1
|
Marquez-Martinez S, Salisch N, Serroyen J, Zahn R, Khan S. Peak transgene expression after intramuscular immunization of mice with adenovirus 26-based vector vaccines correlates with transgene-specific adaptive immune responses. PLoS One 2024; 19:e0299215. [PMID: 38626093 PMCID: PMC11020485 DOI: 10.1371/journal.pone.0299215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/07/2024] [Indexed: 04/18/2024] Open
Abstract
Non-replicating adenovirus-based vectors have been broadly used for the development of prophylactic vaccines in humans and are licensed for COVID-19 and Ebola virus disease prevention. Adenovirus-based vectored vaccines encode for one or more disease specific transgenes with the aim to induce protective immunity against the target disease. The magnitude and duration of transgene expression of adenovirus 5- based vectors (human type C) in the host are key factors influencing antigen presentation and adaptive immune responses. Here we characterize the magnitude, duration, and organ biodistribution of transgene expression after single intramuscular administration of adenovirus 26-based vector vaccines in mice and evaluate the differences with adenovirus 5-based vector vaccine to understand if this is universally applicable across serotypes. We demonstrate a correlation between peak transgene expression early after adenovirus 26-based vaccination and transgene-specific cellular and humoral immune responses for a model antigen and SARS-CoV-2 spike protein, independent of innate immune activation. Notably, the memory immune response was similar in mice immunized with adenovirus 26-based vaccine and adenovirus 5-based vaccine, despite the latter inducing a higher peak of transgene expression early after immunization and a longer duration of transgene expression. Together these results provide further insights into the mode of action of adenovirus 26-based vector vaccines.
Collapse
Affiliation(s)
| | - Nadine Salisch
- Janssen Vaccines & Prevention B.V, Leiden, CN, The Netherlands
| | - Jan Serroyen
- Janssen Vaccines & Prevention B.V, Leiden, CN, The Netherlands
| | - Roland Zahn
- Janssen Vaccines & Prevention B.V, Leiden, CN, The Netherlands
| | - Selina Khan
- Janssen Vaccines & Prevention B.V, Leiden, CN, The Netherlands
| |
Collapse
|
2
|
Luo S, Zhang P, Wang Y, Huang Y, Ma X, Deng Q, Zou P, Wang C, Zhang L, Li Y, Fu Y, Li T, Li C. Adenoviruses vectored hepatitis C virus vaccine cocktails induce broadly specific immune responses against multi-genotypic HCV in mice. Biomed Pharmacother 2024; 170:115901. [PMID: 38056238 DOI: 10.1016/j.biopha.2023.115901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) vaccines are an urgent need to prevent hepatitis C and its further progression of hepatocellular carcinoma. Since the promising T cell based chimpanzee adenovirus and modified vaccinia virus Ankara vectorial HCV vaccines were failed in clinical phase II trial, the vaccine designs to improve protection efficacy in combination of cellular and humoral immunity have been hypothesized against multi-genotypic HCV. METHODS Eight HCV vaccine strains were constructed with two novel adenovirus vectors (Sad23L and Ad49L) encoding E1E2 or NS3-5B proteins of HCV genotype (Gt) 1b and 6a isolates, covering 80 % HCV strains prevalent in south China and south-east Asia. Eight HCV vaccine strains were grouped into Sad23L-based vaccine cocktail-1 and Ad49L-based vaccine cocktail-2 for vaccinating mice, respectively. RESULTS The immunogenicity of a single dose of 107-1010 PFU HCV individual vaccines was evaluated in mice, showing weak specific antibody to E1 and E2 protein but a dose-dependent T cell response to E1E2/NS3-5B peptides, which could be significantly enhanced by boosting with an alternative vector vaccine carrying homologous antigen. Prime-boost vaccinations with vaccine cocktail-1 and cocktail-2 induced significantly higher cross-reactive antibody and stronger T cell responses to HCV Gt-1b/6a. The high frequency of intrasplenic and intrahepatic NS31629-1637 CD8+ T cell responses were identified, in which the high proportion of TRM and TEM cells might play an important role against HCV infection in liver. CONCLUSIONS Prime-boost regimens with HCV vaccine cocktails elicited the broad cross-reactive antibody and robust T cell responses against multi-genotypic HCV in mice.
Collapse
Affiliation(s)
- Shengxue Luo
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China; Guangzhou Blood Center, Guangzhou, China
| | - Panli Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yilin Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China; Department of Pathology, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Yunzhu Huang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 501180, China
| | - Xiaorui Ma
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qitao Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Peng Zou
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Cong Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China; Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yiping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 501180, China
| | | | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Wang X, Hetzel M, Zhang W, Ehrhardt A, Bayer W. Comparative analysis of the impact of 40 adenovirus types on dendritic cell activation and CD8 + T cell proliferation capacity for the identification of favorable immunization vector candidates. Front Immunol 2023; 14:1286622. [PMID: 37915567 PMCID: PMC10616870 DOI: 10.3389/fimmu.2023.1286622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
For the development of new adenovirus (AdV)-based vectors, it is important to understand differences in immunogenicity. In a side-by-side in vitro analysis, we evaluated the effect of 40 AdV types covering human AdV (HAdV) species A through G on the expression of 11 activation markers and the secretion of 12 cytokines by AdV-transduced dendritic cells, and the effect on CD8+ T cell proliferation capacity. We found that the expression of activation markers and cytokines differed widely between the different HAdV types, and many types were able to significantly impair the proliferation capacity of CD8+ T cells. Univariate and multivariate regression analyses suggested an important role of type I interferons in mediating this suppression of CD8+ T cells, which we confirmed experimentally in a proliferation assay using a type I interferon receptor blocking antibody. Using Bayesian statistics, we calculated a prediction model that suggests HAdV types HAdV-C1, -D8, -B7, -F41, -D33, -C2, -A31, -B3 and -D65 as the most favorable candidates for vaccine vector development.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mario Hetzel
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Jeyanathan M, Afkhami S, Kang A, Xing Z. Viral-vectored respiratory mucosal vaccine strategies. Curr Opin Immunol 2023; 84:102370. [PMID: 37499279 DOI: 10.1016/j.coi.2023.102370] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
Increasing global concerns of pandemic respiratory viruses highlight the importance of developing optimal vaccination strategies that encompass vaccine platform, delivery route, and regimens. The decades-long effort to develop vaccines to combat respiratory infections such as influenza, respiratory syncytial virus, and tuberculosis has met with challenges, including the inability of systemically administered vaccines to induce respiratory mucosal (RM) immunity. In this regard, ample preclinical and available clinical studies have demonstrated the superiority of RM vaccination to induce RM immunity over parenteral route of vaccination. A great stride has been made in developing vaccines for RM delivery against respiratory pathogens, including M. tuberculosis and SARS-CoV-2. In particular, inhaled aerosol delivery of adenoviral-vectored vaccines has shown significant promise.
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alisha Kang
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
5
|
Wang Y, Shao W. Innate Immune Response to Viral Vectors in Gene Therapy. Viruses 2023; 15:1801. [PMID: 37766208 PMCID: PMC10536768 DOI: 10.3390/v15091801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Viral vectors play a pivotal role in the field of gene therapy, with several related drugs having already gained clinical approval from the EMA and FDA. However, numerous viral gene therapy vectors are currently undergoing pre-clinical research or participating in clinical trials. Despite advancements, the innate response remains a significant barrier impeding the clinical development of viral gene therapy. The innate immune response to viral gene therapy vectors and transgenes is still an important reason hindering its clinical development. Extensive studies have demonstrated that different DNA and RNA sensors can detect adenoviruses, adeno-associated viruses, and lentiviruses, thereby activating various innate immune pathways such as Toll-like receptor (TLR), cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING), and retinoic acid-inducible gene I-mitochondrial antiviral signaling protein (RLR-MAVS). This review focuses on elucidating the mechanisms underlying the innate immune response induced by three widely utilized viral vectors: adenovirus, adeno-associated virus, and lentivirus, as well as the strategies employed to circumvent innate immunity.
Collapse
Affiliation(s)
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
6
|
Zou P, Zhang P, Deng Q, Wang C, Luo S, Zhang L, Li C, Li T. Two Novel Adenovirus Vectors Mediated Differential Antibody Responses via Interferon-α and Natural Killer Cells. Microbiol Spectr 2023; 11:e0088023. [PMID: 37347197 PMCID: PMC10434031 DOI: 10.1128/spectrum.00880-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/28/2023] [Indexed: 06/23/2023] Open
Abstract
Recombinant adenovirus vectors have been widely used in vaccine development. To overcome the preexisting immunity of human adenovirus type 5 (Ad5) in populations, a range of chimpanzee or rare human adenovirus vectors have been generated. However, these novel adenovirus vectors mediate the diverse immune responses in the hosts. In this study, we explored the immune mechanism of differential antibody responses to SARS-CoV-2 S protein in mice immunized by our previously developed two novel simian adenovirus type 23 (Sad23L) and human adenovirus type 49 (Ad49L), and Ad5 vectored COVID-19 vaccines. Sad23L-nCoV-S and Ad5-nCoV-S vaccines induced the low level of interferon-α (IFN-α) and the high level of antigen-specific antibody responses in wild-type and IFN-α/β receptor defective (IFNAR-/-) C57 mice, while Ad49L-nCoV-S vaccine induced the high IFN-α and low antibody responses in C57 mice but the high antibody response in IFNAR-/- mice. In addition, the high antibody response was detected in natural killer (NK) cells-blocked but the low in follicular helper T (TFH) cells -blocked C57 mice immunized with Ad49L-nCoV-S vaccine. These results showed that Ad49L vectored vaccine stimulated IFN-α secretion to activate NK cells, and then reduced the number of TFH cells, generation center (GC) B cells and plasma cells, and subsequently reduced antigen-specific antibody production. The different novel adenovirus vectors could be selected for vaccine development according to the need for either humoral or cellular or both immune protections against a particular disease. IMPORTANCE Novel adenovirus vectors are an important antigen delivery platform for vaccine development. Understanding the immune diversity between different adenoviral vectors is critical to design the proper vaccine against an aim disease. In this study, we described the immune mechanism of Sad23L and Ad49L vectored vaccines for raising the equally high specific T cell response but the different level of specific antibody responses in mice. We found that Ad49L-vectored vaccine initiated the high IFN-α and activated NK cells to inhibit antibody response via downregulating the number of CD4+ TFH cells leading to the decline of GC B cells and plasma cells.
Collapse
Affiliation(s)
- Peng Zou
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Panli Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qitao Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Cong Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shengxue Luo
- Department of Pediatrics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Broutin M, Costa F, Peltier S, Maye J, Versillé N, Klonjkowski B. An Oil-Based Adjuvant Improves Immune Responses Induced by Canine Adenovirus-Vectored Vaccine in Mice. Viruses 2023; 15:1664. [PMID: 37632007 PMCID: PMC10458467 DOI: 10.3390/v15081664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
There is a significant need for highly effective vaccines against emerging and common veterinary infectious diseases. Canine adenovirus type 2 (CAV2) vectors allow rapid development of multiple vaccines and have demonstrated their potential in animal models. In this study, we compared the immunogenicity of a non-replicating CAV2 vector encoding the rabies virus glycoprotein with and without MontanideTM ISA 201 VG, an oil-based adjuvant. All vaccinated mice rapidly achieved rabies seroconversion, which was associated with complete vaccine protection. The adjuvant increased rabies antibody titers without any significant effect on the anti-CAV2 serological responses. An RT2 Profiler™ PCR array was conducted to identify host antiviral genes modulated in the blood samples 24 h after vaccination. Functional analysis of differentially expressed genes revealed the up-regulation of the RIG-I, TLRs, NLRs, and IFNs signaling pathways. These results demonstrate that a water-in-oil-in-water adjuvant can shape the immune responses to an antigen encoded by an adenovirus, thereby enhancing the protection conferred by live recombinant vaccines. The characterization of early vaccine responses provides a better understanding of the mechanisms underlying the efficacy of CAV2-vectored vaccines.
