1
|
Guerrero Zuniga A, Aikin TJ, McKenney C, Lendner Y, Phung A, Hook PW, Meltzer A, Timp W, Regot S. Sustained ERK signaling promotes G2 cell cycle exit and primes cells for whole-genome duplication. Dev Cell 2024; 59:1724-1736.e4. [PMID: 38640927 PMCID: PMC11233237 DOI: 10.1016/j.devcel.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2024] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
Whole-genome duplication (WGD) is a frequent event in cancer evolution that fuels chromosomal instability. WGD can result from mitotic errors or endoreduplication, yet the molecular mechanisms that drive WGD remain unclear. Here, we use live single-cell analysis to characterize cell-cycle dynamics upon aberrant Ras-ERK signaling. We find that sustained ERK signaling in human cells leads to reactivation of the APC/C in G2, resulting in tetraploid G0-like cells that are primed for WGD. This process is independent of DNA damage or p53 but dependent on p21. Transcriptomics analysis and live-cell imaging showed that constitutive ERK activity promotes p21 expression, which is necessary and sufficient to inhibit CDK activity and which prematurely activates the anaphase-promoting complex (APC/C). Finally, either loss of p53 or reduced ERK signaling allowed for endoreduplication, completing a WGD event. Thus, sustained ERK signaling-induced G2 cell cycle exit represents an alternative path to WGD.
Collapse
Affiliation(s)
- Adler Guerrero Zuniga
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Biochemistry, Cellular and Molecular Biology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Timothy J Aikin
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Biochemistry, Cellular and Molecular Biology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Connor McKenney
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Biochemistry, Cellular and Molecular Biology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yovel Lendner
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alain Phung
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul W Hook
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Amy Meltzer
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Winston Timp
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sergi Regot
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Chaturvedi S, Biswas M, Sadhukhan S, Sonawane A. Role of EGFR and FASN in breast cancer progression. J Cell Commun Signal 2023:10.1007/s12079-023-00771-w. [PMID: 37490191 DOI: 10.1007/s12079-023-00771-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
Breast cancer (BC) emerged as one of the life-threatening diseases among females. Despite notable improvements made in cancer detection and treatment worldwide, according to GLOBACAN 2020, BC is the fifth leading cancer, with an estimated 1 in 6 cancer deaths, in a majority of countries. However, the exact cause that leads to BC progression still needs to be determined. Here, we reviewed the role of two novel biomarkers responsible for 50-70% of BC progression. The first one is epidermal growth factor receptor (EGFR) which belongs to the ErbB tyrosine kinases family, signalling pathways associated with it play a significant role in regulating cell proliferation and division. Another one is fatty acid synthase (FASN), a key enzyme responsible for the de novo lipid synthesis required for cancer cell development. This review presents a rationale for the EGFR-mediated pathways, their interaction with FASN, communion of these two biomarkers with BC, and improvements to overcome drug resistance caused by them.
Collapse
Affiliation(s)
- Suchi Chaturvedi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh, 453552, India
| | - Mainak Biswas
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678623, India.
- Physical & Chemical Biology Laboratory and Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678623, India.
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh, 453552, India.
| |
Collapse
|
3
|
Timmerman DM, Remmers TL, Hillenius S, Looijenga LHJ. Mechanisms of TP53 Pathway Inactivation in Embryonic and Somatic Cells-Relevance for Understanding (Germ Cell) Tumorigenesis. Int J Mol Sci 2021; 22:ijms22105377. [PMID: 34065345 PMCID: PMC8161298 DOI: 10.3390/ijms22105377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/10/2023] Open
Abstract
The P53 pathway is the most important cellular pathway to maintain genomic and cellular integrity, both in embryonic and non-embryonic cells. Stress signals induce its activation, initiating autophagy or cell cycle arrest to enable DNA repair. The persistence of these signals causes either senescence or apoptosis. Over 50% of all solid tumors harbor mutations in TP53 that inactivate the pathway. The remaining cancers are suggested to harbor mutations in genes that regulate the P53 pathway such as its inhibitors Mouse Double Minute 2 and 4 (MDM2 and MDM4, respectively). Many reviews have already been dedicated to P53, MDM2, and MDM4, while this review additionally focuses on the other factors that can deregulate P53 signaling. We discuss that P14ARF (ARF) functions as a negative regulator of MDM2, explaining the frequent loss of ARF detected in cancers. The long non-coding RNA Antisense Non-coding RNA in the INK4 Locus (ANRIL) is encoded on the same locus as ARF, inhibiting ARF expression, thus contributing to the process of tumorigenesis. Mutations in tripartite motif (TRIM) proteins deregulate P53 signaling through their ubiquitin ligase activity. Several microRNAs (miRNAs) inactivate the P53 pathway through inhibition of translation. CCCTC-binding factor (CTCF) maintains an open chromatin structure at the TP53 locus, explaining its inactivation of CTCF during tumorigenesis. P21, a downstream effector of P53, has been found to be deregulated in different tumor types. This review provides a comprehensive overview of these factors that are known to deregulate the P53 pathway in both somatic and embryonic cells, as well as their malignant counterparts (i.e., somatic and germ cell tumors). It provides insights into which aspects still need to be unraveled to grasp their contribution to tumorigenesis, putatively leading to novel targets for effective cancer therapies.
Collapse
|
4
|
Mustachio LM, Chelariu-Raicu A, Szekvolgyi L, Roszik J. Targeting KRAS in Cancer: Promising Therapeutic Strategies. Cancers (Basel) 2021; 13:1204. [PMID: 33801965 PMCID: PMC7999304 DOI: 10.3390/cancers13061204] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
The Kirsten rat sarcoma viral oncogene homolog (KRAS) is mutated in approximately 25% of all human cancers and is known to be a major player promoting and maintaining tumorigenesis through the RAS/MAPK pathway. Over the years, a large number of studies have identified strategies at different regulatory levels to tackle this 'difficult-to-target' oncoprotein. Yet, the most ideal strategy to overcome KRAS and its downstream effects has yet to be uncovered. This review summarizes the role of KRAS activating mutations in multiple cancer types as well as the key findings for potential strategies inhibiting its oncogenic behavior. A comprehensive analysis of the different pathways and mechanisms associated with KRAS activity in tumors will ultimately pave the way for promising future work that will identify optimum therapeutic strategies.
Collapse
Affiliation(s)
- Lisa Maria Mustachio
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anca Chelariu-Raicu
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilian University of Munich, 80539 Munich, Germany;
| | - Lorant Szekvolgyi
- Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, MTA-DE Momentum, Faculty of Medicine, University of Debrecen, 4002 Debrecen, Hungary;
| | - Jason Roszik
- Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Creff J, Besson A. Functional Versatility of the CDK Inhibitor p57 Kip2. Front Cell Dev Biol 2020; 8:584590. [PMID: 33117811 PMCID: PMC7575724 DOI: 10.3389/fcell.2020.584590] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The cyclin/CDK inhibitor p57Kip2 belongs to the Cip/Kip family, with p21Cip1 and p27Kip1, and is the least studied member of the family. Unlike the other family members, p57Kip2 has a unique role during embryogenesis and is the only CDK inhibitor required for embryonic development. p57Kip2 is encoded by the imprinted gene CDKN1C, which is the gene most frequently silenced or mutated in the genetic disorder Beckwith-Wiedemann syndrome (BWS), characterized by multiple developmental anomalies. Although initially identified as a cell cycle inhibitor based on its homology to other Cip/Kip family proteins, multiple novel functions have been ascribed to p57Kip2 in recent years that participate in the control of various cellular processes, including apoptosis, migration and transcription. Here, we will review our current knowledge on p57Kip2 structure, regulation, and its diverse functions during development and homeostasis, as well as its potential implication in the development of various pathologies, including cancer.
Collapse
Affiliation(s)
- Justine Creff
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| | - Arnaud Besson
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| |
Collapse
|
6
|
A potential role of cyclin-dependent kinase inhibitor 1 (p21/WAF1) in the pathogenesis of endometriosis: Directions for future research. Med Hypotheses 2019; 133:109414. [DOI: 10.1016/j.mehy.2019.109414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 12/13/2022]
|
7
|
Torgovnick A, Heger JM, Liaki V, Isensee J, Schmitt A, Knittel G, Riabinska A, Beleggia F, Laurien L, Leeser U, Jüngst C, Siedek F, Vogel W, Klümper N, Nolte H, Wittersheim M, Tharun L, Castiglione R, Krüger M, Schauss A, Perner S, Pasparakis M, Büttner R, Persigehl T, Hucho T, Herter-Sprie GS, Schumacher B, Reinhardt HC. The Cdkn1a SUPER Mouse as a Tool to Study p53-Mediated Tumor Suppression. Cell Rep 2019; 25:1027-1039.e6. [PMID: 30355482 DOI: 10.1016/j.celrep.2018.09.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 08/03/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022] Open
Abstract
Cdkn1a, which encodes p21, functions as a major route for p53-mediated cell-cycle arrest. However, the consequence of Cdkn1a gene dosage on tumor suppression has not been systematically investigated. Here, we employed BAC transgenesis to generate a Cdkn1aSUPER mouse, which harbors an additional Cdkn1a allele within its natural genomic context. We show that these mice display enhanced cell-cycle arrest and reduced apoptosis in response to genotoxic stress. Furthermore, using a chemically induced skin cancer model and an autochthonous Kras-driven lung adenocarcinoma model, we show that Cdkn1aSUPER mice display a cancer protection phenotype that is indistinguishable from that observed in Tp53SUPER animals. Moreover, we demonstrate that Tp53 and Cdkn1a cooperate in mediating cancer resistance, using a chemically induced fibrosarcoma model. Overall, our Cdkn1aSUPER allele enabled us to assess the contribution of Cdkn1a to Tp53-mediated tumor suppression.
