverse range of cellular functions. Key to this is clathrin's ability to assemble into polyhedral lattices that include curved football or basket shapes, flat lattices or even tubular structures. In this review, we discuss clathrin structure and coated vesicle formation, how clathrin is utilised within different cellular processes including synaptic vesicle recycling, hormone desensitisation, spermiogenesis, cell migration and mitosis, and how clathrin's remarkable 'shapeshifting' ability to form diverse lattice structures might contribute to its multiple cellular functions.
Collapse
|
24
|
Miyazaki R, Nargis M, Ihsan AB, Nakajima N, Hamada M, Koyama Y. Effects of Glycon and Temperature on Self-Assembly Behaviors of α-Galactosyl Ceramide in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7936-7944. [PMID: 34161093 DOI: 10.1021/acs.langmuir.1c00545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
α-Galactosyl ceramide (GalCer) is an anticancer glycolipid consisting of d-galactose and phytosphingosine-based ceramide. Although the amphiphilic structure of GalCer is expected to form self-associates in water, the self-assembly behaviors of GalCer and its derivatives have not been systematically investigated at this moment in spite of its great importance. The evaluation of morphologies and properties of the associates should open new insights into glycolipid chemistry such as the application of GalCer derivatives to a nanocarrier and the elucidation of the detailed pharmacological mechanism of GalCer. Herein, we show the synthesis of the aglycon fragment (Aglycon) of GalCer and the self-assembly behaviors of both GalCer and Aglycon in water. The critical aggregation concentrations of Aglycon and GalCer were determined using UV-vis spectral measurements at various concentrations. The transmission electron microscopy observations of the aqueous sample solutions indicated that the solution of GalCer includes vesicles, while that of Aglycon comprises giant micelles in the absence of vesicles. The vesicle formation in the solution of GalCer was also confirmed by Triton X-100-triggered dye-release experiments. To reveal the effects of glycon on the self-assembly behaviors in detail, we performed the measurements of dynamic light scattering, temperature-dependence of turbidity, differential scanning calorimetry, and wide-angle X-ray diffraction. The results clarify that the glycon moiety of GalCer has a significant role in the formation inhibition of second associates and the plasticization of the hydrophobe. This work will shed light on the other natural glycosides to evaluate the self-assembly behaviors for supramolecular and pharmacological applications in the near future.
Collapse
Affiliation(s)
- Ryo Miyazaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Mahmuda Nargis
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Abu Bin Ihsan
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Noriyuki Nakajima
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masahiro Hamada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhito Koyama
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
25
|
Sinha M, Shree A, Singh K, Kumar K, Singh SK, Kumar V, Verma PK. Modulation of fungal virulence through CRZ1 regulated F-BAR-dependent actin remodeling and endocytosis in chickpea infecting phytopathogen Ascochyta rabiei. PLoS Genet 2021; 17:e1009137. [PMID: 33999937 PMCID: PMC8158962 DOI: 10.1371/journal.pgen.1009137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/27/2021] [Accepted: 04/13/2021] [Indexed: 12/30/2022] Open
Abstract
Polarized hyphal growth of filamentous pathogenic fungi is an essential event for host penetration and colonization. The long-range early endosomal trafficking during hyphal growth is crucial for nutrient uptake, sensing of host-specific cues, and regulation of effector production. Bin1/Amphiphysin/Rvs167 (BAR) domain-containing proteins mediate fundamental cellular processes, including membrane remodeling and endocytosis. Here, we identified a F-BAR domain protein (ArF-BAR) in the necrotrophic fungus Ascochyta rabiei and demonstrate its involvement in endosome-dependent fungal virulence on the host plant Cicer arietinum. We show that ArF-BAR regulates endocytosis at the hyphal tip, localizes to the early endosomes, and is involved in actin dynamics. Functional studies involving gene knockout and complementation experiments reveal that ArF-BAR is necessary for virulence. The loss-of-function of ArF-BAR gene results in delayed formation of apical septum in fungal cells near growing hyphal tip that is crucial for host penetration, and impaired secretion of a candidate effector having secretory signal peptide for translocation across the endoplasmic reticulum membrane. The mRNA transcripts of ArF-BAR were induced in response to oxidative stress and infection. We also show that ArF-BAR is able to tubulate synthetic liposomes, suggesting the functional role of F-BAR domain in membrane tubule formation in vivo. Further, our studies identified a stress-induced transcription factor, ArCRZ1 (Calcineurin-responsive zinc finger 1), as key transcriptional regulator of ArF-BAR expression. We propose a model in which ArCRZ1 functions upstream of ArF-BAR to regulate A. rabiei virulence through a mechanism that involves endocytosis, effector secretion, and actin cytoskeleton regulation.