Collapse
Affiliation(s)
- Manon Broutin
- UMR Virologie, INRAE, ANSES, EnvA, 94700 Maisons-Alfort, France; (M.B.); (F.C.)
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (S.P.); (J.M.); (N.V.)
| | - Fleur Costa
- UMR Virologie, INRAE, ANSES, EnvA, 94700 Maisons-Alfort, France; (M.B.); (F.C.)
| | - Sandy Peltier
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (S.P.); (J.M.); (N.V.)
| | - Jennifer Maye
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (S.P.); (J.M.); (N.V.)
| | - Nicolas Versillé
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (S.P.); (J.M.); (N.V.)
| | - Bernard Klonjkowski
- UMR Virologie, INRAE, ANSES, EnvA, 94700 Maisons-Alfort, France; (M.B.); (F.C.)
| |
Collapse
|
8
|
Arjomandnejad M, Dasgupta I, Flotte TR, Keeler AM. Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer. BioDrugs 2023; 37:311-329. [PMID: 36862289 PMCID: PMC9979149 DOI: 10.1007/s40259-023-00585-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
Recombinant adeno-associated viruses (AAVs) have emerged as promising gene delivery vehicles resulting in three US Food and Drug Administration (FDA) and one European Medicines Agency (EMA)-approved AAV-based gene therapies. Despite being a leading platform for therapeutic gene transfer in several clinical trials, host immune responses against the AAV vector and transgene have hampered their widespread application. Multiple factors, including vector design, dose, and route of administration, contribute to the overall immunogenicity of AAVs. The immune responses against the AAV capsid and transgene involve an initial innate sensing. The innate immune response subsequently triggers an adaptive immune response to elicit a robust and specific response against the AAV vector. AAV gene therapy clinical trials and preclinical studies provide important information about the immune-mediated toxicities associated with AAV, yet studies suggest preclinical models fail to precisely predict the outcome of gene delivery in humans. This review discusses the contribution of the innate and adaptive immune response against AAVs, highlighting the challenges and potential strategies to mitigate these responses, thereby enhancing the therapeutic potential of AAV gene therapy.
Collapse
Affiliation(s)
- Motahareh Arjomandnejad
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
| | - Ishani Dasgupta
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA.
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Marquez-Martinez S, Vijayan A, Khan S, Zahn R. Cell entry and innate sensing shape adaptive immune responses to adenovirus-based vaccines. Curr Opin Immunol 2023; 80:102282. [PMID: 36716578 DOI: 10.1016/j.coi.2023.102282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 01/30/2023]
Abstract
Nonreplicating adenovirus-based vectors have been successfully implemented as prophylactic vaccines against infectious viral diseases and induce protective cellular and humoral responses. Differences in the mechanisms of cellular entry or endosomal escape of these vectors contribute to differences in innate immune sensing between adenovirus species. Innate immune responses to adenovirus-based vaccines, such as interferon signaling, have been reported to affect the development of adaptive responses in preclinical studies, although limited data are available in humans. Understanding the mechanisms of these early events is critical for the development of vaccines that elicit effective and durable adaptive immune responses while maintaining an acceptable reactogenicity profile.
Collapse
Affiliation(s)
- Sonia Marquez-Martinez
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands.
| | - Aneesh Vijayan
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| | - Selina Khan
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| | - Roland Zahn
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| |
Collapse
|
10
|
Chavda VP, Yao Q, Vora LK, Apostolopoulos V, Patel CA, Bezbaruah R, Patel AB, Chen ZS. Fast-track development of vaccines for SARS-CoV-2: The shots that saved the world. Front Immunol 2022; 13:961198. [PMID: 36263030 PMCID: PMC9574046 DOI: 10.3389/fimmu.2022.961198] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
In December 2019, an outbreak emerged of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which leads to coronavirus disease 2019 (COVID-19). The World Health Organisation announced the outbreak a global health emergency on 30 January 2020 and by 11 March 2020 it was declared a pandemic. The spread and severity of the outbreak took a heavy toll and overburdening of the global health system, particularly since there were no available drugs against SARS-CoV-2. With an immediate worldwide effort, communication, and sharing of data, large amounts of funding, researchers and pharmaceutical companies immediately fast-tracked vaccine development in order to prevent severe disease, hospitalizations and death. A number of vaccines were quickly approved for emergency use, and worldwide vaccination rollouts were immediately put in place. However, due to several individuals being hesitant to vaccinations and many poorer countries not having access to vaccines, multiple SARS-CoV-2 variants quickly emerged that were distinct from the original variant. Uncertainties related to the effectiveness of the various vaccines against the new variants as well as vaccine specific-side effects have remained a concern. Despite these uncertainties, fast-track vaccine approval, manufacturing at large scale, and the effective distribution of COVID-19 vaccines remain the topmost priorities around the world. Unprecedented efforts made by vaccine developers/researchers as well as healthcare staff, played a major role in distributing vaccine shots that provided protection and/or reduced disease severity, and deaths, even with the delta and omicron variants. Fortunately, even for those who become infected, vaccination appears to protect against major disease, hospitalisation, and fatality from COVID-19. Herein, we analyse ongoing vaccination studies and vaccine platforms that have saved many deaths from the pandemic.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad, Gujarat, India
| | - Qian Yao
- Graduate School, University of St. La Salle, Bacolod City, Philippines
| | | | | | - Chirag A. Patel
- Department of Pharmacology, LM College of Pharmacy, Ahmedabad, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Aayushi B. Patel
- Pharmacy Section, LM. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| |
Collapse
|
11
|
Costa Silva RCM, Bandeira-Melo C, Paula Neto HA, Vale AM, Travassos LH. COVID-19 diverse outcomes: Aggravated reinfection, type I interferons and antibodies. Med Hypotheses 2022; 167:110943. [PMID: 36105250 PMCID: PMC9461281 DOI: 10.1016/j.mehy.2022.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022]
Abstract
SARS-CoV-2 infection intrigued medicine with diverse outcomes ranging from asymptomatic to severe acute respiratory syndrome (SARS) and death. After more than two years of pandemic, reports of reinfection concern researchers and physicists. Here, we will discuss potential mechanisms that can explain reinfections, including the aggravated ones. The major topics of this hypothesis paper are the disbalance between interferon and antibodies responses, HLA heterogeneity among the affected population, and increased proportion of cytotoxic CD4+ T cells polarization in relation to T follicular cells (Tfh) subtypes. These features affect antibody levels and hamper the humoral immunity necessary to prevent or minimize the viral burden in the case of reinfections.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratório de Imunoreceptores e Sinalização, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christianne Bandeira-Melo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor Afonso Paula Neto
- Laboratório de Alvos Moleculares, Faculdade de Farmácia, Departamento de Biotecnologia Farmacêutica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Macedo Vale
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Holanda Travassos
- Laboratório de Imunoreceptores e Sinalização, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
McCann N, O'Connor D, Lambe T, Pollard AJ. Viral vector vaccines. Curr Opin Immunol 2022; 77:102210. [PMID: 35643023 PMCID: PMC9612401 DOI: 10.1016/j.coi.2022.102210] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/06/2023]
Abstract
Over the past two years, the SARS-CoV-2 pandemic has highlighted the impact that emerging pathogens can have on global health. The development of new and effective vaccine technologies is vital in the fight against such threats. Viral vectors are a relatively new vaccine platform that relies on recombinant viruses to deliver selected immunogens into the host. In response to the SARS-CoV-2 pandemic, the development and subsequent rollout of adenoviral vector vaccines has shown the utility, impact, scalability and efficacy of this platform. Shown to elicit strong cellular and humoral immune responses in diverse populations, these vaccine vectors will be an important approach against infectious diseases in the future.
Collapse
Affiliation(s)
- Naina McCann
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Daniel O'Connor
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
13
|
A Single Dose of a Hybrid hAdV5-Based Anti-COVID-19 Vaccine Induces a Long-Lasting Immune Response and Broad Coverage against VOC. Vaccines (Basel) 2021; 9:vaccines9101106. [PMID: 34696219 PMCID: PMC8537385 DOI: 10.3390/vaccines9101106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022] Open
Abstract
Most approved vaccines against COVID-19 have to be administered in a prime/boost regimen. We engineered a novel vaccine based on a chimeric human adenovirus 5 (hAdV5) vector. The vaccine (named CoroVaxG.3) is based on three pillars: (i) high expression of Spike to enhance its immunodominance by using a potent promoter and an mRNA stabilizer; (ii) enhanced infection of muscle and dendritic cells by replacing the fiber knob domain of hAdV5 by hAdV3; (iii) use of Spike stabilized in a prefusion conformation. The transduction with CoroVaxG.3-expressing Spike (D614G) dramatically enhanced the Spike expression in human muscle cells, monocytes and dendritic cells compared to CoroVaxG.5 that expressed the native fiber knob domain. A single dose of CoroVaxG.3 induced a potent humoral immunity with a balanced Th1/Th2 ratio and potent T-cell immunity, both lasting for at least 5 months. Sera from CoroVaxG.3-vaccinated mice was able to neutralize pseudoviruses expressing B.1 (wild type D614G), B.1.117 (alpha), P.1 (gamma) and B.1.617.2 (delta) Spikes, as well as an authentic P.1 SARS-CoV-2 isolate. Neutralizing antibodies did not wane even after 5 months, making this kind of vaccine a likely candidate to enter clinical trials.
Collapse
|
14
|
Muhuri M, Maeda Y, Ma H, Ram S, Fitzgerald KA, Tai PW, Gao G. Overcoming innate immune barriers that impede AAV gene therapy vectors. J Clin Invest 2021; 131:143780. [PMID: 33393506 DOI: 10.1172/jci143780] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The field of gene therapy has made considerable progress over the past several years. Adeno-associated virus (AAV) vectors have emerged as promising and attractive tools for in vivo gene therapy. Despite the recent clinical successes achieved with recombinant AAVs (rAAVs) for therapeutics, host immune responses against the vector and transgene product have been observed in numerous preclinical and clinical studies. These outcomes have hampered the advancement of AAV gene therapies, preventing them from becoming fully viable and safe medicines. The human immune system is multidimensional and complex. Both the innate and adaptive arms of the immune system seem to play a concerted role in the response against rAAVs. While most efforts have been focused on the role of adaptive immunity and developing ways to overcome it, the innate immune system has also been found to have a critical function. Innate immunity not only mediates the initial response to the vector, but also primes the adaptive immune system to launch a more deleterious attack against the foreign vector. This Review highlights what is known about innate immune responses against rAAVs and discusses potential strategies to circumvent these pathways.