Collapse
Affiliation(s)
- Alessandro Torgovnick
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany; Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany.
| | - Jan Michel Heger
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Vasiliki Liaki
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Robert Koch Straße 10, 50931 Cologne, Germany
| | - Anna Schmitt
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Gero Knittel
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Arina Riabinska
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Filippo Beleggia
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Lucie Laurien
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Uschi Leeser
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; SYNLAB Holding Deutschland GmbH, Gubener Straße 39, 86156 Augsburg, Germany
| | - Christian Jüngst
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Florian Siedek
- Department of Radiology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Wenzel Vogel
- Institute of Pathology, University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Lübeck and 23845 Borstel, Germany
| | - Niklas Klümper
- Institute of Pathology, University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Lübeck and 23845 Borstel, Germany
| | - Hendrik Nolte
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Maike Wittersheim
- Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Lars Tharun
- Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Roberta Castiglione
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany; Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Marcus Krüger
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Sven Perner
- Institute of Pathology, University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Lübeck and 23845 Borstel, Germany
| | - Manolis Pasparakis
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Center for Molecular Medicine, University Hospital Cologne, Robert Koch Straße 21, 50931 Cologne
| | - Thorsten Persigehl
- Department of Radiology, University Hospital Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Robert Koch Straße 10, 50931 Cologne, Germany
| | - Grit Sophie Herter-Sprie
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany
| | - Björn Schumacher
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany; Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; Center for Molecular Medicine, University Hospital Cologne, Robert Koch Straße 21, 50931 Cologne.
| | - Hans Christian Reinhardt
- Department I of Internal Medicine, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Straße 26, 50931 Cologne, Germany; Center for Molecular Medicine, University Hospital Cologne, Robert Koch Straße 21, 50931 Cologne.
| |
Collapse
|
8
|
Abstract
Oncogenic activation of RAS isoforms leads tumor initiation and progression in many types of cancers and is gaining increasing interest as target for novel therapeutic strategies. In sharp contrast with other types of cancer, the importance of RAS in breast tumorigenesis has long been undermined by the low frequency of its oncogenic mutation in human breast lesions. Nevertheless, a wealth of studies over the last years have revealed how the engagement of RAS function might be mandatory downstream varied oncogenic alterations for the progression, metastatic dissemination, and therapy resistance in breast cancers. We review herein the major studies over the last three decades which have explored the controversial role of RAS proteins and their mutation status in breast tumorigenesis and have contributed to reveal their role as supporting actors, instead of as primary cause, in breast cancer.
Collapse
Affiliation(s)
- Mirco Galiè
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Shamloo B, Usluer S. p21 in Cancer Research. Cancers (Basel) 2019; 11:cancers11081178. [PMID: 31416295 PMCID: PMC6721478 DOI: 10.3390/cancers11081178] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
p21 functions as a cell cycle inhibitor and anti-proliferative effector in normal cells, and is dysregulated in some cancers. Earlier observations on p21 knockout models emphasized the role of this protein in cell cycle arrest under the p53 transcription factor activity. Although tumor-suppressor function of p21 is the most studied aspect of this protein in cancer, the role of p21 in phenotypic plasticity and its oncogenic/anti-apoptotic function, depending on p21 subcellular localization and p53 status, have been under scrutiny recently. Basic science and translational studies use precision gene editing to manipulate p21 itself, and proteins that interact with it; these studies have led to regulatory/functional/drug sensitivity discoveries as well as therapeutic approaches in cancer field. In this review, we will focus on targeting p21 in cancer research and its potential in providing novel therapies.
Collapse
Affiliation(s)
- Bahar Shamloo
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| | - Sinem Usluer
- Department of Molecular Biology & Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
10
|
Shih CC, Chou HC, Chen YJ, Kuo WH, Chan CH, Lin YC, Liao EC, Chang SJ, Chan HL. Role of PGRMC1 in cell physiology of cervical cancer. Life Sci 2019; 231:116541. [PMID: 31216441 DOI: 10.1016/j.lfs.2019.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022]
Abstract
AIMS The most frequent cancers among women worldwide. The mortality of cervical cancer has declined significantly primarily due to the widespread use of Pap smear tests as a screening test and therapeutic vaccination. However, cervical cancer still remains a severe disease among the female population, as the prognosis of metastatic cervical cancer is very poor. KEY METHODS In this study, we performed 2D-DIGE and MALDI-TOF/TOF MS to analyze differentially expressed proteins between HeLa and invasive HeLa-I5 cells.. KEY FINDINGS According to our proteomics data, 68 differentially expressed proteins between the HeLa and HeLa-I5 cells were identified. One of these differentially expressed proteins, Progesterone receptor membrane component 1 (PGRMC1), was selected as a candidate for further studies. To correlate the role of PGRMC1 with cellular migration and cancer progression, small interfering RNA (siRNA) was used to knockdown the expression of PGRMC1. Similar function of PGRMC1 was also observed in two other cervical cancer lines, CaSki and ME-180. SIGNIFICANCE PGRMC1 plays an essential role in regulating cancer progression and metastasis of cervical cancer cells, thus serving as a potential therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Chuan-Chi Shih
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Hsiu-Chuan Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Taiwan
| | - Ying-Jen Chen
- Dept. of Medical Sciences & Inst. of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Hao Chan
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Yi-Chieh Lin
- Dept. of Medical Sciences & Inst. of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - En-Chi Liao
- Dept. of Medical Sciences & Inst. of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan.
| | - Hong-Lin Chan
- Dept. of Medical Sciences & Inst. of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
11
|
Park KR, Yun JS, Park MH, Jung YY, Yeo IJ, Nam KT, Kim HD, Song JK, Choi DY, Park PH, Han SB, Yun HM, Hong JT. Loss of parkin reduces lung tumor development by blocking p21 degradation. PLoS One 2019; 14:e0217037. [PMID: 31112565 PMCID: PMC6528990 DOI: 10.1371/journal.pone.0217037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/02/2019] [Indexed: 12/24/2022] Open
Abstract
Several epidemiological studies have demonstrated the reciprocal relationship between the development of cancer and Parkinson’s disease (PD). However, the possible mechanisms underlying this relationship remain unclear. To identify this relationship, we first compared lung tumor growth in parkin knockout (KO) mice and wild-type (WT) mice. Parkin KO mice showed decreased lung tumor growth and increased expression of p21, a cell cycle arrester, as compared with WT mice. We also found that parkin interacts with p21, resulting in its degradation; however, parkin KO, knockdown, as well as mutation (R275W or G430D) reduced the degradation of p21. We investigated whether parkin KO increases the association of p21 with proliferating cell nuclear antigen (PCNA) or CDK2 by reducing p21 degradation, and, thus, arresting the cell cycle. The interaction between p21 and PCNA or CDK2 was also enhanced by parkin knockdown, and this increased interaction induced sub G0/G1 arrest, leading to cell death. Therefore, our data indicate that parkin KO reduces the development of lung tumors via cell cycle arrest by blocking the degradation of p21. These findings suggest that PD could be associated with lower lung cancer incidence.
Collapse
Affiliation(s)
- Kyung-Ran Park
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Dongdaemun-Gu, Seoul, Republic of Korea
| | - Jae Suk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, Republic of Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, Republic of Korea
| | - Yu Yeon Jung
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, Republic of Korea
| | - Kyung Tak Nam
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, Republic of Korea
| | - Hae Deun Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, Republic of Korea
| | - Ju Kyoung Song
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, Republic of Korea
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Dongdaemun-Gu, Seoul, Republic of Korea
- * E-mail: (JTH); (HMY)
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungduk-gu, Cheongju, Chungbuk, Republic of Korea
- * E-mail: (JTH); (HMY)
| |
Collapse
|
12
|
Cao Y, Liu H, Gao L, Lu L, Du L, Bai H, Li J, Said S, Wang XJ, Song J, Serkova N, Wei M, Xiao J, Lu SL. Cooperation Between Pten and Smad4 in Murine Salivary Gland Tumor Formation and Progression. Neoplasia 2018; 20:764-774. [PMID: 29958137 PMCID: PMC6031150 DOI: 10.1016/j.neo.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022] Open
Abstract
Salivary gland tumor (SGT) is a rare tumor type, which exhibits broad-spectrum phenotypic, biological, and clinical heterogeneity. Currently, the molecular mechanisms that cause SGT pathogenesis remain poorly understood. A lack of animal models that faithfully recapitulate the naturally occurring process of human SGTs has hampered research progress on this field. In this report, we developed an inducible keratin 5-driven conditional knockout mouse model to delete gene(s) of interest in murine salivary gland upon local RU486 delivery. We have deleted two major tumor suppressors, Pten, a negative regulator of the PI3K pathway, and Smad4, the central signaling mediator of TGFβ pathway, in the murine salivary gland. Our results have shown that deletion of either Pten or Smad4 in murine salivary gland resulted in pleomorphic adenomas, the most common tumor in human SGT patients. Deletion of both Pten and Smad4 in murine salivary gland developed several malignancies, with salivary adenoid cystic carcinoma (SACC) being the most frequently seen. Molecular characterization showed that SACC exhibited mTOR activation and TGFβ1 overexpression. Examination of human SGT clinical samples revealed that loss of Pten and Smad4 is common in human SACC samples, particularly in the most aggressive solid form, and is correlated with survival of SACC patients, highlighting the human relevance of the murine models. In summary, our results offer significant insight into synergistic role of Pten and Smad4 in SGT, providing a rationale for targeting mTOR and/or TGFβ signaling to control SGT formation and progression.