Collapse
Affiliation(s)
- Manisha Sinha
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ankita Shree
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Kunal Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Kamal Kumar
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shreenivas Kumar Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Vimlesh Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal (IISER-Bhopal), Bhauri, Bhopal, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: ,
| |
Collapse
|
26
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
27
|
Weerasinghe H, Bugeja HE, Andrianopoulos A. The novel Dbl homology/BAR domain protein, MsgA, of Talaromyces marneffei regulates yeast morphogenesis during growth inside host cells. Sci Rep 2021; 11:2334. [PMID: 33504839 PMCID: PMC7840665 DOI: 10.1038/s41598-020-79593-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 12/09/2020] [Indexed: 01/30/2023] Open
Abstract
Microbial pathogens have evolved many strategies to evade recognition by the host immune system, including the use of phagocytic cells as a niche within which to proliferate. Dimorphic pathogenic fungi employ an induced morphogenetic transition, switching from multicellular hyphae to unicellular yeast that are more compatible with intracellular growth. A switch to mammalian host body temperature (37 °C) is a key trigger for the dimorphic switch. This study describes a novel gene, msgA, from the dimorphic fungal pathogen Talaromyces marneffei that controls cell morphology in response to host cues rather than temperature. The msgA gene is upregulated during murine macrophage infection, and deletion results in aberrant yeast morphology solely during growth inside macrophages. MsgA contains a Dbl homology domain, and a Bin, Amphiphysin, Rvs (BAR) domain instead of a Plekstrin homology domain typically associated with guanine nucleotide exchange factors (GEFs). The BAR domain is crucial in maintaining yeast morphology and cellular localisation during infection. The data suggests that MsgA does not act as a canonical GEF during macrophage infection and identifies a temperature independent pathway in T. marneffei that controls intracellular yeast morphogenesis.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Hayley E Bugeja
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
28
|
Tulha J, Amorim-Rodrigues M, Esquembre LA, Rauch S, Tamás MJ, Lucas C. Physical, genetic and functional interactions between the eisosome protein Pil1 and the MBOAT O-acyltransferase Gup1. FEMS Yeast Res 2020; 21:6045508. [PMID: 33355361 DOI: 10.1093/femsyr/foaa070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/21/2020] [Indexed: 11/14/2022] Open
Abstract
The Saccharomyces cerevisiae MBOAT O-acyltransferase Gup1 is involved in many processes, including cell wall and membrane composition and integrity, and acetic acid-induced cell death. Gup1 was previously shown to interact physically with the mitochondrial membrane VDAC (Voltage-Dependent Anion Channel) protein Por1 and the ammonium transceptor Mep2. By co-immunoprecipitation, the eisosome core component Pil1 was identified as a novel physical interaction partner of Gup1. The expression of PIL1 and Pil1 protein levels were found to be unaffected by GUP1 deletion. In ∆gup1 cells, Pil1 was distributed in dots (likely representing eisosomes) in the membrane, identically to wt cells. However, ∆gup1 cells presented 50% less Pil1-GFP dots/eisosomes, suggesting that Gup1 is important for eisosome formation. The two proteins also interact genetically in the maintenance of cell wall integrity, and during arsenite and acetic acid exposure. We show that Δgup1 Δpil1 cells take up more arsenite than wt and are extremely sensitive to arsenite and to acetic acid treatments. The latter causes a severe apoptotic wt-like cell death phenotype, epistatically reverting the ∆gup1 necrotic type of death. Gup1 and Pil1 are thus physically, genetically and functionally connected.
Collapse
Affiliation(s)
- Joana Tulha
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Mariana Amorim-Rodrigues
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Lidia Alejo Esquembre
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemihuset 412 96 Gothenburg, Sweden
| | - Sebastien Rauch
- Water Environment Technology, Department of Architecture and Civil and Environmental Engineering, Chalmers University of Technology, S-412 96 Gothenburg, Sweden
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemihuset 412 96 Gothenburg, Sweden
| | - Cândida Lucas
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| |
Collapse
|
29
|
Chen Y, Zhang W, Chen B, Liu Y, Dong Y, Xu A, Hao Q. Crystal Structure of Human APPL BAR-PH Heterodimer Reveals a Flexible Dimeric BAR curve: Implication in Mutual Regulation of Endosomal Targeting. Biochem J 2020; 477:BCJ20200438. [PMID: 33258922 DOI: 10.1042/bcj20200438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
The APPL (adaptor proteins containing pleckstrin homology domain, phosphotyrosine binding domain and a leucine zipper motif) family consists of two isoforms, APPL1 and APPL2. By binding to curved plasma membrane, these adaptor proteins associate with multiple transmembrane receptors and recruit various downstream signaling components. They are involved in the regulation of signaling pathways evoked by a variety of extracellular stimuli, such as adiponectin, insulin, FSH (follicle stimulating hormone), EGF (epidermal growth factor). And they play important roles in cell proliferation, apoptosis, glucose uptake, insulin secretion and sensitivity. However, emerging evidence suggests that APPL1 and APPL2 perform different or even opposite functions and the underlying mechanism remains unclear. As APPL proteins can either homodimerize or heterodimerize in vivo, we hypothesized that heterodimerization of APPL proteins might account for the mechanism. By solving the crystal structure of APPL1-APPL2 BAR-PH heterodimer, we find that the overall structure is crescent-shaped with a longer curvature radius of 76 Å, compared to 55 Å of the APPL1 BAR-PH homodimer. However, there is no significant difference of the curvature between APPL BAR-PH heterodimer and APPL2 homodimer. The data suggest that the APPL1 BAR-PH homodimer, APPL2 BAR-PH homodimer and APPL1/APPL2 BAR-PH heterodimer may bind to endosomes of different sizes. Different positive charge distribution is observed on the concave surface of APPL BAR-PH heterodimer than the homodimers, which may change the affinity of membrane association and subcellular localization. Collectively, APPL2 may regulate APPL1 function through altering the preference of endosome binding by heterodimerization.