Collapse
Affiliation(s)
- Manish Muhuri
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,VIDE Program
| | - Yukiko Maeda
- Horae Gene Therapy Center.,VIDE Program.,Department of Medicine
| | | | - Sanjay Ram
- Division of Infectious Diseases and Immunology
| | | | - Phillip Wl Tai
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,VIDE Program
| | - Guangping Gao
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
15
|
Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol 2021; 21:475-484. [PMID: 34211186 PMCID: PMC8246128 DOI: 10.1038/s41577-021-00578-z] [Citation(s) in RCA: 359] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Most COVID-19 vaccines are designed to elicit immune responses, ideally neutralizing antibodies (NAbs), against the SARS-CoV-2 spike protein. Several vaccines, including mRNA, adenoviral-vectored, protein subunit and whole-cell inactivated virus vaccines, have now reported efficacy in phase III trials and have received emergency approval in many countries. The two mRNA vaccines approved to date show efficacy even after only one dose, when non-NAbs and moderate T helper 1 cell responses are detectable, but almost no NAbs. After a single dose, the adenovirus vaccines elicit polyfunctional antibodies that are capable of mediating virus neutralization and of driving other antibody-dependent effector functions, as well as potent T cell responses. These data suggest that protection may require low levels of NAbs and might involve other immune effector mechanisms including non-NAbs, T cells and innate immune mechanisms. Identifying the mechanisms of protection as well as correlates of protection is crucially important to inform further vaccine development and guide the use of licensed COVID-19 vaccines worldwide.
Collapse
Affiliation(s)
- Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital, Vancouver, British Columbia, Canada.
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
| | - Tobias R Kollmann
- Telethon Kids Institute, Perth Children's Hospital, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
16
|
Graalmann T, Borst K, Manchanda H, Vaas L, Bruhn M, Graalmann L, Koster M, Verboom M, Hallensleben M, Guzmán CA, Sutter G, Schmidt RE, Witte T, Kalinke U. B cell depletion impairs vaccination-induced CD8 + T cell responses in a type I interferon-dependent manner. Ann Rheum Dis 2021; 80:1537-1544. [PMID: 34226189 PMCID: PMC8600602 DOI: 10.1136/annrheumdis-2021-220435] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The monoclonal anti-CD20 antibody rituximab is frequently applied in the treatment of lymphoma as well as autoimmune diseases and confers efficient depletion of recirculating B cells. Correspondingly, B cell-depleted patients barely mount de novo antibody responses during infections or vaccinations. Therefore, efficient immune responses of B cell-depleted patients largely depend on protective T cell responses. METHODS CD8+ T cell expansion was studied in rituximab-treated rheumatoid arthritis (RA) patients and B cell-deficient mice on vaccination/infection with different vaccines/pathogens. RESULTS Rituximab-treated RA patients vaccinated with Influvac showed reduced expansion of influenza-specific CD8+ T cells when compared with healthy controls. Moreover, B cell-deficient JHT mice infected with mouse-adapted Influenza or modified vaccinia virus Ankara showed less vigorous expansion of virus-specific CD8+ T cells than wild type mice. Of note, JHT mice do not have an intrinsic impairment of CD8+ T cell expansion, since infection with vaccinia virus induced similar T cell expansion in JHT and wild type mice. Direct type I interferon receptor signalling of B cells was necessary to induce several chemokines in B cells and to support T cell help by enhancing the expression of MHC-I. CONCLUSIONS Depending on the stimulus, B cells can modulate CD8+ T cell responses. Thus, B cell depletion causes a deficiency of de novo antibody responses and affects the efficacy of cellular response including cytotoxic T cells. The choice of the appropriate vaccine to vaccinate B cell-depleted patients has to be re-evaluated in order to efficiently induce protective CD8+ T cell responses.
Collapse
Affiliation(s)
- Theresa Graalmann
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany.,Department for Rheumatology and Immunology, Hanover Medical School, Hanover, Germany
| | - Katharina Borst
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Himanshu Manchanda
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Lea Vaas
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Matthias Bruhn
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Lukas Graalmann
- Department for Respiratory Medicine, Hanover Medical School, Hanover, Germany
| | - Mario Koster
- Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Murielle Verboom
- Institute for Transfusion Medicine and Transplant Engineering, Hanover Medical School, Hanover, Germany
| | - Michael Hallensleben
- Institute for Transfusion Medicine and Transplant Engineering, Hanover Medical School, Hanover, Germany
| | - Carlos Alberto Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Reinhold E Schmidt
- Department for Rheumatology and Immunology, Hanover Medical School, Hanover, Germany.,Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hanover, Germany
| | - Torsten Witte
- Department for Rheumatology and Immunology, Hanover Medical School, Hanover, Germany.,Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hanover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany .,Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hanover, Germany
| |
Collapse
|
17
|
Luo S, Zhang P, Liu B, Yang C, Liang C, Wang Q, Zhang L, Tang X, Li J, Hou S, Zeng J, Fu Y, Allain JP, Li T, Zhang Y, Li C. Prime-boost vaccination of mice and rhesus macaques with two novel adenovirus vectored COVID-19 vaccine candidates. Emerg Microbes Infect 2021; 10:1002-1015. [PMID: 33993845 PMCID: PMC8172228 DOI: 10.1080/22221751.2021.1931466] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACTCOVID-19 vaccines are being developed urgently worldwide. Here, we constructed two adenovirus vectored COVID-19 vaccine candidates of Sad23L-nCoV-S and Ad49L-nCoV-S carrying the full-length gene of SARS-CoV-2 spike protein. The immunogenicity of two vaccines was individually evaluated in mice. Specific immune responses were observed by priming in a dose-dependent manner, and stronger responses were obtained by boosting. Furthermore, five rhesus macaques were primed with 5 × 109 PFU Sad23L-nCoV-S, followed by boosting with 5 × 109 PFU Ad49L-nCoV-S at 4-week interval. Both mice and macaques well tolerated the vaccine inoculations without detectable clinical or pathologic changes. In macaques, prime-boost regimen induced high titers of 103.16 anti-S, 102.75 anti-RBD binding antibody and 102.38 pseudovirus neutralizing antibody (pNAb) at 2 months, while pNAb decreased gradually to 101.45 at 7 months post-priming. Robust T-cell response of IFN-γ (712.6 SFCs/106 cells), IL-2 (334 SFCs/106 cells) and intracellular IFN-γ in CD4+/CD8+ T cell (0.39%/0.55%) to S peptides were detected in vaccinated macaques. It was concluded that prime-boost immunization with Sad23L-nCoV-S and Ad49L-nCoV-S can safely elicit strong immunity in animals in preparation of clinical phase 1/2 trials.
Collapse
Affiliation(s)
- Shengxue Luo
- Department of Pediatrics, Shenzhen Hospital, Southern Medical University, Shenzhen, People's Republic of China.,Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, People's Republic of China
| | - Panli Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, People's Republic of China
| | - Bochao Liu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, People's Republic of China
| | - Chan Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Chaolan Liang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, People's Republic of China
| | - Qi Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, People's Republic of China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China
| | - Xi Tang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Department of Infection, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Jinfeng Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Shenzhen Key Laboratory of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Shuiping Hou
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Guangzhou Center for Disease Control and Prevention, Guangzhou, People's Republic of China
| | - Jinfeng Zeng
- Shenzhen Blood Center, Shenzhen, People's Republic of China
| | - Yongshui Fu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Guangzhou Blood Center, Guangzhou, People's Republic of China
| | - Jean-Pierre Allain
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China.,Emeritus Professor, University of Cambridge, Cambridge, UK
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuming Zhang
- Department of Pediatrics, Shenzhen Hospital, Southern Medical University, Shenzhen, People's Republic of China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
18
|
Powers JM, Haese NN, Denton M, Ando T, Kreklywich C, Bonin K, Streblow CE, Kreklywich N, Smith P, Broeckel R, DeFilippis V, Morrison TE, Heise MT, Streblow DN. Non-replicating adenovirus based Mayaro virus vaccine elicits protective immune responses and cross protects against other alphaviruses. PLoS Negl Trop Dis 2021; 15:e0009308. [PMID: 33793555 PMCID: PMC8051823 DOI: 10.1371/journal.pntd.0009308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/16/2021] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
Mayaro virus (MAYV) is an alphavirus endemic to South and Central America associated with sporadic outbreaks in humans. MAYV infection causes severe joint and muscle pain that can persist for weeks to months. Currently, there are no approved vaccines or therapeutics to prevent MAYV infection or treat the debilitating musculoskeletal inflammatory disease. In the current study, a prophylactic MAYV vaccine expressing the complete viral structural polyprotein was developed based on a non-replicating human adenovirus V (AdV) platform. Vaccination with AdV-MAYV elicited potent neutralizing antibodies that protected WT mice against MAYV challenge by preventing viremia, reducing viral dissemination to tissues and mitigating viral disease. The vaccine also prevented viral-mediated demise in IFN⍺R1-/- mice. Passive transfer of immune serum from vaccinated animals similarly prevented infection and disease in WT mice as well as virus-induced demise of IFN⍺R1-/- mice, indicating that antiviral antibodies are protective. Immunization with AdV-MAYV also generated cross-neutralizing antibodies against two related arthritogenic alphaviruses-chikungunya and Una viruses. These cross-neutralizing antibodies were protective against lethal infection in IFN⍺R1-/- mice following challenge with these heterotypic alphaviruses. These results indicate AdV-MAYV elicits protective immune responses with substantial cross-reactivity and protective efficacy against other arthritogenic alphaviruses. Our findings also highlight the potential for development of a multi-virus targeting vaccine against alphaviruses with endemic and epidemic potential in the Americas.
Collapse
Affiliation(s)
- John M. Powers
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Nicole N. Haese
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Takeshi Ando
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Craig Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Kiley Bonin
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Cassilyn E. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Nicholas Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Patricia Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Rebecca Broeckel
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Victor DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Mark T. Heise
- Department of Genetics, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| |
Collapse
|
19
|
Giménez-Roig J, Núñez-Manchón E, Alemany R, Villanueva E, Fillat C. Codon Usage and Adenovirus Fitness: Implications for Vaccine Development. Front Microbiol 2021; 12:633946. [PMID: 33643266 PMCID: PMC7902882 DOI: 10.3389/fmicb.2021.633946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/20/2021] [Indexed: 02/03/2023] Open
Abstract
Vaccination is the most effective method to date to prevent viral diseases. It intends to mimic a naturally occurring infection while avoiding the disease, exposing our bodies to viral antigens to trigger an immune response that will protect us from future infections. Among different strategies for vaccine development, recombinant vaccines are one of the most efficient ones. Recombinant vaccines use safe viral vectors as vehicles and incorporate a transgenic antigen of the pathogen against which we intend to generate an immune response. These vaccines can be based on replication-deficient viruses or replication-competent viruses. While the most effective strategy involves replication-competent viruses, they must be attenuated to prevent any health hazard while guaranteeing a strong humoral and cellular immune response. Several attenuation strategies for adenoviral-based vaccine development have been contemplated over time. In this paper, we will review them and discuss novel approaches based on the principle that protein synthesis from individual genes can be modulated by codon usage bias manipulation. We will summarize vaccine approaches that consider recoding of viral proteins to produce adenoviral attenuation and recoding of the transgene antigens for both viral attenuation and efficient viral epitope expression.