Collapse
Affiliation(s)
- Yu Cao
- Laboratory of Precision Oncology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Han Liu
- Department of Oral Pathology, Dalian Medical University, Dalian, Liaoning, China
| | - Liwei Gao
- Department of Radiation Oncology, China Japan Friendship Hospital, Beijing, China
| | - Ling Lu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Li Du
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Otolaryngology, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Han Bai
- Department of Oral Pathology, Dalian Medical University, Dalian, Liaoning, China
| | - Jiang Li
- Department of Oral Pathology, 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Sherif Said
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John Song
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Natalie Serkova
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Minjie Wei
- Laboratory of Precision Oncology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Jing Xiao
- Department of Oral Pathology, Dental School, China Medial University, Shenyang, Liaoning, China; Department of Oral Pathology, Dalian Medical University, Dalian, Liaoning, China.
| | - Shi-Long Lu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Laboratory of Precision Oncology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
13
|
Kaiser AM, Attardi LD. Deconstructing networks of p53-mediated tumor suppression in vivo. Cell Death Differ 2017; 25:93-103. [PMID: 29099489 DOI: 10.1038/cdd.2017.171] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/18/2017] [Accepted: 08/31/2017] [Indexed: 02/07/2023] Open
Abstract
The transcription factor p53 is a vital tumor suppressor. Upon activation by diverse stresses including oncogene activation, DNA damage, hypoxia and nutrient deprivation, p53 activates a panoply of target genes and orchestrates numerous downstream responses that suppress tumorigenesis. Although early studies of p53 suggested that its ability to induce cell cycle arrest, senescence and apoptosis programs accounted for its tumor-suppressor activity, more recent studies have challenged this notion. Moreover, p53 regulates a suite of additional processes, such as metabolism, stem cell function, invasion and metastasis. The processes p53 coordinately regulates to enact tumor suppression, and how such regulation occurs, thus remain elusive. In this review, we will summarize our current knowledge of p53-mediated tumor-suppressive mechanisms gleaned from in vivo studies in mouse models.
Collapse
Affiliation(s)
- Alyssa M Kaiser
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Ehrmann C, Schneider MR. Genetically modified laboratory mice with sebaceous glands abnormalities. Cell Mol Life Sci 2016; 73:4623-4642. [PMID: 27457558 PMCID: PMC11108334 DOI: 10.1007/s00018-016-2312-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Abstract
Sebaceous glands (SG) are exocrine glands that release their product by holocrine secretion, meaning that the whole cell becomes a secretion following disruption of the membrane. SG may be found in association with a hair follicle, forming the pilosebaceous unit, or as modified SG at different body sites such as the eyelids (Meibomian glands) or the preputial glands. Depending on their location, SG fulfill a number of functions, including protection of the skin and fur, thermoregulation, formation of the tear lipid film, and pheromone-based communication. Accordingly, SG abnormalities are associated with several diseases such as acne, cicatricial alopecia, and dry eye disease. An increasing number of genetically modified laboratory mouse lines develop SG abnormalities, and their study may provide important clues regarding the molecular pathways regulating SG development, physiology, and pathology. Here, we summarize in tabulated form the available mouse lines with SG abnormalities and, focusing on selected examples, discuss the insights they provide into SG biology and pathology. We hope this survey will become a helpful information source for researchers with a primary interest in SG but also as for researchers from unrelated fields that are unexpectedly confronted with a SG phenotype in newly generated mouse lines.
Collapse
Affiliation(s)
- Carmen Ehrmann
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany.
| |
Collapse
|
15
|
López I, Tournillon AS, Nylander K, Fåhraeus R. p53-mediated control of gene expression via mRNA translation during Endoplasmic Reticulum stress. Cell Cycle 2016; 14:3373-8. [PMID: 26397130 PMCID: PMC4825612 DOI: 10.1080/15384101.2015.1090066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
p53 is activated by different stress and damage pathways and regulates cell biological responses including cell cycle arrest, repair pathways, apoptosis and senescence. Following DNA damage, the levels of p53 increase and via binding to target gene promoters, p53 induces expression of multiple genes including p21CDKN1A and mdm2. The effects of p53 on gene expression during the DNA damage response are well mimicked by overexpressing p53 under normal conditions. However, stress to the Endoplasmic Reticulum (ER) and the consequent Unfolded Protein Response (UPR) leads to the induction of the p53/47 isoform that lacks the first 40 aa of p53 and to an active suppression of p21CDKN1A transcription and mRNA translation. We now show that during ER stress p53 also suppresses MDM2 protein levels via a similar mechanism. These observations not only raise questions about the physiological role of MDM2 during ER stress but it also reveals a new facet of p53 as a repressor toward 2 of its major target genes during the UPR. As suppression of p21CDKN1A and MDM2 protein synthesis is mediated via their coding sequences, it raises the possibility that p53 controls mRNA translation via a common mechanism that might play an important role in how p53 regulates gene expression during the UPR, as compared to the transcription-dependent gene regulation taking place during the DNA damage response.
Collapse
Affiliation(s)
- Ignacio López
- a Équipe Labellisée Ligue Contre le Cancer; Université Paris 7; INSERM UMR 1162 "Génomique fonctionnelle des tumeurs solides" ; Paris , France
| | - Anne-Sophie Tournillon
- a Équipe Labellisée Ligue Contre le Cancer; Université Paris 7; INSERM UMR 1162 "Génomique fonctionnelle des tumeurs solides" ; Paris , France
| | - Karin Nylander
- b Department of Medical Biosciences ; Umeå University ; Umeå , Sweden
| | - Robin Fåhraeus
- a Équipe Labellisée Ligue Contre le Cancer; Université Paris 7; INSERM UMR 1162 "Génomique fonctionnelle des tumeurs solides" ; Paris , France ,b Department of Medical Biosciences ; Umeå University ; Umeå , Sweden.,c RECAMO; Masaryk Memorial Cancer Institute ; Brno , Czech Republic
| |
Collapse
|
16
|
Lei ZG, Ren XH, Wang SS, Liang XH, Tang YL. Immunocompromised and immunocompetent mouse models for head and neck squamous cell carcinoma. Onco Targets Ther 2016; 9:545-55. [PMID: 26869799 PMCID: PMC4734789 DOI: 10.2147/ott.s95633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mouse models can closely mimic human oral squamous epithelial carcinogenesis, greatly expand the in vivo research possibilities, and play a critical role in the development of diagnosis, monitoring, and treatment of head and neck squamous cell carcinoma. With the development of the recent research on the contribution of immunity/inflammation to cancer initiation and progression, mouse models have been divided into two categories, namely, immunocompromised and immunocompetent mouse models. And thus, this paper will review these two kinds of models applied in head and neck squamous cell carcinoma to provide a platform to understand the complicated histological, molecular, and genetic changes of oral squamous epithelial tumorigenesis.
Collapse
Affiliation(s)
- Zhen-Ge Lei
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiao-Hua Ren
- Department of Stomatology, Sichuan Medical Science Academy and Sichuan Provincial People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Sha-Sha Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China; Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China; Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
17
|
Combined loss of PUMA and p21 accelerates c-MYC-driven lymphoma development considerably less than loss of one allele of p53. Oncogene 2015; 35:3866-71. [PMID: 26640149 DOI: 10.1038/onc.2015.457] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 12/31/2022]
Abstract
The tumor suppressor p53 is mutated in ~50% of human cancers. P53 is activated by a range of stimuli and regulates several cellular processes, including apoptotic cell death, cell cycle arrest, senescence and DNA repair. P53 induces apoptosis via transcriptional induction of the BH3-only proteins PUMA (p53-upregulated modulator of apoptosis) and NOXA, and cell cycle arrest via p21. Induction of these processes was proposed to be critical for p53-mediated tumor suppression. It is therefore surprising that mice lacking PUMA, NOXA and p21, as well as mice bearing mutations in p53 that impair the transcriptional activation of these genes, are not tumor prone, unlike mice lacking p53 function, which spontaneously develop tumors with 100% incidence. These p53 target genes and the processes they regulate may, however, impact differently on tumor development depending on the oncogenic drivers. For example, loss of PUMA enhances c-MYC-driven lymphoma development in mice, but, interestingly, the acceleration was less impressive compared with that caused by the loss of even a single p53 allele. Different studies have reported that loss of p21 can accelerate, delay or have no impact on tumorigenesis. In an attempt to resolve this controversy, we examined whether loss of p21-mediated cell cycle arrest cooperates with PUMA deficiency in accelerating lymphoma development in Eμ-Myc mice (overexpressing c-MYC in B-lymphoid cells). We found that Eμ-Myc mice lacking both p21 and PUMA (Eμ-Myc;Puma(-/-);p21(-/-)) developed lymphoma at a rate comparable to Eμ-Myc;Puma(-/-) animals, notably with considerably longer latency than Eμ-Myc;p53(+/-)mice. Loss of p21 had no impact on the numbers, cycling or survival of pre-leukemic Eμ-Myc B-lymphoid cells, even when PUMA was lost concomitantly. These results demonstrate that even in the context of deregulated c-MYC expression, p53 must suppress tumor development by activating processes apart from, or in addition to, PUMA-mediated apoptosis and p21-induced cell cycle arrest.