Collapse
Affiliation(s)
- Yujie Chen
- University of Hong Kong, Hong Kong, China
| | - Wen Zhang
- University of Hong Kong, Hong Kong, China
| | - Bin Chen
- University of Hong Kong, Hong Kong, China
| | - Ying Liu
- Institute of High Energy Physics, CAS, Beijing, China
| | - Yuhui Dong
- Institute of High Energy Physics, CAS, Beijing, China
| | - Aimin Xu
- University of Hong Kong, Hong Kong, China
| | - Quan Hao
- University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Nader N, Dib M, Hodeify R, Courjaret R, Elmi A, Hammad AS, Dey R, Huang XY, Machaca K. Membrane progesterone receptor induces meiosis in Xenopus oocytes through endocytosis into signaling endosomes and interaction with APPL1 and Akt2. PLoS Biol 2020; 18:e3000901. [PMID: 33137110 PMCID: PMC7660923 DOI: 10.1371/journal.pbio.3000901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 11/12/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
The steroid hormone progesterone (P4) mediates many physiological processes through either nuclear receptors that modulate gene expression or membrane P4 receptors (mPRs) that mediate nongenomic signaling. mPR signaling remains poorly understood. Here we show that the topology of mPRβ is similar to adiponectin receptors and opposite to that of G-protein-coupled receptors (GPCRs). Using Xenopus oocyte meiosis as a well-established physiological readout of nongenomic P4 signaling, we demonstrate that mPRβ signaling requires the adaptor protein APPL1 and the kinase Akt2. We further show that P4 induces clathrin-dependent endocytosis of mPRβ into signaling endosome, where mPR interacts transiently with APPL1 and Akt2 to induce meiosis. Our findings outline the early steps involved in mPR signaling and expand the spectrum of mPR signaling through the multitude of pathways involving APPL1. The steroid hormone progesterone mediates many physiological processes through either nuclear receptors that modulate gene expression, or membrane progesterone receptors (mPRs) that mediate non-genomic signaling. This study shows that non-genomic mPRβ signaling progresses through clathrin-dependent endocytosis into signaling endosomes where it interacts with and activates APPL1 and Akt2 to induce oocyte meiosis.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
| | - Maya Dib
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
| | - Rawad Hodeify
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
| | - Asha Elmi
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Ayat S. Hammad
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Raja Dey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States of America
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States of America
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
- * E-mail:
| |
Collapse
|
31
|
Wang M, Hou Y, Yu L, Hou X. Anomalies of Ionic/Molecular Transport in Nano and Sub-Nano Confinement. NANO LETTERS 2020; 20:6937-6946. [PMID: 32852959 DOI: 10.1021/acs.nanolett.0c02999] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding and exploring the transport behaviors of ions and molecules in the nano and sub-nano confinement has great meaning in the fields of nanofluidics and basic transport physics. With the rapid progress in nanofabrication technology and effective characterization protocols, more and more anomalous transport behaviors have been observed and the ions/molecules inside small confinement can behave dramatically differently from bulk systems and present new mechanisms. In this Mini Review, we summarize the recent advances in the anomalous ionic/molecular transport behaviors in nano and sub-nano confinement. Our discussion includes the ionic/molecular transport of various confinement with different surface properties, static structures, and dynamic structures. Furthermore, we provide a brief overview of the latest applications of nanofluidics in membrane separation and energy conversion.
Collapse
Affiliation(s)
- Miao Wang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Yaqi Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lejian Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xu Hou
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
- Tan Kah Kee Innovation Laboratory, Xiamen 361102, Fujian, China
| |
Collapse
|
32
|
Antón Z, Betin VMS, Simonetti B, Traer CJ, Attar N, Cullen PJ, Lane JD. A heterodimeric SNX4--SNX7 SNX-BAR autophagy complex coordinates ATG9A trafficking for efficient autophagosome assembly. J Cell Sci 2020; 133:jcs246306. [PMID: 32513819 PMCID: PMC7375690 DOI: 10.1242/jcs.246306] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/02/2020] [Indexed: 11/24/2022] Open
Abstract
The sorting nexins (SNXs) are a family of peripheral membrane proteins that direct protein trafficking decisions within the endocytic network. Emerging evidence in yeast and mammalian cells implicates a subgroup of SNXs in selective and non-selective forms of autophagy. Using siRNA and CRISPR-Cas9, we demonstrate that the SNX-BAR protein SNX4 is needed for efficient LC3 (also known as MAP1LC3) lipidation and autophagosome assembly in mammalian cells. SNX-BARs exist as homo- and hetero-dimers, and we show that SNX4 forms functional heterodimers with either SNX7 or SNX30 that associate with tubulovesicular endocytic membranes. Detailed image-based analysis during the early stages of autophagosome assembly reveals that SNX4-SNX7 is an autophagy-specific SNX-BAR heterodimer, required for efficient recruitment and/or retention of core autophagy regulators at the nascent isolation membrane. SNX4 partially colocalises with juxtanuclear ATG9A-positive membranes, with our data linking the autophagy defect upon SNX4 disruption to the mis-trafficking and/or retention of ATG9A in the Golgi region. Taken together, our findings show that the SNX4-SNX7 heterodimer coordinates ATG9A trafficking within the endocytic network to establish productive autophagosome assembly sites, thus extending knowledge of SNXs as positive regulators of autophagy.