Collapse
Affiliation(s)
- Judit Giménez-Roig
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Estela Núñez-Manchón
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ramon Alemany
- Procure Program, Institut Català d’Oncologia- Oncobell Program, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
20
|
Kerstetter LJ, Buckley S, Bliss CM, Coughlan L. Adenoviral Vectors as Vaccines for Emerging Avian Influenza Viruses. Front Immunol 2021; 11:607333. [PMID: 33633727 PMCID: PMC7901974 DOI: 10.3389/fimmu.2020.607333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
It is evident that the emergence of infectious diseases, which have the potential for spillover from animal reservoirs, pose an ongoing threat to global health. Zoonotic transmission events have increased in frequency in recent decades due to changes in human behavior, including increased international travel, the wildlife trade, deforestation, and the intensification of farming practices to meet demand for meat consumption. Influenza A viruses (IAV) possess a number of features which make them a pandemic threat and a major concern for human health. Their segmented genome and error-prone process of replication can lead to the emergence of novel reassortant viruses, for which the human population are immunologically naïve. In addition, the ability for IAVs to infect aquatic birds and domestic animals, as well as humans, increases the likelihood for reassortment and the subsequent emergence of novel viruses. Sporadic spillover events in the past few decades have resulted in human infections with highly pathogenic avian influenza (HPAI) viruses, with high mortality. The application of conventional vaccine platforms used for the prevention of seasonal influenza viruses, such as inactivated influenza vaccines (IIVs) or live-attenuated influenza vaccines (LAIVs), in the development of vaccines for HPAI viruses is fraught with challenges. These issues are associated with manufacturing under enhanced biosafety containment, and difficulties in propagating HPAI viruses in embryonated eggs, due to their propensity for lethality in eggs. Overcoming manufacturing hurdles through the use of safer backbones, such as low pathogenicity avian influenza viruses (LPAI), can also be a challenge if incompatible with master strain viruses. Non-replicating adenoviral (Ad) vectors offer a number of advantages for the development of vaccines against HPAI viruses. Their genome is stable and permits the insertion of HPAI virus antigens (Ag), which are expressed in vivo following vaccination. Therefore, their manufacture does not require enhanced biosafety facilities or procedures and is egg-independent. Importantly, Ad vaccines have an exemplary safety and immunogenicity profile in numerous human clinical trials, and can be thermostabilized for stockpiling and pandemic preparedness. This review will discuss the status of Ad-based vaccines designed to protect against avian influenza viruses with pandemic potential.
Collapse
Affiliation(s)
- Lucas J. Kerstetter
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Stephen Buckley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carly M. Bliss
- Division of Cancer & Genetics, Division of Infection & Immunity, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Collignon C, Bol V, Chalon A, Surendran N, Morel S, van den Berg RA, Capone S, Bechtold V, Temmerman ST. Innate Immune Responses to Chimpanzee Adenovirus Vector 155 Vaccination in Mice and Monkeys. Front Immunol 2020; 11:579872. [PMID: 33329551 PMCID: PMC7734297 DOI: 10.3389/fimmu.2020.579872] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Replication-deficient chimpanzee adenovirus (ChAd) vectors represent an attractive vaccine platform and are thus employed as vaccine candidates against several infectious diseases. Since inducing effective immunity depends on the interplay between innate and adaptive immunity, a deeper understanding of innate immune responses elicited by intramuscularly injected ChAd vectors in tissues can advance the platform’s development. Using different candidate vaccines based on the Group C ChAd type 155 (ChAd155) vector, we characterized early immune responses in injected muscles and draining lymph nodes (dLNs) from mice, and complemented these analyses by evaluating cytokine responses and gene expression patterns in peripheral blood from ChAd155-injected macaques. In mice, vector DNA levels gradually decreased post-immunization, but local transgene mRNA expression exhibited two transient peaks [at 6 h and Day (D)5], which were most obvious in dLNs. This dynamic pattern was mirrored by the innate responses in tissues, which developed as early as 1–3 h (cytokines/chemokines) or D1 (immune cells) post-vaccination. They were characterized by a CCL2- and CXCL9/10-dominated chemokine profile, peaking at 6 h (with CXCL10/CCL2 signals also detectable in serum) and D7, and clear immune-cell infiltration peaks at D1/D2 and D6/D7. Experiments with a green fluorescent protein-expressing ChAd155 vector revealed infiltrating hematopoietic cell subsets at the injection site. Cell infiltrates comprised mostly monocytes in muscles, and NK cells, T cells, dendritic cells, monocytes, and B cells in dLNs. Similar bimodal dynamics were observed in whole-blood gene signatures in macaques: most of the 17 enriched immune/innate signaling pathways were significantly upregulated at D1 and D7 and downregulated at D3, and clustering analysis revealed stronger similarities between D1 and D7 signatures versus the D3 signature. Serum cytokine responses (CXCL10, IL1Ra, and low-level IFN-α) in macaques were predominantly observed at D1. Altogether, the early immune responses exhibited bimodal kinetics with transient peaks at D1/D2 and D6/D7, mostly with an IFN-associated signature, and these features were remarkably consistent across most analyzed parameters in murine tissues and macaque blood. These compelling observations reveal a novel aspect of the dynamics of innate immunity induced by ChAd155-vectored vaccines, and contribute to ongoing research to better understand how adenovectors can promote vaccine-induced immunity.
Collapse
Affiliation(s)
| | - Vanesa Bol
- Preclinical R&D, GSK, Rixensart, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sasso E, D'Alise AM, Zambrano N, Scarselli E, Folgori A, Nicosia A. New viral vectors for infectious diseases and cancer. Semin Immunol 2020; 50:101430. [PMID: 33262065 DOI: 10.1016/j.smim.2020.101430] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Since the discovery in 1796 by Edward Jenner of vaccinia virus as a way to prevent and finally eradicate smallpox, the concept of using a virus to fight another virus has evolved into the current approaches of viral vectored genetic vaccines. In recent years, key improvements to the vaccinia virus leading to a safer version (Modified Vaccinia Ankara, MVA) and the discovery that some viruses can be used as carriers of heterologous genes encoding for pathological antigens of other infectious agents (the concept of 'viral vectors') has spurred a new wave of clinical research potentially providing for a solution for the long sought after vaccines against major diseases such as HIV, TB, RSV and Malaria, or emerging infectious diseases including those caused by filoviruses and coronaviruses. The unique ability of some of these viral vectors to stimulate the cellular arm of the immune response and, most importantly, T lymphocytes with cell killing activity, has also reawakened the interest toward developing therapeutic vaccines against chronic infectious diseases and cancer. To this end, existing vectors such as those based on Adenoviruses have been improved in immunogenicity and efficacy. Along the same line, new vectors that exploit viruses such as Vesicular Stomatitis Virus (VSV), Measles Virus (MV), Lymphocytic choriomeningitis virus (LCMV), cytomegalovirus (CMV), and Herpes Simplex Virus (HSV), have emerged. Furthermore, technological progress toward modifying their genome to render some of these vectors incompetent for replication has increased confidence toward their use in infant and elderly populations. Lastly, their production process being the same for every product has made viral vectored vaccines the technology of choice for rapid development of vaccines against emerging diseases and for 'personalised' cancer vaccines where there is an absolute need to reduce time to the patient from months to weeks or days. Here we review the recent developments in viral vector technologies, focusing on novel vectors based on primate derived Adenoviruses and Poxviruses, Rhabdoviruses, Paramixoviruses, Arenaviruses and Herpesviruses. We describe the rationale for, immunologic mechanisms involved in, and design of viral vectored gene vaccines under development and discuss the potential utility of these novel genetic vaccine approaches in eliciting protection against infectious diseases and cancer.
Collapse
Affiliation(s)
- Emanuele Sasso
- Nouscom srl, Via di Castel Romano 100, 00128 Rome, Italy; Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy.
| | | | - Nicola Zambrano
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| | | | | | - Alfredo Nicosia
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
23
|
Napolitano F, Merone R, Abbate A, Ammendola V, Horncastle E, Lanzaro F, Esposito M, Contino AM, Sbrocchi R, Sommella A, Duncan JD, Hinds J, Urbanowicz RA, Lahm A, Colloca S, Folgori A, Ball JK, Nicosia A, Wizel B, Capone S, Vitelli A. A next generation vaccine against human rabies based on a single dose of a chimpanzee adenovirus vector serotype C. PLoS Negl Trop Dis 2020; 14:e0008459. [PMID: 32667913 PMCID: PMC7363076 DOI: 10.1371/journal.pntd.0008459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/05/2020] [Indexed: 12/25/2022] Open
Abstract
Rabies, caused by RNA viruses in the Genus Lyssavirus, is the most fatal of all infectious diseases. This neglected zoonosis remains a major public health problem in developing countries, causing the death of an estimated 25,000-159,000 people each year, with more than half of them in children. The high incidence of human rabies in spite of effective vaccines is mainly linked to the lack of compliance with the complicated administration schedule, inadequacies of the community public health system for local administration by the parenteral route and the overall costs of the vaccine. The goal of our work was the development of a simple, affordable and effective vaccine strategy to prevent human rabies virus infection. This next generation vaccine is based on a replication-defective chimpanzee adenovirus vector belonging to group C, ChAd155-RG, which encodes the rabies glycoprotein (G). We demonstrate here that a single dose of this vaccine induces protective efficacy in a murine model of rabies challenge and elicits strong and durable neutralizing antibody responses in vaccinated non-human primates. Importantly, we demonstrate that one dose of a commercial rabies vaccine effectively boosts the neutralizing antibody responses induced by ChAd155-RG in vaccinated monkeys, showing the compatibility of the novel vectored vaccine with the current post-exposure prophylaxis in the event of rabies virus exposure. Finally, we demonstrate that antibodies induced by ChAd155-RG can also neutralize European bat lyssaviruses 1 and 2 (EBLV-1 and EBLV-2) found in bat reservoirs.