Collapse
|
18
|
Salari Fanoodi T, Motalleb G, Yegane Moghadam A, Talaee R. p21 Gene Expression Evaluation in Esophageal Cancer Patients. Gastrointest Tumors 2015. [DOI: 10.1159/000441901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Chen Y, Terajima M, Yang Y, Sun L, Ahn YH, Pankova D, Puperi DS, Watanabe T, Kim MP, Blackmon SH, Rodriguez J, Liu H, Behrens C, Wistuba II, Minelli R, Scott KL, Sanchez-Adams J, Guilak F, Pati D, Thilaganathan N, Burns AR, Creighton CJ, Martinez ED, Zal T, Grande-Allen KJ, Yamauchi M, Kurie JM. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma. J Clin Invest 2015; 125:1147-62. [PMID: 25664850 DOI: 10.1172/jci74725] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/05/2015] [Indexed: 01/08/2023] Open
Abstract
Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde-derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde-derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma.
Collapse
MESH Headings
- Adenocarcinoma/enzymology
- Adenocarcinoma/mortality
- Adenocarcinoma/secondary
- Animals
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/secondary
- Cell Line, Tumor
- Cells, Cultured
- Collagen/metabolism
- Enzyme Induction
- Extracellular Matrix/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Lung Neoplasms/enzymology
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Male
- Mice, 129 Strain
- Mice, Transgenic
- Neoplasm Transplantation
- Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/physiology
- Promoter Regions, Genetic
- STAT3 Transcription Factor/metabolism
- Tumor Microenvironment
- Up-Regulation
Collapse
|
20
|
Speidel D. The role of DNA damage responses in p53 biology. Arch Toxicol 2015; 89:501-17. [PMID: 25618545 DOI: 10.1007/s00204-015-1459-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/08/2015] [Indexed: 12/16/2022]
Abstract
The tumour suppressor p53 is a central player in cellular DNA damage responses. P53 is upregulated and activated by genotoxic stress and induces a transcriptional programme with effectors promoting apoptosis, cell cycle arrest, senescence and DNA repair. For the best part of the last three decades, these DNA damage-related programmes triggered by p53 were unequivocally regarded as the major if not sole mechanism by which p53 exerts its tumour suppressor function. However, this interpretation has been challenged by a number of recent in vivo studies, demonstrating that mice which are defective in inducing p53-dependent apoptosis, cell cycle arrest and senescence suppress thymic lymphoma as well as wild-type p53 expressing animals. Consequently, the importance of DNA damage responses for p53-mediated tumour suppression has been questioned. In this review, I summarize current knowledge on p53-controlled DNA damage responses and argue that these activities, while their role has certainly changed, remain an important feature of p53 biology with relevance for cancer therapy and tumour suppression.
Collapse
Affiliation(s)
- Daniel Speidel
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia,
| |
Collapse
|
21
|
Endoplasmic reticulum stress sensitizes cells to DNA damage-induced apoptosis through p53-dependent suppression of p21CDKN1A. Nat Commun 2014; 5:5067. [DOI: 10.1038/ncomms6067] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 08/25/2014] [Indexed: 12/19/2022] Open
|
22
|
Kreis NN, Sanhaji M, Rieger MA, Louwen F, Yuan J. p21Waf1/Cip1 deficiency causes multiple mitotic defects in tumor cells. Oncogene 2013; 33:5716-28. [PMID: 24317508 DOI: 10.1038/onc.2013.518] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 12/12/2022]
Abstract
As a multifaceted molecule, p21 plays multiple critical roles in cell cycle regulation, differentiation, apoptosis, DNA repair, senescence, aging and stem cell reprogramming. The important roles of p21 in the interphase of the cell cycle have been intensively investigated. The function of p21 in mitosis has been proposed but not systematically studied. We show here that p21 is abundant in mitosis and binds to and inhibits the activity of Cdk1/cyclin B1. Deficiency of p21 prolongs the duration of mitosis by extending metaphase, anaphase and cytokinesis. The activity of Aurora B is reduced and the localization of Aurora B on the central spindle is disturbed in anaphase cells without p21. Moreover, HCT116 p21-/-, HeLa and Saos-2 cells depleted of p21 encounter problems in chromosome segregation and cytokinesis. Gently inhibiting the mitotic Cdk1 or add-back of p21 rescues segregation defect in HCT116 p21-/- cells. Our data demonstrate that p21 is important for a fine-tuned control of the Cdk1 activity in mitosis, and its proper function facilitates a smooth mitotic progression. Given that p21 is downregulated in the majority of tumors, either by the loss of tumor suppressors like p53 or by hyperactive oncogenes such as c-myc, this finding also sheds new light on the molecular mechanisms by which p21 functions as a tumor suppressor.
Collapse
Affiliation(s)
- N-N Kreis
- Department of Gynecology and Obstetrics, Frankfurt, Germany
| | - M Sanhaji
- Department of Gynecology and Obstetrics, Frankfurt, Germany
| | - M A Rieger
- 1] Department of Hematology/Oncology, J W Goethe-University, Theodor-Stern-Kai 7, Frankfurt, Germany [2] Georg-Speyer-Haus, Frankfurt, Germany [3] German Cancer Consortium (DKTK), Heidelberg, Germany [4] German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F Louwen
- Department of Gynecology and Obstetrics, Frankfurt, Germany
| | - J Yuan
- Department of Gynecology and Obstetrics, Frankfurt, Germany
| |
Collapse
|
23
|
Lee YS, Lee JW, Jang JW, Chi XZ, Kim JH, Li YH, Kim MK, Kim DM, Choi BS, Kim EG, Chung JH, Lee OJ, Lee YM, Suh JW, Chuang LSH, Ito Y, Bae SC. Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell 2013; 24:603-16. [PMID: 24229708 DOI: 10.1016/j.ccr.2013.10.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 08/08/2013] [Accepted: 10/02/2013] [Indexed: 12/20/2022]
Abstract
Targeted inactivation of Runx3 in mouse lung induced mucinous and nonmucinous adenomas and markedly shortened latency of adenocarcinoma formation induced by oncogenic K-Ras. RUNX3 was frequently inactivated in K-RAS mutated human lung adenocarcinomas. A functional genetic screen of a fly mutant library and molecular analysis in cultured cell lines revealed that Runx3 forms a complex with BRD2 in a K-Ras-dependent manner in the early phase of the cell cycle; this complex induces expression of p14(ARF)/p19(Arf) and p21(WAF/CIP). When K-Ras was constitutively activated, the Runx3-BRD2 complex was stably maintained and expression of both p14(ARF) and p21(WAF/CIP) was prolonged. These results provide a missing link between oncogenic K-Ras and the p14(ARF)-p53 pathway, and may explain how cells defend against oncogenic K-Ras.
Collapse
Affiliation(s)
- You-Soub Lee
- Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju 361-763, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Askari M, Sobti RC, Nikbakht M, Sharma SC. Aberrant promoter hypermethylation of p21 (WAF1/CIP1) gene and its impact on expression and role of polymorphism in the risk of breast cancer. Mol Cell Biochem 2013; 382:19-26. [PMID: 24005533 DOI: 10.1007/s11010-013-1696-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
Abstract
p21 (Waf-1) is a cyclin-dependent kinase inhibitor that plays essential roles in cell growth arrest, terminal differentiation, and apoptosis. Statistically significant difference in the level of methylation of p21/CIP1 (p < 0. 05) between the patients with breast cancer and the healthy controls was observed. Risk of breast cancer was increased in patients with hypermethylated p21/CIP1 promoter by 2.31-fold (OR = 2.31, 95 % CI 1.95-2.74). The downregulation of p21/CIP1 mRNA expression was statistically significant in patients with methylated promoter (p < 0.00) in comparison to patients with unmethylated genes. Downregulation of mRNA expression of p21/CIP1 was up to 79% due to promoter hypermethylation. We examined several p21/CIP1 genotypes in the patients with breast cancer and found that there is no significant association of these p21/CIP1 genotypes with the risk of developing breast cancer. However, a significant 2.21-fold increase in the chance of developing breast cancer was observed in the candidates carrying at least one allele Arg mutant in p21/CIP1 genotype (i.e., Ser/Arg + Arg/Arg) with age >50 (OR = 2.21; 95 % CI 1.03-4.79).