Collapse
Affiliation(s)
- Zuriñe Antón
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Virginie M S Betin
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Boris Simonetti
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Colin J Traer
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Naomi Attar
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Peter J Cullen
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Jon D Lane
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
33
|
Didelon M, Khafif M, Godiard L, Barbacci A, Raffaele S. Patterns of Sequence and Expression Diversification Associate Members of the PADRE Gene Family With Response to Fungal Pathogens. Front Genet 2020; 11:491. [PMID: 32547597 PMCID: PMC7272662 DOI: 10.3389/fgene.2020.00491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/20/2020] [Indexed: 12/31/2022] Open
Abstract
Pathogen infection triggers extensive reprogramming of the plant transcriptome, including numerous genes the function of which is unknown. Due to their wide taxonomic distribution, genes encoding proteins with Domains of Unknown Function (DUFs) activated upon pathogen challenge likely play important roles in disease. In Arabidopsis thaliana, we identified thirteen genes harboring a DUF4228 domain in the top 10% most induced genes after infection by the fungal pathogen Sclerotinia sclerotiorum. Based on functional information collected through homology and contextual searches, we propose to refer to this domain as the pathogen and abiotic stress response, cadmium tolerance, disordered region-containing (PADRE) domain. Genome-wide and phylogenetic analyses indicated that PADRE is specific to plants and diversified into 10 subfamilies early in the evolution of Angiosperms. PADRE typically occurs in small single-domain proteins with a bipartite architecture. PADRE N-terminus harbors conserved sequence motifs, while its C-terminus includes an intrinsically disordered region with multiple phosphorylation sites. A pangenomic survey of PADRE genes expression upon S. sclerotiorum inoculation in Arabidopsis, castor bean, and tomato indicated consistent expression across species within phylogenetic groups. Multi-stress expression profiling and co-expression network analyses associated AtPADRE genes with the induction of anthocyanin biosynthesis and responses to chitin and to hypoxia. Our analyses reveal patterns of sequence and expression diversification consistent with the evolution of a role in disease resistance for an uncharacterized family of plant genes. These findings highlight PADRE genes as prime candidates for the functional dissection of mechanisms underlying plant disease resistance to fungi.
Collapse
Affiliation(s)
| | | | | | | | - Sylvain Raffaele
- Université de Toulouse, Laboratoire des Interactions Plantes Micro-organismes (LIPM), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) – Centre National de la Recherche Scientifique (CNRS), Castanet-Tolosan, France
| |
Collapse
|
34
|
Lee RM, Campanello L, Hourwitz MJ, Alvarez P, Omidvar A, Fourkas JT, Losert W. Quantifying topography-guided actin dynamics across scales using optical flow. Mol Biol Cell 2020; 31:1753-1764. [PMID: 32023172 PMCID: PMC7521856 DOI: 10.1091/mbc.e19-11-0614] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The dynamic rearrangement of the actin cytoskeleton is an essential component of many mechanotransduction and cellular force generation pathways. Here we use periodic surface topographies with feature sizes comparable to those of in vivo collagen fibers to measure and compare actin dynamics for two representative cell types that have markedly different migratory modes and physiological purposes: slowly migrating epithelial MCF10A cells and polarizing, fast-migrating, neutrophil-like HL60 cells. Both cell types exhibit reproducible guidance of actin waves (esotaxis) on these topographies, enabling quantitative comparisons of actin dynamics. We adapt a computer-vision algorithm, optical flow, to measure the directions of actin waves at the submicron scale. Clustering the optical flow into regions that move in similar directions enables micron-scale measurements of actin-wave speed and direction. Although the speed and morphology of actin waves differ between MCF10A and HL60 cells, the underlying actin guidance by nanotopography is similar in both cell types at the micron and submicron scales.
Collapse
Affiliation(s)
- Rachel M Lee
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,University of Maryland School of Medicine, Baltimore, MD 21201
| | | | - Matt J Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Phillip Alvarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Ava Omidvar
- Department of Physics, University of Maryland, College Park, MD 20742
| | - John T Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Physics, University of Maryland, College Park, MD 20742.,University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
35
|
Quintana-Villamandos B, Delgado-Martos MJ, Delgado-Baeza E. Early reversal cardiac with esmolol in hypertensive rats: The role of subcellular organelle phenotype. Pharmacol Rep 2019; 71:1125-1132. [PMID: 31648130 DOI: 10.1016/j.pharep.2019.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/08/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Our group has previously shown that short-term treatment (48 h) with esmolol reduces left ventricular hypertrophy (LVH) in spontaneously hypertensive rats (SHRs). However, we do not know the mechanism that explain this effect. The aim of this study was to assess the role that the subcellular organelle phenotype plays in early cardiac reverse after short-term treatment with esmolol. METHODS 14-Month-old male SHRs were randomly assigned to receive esmolol (300 μg/kg/min) (SHR-E) or vehicle (SHR). Age-matched male Wistar-Kyoto rats (WKY) served as controls. After 48 h of treatment, an ultrastructural analysis of heart tissue (left ventricle) was performed. We studied cardiomyocyte ultrastructural remodeling of subcellular organelles by electronic microcopy in all groups. RESULTS SHR group showed significant morphometric and stereological changes in mitochondria and subcellular organelles (cytoplasm and nucleus, myofibril structure, mitochondria structure, Z-Disk, intercalated disk, T-system and cystern), and also changes in the extracellular matrix (collagen) with respect to WKY group. Esmolol significantly improved the morphology and stereology mitochondrial, reduced the organelle phenotype abnormalities but no produced changes in the extracellular matrix with respect to SHR group. Interesantly, parameters of mitochondria (regularity factor, ellipsoidal form factor and density of volume), and all parameters of subcellular organelles returned to the normality in SHR-E. CONCLUSION Our results show that left ventricular hypertrophy reversal after short-term treatment with esmolol is associated with reversal of subcellular organelle phenotype.