Collapse
Affiliation(s)
| | | | | | | | - Emma Horncastle
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | | | | | | | | | - Joshua D. Duncan
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jospeh Hinds
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Richard A. Urbanowicz
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | | | | | - Jonathan K. Ball
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alfredo Nicosia
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Benjamin Wizel
- GSK Vaccines, Rockville, Maryland, United States of America
| | | | | |
Collapse
|
24
|
Coughlan L. Factors Which Contribute to the Immunogenicity of Non-replicating Adenoviral Vectored Vaccines. Front Immunol 2020; 11:909. [PMID: 32508823 PMCID: PMC7248264 DOI: 10.3389/fimmu.2020.00909] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/20/2020] [Indexed: 01/12/2023] Open
Abstract
Adenoviral vectors are a safe and potently immunogenic vaccine delivery platform. Non-replicating Ad vectors possess several attributes which make them attractive vaccines for infectious disease, including their capacity for high titer growth, ease of manipulation, safety, and immunogenicity in clinical studies, as well as their compatibility with clinical manufacturing and thermo-stabilization procedures. In general, Ad vectors are immunogenic vaccines, which elicit robust transgene antigen-specific cellular (namely CD8+ T cells) and/or humoral immune responses. A large number of adenoviruses isolated from humans and non-human primates, which have low seroprevalence in humans, have been vectorized and tested as vaccines in animal models and humans. However, a distinct hierarchy of immunological potency has been identified between diverse Ad vectors, which unfortunately limits the potential use of many vectors which have otherwise desirable manufacturing characteristics. The precise mechanistic factors which underlie the profound disparities in immunogenicity are not clearly defined and are the subject of ongoing, detailed investigation. It has been suggested that a combination of factors contribute to the potent immunogenicity of particular Ad vectors, including the magnitude and duration of vaccine antigen expression following immunization. Furthermore, the excessive induction of Type I interferons by some Ad vectors has been suggested to impair transgene expression levels, dampening subsequent immune responses. Therefore, the induction of balanced, but not excessive stimulation of innate signaling is optimal. Entry factor binding or receptor usage of distinct Ad vectors can also affect their in vivo tropism following administration by different routes. The abundance and accessibility of innate immune cells and/or antigen-presenting cells at the site of injection contributes to early innate immune responses to Ad vaccination, affecting the outcome of the adaptive immune response. Although a significant amount of information exists regarding the tropism determinants of the common human adenovirus type-5 vector, very little is known about the receptor usage and tropism of rare species or non-human Ad vectors. Increased understanding of how different facets of the host response to Ad vectors contribute to their immunological potency will be essential for the development of optimized and customized Ad vaccine platforms for specific diseases.
Collapse
|
25
|
Bliss CM, Parsons AJ, Nachbagauer R, Hamilton JR, Cappuccini F, Ulaszewska M, Webber JP, Clayton A, Hill AV, Coughlan L. Targeting Antigen to the Surface of EVs Improves the In Vivo Immunogenicity of Human and Non-human Adenoviral Vaccines in Mice. Mol Ther Methods Clin Dev 2020; 16:108-125. [PMID: 31934599 PMCID: PMC6953706 DOI: 10.1016/j.omtm.2019.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/12/2019] [Indexed: 12/25/2022]
Abstract
Adenoviral (Ad) vectors represent promising vaccine platforms for infectious disease. To overcome pre-existing immunity to commonly used human adenovirus serotype 5 (Ad5), vectors based on rare species or non-human Ads are being developed. However, these vectors often exhibit reduced potency compared with Ad5, necessitating the use of innovative approaches to augment the immunogenicity of the encoded antigen (Ag). To achieve this, we engineered model Ag, enhanced green fluorescent protein (EGFP), for targeting to the surface of host-derived extracellular vesicles (EVs), namely exosomes. Exosomes are nano-sized EVs that play important roles in cell-to-cell communication and in regulating immune responses. Directed targeting of Ag to the surface of EVs/exosomes is achieved by "exosome display," through fusion of Ag to the C1C2 domain of lactadherin, a protein highly enriched in exosomes. Herein, we engineered chimpanzee adenovirus ChAdOx1 and Ad5-based vaccines encoding EGFP, or EGFP targeted to EVs (EGFP_C1C2), and compared vaccine immunogenicity in mice. We determined that exosome display substantially increases Ag-specific humoral immunity following intramuscular and intranasal vaccination, improving the immunological potency of both ChAdOx1 and Ad5. We propose that this Ag-engineering approach could increase the immunogenicity of diverse Ad vectors that exhibit desirable manufacturing characteristics, but currently lack the potency of Ad5.
Collapse
Affiliation(s)
- Carly M. Bliss
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrea J. Parsons
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jennifer R. Hamilton
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Federica Cappuccini
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Marta Ulaszewska
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Jason P. Webber
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 2XN, UK
| | - Aled Clayton
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 2XN, UK
| | - Adrian V.S. Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| |
Collapse
|
26
|
Bullard BL, Corder BN, Gordon DN, Pierson TC, Weaver EA. Characterization of a Species E Adenovirus Vector as a Zika virus vaccine. Sci Rep 2020; 10:3613. [PMID: 32107394 PMCID: PMC7046724 DOI: 10.1038/s41598-020-60238-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
The development of a safe and efficacious Zika virus (ZIKV) vaccine remains a global health priority. In our previous work, we developed an Adenovirus vectored ZIKV vaccine using a low-seroprevalent human Adenovirus type 4 (Ad4-prM-E) and compared it to an Ad5 vector (Ad5-prM-E). We found that vaccination with Ad4-prM-E leads to the development of a strong anti-ZIKV T-cell response without eliciting significant anti-ZIKV antibodies, while vaccination with Ad5-prM-E leads to the development of both anti-ZIKV antibody and T-cell responses in C57BL/6 mice. However, both vectors conferred protection against ZIKV infection in a lethal challenge model. Here we continued to characterize the T-cell biased immune response observed in Ad4 immunized mice. Vaccination of BALB/c mice resulted in immune correlates similar to C57BL/6 mice, confirming that this response is not mouse strain-specific. Vaccination with an Ad4 expressing an influenza hemagglutinin (HA) protein resulted in anti-HA T-cell responses without the development of significant anti-HA antibodies, indicating this unique response is specific to the Ad4 serotype rather than the transgene expressed. Co-administration of a UV inactivated Ad4 vector with the Ad5-prM-E vaccine led to a significant reduction in anti-ZIKV antibody development suggesting that this serotype-specific immune profile is capsid-dependent. These results highlight the serotype-specific immune profiles elicited by different Adenovirus vector types and emphasize the importance of continued characterization of these alternative Ad serotypes.
Collapse
Affiliation(s)
- Brianna L Bullard
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, USA
| | - Brigette N Corder
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, USA
| | - David N Gordon
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Eric A Weaver
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, USA.
| |
Collapse
|
27
|
Zivcec M, Safronetz D, Scott DP, Robertson S, Feldmann H. Nucleocapsid protein-based vaccine provides protection in mice against lethal Crimean-Congo hemorrhagic fever virus challenge. PLoS Negl Trop Dis 2018; 12:e0006628. [PMID: 30011277 PMCID: PMC6062107 DOI: 10.1371/journal.pntd.0006628] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/26/2018] [Accepted: 06/24/2018] [Indexed: 01/11/2023] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is an acute, often fatal viral disease characterized by rapid onset of febrile symptoms followed by hemorrhagic manifestations. The etiologic agent, CCHF orthonairovirus (CCHFV), can infect several mammals in nature but only seems to cause clinical disease in humans. Over the past two decades there has been an increase in total number of CCHF case reports, including imported CCHF patients, and an expansion of CCHF endemic areas. Despite its increased public health burden there are currently no licensed vaccines or treatments to prevent CCHF. We here report the development and assessment of the protective efficacy of an adenovirus (Ad)-based vaccine expressing the nucleocapsid protein (N) of CCHFV (Ad-N) in a lethal immunocompromised mouse model of CCHF. The results show that Ad-N can protect mice from CCHF mortality and that this platform should be considered for future CCHFV vaccine strategies. Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne disease that can manifest as a viral hemorrhagic fever syndrome. The CCHF virus is widely spread throughout the African continent, the Balkans, the Middle East, Southern Russia and Western Asia where it remains a serious public health concern. Currently, there are no licensed treatments or vaccines available, and medical countermeasures are urgently needed. We developed an adenovirus vector vaccine based on the conserved structural nucleoprotein (N) as the antigen. A prime-boost approach showed promising efficacy in the most widely used immunocompromised mouse model. This vaccine approach demonstrates a role for N in protection and suggests its consideration for future CCHFV vaccine strategies.
Collapse
Affiliation(s)
- Marko Zivcec
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - David Safronetz
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Shelly Robertson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Heinz Feldmann
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
28
|
Analysis of the effect of promoter type and skin pretreatment on antigen expression and antibody response after gene gun-based immunization. PLoS One 2018; 13:e0197962. [PMID: 29856790 PMCID: PMC5983433 DOI: 10.1371/journal.pone.0197962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/13/2018] [Indexed: 11/29/2022] Open
Abstract
Monoclonal antibodies (mAbs) have enabled numerous basic research discoveries and therapeutic approaches for many protein classes. However, there still exist a number of target classes, such as multi-pass membrane proteins, for which antibody discovery is difficult, due in part to lack of high quality, recombinant protein. Here we describe the impact of several parameters on antigen expression and the development of mAbs against human claudin 4 (CLDN4), a potential multi-indication cancer target. Using gene gun-based DNA delivery and bioluminescence imaging, we optimize promoter type by comparing expression profiles of four robust in vivo promoters. In addition, we observe that most vectors rapidly lose expression, ultimately reaching almost background levels by three days post-delivery. Recognizing this limitation, we next explored skin pretreatment strategies as an orthogonal method to further boost the efficiency of mAb generation. We show that SDS pretreatment can boost antigen expression, but fails to significantly increase mAb discovery efficiency. In contrast, we find that sandpaper pretreatment yields 5-fold more FACS+ anti-CLDN4 hybridomas, without impacting antigen expression. Our findings coupled with other strategies to improve DNA immunizations should improve the success of mAb discovery against other challenging targets and enable the generation of critical research tools and therapeutic candidates.
Collapse
|
29
|
Vitelli A, Folgori A, Scarselli E, Colloca S, Capone S, Nicosia A. Chimpanzee adenoviral vectors as vaccines - challenges to move the technology into the fast lane. Expert Rev Vaccines 2017; 16:1241-1252. [PMID: 29047309 DOI: 10.1080/14760584.2017.1394842] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In recent years, replication-defective chimpanzee-derived adenoviruses have been extensively evaluated as genetic vaccines. These vectors share desirable properties with human adenoviruses like the broad tissue tropism and the ease of large-scale manufacturing. Additionally, chimpanzee adenoviruses have the advantage to overcome the negative impact of pre-existing anti-human adenovirus immunity. Areas covered: Here the authors review current pre-clinical research and clinical trials that utilize chimpanzee-derived adenoviral vectors as vaccines. A wealth of studies are ongoing to evaluate different vector backbones and administration routes with the aim of improving immune responses. The challenges associated with the identification of an optimal chimpanzee vector and immunization strategies for different immunological outcomes will be discussed. Expert commentary: The demonstration that chimpanzee adenoviruses can be safely used in humans has paved the way to the use of a whole new array of vectors of different serotypes. However, so far no predictive signature of vector immunity in humans has been identified. The high magnitude of T cell responses elicited by chimpanzee adenoviruses has allowed dissecting the qualitative aspects that may be important for protective immunity. Ultimately, only the results from the most clinically advanced products will help establish the efficacy of the vaccine vector platform in the field of disease prevention.