Collapse
Affiliation(s)
- Marjan Askari
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | | | | |
Collapse
|
25
|
Niu C, Yan Z, Cheng L, Zhu J, Zhang H, Xu X, Lin J, Ye Q. Downregulation and antiproliferative role of FHL3 in breast cancer. IUBMB Life 2012; 63:764-71. [PMID: 22362714 DOI: 10.1002/iub.502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Four and a half LIM domain (FHL) protein 3 is a member of the FHL protein family that plays roles in the regulation of signal transduction, cell adhesion, survival, and mobility. FHL3 has been implicated in the development and progression of liver cancer. However, the biological function of FHL3 in other cancers remains unclear. Here, we show that FHL3 is downregulated in breast cancer patients. Using small interfering RNA (siRNA) knockdown and/or overexpression experiments, we demonstrated that FHL3 suppressed anchorage-dependent and -independent growth of human breast cancer cells. The antiproliferative effects of FHL3 on breast cancer cell growth were associated with both the G1 and the G2/M cell cycle arrest, which was accompanied by a marked inhibition of the G1-phase marker cyclin D1 and the G2/M-phase marker cyclin B1 as well as the induction of the cyclin dependent kinase inhibitor p21 (WAF1/CIP1), a negative regulator of cell cycle progression at G1 and G2. These results suggest that FHL3 may play a role in the development and progression of breast cancer, and thereby may be a potential target for human breast cancer gene therapy.
Collapse
Affiliation(s)
- Chang Niu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kalamarz ME, Paddibhatla I, Nadar C, Govind S. Sumoylation is tumor-suppressive and confers proliferative quiescence to hematopoietic progenitors in Drosophila melanogaster larvae. Biol Open 2012; 1:161-72. [PMID: 23213407 PMCID: PMC3507282 DOI: 10.1242/bio.2012043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
How cell-intrinsic regulation of the cell cycle and the extrinsic influence of the niche converge to provide proliferative quiescence, safeguard tissue integrity, and provide avenues to stop stem cells from giving rise to tumors is a major challenge in gene therapy and tissue engineering. We explore this question in sumoylation-deficient mutants of Drosophila. In wild type third instar larval lymph glands, a group of hematopoietic stem/progenitor cells acquires quiescence; a multicellular niche supports their undifferentiated state. However, how proliferative quiescence is instilled in this population is not understood. We show that Ubc9 protein is nuclear in this population. Loss of the SUMO-activating E1 enzyme, Aos1/Uba2, the conjugating E2 enzyme, Ubc9, or the E3 SUMO ligase, PIAS, results in a failure of progenitors to quiesce; progenitors become hyperplastic, misdifferentiate, and develop into microtumors that eventually detach from the dorsal vessel. Significantly, dysplasia and lethality of Ubc9 mutants are rescued when Ubc9(wt) is provided specifically in the progenitor populations, but not when it is provided in the niche or in the differentiated cortex. While normal progenitors express high levels of the Drosophila cyclin-dependent kinase inhibitor p21 homolog, Dacapo, the corresponding overgrown mutant population exhibits a marked reduction in Dacapo. Forced expression of either Dacapo or human p21 in progenitors shrinks this population. The selective expression of either protein in mutant progenitor cells, but not in other hematopoietic populations, limits overgrowth, blocks tumorogenesis, and restores organ integrity. We discuss an essential and complex role for sumoylation in preserving the hematopoietic progenitor states for stress response and in the context of normal development of the fly.
Collapse
Affiliation(s)
- Marta E Kalamarz
- Biology Department, The City College of the City University of New York , 138th Street and Convent Avenue, New York, NY 10031 , USA ; The Graduate Center of the City University of New York , 365 Fifth Avenue, New York, NY 10016 , USA
| | | | | | | |
Collapse
|
27
|
Kalamarz ME, Paddibhatla I, Nadar C, Govind S. Sumoylation is tumor-suppressive and confers proliferative quiescence to hematopoietic progenitors in Drosophila melanogaster larvae. Biol Open 2011. [DOI: 10.1242/bio.2011043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Summary
How cell-intrinsic regulation of the cell cycle and the extrinsic influence of the niche converge to provide proliferative quiescence, safeguard tissue integrity, and provide avenues to stop stem cells from giving rise to tumors is a major challenge in gene therapy and tissue engineering. We explore this question in sumoylation-deficient mutants of Drosophila. In wild type third instar larval lymph glands, a group of hematopoietic stem/progenitor cells acquires quiescence; a multicellular niche supports their undifferentiated state. However, how proliferative quiescence is instilled in this population is not understood. We show that Ubc9 protein is nuclear in this population. Loss of the SUMO-activating E1 enzyme, Aos1/Uba2, the conjugating E2 enzyme, Ubc9, or the E3 SUMO ligase, PIAS, results in a failure of progenitors to quiesce; progenitors become hyperplastic, misdifferentiate, and develop into microtumors that eventually detach from the dorsal vessel. Significantly, dysplasia and lethality of Ubc9 mutants are rescued when Ubc9wt is provided specifically in the progenitor populations, but not when it is provided in the niche or in the differentiated cortex. While normal progenitors express high levels of the Drosophila cyclin-dependent kinase inhibitor p21 homolog, Dacapo, the corresponding overgrown mutant population exhibits a marked reduction in Dacapo. Forced expression of either Dacapo or human p21 in progenitors shrinks this population. The selective expression of either protein in mutant progenitor cells, but not in other hematopoietic populations, limits overgrowth, blocks tumorogenesis, and restores organ integrity. We discuss an essential and complex role for sumoylation in preserving the hematopoietic progenitor states for stress response and in the context of normal development of the fly.
Collapse
Affiliation(s)
- Marta E. Kalamarz
- Biology Department, The City College of the City University of New York, 138th Street and Convent Avenue, New York, NY 10031, USA
- The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Indira Paddibhatla
- Biology Department, The City College of the City University of New York, 138th Street and Convent Avenue, New York, NY 10031, USA
- The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Christina Nadar
- Biology Department, The City College of the City University of New York, 138th Street and Convent Avenue, New York, NY 10031, USA
| | - Shubha Govind
- Biology Department, The City College of the City University of New York, 138th Street and Convent Avenue, New York, NY 10031, USA
- The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
28
|
Bieging KT, Attardi LD. Deconstructing p53 transcriptional networks in tumor suppression. Trends Cell Biol 2011; 22:97-106. [PMID: 22154076 DOI: 10.1016/j.tcb.2011.10.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 12/16/2022]
Abstract
p53 is a pivotal tumor suppressor that induces apoptosis, cell-cycle arrest and senescence in response to stress signals. Although p53 transcriptional activation is important for these responses, the mechanisms underlying tumor suppression have been elusive. To date, no single or compound mouse knockout of specific p53 target genes has recapitulated the dramatic tumor predisposition that characterizes p53-null mice. Recently, however, analysis of knock-in mice expressing p53 transactivation domain mutants has revealed a group of primarily novel direct p53 target genes that may mediate tumor suppression in vivo. We present here an overview of well-known p53 target genes and the tumor phenotypes of the cognate knockout mice, and address the recent identification of new p53 transcriptional targets and how they enhance our understanding of p53 transcriptional networks central for tumor suppression.
Collapse
Affiliation(s)
- Kathryn T Bieging
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
29
|
p21(WAF1/CIP1) upregulation through the stress granule-associated protein CUGBP1 confers resistance to bortezomib-mediated apoptosis. PLoS One 2011; 6:e20254. [PMID: 21637851 PMCID: PMC3102688 DOI: 10.1371/journal.pone.0020254] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/28/2011] [Indexed: 12/24/2022] Open
Abstract
Background p21WAF1/CIP1 is a well known cyclin-dependent kinase inhibitor induced by various stress stimuli. Depending on the stress applied, p21 upregulation can either promote apoptosis or prevent against apoptotic injury. The stress-mediated induction of p21 involves not only its transcriptional activation but also its posttranscriptional regulation, mainly through stabilization of p21 mRNA levels. We have previously reported that the proteasome inhibitor MG132 induces the stabilization of p21 mRNA, which correlates with the formation of cytoplasmic RNA stress granules. The mechanism underlying p21 mRNA stabilization, however, remains unknown. Methodology/Principal Findings We identified the stress granules component CUGBP1 as a factor required for p21 mRNA stabilization following treatment with bortezomib ( = PS-341/Velcade). This peptide boronate inhibitor of the 26S proteasome is very efficient for the treatment of myelomas and other hematological tumors. However, solid tumors are sometimes refractory to bortezomib treatment. We found that depleting CUGBP1 in cancer cells prevents bortezomib-mediated p21 upregulation. FISH experiments combined to mRNA stability assays show that this effect is largely due to a mistargeting of p21 mRNA in stress granules leading to its degradation. Altering the expression of p21 itself, either by depleting CUGBP1 or p21, promotes bortezomib-mediated apoptosis. Conclusions/Significance We propose that one key mechanism by which apoptosis is inhibited upon treatment with chemotherapeutic drugs might involve upregulation of the p21 protein through CUGBP1.