Collapse
Affiliation(s)
- Begoña Quintana-Villamandos
- Department of Anesthesiology, Reanimation and Intensive Care, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Department of Pharmacology and Toxicology, Universidad Complutense de Madrid, Spain.
| | - María Jesús Delgado-Martos
- Molecular Biology Laboratory, Department Experimental Medicine and Surgery, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Biomedicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Emilio Delgado-Baeza
- Molecular Biology Laboratory, Department Experimental Medicine and Surgery, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
36
|
Kawano K, Ogushi M, Masuda T, Futaki S. Development of a Membrane Curvature-Sensing Peptide Based on a Structure-Activity Correlation Study. Chem Pharm Bull (Tokyo) 2019; 67:1131-1138. [PMID: 31316036 DOI: 10.1248/cpb.c19-00465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Membrane curvature formation is important for various biological processes such as cell motility, intracellular signal transmission, and cellular uptake of foreign substances. However, it remains still a challenging topic to visualize the membrane curvature formation on the cell membranes in real-time imaging. To develop and design membrane curvature-sensors, we focused on amphipathic helical peptides of proteins belonging to the Bin/Amphiphysin/Rvs (BAR) family as the starting point. BAR proteins individually have various characteristic structures that recognize different curvatures, and the derived peptides possess the potential to function as curvature sensors with a variety of recognition abilities. Peptide-based curvature sensors can have wide applications in biological research fields due to their small size, easy modification, and large production capability in comparison to protein-based sensors. In the present study, we found that an amphipathic peptide derived from sorting nexin1 (SNX1) has a curvature-recognition ability. The mutation studies of the initial peptide revealed a close correlation between the α-helicity and lipid binding ability of the peptides. In particular, the amino acids located on the hydrophobic face played a vital role in curvature recognition. The α-helix formation of the peptides was thought to serve to accommodate lipid-packing defects on the membrane surface and to maintain their binding to lipid vesicles. The structure-activity correlation found in this study have the potential to contribute to the design of peptide-based curvature sensors that will enable the capture of various life phenomena in cells.
Collapse
|
37
|
Nepal B, Leveritt J, Lazaridis T. Membrane Curvature Sensing by Amphipathic Helices: Insights from Implicit Membrane Modeling. Biophys J 2019; 114:2128-2141. [PMID: 29742406 DOI: 10.1016/j.bpj.2018.03.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/24/2018] [Accepted: 03/14/2018] [Indexed: 01/09/2023] Open
Abstract
Sensing and generation of lipid membrane curvature, mediated by the binding of specific proteins onto the membrane surface, play crucial roles in cell biology. A number of mechanisms have been proposed, but the molecular understanding of these processes is incomplete. All-atom molecular dynamics simulations have offered valuable insights but are extremely demanding computationally. Implicit membrane simulations could provide a viable alternative, but current models apply only to planar membranes. In this work, the implicit membrane model 1 is extended to spherical and tubular membranes. The geometric change from planar to curved shapes is straightforward but insufficient for capturing the full curvature effect, which includes changes in lipid packing. Here, these packing effects are taken into account via the lateral pressure profile. The extended implicit membrane model 1 is tested on the wild-types and mutants of the antimicrobial peptide magainin, the ALPS motif of arfgap1, α-synuclein, and an ENTH domain. In these systems, the model is in qualitative agreement with experiments. We confirm that favorable electrostatic interactions tend to weaken curvature sensitivity in the presence of strong hydrophobic interactions but may actually have a positive effect when those are weak. We also find that binding to vesicles is more favorable than binding to tubes of the same diameter and that the long helix of α-synuclein tends to orient along the axis of tubes, whereas shorter helices tend to orient perpendicular to it. Adoption of a specific orientation could provide a mechanism for coupling protein oligomerization to tubule formation.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Chemistry, City College of New York, New York, New York
| | - John Leveritt
- Department of Chemistry, Newman University, Wichita, Kansas
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, New York, New York; Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, New York.
| |
Collapse
|
38
|
Li X, Matino L, Zhang W, Klausen L, McGuire AF, Lubrano C, Zhao W, Santoro F, Cui B. A nanostructure platform for live-cell manipulation of membrane curvature. Nat Protoc 2019; 14:1772-1802. [PMID: 31101905 PMCID: PMC6716504 DOI: 10.1038/s41596-019-0161-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/05/2019] [Indexed: 11/09/2022]
Abstract
Membrane curvatures are involved in essential cellular processes, such as endocytosis and exocytosis, in which they are believed to act as microdomains for protein interactions and intracellular signaling. These membrane curvatures appear and disappear dynamically, and their locations are difficult or impossible to predict. In addition, the size of these curvatures is usually below the diffraction limit of visible light, making it impossible to resolve their values using live-cell imaging. Therefore, precise manipulation of membrane curvature is important to understanding how membrane curvature is involved in intracellular processes. Recent studies show that membrane curvatures can be induced by surface topography when cells are in direct contact with engineered substrates. Here, we present detailed procedures for using nanoscale structures to manipulate membrane curvatures and probe curvature-induced phenomena in live cells. We first describe detailed procedures for the design of nanoscale structures and their fabrication using electron-beam (E-beam) lithography. The fabrication process takes 2 d, but the resultant chips can be cleaned and reused repeatedly over the course of 2 years. Then we describe how to use these nanostructures to manipulate local membrane curvatures and probe intracellular protein responses, discussing surface coating, cell plating, and fluorescence imaging in detail. Finally, we describe a procedure to characterize the nanostructure-cell membrane interface using focused ion beam and scanning electron microscopy (FIB-SEM). Nanotopography-based methods can induce stable membrane curvatures with well-defined curvature values and locations in live cells, which enables the generation of a library of curvatures for probing curvature-related intracellular processes.