Collapse
Affiliation(s)
| | | | | | | | | | - Alfredo Nicosia
- a ReiThera , Rome , Italy.,c CEINGE , Naples , Italy.,d Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , Naples , Italy
| |
Collapse
|
30
|
Reese TA, Bi K, Kambal A, Filali-Mouhim A, Beura LK, Bürger MC, Pulendran B, Sekaly RP, Jameson SC, Masopust D, Haining WN, Virgin HW. Sequential Infection with Common Pathogens Promotes Human-like Immune Gene Expression and Altered Vaccine Response. Cell Host Microbe 2016; 19:713-9. [PMID: 27107939 DOI: 10.1016/j.chom.2016.04.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/22/2016] [Accepted: 04/01/2016] [Indexed: 12/16/2022]
Abstract
Immune responses differ between laboratory mice and humans. Chronic infection with viruses and parasites are common in humans, but are absent in laboratory mice, and thus represent potential contributors to inter-species differences in immunity. To test this, we sequentially infected laboratory mice with herpesviruses, influenza, and an intestinal helminth and compared their blood immune signatures to mock-infected mice before and after vaccination against yellow fever virus (YFV-17D). Sequential infection altered pre- and post-vaccination gene expression, cytokines, and antibodies in blood. Sequential pathogen exposure induced gene signatures that recapitulated those seen in blood from pet store-raised versus laboratory mice, and adult versus cord blood in humans. Therefore, basal and vaccine-induced murine immune responses are altered by infection with agents common outside of barrier facilities. This raises the possibility that we can improve mouse models of vaccination and immunity by selective microbial exposure of laboratory animals to mimic that of humans.
Collapse
Affiliation(s)
- Tiffany A Reese
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Kevin Bi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Pediatric Hematology and Oncology, Children's Hospital, Boston, MA 02115, and the Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amal Kambal
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ali Filali-Mouhim
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lalit K Beura
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matheus C Bürger
- Department of Clinical Analyses and Toxicology, School of Pharmaceutical Science at University of São Paulo, São Paulo 05508, Brazil
| | - Bali Pulendran
- Emory Vaccine Center, Yerkes National Primate Research Center and Department of Pathology, Emory University, Atlanta, GA 30329, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Stephen C Jameson
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Masopust
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Pediatric Hematology and Oncology, Children's Hospital, Boston, MA 02115, and the Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
31
|
Yan J, Dong J, Wu J, Zhu R, Wang Z, Wang B, Wang L, Wang Z, Zhang H, Wu H, Yu B, Kong W, Yu X. Interaction between hexon and L4-100K determines virus rescue and growth of hexon-chimeric recombinant Ad5 vectors. Sci Rep 2016; 6:22464. [PMID: 26934960 PMCID: PMC4776158 DOI: 10.1038/srep22464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/11/2016] [Indexed: 11/23/2022] Open
Abstract
The immunogenicity of recombinant adenovirus serotype 5 (rAd5) vectors has been shown to be suppressed by neutralizing antibodies (NAbs) directed primarily against hexon hypervariable regions (HVRs). Preexisting immunity can be circumvented by replacing HVRs of rAd5 hexon with those derived from alternate adenovirus serotypes. However, chimeric modification of rAd5 hexon HVRs tends to cause low packaging efficiency or low proliferation of rAd5 vectors, but the related mechanism remains unclear. In this study, several Ad5-based vectors with precise replacement of HVRs with those derived from Ad37 and Ad43 were generated. We first observed that a HVR-exchanged rAd5 vector displayed a higher efficacy of the recombinant virus rescue and growth improvement compared with the rAd5 vector, although most hexon-chimeric rAd5 vectors constructed by us and other groups have proven to be nonviable or growth defective. We therefore evaluated the structural stability of the chimeric hexons and their interactions with the L4-100K chaperone. We showed that the viability of hexon-chimeric Ad5 vectors was not attributed to the structural stability of the chimeric hexon, but rather to the hexon maturation which was assisted by L4-100K. Our results suggested that the intricate interaction between hexon and L4-100K would determine the virus rescue and proliferation efficiency of hexon-chimeric rAd5 vectors.
Collapse
Affiliation(s)
- Jingyi Yan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Jianing Dong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Rui Zhu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Zhen Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Baoming Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Lizheng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Zixuan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
32
|
Adenoviral Vector Vaccines Antigen Transgene. ADENOVIRAL VECTORS FOR GENE THERAPY 2016. [PMCID: PMC7150117 DOI: 10.1016/b978-0-12-800276-6.00021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the past decade adenovirus-based vaccines have progressed from preclinical studies, which universally showed the vectors’ high immunogenicity, to testing in humans. Clinical trials showed that adenovirus vectors are well tolerated by humans. They induce robust immune responses that can be expanded by booster immunization. The effect of preexisting neutralizing antibodies on vectors’ immunogenicity appears to be less severe than was observed in experimental animals and can readily be circumvented by using vectors to which most humans lack neutralizing antibodies. Additional clinical studies are needed to firmly establish the efficacy of adenoviral vector vaccines.
Collapse
|
33
|
Dicks MDJ, Spencer AJ, Coughlan L, Bauza K, Gilbert SC, Hill AVS, Cottingham MG. Differential immunogenicity between HAdV-5 and chimpanzee adenovirus vector ChAdOx1 is independent of fiber and penton RGD loop sequences in mice. Sci Rep 2015; 5:16756. [PMID: 26576856 PMCID: PMC4649739 DOI: 10.1038/srep16756] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/19/2015] [Indexed: 01/30/2023] Open
Abstract
Replication defective adenoviruses are promising vectors for the delivery of vaccine antigens. However, the potential of a vector to elicit transgene-specific adaptive immune responses is largely dependent on the viral serotype used. HAdV-5 (Human adenovirus C) vectors are more immunogenic than chimpanzee adenovirus vectors from species Human adenovirus E (ChAdOx1 and AdC68) in mice, though the mechanisms responsible for these differences in immunogenicity remain poorly understood. In this study, superior immunogenicity was associated with markedly higher levels of transgene expression in vivo, particularly within draining lymph nodes. To investigate the viral factors contributing to these phenotypes, we generated recombinant ChAdOx1 vectors by exchanging components of the viral capsid reported to be principally involved in cell entry with the corresponding sequences from HAdV-5. Remarkably, pseudotyping with the HAdV-5 fiber and/or penton RGD loop had little to no effect on in vivo transgene expression or transgene-specific adaptive immune responses despite considerable species-specific sequence heterogeneity in these components. Our results suggest that mechanisms governing vector transduction after intramuscular administration in mice may be different from those described in vitro.
Collapse
Affiliation(s)
- Matthew D. J. Dicks
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Alexandra J. Spencer
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Lynda Coughlan
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Karolis Bauza
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Sarah C. Gilbert
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Adrian V. S. Hill
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Matthew G. Cottingham
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
34
|
Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important? Hum Vaccin Immunother 2015; 10:2875-84. [PMID: 25483662 PMCID: PMC5443060 DOI: 10.4161/hv.29594] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pre-existing immunity against human adenovirus (HAd) serotype 5 derived vector in the human population is widespread, thus hampering its clinical use. Various components of the immune system, including neutralizing antibodies (nAbs), Ad specific T cells and type I IFN activated NK cells, contribute to dampening the efficacy of Ad vectors in individuals with pre-existing Ad immunity. In order to circumvent pre-existing immunity to adenovirus, numerous strategies, such as developing alternative Ad serotypes, varying immunization routes and utilizing prime-boost regimens, are under pre-clinical or clinical phases of development. However, these strategies mainly focus on one arm of pre-existing immunity. Selection of alternative serotypes has been largely driven by the absence in the human population of nAbs against them with little attention paid to cross-reactive Ad specific T cells. Conversely, varying the route of immunization appears to mainly rely on avoiding Ad specific tissue-resident T cells. Finally, prime-boost regimens do not actually circumvent pre-existing immunity but instead generate immune responses of sufficient magnitude to confer protection despite pre-existing immunity. Combining the above strategies and thus taking into account all components regulating pre-existing Ad immunity will help further improve the development of Ad vectors for animal and human use.
Collapse
|
35
|
Quinn KM, Zak DE, Costa A, Yamamoto A, Kastenmuller K, Hill BJ, Lynn GM, Darrah PA, Lindsay RWB, Wang L, Cheng C, Nicosia A, Folgori A, Colloca S, Cortese R, Gostick E, Price DA, Gall JGD, Roederer M, Aderem A, Seder RA. Antigen expression determines adenoviral vaccine potency independent of IFN and STING signaling. J Clin Invest 2015; 125:1129-46. [PMID: 25642773 DOI: 10.1172/jci78280] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/23/2014] [Indexed: 12/13/2022] Open
Abstract
Recombinant adenoviral vectors (rAds) are lead vaccine candidates for protection against a variety of pathogens, including Ebola, HIV, tuberculosis, and malaria, due to their ability to potently induce T cell immunity in humans. However, the ability to induce protective cellular immunity varies among rAds. Here, we assessed the mechanisms that control the potency of CD8 T cell responses in murine models following vaccination with human-, chimpanzee-, and simian-derived rAds encoding SIV-Gag antigen (Ag). After rAd vaccination, we quantified Ag expression and performed expression profiling of innate immune response genes in the draining lymph node. Human-derived rAd5 and chimpanzee-derived chAd3 were the most potent rAds and induced high and persistent Ag expression with low innate gene activation, while less potent rAds induced less Ag expression and robustly induced innate immunity genes that were primarily associated with IFN signaling. Abrogation of type I IFN or stimulator of IFN genes (STING) signaling increased Ag expression and accelerated CD8 T cell response kinetics but did not alter memory responses or protection. These findings reveal that the magnitude of rAd-induced memory CD8 T cell immune responses correlates with Ag expression but is independent of IFN and STING and provide criteria for optimizing protective CD8 T cell immunity with rAd vaccines.
Collapse
|
36
|
Dicks MDJ, Guzman E, Spencer AJ, Gilbert SC, Charleston B, Hill AVS, Cottingham MG. The relative magnitude of transgene-specific adaptive immune responses induced by human and chimpanzee adenovirus vectors differs between laboratory animals and a target species. Vaccine 2015; 33:1121-8. [PMID: 25629523 PMCID: PMC4331283 DOI: 10.1016/j.vaccine.2015.01.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 12/02/2022]
Abstract
HAdV-5 (HAdV-C) vectors are more immunogenic than AdC68 or ChAdOx1 (HAdV-E) vectors in mice. In mice, CD8+ T cell responses peak later, and are more durable after HAdV-5 vaccination. In cattle, ChAdOx1 is at least as immunogenic as HAdV-5.
Adenovirus vaccine vectors generated from new viral serotypes are routinely screened in pre-clinical laboratory animal models to identify the most immunogenic and efficacious candidates for further evaluation in clinical human and veterinary settings. Here, we show that studies in a laboratory species do not necessarily predict the hierarchy of vector performance in other mammals. In mice, after intramuscular immunization, HAdV-5 (Human adenovirus C) based vectors elicited cellular and humoral adaptive responses of higher magnitudes compared to the chimpanzee adenovirus vectors ChAdOx1 and AdC68 from species Human adenovirus E. After HAdV-5 vaccination, transgene specific IFN-γ+ CD8+ T cell responses reached peak magnitude later than after ChAdOx1 and AdC68 vaccination, and exhibited a slower contraction to a memory phenotype. In cattle, cellular and humoral immune responses were at least equivalent, if not higher, in magnitude after ChAdOx1 vaccination compared to HAdV-5. Though we have not tested protective efficacy in a disease model, these findings have important implications for the selection of candidate vectors for further evaluation. We propose that vaccines based on ChAdOx1 or other Human adenovirus E serotypes could be at least as immunogenic as current licensed bovine vaccines based on HAdV-5.