Collapse
|
30
|
Anandharaj A, Cinghu S, Kim WD, Yu JR, Park WY. Fused Toes Homolog modulates radiation cytotoxicity in uterine cervical cancer cells. Mol Biol Rep 2011; 38:5361-70. [PMID: 21424602 DOI: 10.1007/s11033-011-0688-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 02/25/2011] [Indexed: 02/05/2023]
Abstract
Radiotherapy is the major treatment modality for uterine cervical cancer, but in some cases, the disease is radioresistant. Defining the molecular events that contribute to radioresistance and progression of cancer are of critical importance. Here we evaluated the role of Fused Toes Homolog (FTS) in radiation resistance of cervical carcinoma. Immunostaning of cervical cancer cells and tissues revealed that FTS localization and expression was changed after radiation. Targeted stable knockdown of FTS in HeLa cells led to the growth inhibition after radiation. Radiation induced AKT mediated cytoprotective effect was countered by FTS knockdown which leads to PARP cleavage and caspase-3 activation leading to cell death. FTS knockdown promotes radiation induced cell cycle arrest at G0/G1 and apoptosis of HeLa cells with concurrent alterations in the display of cell cycle regulatory proteins. This study revealed FTS is involved in radioresistance of cervical cancer. Targeted inhibition of FTS led to the shutdown of key elemental characteristics of cervical cancer and could lead to an effective therapeutic strategy.
Collapse
Affiliation(s)
- Arunkumar Anandharaj
- Department of Radiation Oncology, Chungbuk National University College of Medicine, Cheongju 361-763, Republic of Korea
| | | | | | | | | |
Collapse
|
31
|
Dubourdeau M, Pipy B, Rousseau D. [Roles of PPAR and p21WAF1/CIP1 in monocyte/macrophage differentiation: are circulating monocytes able to proliferate?]. Med Sci (Paris) 2010; 26:481-6. [PMID: 20510146 DOI: 10.1051/medsci/2010265481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Macrophages are involved in the immune and the inflammatory response. The deregulation of their physiological properties is associated with several pathologies such as atherosclerosis and some cancers. Cytokines action on this blood lineage modulates p21WAF1/CIP1 expression. It appears that this protein may play a role in the inflammation regulation through PPAR (peroxysome proliferator-activated receptors) transcription factors, strongly linked to lipid metabolism. It could also be involved in the control of the proliferation of monocytes/macrophages, even if these cells are classically described as devoided of any proliferative capacity.
Collapse
Affiliation(s)
- Marc Dubourdeau
- Ambiotis-Incubateur Midi-Pyrénées, rue Jeanne Marvig, Toulouse, France
| | | | | |
Collapse
|
32
|
Abstract
Overexpression of Ras(G12V) in primary cells induces a permanent growth arrest called oncogene-induced senescence (OIS) that serves as a fail-safe mechanism against malignant transformation. We have performed a genome-wide small interfering RNA (siRNA) screen and a microRNA (miRNA) screen to identify mediators of OIS and show that siRNA-mediated knockdown of p21(Waf1/Cip1) rescues from Ras(G12V)-induced senescence in human mammary epithelial cells (HMECs). Moreover, we isolated a total of 28 miRNAs that prevented Ras(G12V)-induced growth arrest, among which all of the miR-106b family members were present. In addition, we obtained a number of hits, miR-130b, miR-302a, miR-302b, miR302c, miR-302d, miR-512-3p and miR-515-3p with seed sequences very similar to miR-106b family members. We show that overexpression of all these miRNAs rescues HMECs from Ras(G12V)-induced senescence by prevention of Ras(G12V)-induced upregulation of p21(Waf1/Cip1). Our results establish an important role for the cell cycle inhibitor p21(Waf1/Cip1) in growth control of HMECs and extend the repertoire of miRNAs that modulate the activity of this tumour suppressor.
Collapse
|
33
|
The cyclin-dependent kinase inhibitor p21 is a crucial target for histone deacetylase 1 as a regulator of cellular proliferation. Mol Cell Biol 2009; 30:1171-81. [PMID: 20028735 DOI: 10.1128/mcb.01500-09] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Histone deacetylases (HDACs) are chromatin-modifying enzymes that are involved in the regulation of proliferation, differentiation and development. HDAC inhibitors induce cell cycle arrest, differentiation, or apoptosis in tumor cells and are therefore promising antitumor agents. Numerous genes were found to be deregulated upon HDAC inhibitor treatment; however, the relevant target enzymes are still unidentified. HDAC1 is required for mouse development and unrestricted proliferation of embryonic stem cells. We show here that HDAC1 reversibly regulates cellular proliferation and represses the cyclin-dependent kinase inhibitor p21 in embryonic stem cells. Disruption of the p21 gene rescues the proliferation phenotype of HDAC1(-/-) embryonic stem cells but not the embryonic lethality of HDAC1(-/-) mice. In the absence of HDAC1, mouse embryonic fibroblasts scarcely undergo spontaneous immortalization and display increased p21 expression. Chromatin immunoprecipitation assays demonstrate a direct regulation of the p21 gene by HDAC1 in mouse embryonic fibroblasts. Transformation with simian virus 40 large T antigen or ablation of p21 restores normal immortalization of primary HDAC1(-/-) fibroblasts. Our data demonstrate that repression of the p21 gene is crucial for HDAC1-mediated control of proliferation and immortalization. HDAC1 might therefore be one of the relevant targets for HDAC inhibitors as anticancer drugs.
Collapse
|
34
|
Taneja P, Frazier DP, Kendig RD, Maglic D, Sugiyama T, Kai F, Taneja NK, Inoue K. MMTV mouse models and the diagnostic values of MMTV-like sequences in human breast cancer. Expert Rev Mol Diagn 2009; 9:423-40. [PMID: 19580428 DOI: 10.1586/erm.09.31] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mouse mammary tumor virus (MMTV) long terminal repeat (LTR)-driven transgenic mice are excellent models for breast cancer as they allow for the targeted expression of various oncogenes and growth factors in neoplastic transformation of mammary glands. Numerous MMTV-LTR-driven transgenic mouse models of breast cancer have been created in the past three decades, including MMTV-neu/ErbB2, cyclin D1, cyclin E, Ras, Myc, int-1 and c-rel. These transgenic mice develop mammary tumors with different latency, histology and invasiveness, reflecting the oncogenic pathways activated by the transgene. Recently, homologous sequences of the env gene of MMTV have been identified in approximately 40% of human breast cancers, but not in normal breast or other types of cancers, suggesting possible involvement of mammary tumor virus in human breast carcinogenesis. Accumulating evidence demonstrates the association of MMTV provirus with progesterone receptor, p53 mutations and advanced-stage breast cancer. Thus, the detection of MMTV-like sequences may have diagnostic value to predict the clinical outcome of breast cancer patients.
Collapse
Affiliation(s)
- Pankaj Taneja
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Taranto E, Xue JR, Morand EF, Leech M. Modulation of expression and cellular distribution of p21 by macrophage migration inhibitory factor. JOURNAL OF INFLAMMATION-LONDON 2009; 6:24. [PMID: 19703290 PMCID: PMC2737671 DOI: 10.1186/1476-9255-6-24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 08/24/2009] [Indexed: 01/16/2023]
Abstract
Background The pleiotropic protein MIF, (macrophage migration inhibitory factor), has been demonstrated to modulate several key proteins governing cell cycle control and is considered to contribute to cell growth and differentiation. In this study we investigated the effect of MIF on the expression and cellular distribution of the CDK inhibitor p21. Methods The effect of endogenous MIF on p21 expression and distribution was examined by comparing murine dermal fibroblasts derived from wt and MIF -/- mice. The effect of MIF on cell growth and apoptotic rates was compared using 3H-Thymidine incorporation assays and annexin V/PI assays respectively. Total p21 protein levels were compared using flow cytometry and western blotting. p21 mRNA was assessed by RT-PCR. Intracellular p21 staining was performed to assess cellular distribution of total protein. To further confirm observations siRNA was used to knockdown MIF protein in wt cells. Cell cycle analysis was performed using PI incorporation assays. Results MIF-/- murine dermal fibroblasts exhibited reduced proliferative responses and were more susceptible to apoptosis. This was associated with reduced p21 expression and nuclear distribution. Treatment with recombinant MIF protein was demonstrated to reduce both basal and induced apoptosis and increase nuclear p21 expression. Reduced nuclear p21 expression was also observed in MIF siRNA treated wt cells. Conclusion The results demonstrate that in the absence of MIF p21 expression and nuclear distribution is reduced which is associated with a reduction in cell growth and increased apoptosis. MIF may therefore play a role in maintaining homeostatic control of p21.
Collapse
Affiliation(s)
- Elliott Taranto
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Melbourne, Australia.
| | | | | | | |
Collapse
|
36
|
Gu B, Sun P, Yuan Y, Moraes RC, Li A, Teng A, Agrawal A, Rhéaume C, Bilanchone V, Veltmaat JM, Takemaru KI, Millar S, Lee EYHP, Lewis MT, Li B, Dai X. Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation. ACTA ACUST UNITED AC 2009; 185:811-26. [PMID: 19487454 PMCID: PMC2711593 DOI: 10.1083/jcb.200810133] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have unequivocally identified multipotent stem/progenitor cells in mammary glands, offering a tractable model system to unravel genetic and epigenetic regulation of epithelial stem/progenitor cell development and homeostasis. In this study, we show that Pygo2, a member of an evolutionarily conserved family of plant homeo domain–containing proteins, is expressed in embryonic and postnatal mammary progenitor cells. Pygo2 deficiency, which is achieved by complete or epithelia-specific gene ablation in mice, results in defective mammary morphogenesis and regeneration accompanied by severely compromised expansive self-renewal of epithelial progenitor cells. Pygo2 converges with Wnt/β-catenin signaling on progenitor cell regulation and cell cycle gene expression, and loss of epithelial Pygo2 completely rescues β-catenin–induced mammary outgrowth. We further describe a novel molecular function of Pygo2 that is required for mammary progenitor cell expansion, which is to facilitate K4 trimethylation of histone H3, both globally and at Wnt/β-catenin target loci, via direct binding to K4-methyl histone H3 and recruiting histone H3 K4 methyltransferase complexes.