Collapse
Affiliation(s)
- Xiao Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Laura Matino
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
- Department of Chemical Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Wei Zhang
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Lasse Klausen
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | - Claudia Lubrano
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy.
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| |
Collapse
|
39
|
Baptista D, Teixeira L, van Blitterswijk C, Giselbrecht S, Truckenmüller R. Overlooked? Underestimated? Effects of Substrate Curvature on Cell Behavior. Trends Biotechnol 2019; 37:838-854. [PMID: 30885388 DOI: 10.1016/j.tibtech.2019.01.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/31/2022]
Abstract
In biological systems, form and function are inherently correlated. Despite this strong interdependence, the biological effect of curvature has been largely overlooked or underestimated, and consequently it has rarely been considered in the design of new cell-material interfaces. This review summarizes current understanding of the interplay between the curvature of a cell substrate and the related morphological and functional cellular response. In this context, we also discuss what is currently known about how, in the process of such a response, cells recognize curvature and accordingly reshape their membrane. Beyond this, we highlight state-of-the-art microtechnologies for engineering curved biomaterials at cell-scale, and describe aspects that impair or improve readouts of the pure effect of curvature on cells.
Collapse
Affiliation(s)
- Danielle Baptista
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Liliana Teixeira
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Stefan Giselbrecht
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; These authors contributed equally to this work
| | - Roman Truckenmüller
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; These authors contributed equally to this work.
| |
Collapse
|
40
|
Wang M, Meng H, Wang D, Yin Y, Stroeve P, Zhang Y, Sheng Z, Chen B, Zhan K, Hou X. Dynamic Curvature Nanochannel-Based Membrane with Anomalous Ionic Transport Behaviors and Reversible Rectification Switch. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805130. [PMID: 30633407 DOI: 10.1002/adma.201805130] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/29/2018] [Indexed: 05/08/2023]
Abstract
Biological nanochannels control the movements of different ions through cell membranes depending on not only those channels' static inherent configurations, structures, inner surface's physicochemical properties but also their dynamic shape changes, which are required in various essential functions of life processes. Inspired by ion channels, many artificial nanochannel-based membranes for nanofluidics and biosensing applications have been developed to regulate ionic transport behaviors by using the functional molecular modifications at the inner surface of nanochannel to achieve a stimuli-responsive layer. Here, the concept of a dynamic nanochannel system is further developed, which is a new way to regulate ion transport in nanochannels by using the dynamic change in the curvature of channels to adjust ionic rectification in real time. The dynamic curvature nanochannel-based membrane displays the advanced features of the anomalous effect of voltage, concentration, and ionic size for applying simultaneous control over the curvature-tunable asymmetric and reversible ionic rectification switching properties. This dynamic approach can be used to build smart nanochannel-based systems, which have strong implications for flexible nanofluidics, ionic rectifiers, and power generators.
Collapse
Affiliation(s)
- Miao Wang
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, P. R. China
| | - Haiqiang Meng
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, P. R. China
| | - Dan Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Yajun Yin
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Pieter Stroeve
- Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA, 95616, USA
| | - Yunmao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhizhi Sheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Baiyi Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Kan Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xu Hou
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
41
|
Sachin Krishnan TV, Das SL, Kumar PBS. Transition from curvature sensing to generation in a vesicle driven by protein binding strength and membrane tension. SOFT MATTER 2019; 15:2071-2080. [PMID: 30734812 DOI: 10.1039/c8sm02623h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ability of proteins to sense and/or generate membrane curvature is crucial for many biological processes inside the cell. We introduce a model for the binding and unbinding of curvature inducing proteins on vesicles using Dynamic Triangulation Monte Carlo (DTMC) simulations. In our study, the interaction between membrane curvature and protein binding is characterised by the binding affinity parameter μ, which indicates the interaction strength. We demonstrate that both sensing and generation of curvature can be observed in the same system as a function of the protein binding affinity on the membrane. Our results show that at low μ values, proteins only sense membrane curvature, whereas at high μ values, they induce curvature. The transition between sensing and generation regimes is marked by a sharp change in the μ-dependence of the protein bound fraction. We present ways to quantitatively characterise these two regimes. We also observe that imposing tension on the membrane (through internal excess pressure for liposomes) extends the region of curvature sensing in the parameter space.
Collapse
|
42
|
BAR domain proteins-a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Biophys Rev 2018; 10:1587-1604. [PMID: 30456600 DOI: 10.1007/s12551-018-0467-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.