Collapse
Affiliation(s)
- Matthew D J Dicks
- The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Efrain Guzman
- The Pirbright Institute, Pirbright Laboratory, Pirbright, Surrey GU24 0NF, UK
| | - Alexandra J Spencer
- The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Bryan Charleston
- The Pirbright Institute, Pirbright Laboratory, Pirbright, Surrey GU24 0NF, UK
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Matthew G Cottingham
- The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
37
|
Carey JB, Vrdoljak A, O'Mahony C, Hill AVS, Draper SJ, Moore AC. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route. Sci Rep 2014; 4:6154. [PMID: 25142082 PMCID: PMC4139947 DOI: 10.1038/srep06154] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/04/2014] [Indexed: 11/28/2022] Open
Abstract
Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.
Collapse
Affiliation(s)
- John B Carey
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Anto Vrdoljak
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Conor O'Mahony
- The Tyndall National Institute, University College Cork, Cork, Ireland
| | | | | | - Anne C Moore
- 1] School of Pharmacy, University College Cork, Cork, Ireland [2] Dept. of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
de Cassan SC, Draper SJ. Recent advances in antibody-inducing poxviral and adenoviral vectored vaccine delivery platforms for difficult disease targets. Expert Rev Vaccines 2014; 12:365-78. [DOI: 10.1586/erv.13.11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Lukashevich IS, Shirwan H. Adenovirus-Based Vectors for the Development of Prophylactic and Therapeutic Vaccines. NOVEL TECHNOLOGIES FOR VACCINE DEVELOPMENT 2014. [PMCID: PMC7121347 DOI: 10.1007/978-3-7091-1818-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Emerging and reemerging infectious diseases as well as cancer pose great global health impacts on the society. Vaccines have emerged as effective treatments to prevent or reduce the burdens of already developed diseases. This is achieved by means of activating various components of the immune system to generate systemic inflammatory reactions targeting infectious agents or diseased cells for control/elimination. DNA virus-based genetic vaccines gained significant attention in the past decades owing to the development of DNA manipulation technologies, which allowed engineering of recombinant viral vectors encoding sequences for foreign antigens or their immunogenic epitopes as well as various immunomodulatory molecules. Despite tremendous progress in the past 50 years, many hurdles still remain for achieving the full clinical potential of viral-vectored vaccines. This chapter will present the evolution of vaccines from “live” or “attenuated” first-generation agents to recombinant DNA and viral-vectored vaccines. Particular emphasis will be given to human adenovirus (Ad) for the development of prophylactic and therapeutic vaccines. Ad biological properties related to vaccine development will be highlighted along with their advantages and potential hurdles to be overcome. In particular, we will discuss (1) genetic modifications in the Ad capsid protein to reduce the intrinsic viral immunogenicity, (2) antigen capsid incorporation for effective presentation of foreign antigens to the immune system, (3) modification of the hexon and fiber capsid proteins for Ad liver de-targeting and selective retargeting to cancer cells, (4) Ad-based vaccines carrying “arming” transgenes with immunostimulatory functions as immune adjuvants, and (5) oncolytic Ad vectors as a new therapeutic approach against cancer. Finally, the combination of adenoviral vectors with other non-adenoviral vector systems, the prime/boost strategy of immunization, clinical trials involving Ad-based vaccines, and the perspectives for the field development will be discussed.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicolog Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| | - Haval Shirwan
- Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| |
Collapse
|
40
|
Jian L, Zhao Q, Zhang S, Huang W, Xiong Y, Zhou X, Jia B. The prevalence of neutralising antibodies to chimpanzee adenovirus type 6 and type 7 in healthy adult volunteers, patients with chronic hepatitis B and patients with primary hepatocellular carcinoma in China. Arch Virol 2013; 159:465-70. [PMID: 24057756 DOI: 10.1007/s00705-013-1828-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/08/2013] [Indexed: 11/25/2022]
Abstract
The presence of neutralising antibodies (NAbs) against adenovirus in the population is a major hurdle preventing the effective use of replication-defective adenoviruses (Ads) as candidates for gene therapy and vaccine vectors for many diseases. Only a few studies have described the epidemiology of pre-existing immunity to chimpanzee Ads in China. To assess the prevalence of NAbs to chimpanzee adenovirus serotypes 6 and 7 (AdC6 and AdC7), we enrolled 998 healthy participants from five regions in China as well as 196 chronic hepatitis B virus (HBV) patients and 193 primary hepatocellular carcinoma (HCC) patients from Chongqing, China. The total seroprevalence rates of AdC6 and AdC7 NAbs in the healthy participants were 12.22 % (122/998) (95 % confidence interval [CI], 10.34-14.40 %) and 13.13 % (131/998) (95 % CI, 11.17-15.36 %), respectively. The seroprevalence rates of AdC6 and AdC7 NAbs in the HBV patients were 21.43 % (42/196) (95 % CI, 16.26-27.69 %) and 25.51 % (50/196) (95 % CI, 19.92-32.04 %), respectively. The seroprevalence rates of AdC6 and AdC7 NAbs in the HCC patients were 27.46 % (53/193) (95 % CI, 21.65-34.15 %) and 31.09 % (60/193) (95 % CI, 24.98-37.93 %), respectively. The seroprevalence rates of these Ads were not associated with age and gender. The present study may provide useful insights for developing future AdC-based vaccines and gene therapies.
Collapse
Affiliation(s)
- Li Jian
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu Zhong District, Chongqing, 400016, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Identification of a suppressor mutation that improves the yields of hexon-modified adenovirus vectors. J Virol 2013; 87:9661-71. [PMID: 23824800 DOI: 10.1128/jvi.00462-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have generated hexon-modified adenovirus serotype 5 (Ad5) vectors that are not neutralized by Ad5-specific neutralizing antibodies in mice. These vectors are attractive for the advancement of vaccine products because of their potential for inducing robust antigen-specific immune responses in people with prior exposure to Ad5. However, hexon-modified Ad5 vectors displayed an approximate 10-fold growth defect in complementing cells, making potential vaccine costs unacceptably high. Replacing hypervariable regions (HVRs) 1, 2, 4, and 5 with the equivalent HVRs from Ad43 was sufficient to avoid Ad5 preexisting immunity and retain full vaccine potential. However, the resulting vector displayed the same growth defect as the hexon-modified vector carrying all 9 HVRs from Ad43. The growth defect is likely due to a defect in capsid assembly, since DNA replication and late protein accumulation were normal in these vectors. We determined that the hexon-modified vectors have a 32°C cold-sensitive phenotype and selected revertants that restored vector productivity. Genome sequencing identified a single base change resulting in a threonine-to-methionine amino acid substitution at the position equivalent to residue 342 of the wild-type protein. This mutation has a suppressor phenotype (SP), since cloning it into our Ad5 vector containing all nine hypervariable regions from Ad43, Ad5.H(43m-43), increased yields over the version without the SP mutation. This growth improvement was also shown for an Ad5-based hexon-modified vector that carried the hexon hypervariable regions of Ad48, indicating that the SP mutation may have broad applicability for improving the productivity of different hexon-modified vectors.
Collapse
|
42
|
Draper SJ, Cottingham MG, Gilbert SC. Utilizing poxviral vectored vaccines for antibody induction-progress and prospects. Vaccine 2013; 31:4223-30. [PMID: 23746455 PMCID: PMC7131268 DOI: 10.1016/j.vaccine.2013.05.091] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/22/2013] [Indexed: 02/06/2023]
Abstract
Poxviral vectors are now regarded as robust tools for B cell and antibody induction. Antibody responses can be induced against the vector as well as a transgene. Increasing application is seen in heterologous prime–boost immunization regimes. Effective veterinary poxviral vaccine products are now licensed. Promising results of antibody induction are being reported in human clinical trials.
Over the last decade, poxviral vectors emerged as a mainstay approach for the induction of T cell-mediated immunity by vaccination, and their suitability for human use has led to widespread clinical testing of candidate vectors against infectious intracellular pathogens and cancer. In contrast, poxviruses have been widely perceived in the vaccine field as a poor choice of vector for the induction of humoral immunity. However, a growing body of data, from both animal models and recent clinical trials, now suggests that these vectors can be successfully utilized to prime and boost B cells and effective antibody responses. Significant progress has been made in the context of heterologous prime–boost immunization regimes, whereby poxviruses are able to boost responses primed by other vectors, leading to the induction of high-titre antigen-specific antibody responses. In other cases, poxviral vectors have been shown to stimulate humoral immunity against both themselves and encoded transgenes, in particular viral surface proteins such as influenza haemagglutinin. In the veterinary field, recombinant poxviral vectors have made a significant impact with numerous vectors licensed for use against a variety of animal viruses. On-going studies continue to explore the potential of poxviral vectors to modulate qualitative aspects of the humoral response, as well as their amenability to adjuvantation seeking to improve quantitative antibody immunogenicity. Nevertheless, the underlying mechanisms of B cell induction by recombinant poxviruses remain poorly defined, and further work is necessary to help guide the rational optimization of future poxviral vaccine candidates aiming to induce antibodies.
Collapse
Affiliation(s)
- Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK.
| | | | | |
Collapse
|
43
|
Bruder JT, Semenova E, Chen P, Limbach K, Patterson NB, Stefaniak ME, Konovalova S, Thomas C, Hamilton M, King CR, Richie TL, Doolan DL. Modification of Ad5 hexon hypervariable regions circumvents pre-existing Ad5 neutralizing antibodies and induces protective immune responses. PLoS One 2012; 7:e33920. [PMID: 22496772 PMCID: PMC3320611 DOI: 10.1371/journal.pone.0033920] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 02/20/2012] [Indexed: 11/19/2022] Open
Abstract
The development of an effective malaria vaccine is a high global health priority. Vaccine vectors based on adenovirus type 5 are capable of generating robust and protective T cell and antibody responses in animal models and are currently being evaluated in clinical trials for HIV and malaria. They appear to be more effective in terms of inducing antigen-specific immune responses as compared with non-Ad5 serotype vectors. However, the high prevalence of neutralizing antibodies to Ad5 in the human population, particularly in the developing world, has the potential to limit the effectiveness of Ad5-based vaccines. We have generated novel Ad5-based vectors that precisely replace the hexon hypervariable regions with those derived from Ad43, a subgroup D serotype with low prevalence of neutralizing antibody in humans. We have demonstrated that these hexon-modified adenovectors are not neutralized efficiently by Ad5 neutralizing antibodies in vitro using sera from mice, rabbits and human volunteers. We have also generated hexon-modified adenovectors that express a rodent malaria parasite antigen, PyCSP, and demonstrated that they are as immunogenic as an unmodified vector. Furthermore, in contrast to the unmodified vector, the hexon-modified adenovectors induced robust T cell responses in mice with high levels of Ad5 neutralizing antibody. We also show that the hexon-modified vector can be combined with unmodified Ad5 vector in prime-boost regimens to induce protective responses in mice. Our data establish that these hexon-modified vectors are highly immunogenic even in the presence of pre-existing anti-adenovirus antibodies. These hexon-modified adenovectors may have advantages in sub-Saharan Africa where there is a high prevalence of Ad5 neutralizing antibody in the population.