Collapse
Affiliation(s)
- Bingnan Gu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
One of the main engines that drives cellular transformation is the loss of proper control of the mammalian cell cycle. The cyclin-dependent kinase inhibitor p21 (also known as p21WAF1/Cip1) promotes cell cycle arrest in response to many stimuli. It is well positioned to function as both a sensor and an effector of multiple anti-proliferative signals. This Review focuses on recent advances in our understanding of the regulation of p21 and its biological functions with emphasis on its p53-independent tumour suppressor activities and paradoxical tumour-promoting activities, and their implications in cancer.
Collapse
Affiliation(s)
- Tarek Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
38
|
Calvisi DF, Donninger H, Vos MD, Birrer MJ, Gordon L, Leaner V, Clark GJ. NORE1A tumor suppressor candidate modulates p21CIP1 via p53. Cancer Res 2009; 69:4629-37. [PMID: 19435914 DOI: 10.1158/0008-5472.can-08-3672] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NORE1A (RASSF5) is a proapoptotic Ras effector that is frequently inactivated by promoter methylation in human tumors. It is structurally related to the RASSF1A tumor suppressor and is itself implicated as a tumor suppressor. In the presence of activated Ras, NORE1A is a potent inducer of apoptosis. However, when expressed at lower levels in the absence of activated Ras, NORE1A seems to promote cell cycle arrest rather than apoptosis. The mechanisms underlying NORE1A action are poorly understood. We have used microarray analysis of an inducible NORE1A system to screen for physiologic signaling targets of NORE1A action. Using this approach, we have identified several potential signaling pathways modulated by NORE1A. In particular, we identify the cyclin-dependent kinase inhibitor p21(CIP1) as a target for NORE1A activation and show that it is a vital component of NORE1A-mediated growth inhibition. In primary human hepatocellular carcinomas (HCC), loss of NORE1A expression is frequent and correlates tightly with loss of p21(CIP1) expression. NORE1A down-regulation in HCC also correlates with poor prognosis, enhanced proliferation, survival, and angiogenic tumor characteristics. Experimental inactivation of NORE1A results in the loss of p21(CIP1) expression and promotes proliferation. The best characterized activator of p21(CIP1) is the p53 master tumor suppressor. Further experiments showed that NORE1A activates p21(CIP1) via promoting p53 nuclear localization. Thus, we define the molecular basis of NORE1A-mediated growth inhibition and implicate NORE1A as a potential component of the ill-defined connection between Ras and p53.
Collapse
Affiliation(s)
- Diego F Calvisi
- Institut für Pathologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
As commonly encountered, pituitary adenomas are invariably benign. We therefore studied protective pituitary proliferative mechanisms. Pituitary tumor transforming gene (Pttg) deletion results in pituitary p21 induction and abrogates tumor development in Rb(+/-)Pttg(-/-) mice. p21 disruption restores attenuated Rb(+/-)Pttg(-/-) pituitary proliferation rates and enables high penetrance of pituitary, but not thyroid, tumor growth in triple mutant animals (88% of Rb(+/-) and 72% of Rb(+/-)Pttg(-/-)p21(-/-) vs. 30% of Rb(+/-)Pttg(-/-) mice developed pituitary tumors, P < 0.001). p21 deletion also accelerated S-phase entry and enhanced transformation rates in triple mutant MEFs. Intranuclear p21 accumulates in Pttg-null aneuploid GH-secreting cells, and GH(3) rat pituitary tumor cells overexpressing PTTG also exhibited increased levels of mRNA for both p21 (18-fold, P < 0.01) and ATM (9-fold, P < 0.01). PTTG is abundantly expressed in human pituitary tumors, and in 23 of 26 GH-producing pituitary adenomas with high PTTG levels, senescence was evidenced by increased p21 and SA-beta-galactosidase. Thus, either deletion or overexpression of Pttg promotes pituitary cell aneuploidy and p53/p21-dependent senescence, particularly in GH-secreting cells. Aneuploid pituitary cell p21 may constrain pituitary tumor growth, thus accounting for the very low incidence of pituitary carcinomas.
Collapse
|
40
|
SOCS3 regulates p21 expression and cell cycle arrest in response to DNA damage. Cell Signal 2008; 20:2221-30. [PMID: 18793717 DOI: 10.1016/j.cellsig.2008.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 08/09/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
Genotoxic agents such as ionizing radiation trigger cell cycle arrest at the G1/S and G2/M checkpoints, allowing cells to repair damaged DNA before entry into mitosis. DNA damage-induced G1 arrest involves p53-dependent expression of p21 (Cip1/Waf-1), which inhibits cyclin-dependent kinases and blocks S phase entry. While much of the core DNA damage response has been well-studied, other signaling proteins that intersect with and modulate this response remain uncharacterized. In this study, we identify Suppressor of Cytokine Signaling (SOCS)-3 as an important regulator of radiation-induced G1 arrest. SOCS3-deficient fibroblasts fail to undergo G1 arrest and accumulate in the G2/M phase of the cell cycle. SOCS3 knockout cells phosphorylate p53 and H2AX normally in response to radiation, but fail to upregulate p21 expression. In addition, STAT3 phosphorylation is elevated in SOCS3-deficient cells compared to WT cells. Normal G1 arrest can be restored in SOCS3 KO cells by retroviral transduction of WT SOCS3 or a dominant-negative mutant of STAT3. Our results suggest a novel function for SOCS3 in the control of genome stability by negatively regulating STAT3-dependent radioresistant DNA synthesis, and promoting p53-dependent p21 expression.
Collapse
|
41
|
The nitric oxide-sensitive p21Ras–ERK pathway mediates S-nitrosoglutathione-induced apoptosis. Biochem Biophys Res Commun 2008; 369:1001-6. [DOI: 10.1016/j.bbrc.2008.02.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 02/21/2008] [Indexed: 12/20/2022]
|
42
|
Tront JS, Hoffman B, Liebermann DA. Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. Cancer Res 2007; 66:8448-54. [PMID: 16951155 DOI: 10.1158/0008-5472.can-06-2013] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Gadd45 family of proteins is known to play a central role as cellular stress sensors that modulate the response of mammalian cells to stress inflicted by physiologic and environmental stressors. Gadd45a was shown to be a direct target to the p53 and BRCA1 tumor suppressor genes, whose loss of function is known to play a vital role in breast carcinogenesis; however, the role of Gadd45a in the suppression of breast cancer remains unclear. To address this issue, Gadd45a-deficient mice were crossed with breast cancer prone mouse mammary tumor virus-Ras mice to generate mice that express activated Ras and differ in their Gadd45a status. Using this mouse model, we show that the loss of Gadd45a accelerates Ras-driven mammary tumor formation, exhibiting increased growth rates and a more aggressive histologic phenotype. Moreover, it is shown that accelerated Ras-driven tumor formation in the absence of Gadd45a results in both a decrease in apoptosis, which is linked to a decrease in c-Jun NH(2)-terminal kinase (JNK) activation, and a decrease in Ras-induced senescence, which is correlated with a decrease in p38 kinase activation. Altogether, these results provide a novel model for the tumor-suppressive function of Gadd45a in the context of Ras-driven breast carcinogenesis, showing that Gadd45a elicits its function through activation of the stress-induced JNK and p38 kinases, which contribute to increase in apoptosis and Ras-induced senescence.
Collapse
Affiliation(s)
- Jennifer S Tront
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
43
|
Quereda V, Martinalbo J, Dubus P, Carnero A, Malumbres M. Genetic cooperation between p21Cip1 and INK4 inhibitors in cellular senescence and tumor suppression. Oncogene 2007; 26:7665-74. [PMID: 17599058 DOI: 10.1038/sj.onc.1210578] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell-cycle inhibitors of the Cip/Kip and INK4 families are involved in cellular senescence and tumor suppression. Some of these proteins, p21(Cip1), p16(INK4a) and p15(INK4b), are coexpressed in response to antiproliferative signals such as cellular senescence resulting in cell-cycle arrest. To understand the roles of these inhibitors and their synergistic effect, we have characterized the growth properties and senescent behavior of primary cells deficient in p21(Cip1) and expressing an endogenous Cdk4(R24C) (cyclin-dependent kinase) mutant (Cdk4(R24C) knock-in cells) insensitive to INK4 proteins. Inactivation of both p21(Cip1) and INK4 pathways strongly cooperate in suppressing cellular senescence in vitro. These double mutant cells behavior as immortal cultures and display high sensitivity to cellular transformation by oncogenes. Moreover, mice double mutant in the INK4 and p21(Cip1) pathways (Cdk4(R24C); p21(Cip1)-null mice) display an increased incidence of specific sarcomas, suggesting a significant cooperation between these two families of cell-cycle inhibitors in senescence responses and tumor suppression in vivo.