Collapse
|
43
|
Wang L, Yan Z, Vihinen H, Eriksson O, Wang W, Soliymani R, Lu Y, Xue Y, Jokitalo E, Li J, Zhao H. FAM92A1 is a BAR domain protein required for mitochondrial ultrastructure and function. J Cell Biol 2018; 218:97-111. [PMID: 30404948 PMCID: PMC6314547 DOI: 10.1083/jcb.201806191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/31/2018] [Accepted: 10/17/2018] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial function is closely linked to its dynamic membrane ultrastructure. The mitochondrial inner membrane (MIM) can form extensive membrane invaginations known as cristae, which contain the respiratory chain and ATP synthase for oxidative phosphorylation. The molecular mechanisms regulating mitochondrial ultrastructure remain poorly understood. The Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of diverse cellular processes related to membrane remodeling and dynamics. Whether BAR domain proteins are involved in sculpting membranes in specific submitochondrial compartments is largely unknown. In this study, we report FAM92A1 as a novel BAR domain protein localizes to the matrix side of the MIM. Loss of FAM92A1 caused a severe disruption to mitochondrial morphology and ultrastructure, impairing organelle bioenergetics. Furthermore, FAM92A1 displayed a membrane-remodeling activity in vitro, inducing a high degree of membrane curvature. Collectively, our findings uncover a role for a BAR domain protein as a critical organizer of the mitochondrial ultrastructure that is indispensable for mitochondrial function.
Collapse
Affiliation(s)
- Liang Wang
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ziyi Yan
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ove Eriksson
- Biochemistry/Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Weihuan Wang
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,College of Life Sciences, Northwest A&F University, Yangling, China
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, HiLIFE, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Yao Lu
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Yaxin Xue
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jing Li
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Hongxia Zhao
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Woraratanadharm T, Kmosek S, Banuett F. UmTea1, a Kelch and BAR domain-containing protein, acts at the cell cortex to regulate cell morphogenesis in the dimorphic fungus Ustilago maydis. Fungal Genet Biol 2018; 121:10-28. [PMID: 30205200 DOI: 10.1016/j.fgb.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/10/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
The spatial organization of a cell is crucial for distribution of cell components and for cell morphogenesis in all organisms. Ustilago maydis, a basidiomycete fungus, has a yeast-like and a filamentous form. The former buds once per cell cycle at one of the cell poles, and can use the same site repeatedly or choose a new site at the same pole or opposite pole. The filamentous form consists of a long apical cell with short septate basal compartments lacking cytoplasm. It grows at the apex and can reverse growth forming a new growth zone at the basal end. We are interested in understanding how these different morphologies are generated. Here we present identification and characterization of U. maydis Tea1, a homologue of the fission yeast cell end marker Tea1. We demonstrate that UmTea1, a Kelch domain protein, interacts with itself and is an important determinant of the site of polarized growth: tea1 mutants bud simultaneously from both cell poles and form bifurcate buds. UmTea1 also regulates septum positioning, cell wall deposition, cell and neck width, coordination of nuclear division and cell separation, and localization of sterol-rich membrane domains. Some of these functions are shared with UmTea4, another cell end marker. We show that Tea1::GFP localizes to sites of polarized or potential polarized growth and to the septation site in the yeast-like form. Additionally, localization of Tea1::GFP as rings along the filament suggests that the filament undergoes septation. We hypothesize that Tea1 may act as a scaffold for the assembly of proteins that determine the site of polarized growth.
Collapse
Affiliation(s)
- Tad Woraratanadharm
- Department of Biological Sciences, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Stephanie Kmosek
- Department of Biological Sciences, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States
| | - Flora Banuett
- Department of Biological Sciences, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, United States.
| |
Collapse
|
45
|
Ramakrishnan N, Bradley RP, Tourdot RW, Radhakrishnan R. Biophysics of membrane curvature remodeling at molecular and mesoscopic lengthscales. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:273001. [PMID: 29786613 PMCID: PMC6066392 DOI: 10.1088/1361-648x/aac702] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
At the micron scale, where cell organelles display an amazing complexity in their shape and organization, the physical properties of a biological membrane can be better-understood using continuum models subject to thermal (stochastic) undulations. Yet, the chief orchestrators of these complex and intriguing shapes are a specialized class of membrane associating often peripheral proteins called curvature remodeling proteins (CRPs) that operate at the molecular level through specific protein-lipid interactions. We review multiscale methodologies to model these systems at the molecular as well as at the mesoscopic and cellular scales, and also present a free energy perspective of membrane remodeling through the organization and assembly of CRPs. We discuss the morphological space of nearly planar to highly curved membranes, methods to include thermal fluctuations, and review studies that model such proteins as curvature fields to describe the emergent curved morphologies. We also discuss several mesoscale models applied to a variety of cellular processes, where the phenomenological parameters (such as curvature field strength) are often mapped to models of real systems based on molecular simulations. Much insight can be gained from the calculation of free energies of membranes states with protein fields, which enable accurate mapping of the state and parameter values at which the membrane undergoes morphological transformations such as vesiculation or tubulation. By tuning the strength, anisotropy, and spatial organization of the curvature-field, one can generate a rich array of membrane morphologies that are highly relevant to shapes of several cellular organelles. We review applications of these models to budding of vesicles commonly seen in cellular signaling and trafficking processes such as clathrin mediated endocytosis, sorting by the ESCRT protein complexes, and cellular exocytosis regulated by the exocyst complex. We discuss future prospects where such models can be combined with other models for cytoskeletal assembly, and discuss their role in understanding the effects of cell membrane tension and the mechanics of the extracellular microenvironment on cellular processes.