Collapse
Affiliation(s)
- Joseph T Bruder
- Research, GenVec, Inc., Gaithersburg, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Seregin SS, Aldhamen YA, Rastall DPW, Godbehere S, Amalfitano A. Adenovirus-based vaccination against Clostridium difficile toxin A allows for rapid humoral immunity and complete protection from toxin A lethal challenge in mice. Vaccine 2011; 30:1492-501. [PMID: 22200503 DOI: 10.1016/j.vaccine.2011.12.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 12/21/2022]
Abstract
Clostridium difficile associated diarrhea (CDAD) is a critical public health problem worldwide with over 300,000 cases every year in the United States alone. Clearly, a potent vaccine preventing the morbidity and mortality caused by this detrimental pathogen is urgently required. However, vaccine efforts to combat C. difficile infections have been limited both in scope as well as to efficacy, as such there is not a vaccine approved for use against C. difficile to date. In this study, we have used a highly potent Adenovirus (Ad) based platform to create a vaccine against C. difficile. The Ad-based vaccine was able to generate rapid and robust humoral as well as cellular (T-cell) immune responses in mice that correlated with provision of 100% protection from lethal challenge with C. difficile toxin A. Most relevant to the clinical utility of this vaccine formulation was our result that toxin A specific IgGs were readily detected in plasma of Ad immunized mice as early as 3 days post vaccination. In addition, we found that several major immuno-dominant T cell epitopes were identified in toxin A, suggesting that the role of the cellular arm in protection from C. difficile infections may be more significant than previously appreciated. Therefore, our studies confirm that an Adenovirus based-C. difficile vaccine could be a promising candidate for prophylactic vaccination both for use in high risk patients and in high-risk environments.
Collapse
Affiliation(s)
- Sergey S Seregin
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, United States
| | | | | | | | | |
Collapse
|
45
|
Seregin SS, Aldhamen YA, Appledorn DM, Zehnder J, Voss T, Godbehere S, Amalfitano A. Use of DAF-displaying adenovirus vectors reduces induction of transgene- and vector-specific adaptive immune responses in mice. Hum Gene Ther 2011; 22:1083-94. [PMID: 21388344 DOI: 10.1089/hum.2010.218] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adenovirus (Ad)-based vectors are attractive candidates for a variety of gene-transfer applications. In this study, we found that decay-accelerating factor (DAF)-displaying Ads induce significantly decreased cellular immune responses to transgenes expressed from the vectors in both Ad5-naive and Ad5-immune mice. Specifically, we found a diminished ability of splenocytes to secrete interferon-γ after recall exposure to multiple peptides derived from antigens expressed by DAF-displaying Ads. We also confirmed that DAF-displaying Ads induce decreased numbers of antigen-specific, CD8(+) effector memory and central memory CD8(+) T cells, thereby uncovering a unique role of complement in modulating the induction of robust memory T-cell responses. We also confirmed that DAF-displaying Ads generate significantly reduced titers of Ad capsid-specific neutralizing antibodies after gene transfer in vivo. In conclusion, DAF-displaying Ad5-based vectors exhibit decreased induction of complement-dependent, innate immune responses, resulting in both an improved safety profile and a decreased propensity to induce humoral and cellular adaptive immune responses to Ad capsid proteins and Ad vector-expressed transgene products. This attractive combination of features will be beneficial in a variety of clinically relevant gene-transfer applications.
Collapse
Affiliation(s)
- Sergey S Seregin
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Seregin SS, Amalfitano A. Improving adenovirus based gene transfer: strategies to accomplish immune evasion. Viruses 2010; 2:2013-2036. [PMID: 21994718 PMCID: PMC3185744 DOI: 10.3390/v2092013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/03/2010] [Accepted: 09/15/2010] [Indexed: 12/20/2022] Open
Abstract
Adenovirus (Ad) based gene transfer vectors continue to be the platform of choice for an increasing number of clinical trials worldwide. In fact, within the last five years, the number of clinical trials that utilize Ad based vectors has doubled, indicating growing enthusiasm for the numerous positive characteristics of this gene transfer platform. For example, Ad vectors can be easily and relatively inexpensively produced to high titers in a cGMP compliant manner, can be stably stored and transported, and have a broad applicability for a wide range of clinical conditions, including both gene therapy and vaccine applications. Ad vector based gene transfer will become more useful as strategies to counteract innate and/or pre-existing adaptive immune responses to Ads are developed and confirmed to be efficacious. The approaches attempting to overcome these limitations can be divided into two broad categories: pre-emptive immune modulation of the host, and selective modification of the Ad vector itself. The first category of methods includes the use of immunosuppressive drugs or specific compounds to block important immune pathways, which are known to be induced by Ads. The second category comprises several innovative strategies inclusive of: (1) Ad-capsid-display of specific inhibitors or ligands; (2) covalent modifications of the entire Ad vector capsid moiety; (3) the use of tissue specific promoters and local administration routes; (4) the use of genome modified Ads; and (5) the development of chimeric or alternative serotype Ads. This review article will focus on both the promise and the limitations of each of these immune evasion strategies, and in the process delineate future directions in developing safer and more efficacious Ad-based gene transfer strategies.
Collapse
Affiliation(s)
- Sergey S. Seregin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; E-Mail:
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; E-Mail:
- Department of Pediatrics, Michigan State University, East Lansing, MI 48824, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-517-884-5324; Fax: +1-517-353-8957
| |
Collapse
|
47
|
Kahl CA, Bonnell J, Hiriyanna S, Fultz M, Nyberg-Hoffman C, Chen P, King CR, Gall JGD. Potent immune responses and in vitro pro-inflammatory cytokine suppression by a novel adenovirus vaccine vector based on rare human serotype 28. Vaccine 2010; 28:5691-702. [PMID: 20600496 DOI: 10.1016/j.vaccine.2010.06.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 06/04/2010] [Accepted: 06/15/2010] [Indexed: 11/15/2022]
Abstract
Adenovirus vaccine vectors derived from rare human serotypes have been shown to be less potent than serotype 5 (Ad5) at inducing immune responses to encoded antigens. To identify highly immunogenic adenovirus vectors, we assessed pro-inflammatory cytokine expression, binding to the CD46 receptor, and immunogenicity. Species D adenoviruses uniquely suppressed pro-inflammatory cytokines and induced high levels of type I interferon. Thus, it was unexpected that a vector derived from a representative serotype, Ad28, induced significantly higher transgene-specific T cell responses than an Ad35 vector. Prime-boost regimens with Ad28, Ad35, Ad14, or Ad5 significantly boosted T cell and antibody responses. The seroprevalence of Ad28 was confirmed to be <10% in the United States. Together, this shows that a rare human serotype-based vector can elicit strong immune responses, which was not predicted by in vitro results.
Collapse
Affiliation(s)
- Christoph A Kahl
- GenVec, Inc., 65 West Watkins Mill Road, Gaithersburg, MD 20878, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Suzuki M, Cerullo V, Bertin TK, Cela R, Clarke C, Guenther M, Brunetti-Pierri N, Lee B. MyD88-dependent silencing of transgene expression during the innate and adaptive immune response to helper-dependent adenovirus. Hum Gene Ther 2010; 21:325-36. [PMID: 19824822 DOI: 10.1089/hum.2009.155] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Activation of the host innate immune response after systemic administration of adenoviral vectors constitutes a principal impediment to successful clinical gene replacement therapies. Although helper-dependent adenoviruses (HDAds) lack all viral functional genes, systemic administration of a high dose of HDAd still elicits a potent innate immune response in host animals. Toll-like receptors (TLRs) are innate receptors that sense microbial products and trigger the maturation of antigen-presenting cells and cytokine production via MyD88-dependent signaling (except TLR3). Here we show that mice lacking MyD88 exhibit a dramatic reduction in proinflammatory cytokines after intravenous injection of a high dose of HDAd, and show significantly reduced induction of the adaptive immune response when compared with wild-type and TLR2-deficient mice. Importantly, MyD88(-/-) mice also show significantly higher and longer sustained transgene expression than do wild-type mice. Chromatin immunoprecipitation studies using wild-type and MyD88-deficient primary mouse embryonic fibroblasts showed significant MyD88-dependent transcriptional silencing of the HDAd-encoded transgenes. Our results demonstrate that MyD88 signaling, activated by systemic delivery of HDAd, initiates an innate immune response that suppresses transgene expression at the transcriptional level before initiation of the adaptive immune response.
Collapse
Affiliation(s)
- Masataka Suzuki
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Chikungunya virus is a mosquito-borne arthrogenic alphavirus that has recently reemerged to produce the largest epidemic ever documented for this virus. Here we describe a new adult wild-type mouse model of chikungunya virus arthritis, which recapitulates the self-limiting arthritis, tenosynovitis, and myositis seen in humans. Rheumatic disease was associated with a prolific infiltrate of monocytes, macrophages, and NK cells and the production of monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor alpha (TNF-alpha), and gamma interferon (IFN-gamma). Infection with a virus isolate from the recent Reunion Island epidemic induced significantly more mononuclear infiltrates, proinflammatory mediators, and foot swelling than did an Asian isolate from the 1960s. Primary mouse macrophages were shown to be productively infected with chikungunya virus; however, the depletion of macrophages ameliorated rheumatic disease and prolonged the viremia. Only 1 microg of an unadjuvanted, inactivated, whole-virus vaccine derived from the Asian isolate completely protected against viremia and arthritis induced by the Reunion Island isolate, illustrating that protection is not strain specific and that low levels of immunity are sufficient to mediate protection. IFN-alpha treatment was able to prevent arthritis only if given before infection, suggesting that IFN-alpha is not a viable therapy. Prior infection with Ross River virus, a related arthrogenic alphavirus, and anti-Ross River virus antibodies protected mice against chikungunya virus disease, suggesting that individuals previously exposed to Ross River virus should be protected from chikungunya virus disease. This new mouse model of chikungunya virus disease thus provides insights into pathogenesis and a simple and convenient system to test potential new interventions.
Collapse
|
50
|
Adenovirus capsid-display of the retro-oriented human complement inhibitor DAF reduces Ad vector-triggered immune responses in vitro and in vivo. Blood 2010; 116:1669-77. [PMID: 20511542 DOI: 10.1182/blood-2010-03-276949] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus (Ad) vectors are widely used in human clinical trials. However, at higher dosages, Ad vector-triggered innate toxicities remain a major obstacle to many applications. Ad interactions with the complement system significantly contribute to innate immune responses in several models of Ad-mediated gene transfer. We constructed a novel class of Ad vectors, genetically engineered to "capsid-display" native and retro-oriented versions of the human complement inhibitor decay-accelerating factor (DAF), as a fusion protein from the C-terminus of the Ad capsid protein IX. In contrast to conventional Ad vectors, DAF-displaying Ads dramatically minimized complement activation in vitro and complement-dependent immune responses in vivo. DAF-displaying Ads did not trigger thrombocytopenia, minimized endothelial cell activation, and had diminished inductions of proinflammatory cytokine and chemokine responses. The retro-oriented display of DAF facilitated the greatest improvements in vivo, with diminished activation of innate immune cells, such as dendritic and natural killer cells. In conclusion, Ad vectors can capsid-display proteins in a manner that not only retains the functionality of the displayed proteins but also potentially can be harnessed to improve the efficacy of this important gene transfer platform for numerous gene transfer applications.
Collapse
|