Collapse
Affiliation(s)
- V Quereda
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | | | | | | | |
Collapse
|
44
|
Engelman RW, Jackson RJ, Coppola D, Wharton W, Cantor AB, Pledger WJ. Loss of nuclear p21(Cip1/WAF1) during neoplastic progression to metastasis in gamma-irradiated p21 hemizygous mice. Exp Mol Pathol 2007; 82:234-44. [PMID: 17207793 PMCID: PMC2039892 DOI: 10.1016/j.yexmp.2006.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 10/20/2006] [Accepted: 10/23/2006] [Indexed: 11/21/2022]
Abstract
p21(Cip1/WAF1) localizes to the nucleus in response to gamma-irradiation induced DNA damage and mediates a G(1) checkpoint arrest. Although gamma-irradiated p21(+/-) mice develop a broad spectrum of tumors, gamma-irradiated p21(-/-) mice develop significantly more metastatic cancers. To evaluate the expression of p21 in tissues prone or resistant to tumorigenesis as a function of gamma-irradiation, and to determine whether phenotypic loss of p21 heterozygosity occurs during tumor progression in p21(+/-) mice, tissues and tumors from gamma-irradiated mice were evaluated immunohistochemically. The percentage of tumors in p21(+/-) mice that were nuclear p21-positive declined with progression to metastasis (p<0.0001). Benign tumors were more often p21-positive and comprised of larger subsets of nuclear p21-positive cells than were malignant tumors of the same histopathological type, while metastatic cancers were nuclear p21-negative (p=0.0003). Even when a primary cancer was comprised of a subset of nuclear p21-positive cells, the metastatic foci of that same cancer were nuclear p21-negative. Mesenchymal tumors, though rare, were more likely metastatic than were epithelial tumors (p=0.0004), and these were invariably nuclear p21-negative. Prepubescent epithelial tissues from which most tumors later originated in mice with reduced p21 gene dosage (i.e., harderian gland, ovary, small intestine, and lung) were p21 expressive within 4 h of gamma-irradiation (p=0.0625), so that p21/Ki67 ratios increased post-gamma-irradiation (p=0.03). In contrast, p21 did not localize to nuclei of cortical thymocytes, a tissue where tumorigenesis was not augmented by reduced p21 gene dosage. Cellular subclones of malignant tumors, especially those of mesenchymal cell origin, which lack nuclear p21 may more readily acquire the genetic alterations of the metastatic phenotype.
Collapse
Affiliation(s)
- Robert W Engelman
- Department of Pathology and Cell Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Efeyan A, Collado M, Velasco-Miguel S, Serrano M. Genetic dissection of the role of p21Cip1/Waf1 in p53-mediated tumour suppression. Oncogene 2006; 26:1645-9. [PMID: 16964282 DOI: 10.1038/sj.onc.1209972] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein p21Cip1/Waf1 is transcriptionally activated by the tumour suppressor p53 and previous studies have shown that p21 plays a role in tumour suppression. However, the involvement of p21 in p53-mediated tumour suppression remains to be directly demonstrated in vivo. Tumour suppression mediated by p53 can be measured by comparing tumour susceptibility in animals carrying two (wild-type mice) or three (super-p53 mice) copies of the p53 gene. We have taken advantage of this genetically defined system to measure p53-mediated cell-cycle arrest, apoptosis and tumorigenesis, in a p21 wild-type and in a p21-null context. The absence of p21 significantly impaired the enhanced p53-mediated cell-cycle arrest characteristic of super-p53 cells, but did not affect the enhanced apoptosis. Importantly, in an experimental model of fibrosarcoma induction, the absence of p21 significantly decreased the tumour suppression benefit of super-p53 mice. We conclude that cell-cycle arrest through p21 plays a significant role in mediating p53-dependent cancer protection.
Collapse
Affiliation(s)
- A Efeyan
- Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | | | | | | |
Collapse
|
47
|
De la Cueva E, García-Cao I, Herranz M, López P, García-Palencia P, Flores JM, Serrano M, Fernández-Piqueras J, Martín-Caballero J. Tumorigenic activity of p21Waf1/Cip1 in thymic lymphoma. Oncogene 2006; 25:4128-32. [PMID: 16462758 DOI: 10.1038/sj.onc.1209432] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cell cycle inhibitor p21Waf1/Cip1 is among the most important mediators of the tumor suppressor p53. However, there is increasing evidence indicating that p21 could favor tumorigenesis in specific cell types. In particular, the absence of p21 delays the development of thymic lymphomas induced either by ataxia-telangiectasia mutated deficiency or by ionizing irradiation. Here, we extend these observations to the context of p53-deficient mice. The absence of p21 results in a significant extension of the lifespan of p53-null and p53-haploinsufficient mice, and this effect can be attributed exclusively to a decrease in the incidence of spontaneous thymic lymphomas. Specifically, despite the occurrence of a variety of tumor types in the context of p53 deficiency, the only tumors that were significantly impaired by the absence of p21 were thymic lymphomas. Moreover, the absence of p21 also delays the incidence of radiation-induced thymic lymphomas in p53-deficient mice. Interestingly, p21-deficient lymphomas have a higher apoptotic rate than p21-proficient lymphomas, and this could be on the basis of the delayed incidence of thymic lymphomas in the absence of p21. Together, our results indicate that p21 plays an oncogenic role restricted to thymic lymphomas that is mechanistically independent of p53 and associated to a lower tumor apoptotic rate.
Collapse
Affiliation(s)
- E De la Cueva
- Unit of Animal Experimentation, Spanish National Cancer Center (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Krüppel-like factors are transcriptional regulators that influence several cellular functions, including proliferation. Recent studies have shown that one family member, KLF4, can function both as a tumour suppressor and an oncogene. The ability of KLF4 to affect the levels of expression of the cell-cycle regulator p21 seems to be involved, in that this protein might function as a switch that determines the outcome of KLF4 signalling. Is this role of p21 restricted to KLF4, or does p21 represent a nodal point for signals from multiple other factors with opposing functions in cancer?
Collapse
Affiliation(s)
- Benjamin D Rowland
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
49
|
Shen KC, Heng H, Wang Y, Lu S, Liu G, Deng CX, Brooks SC, Wang YA. ATM and p21 cooperate to suppress aneuploidy and subsequent tumor development. Cancer Res 2005; 65:8747-53. [PMID: 16204044 DOI: 10.1158/0008-5472.can-05-1471] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The DNA damage checkpoint protein kinase mutated in ataxia telangiectasia (ATM) is involved in sensing and transducing DNA damage signals by phosphorylating and activating downstream target proteins that are implicated in the regulation of cell cycle progression and DNA repair. Atm-/- cells are defective in cellular proliferation mediated by the Arf/p53/p21 pathway. In this report, we show that increased expression of p21 (also known as Waf1 or CDKN1a) in Atm-/- cells serves as a cellular defense mechanism to suppress further chromosomal instability (CIN) and tumor development because Atm-/- p21-/- mice are predisposed to carcinomas and sarcomas with intratumoral heterogeneity. It was found that Atm-deficient cells are defective in metaphase-anaphase transition leading to abnormal karyokinesis. Moreover, Atm-/- p21-/- primary embryonic fibroblasts exhibit increased CIN compared with either Atm-/- or p21-/- cells. The increased CIN is manifested at the cellular level by increased chromatid breaks and elevated aneuploid genome in Atm-/- p21-/- cells. Finally, we showed that the role of p21 in a CIN background induced by loss of Atm is to suppress numerical CIN but not structural CIN. Our data suggest that the development of aneuploidy precedes tumor formation and implicates p21 as a major tumor suppressor in a genome instability background.
Collapse
Affiliation(s)
- Kate C Shen
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Shen Q, Brown PH. Transgenic mouse models for the prevention of breast cancer. Mutat Res 2005; 576:93-110. [PMID: 15888345 DOI: 10.1016/j.mrfmmm.2004.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 10/25/2004] [Accepted: 10/27/2004] [Indexed: 05/02/2023]
Abstract
Breast cancer prevention research has made remarkable progress in the past decade. Much of this progress has come from clinical trials. However, in the future to test the many promising agents that are now available, pre-clinical models of breast cancer are needed. Such models are now available. Useful models include rat and mouse models, particularly, the genetically engineered mice (GEM). Many transgenic mouse models have been generated by manipulating growth factors and their receptors, cell cycle regulators, signal transduction pathways, cellular differentiation, oncogenes and tumor suppressor genes. The transgenes are induced to express in the mouse mammary glands under the control of various transgenic promoters, which have respective characteristics in expression pattern and other biological attributes. These models are providing invaluable insight on the molecular mechanisms of breast tumorigenesis. In this review, we discuss the relative relevance of the most commonly used transgenic mouse models for breast cancer prevention studies, and provide examples of how these transgenic models can be used to conduct cancer prevention research. Due to the multi-factor, multi-step nature of breast cancer, many factors should be incorporated into a valid prevention study. However, many barriers to progress must be overcome, including access to and availability of new cancer preventive drugs, and difficulties in conducting studies of combinations of preventive agents.
Collapse
Affiliation(s)
- Qiang Shen
- Breast Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|