Collapse
Affiliation(s)
- N Ramakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | | | | | | |
Collapse
|
46
|
Zeng Y, Wong ST, Teo SK, Leong KW, Chiam KH, Yim EKF. Human mesenchymal stem cell basal membrane bending on gratings is dependent on both grating width and curvature. Sci Rep 2018; 8:6444. [PMID: 29691432 PMCID: PMC5915387 DOI: 10.1038/s41598-018-24123-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/13/2018] [Indexed: 01/12/2023] Open
Abstract
The topography of the extracellular substrate provides physical cues to elicit specific downstream biophysical and biochemical effects in cells. An example of such a topographical substrate is periodic gratings, where the dimensions of the periodic gratings influence cell morphology and directs cell differentiation. We first develop a novel sample preparation technique using Spurr's resin to allow for cross-sectional transmission electron microscopy imaging of cells on grating grooves, and observed that the plasma membrane on the basal surface of these cells can deform and bend into grooves between the gratings. We postulate that such membrane bending is an important first step in eliciting downstream effects. Thus, we use a combination of image analysis and mathematical modeling to explain the extent of bending of basal membrane into grooves. We show that the extent to which the basal membrane bends into grooves depends on both groove width and angle of the grating ridge. Our model predicts that the basal membrane will bend into grooves when they are wider than 1.9 µm in width. The existence of such a threshold may provide an explanation for how the width of periodic gratings may bring about cellular downstream effects, such as cell proliferation or differentiation.
Collapse
Affiliation(s)
- Yukai Zeng
- Bioinformatics Institute, A*STAR, Singapore, 138671, Singapore
| | - Sum Thai Wong
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore.,Institute of High Performance Computing, A*STAR, Singapore, 138632, Singapore
| | - Soo Kng Teo
- Institute of High Performance Computing, A*STAR, Singapore, 138632, Singapore
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Keng-Hwee Chiam
- Bioinformatics Institute, A*STAR, Singapore, 138671, Singapore.
| | - Evelyn K F Yim
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore. .,Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore. .,Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
47
|
|
48
|
Structure and function of yeast Atg20, a sorting nexin that facilitates autophagy induction. Proc Natl Acad Sci U S A 2017; 114:E10112-E10121. [PMID: 29114050 DOI: 10.1073/pnas.1708367114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Atg20 and Snx4/Atg24 proteins have been identified in a screen for mutants defective in a type of selective macroautophagy/autophagy. Both proteins are connected to the Atg1 kinase complex, which is involved in autophagy initiation, and bind phosphatidylinositol-3-phosphate. Atg20 and Snx4 contain putative BAR domains, suggesting a possible role in membrane deformation, but they have been relatively uncharacterized. Here we demonstrate that, in addition to its function in selective autophagy, Atg20 plays a critical role in the efficient induction of nonselective autophagy. Atg20 is a dynamic posttranslationally modified protein that engages both structurally stable (PX and BAR) and intrinsically disordered domains for its function. In addition to its PX and BAR domains, Atg20 uses a third membrane-binding module, a membrane-inducible amphipathic helix present in a previously undescribed location in Atg20 within the putative BAR domain. Taken together, these findings yield insights into the molecular mechanism of the autophagy machinery.
Collapse
|
49
|
APPL1 is a multifunctional endosomal signaling adaptor protein. Biochem Soc Trans 2017; 45:771-779. [PMID: 28620038 DOI: 10.1042/bst20160191] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 11/17/2022]
Abstract
Endosomal adaptor proteins are important regulators of signaling pathways underlying many biological processes. These adaptors can integrate signals from multiple pathways via localization to specific endosomal compartments, as well as through multiple protein-protein interactions. One such adaptor protein that has been implicated in regulating signaling pathways is the adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif 1 (APPL1). APPL1 localizes to a subset of Rab5-positive endosomes through its Bin-Amphiphysin-Rvs and PH domains, and it coordinates signaling pathways through its interaction with many signaling receptors and proteins through its PTB domain. This review discusses our current understanding of the role of APPL1 in signaling and trafficking, as well as highlights recent work into the function of APPL1 in cell migration and adhesion.
Collapse
|
50
|
Abstract
Adiponectin is the most abundant peptide secreted by adipocytes, whose reduction plays a central role in obesity-related diseases, including insulin resistance/type 2 diabetes and cardiovascular disease. In addition to adipocytes, other cell types, such as skeletal and cardiac myocytes and endothelial cells, can also produce this adipocytokine. Adiponectin effects are mediated by adiponectin receptors, which occur as two isoforms (AdipoR1 and AdipoR2). Adiponectin has direct actions in liver, skeletal muscle, and the vasculature.Adiponectin exists in the circulation as varying molecular weight forms, produced by multimerization. Several endoplasmic reticulum ER-associated proteins, including ER oxidoreductase 1-α (Ero1-α), ER resident protein 44 (ERp44), disulfide-bond A oxidoreductase-like protein (DsbA-L), and glucose-regulated protein 94 (GPR94), have recently been found to be involved in the assembly and secretion of higher-order adiponectin complexes. Recent data indicate that the high-molecular weight (HMW) complexes have the predominant action in metabolic tissues. Studies have shown that adiponectin administration in humans and rodents has insulin-sensitizing, anti-atherogenic, and anti-inflammatory effects, and, in certain settings, also decreases body weight. Therefore, adiponectin replacement therapy in humans may suggest potential versatile therapeutic targets in the treatment of obesity, insulin resistance/type 2 diabetes, and atherosclerosis. The current knowledge on regulation and function of adiponectin in obesity, insulin resistance, and cardiovascular disease is summarized in this review.
Collapse
|