1
|
Le Clorennec C, Subramonian D, Huo Y, Zage PE. UBE4B interacts with the ITCH E3 ubiquitin ligase to induce Ku70 and c-FLIPL polyubiquitination and enhanced neuroblastoma apoptosis. Cell Death Dis 2023; 14:739. [PMID: 37957138 PMCID: PMC10643674 DOI: 10.1038/s41419-023-06252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Expression of the UBE4B ubiquitin ligase is strongly associated with neuroblastoma patient outcomes, but the functional roles of UBE4B in neuroblastoma pathogenesis are not known. We evaluated interactions of UBE4B with the E3 ubiquitin ligase ITCH/AIP4 and the effects of UBE4B expression on Ku70 and c-FLIPL ubiquitination and proteasomal degradation by co-immunoprecipitation and Western blots. We also evaluated the role of UBE4B in apoptosis induced by histone deacetylase (HDAC) inhibition using Western blots. UBE4B binding to ITCH was mediated by WW domains in the ITCH protein. ITCH activation led to ITCH-UBE4B complex formation and recruitment of Ku70 and c-FLIPL via ITCH WW domains, followed by Ku70 and c-FLIPL Lys48/Lys63 branched polyubiquitination and proteasomal degradation. HDAC inhibition induced Ku70 acetylation, leading to release of c-FLIPL and Bax from Ku70, increased Ku70 and c-FLIPL Lys48/Lys63 branched polyubiquitination via the ITCH-UBE4B complex, and induction of apoptosis. UBE4B depletion led to reduced polyubiquitination and increased levels of Ku70 and c-FLIPL and to reduced apoptosis induced by HDAC inhibition via stabilization of c-FLIPL and Ku70 and inhibition of caspase 8 activation. Our results have identified novel interactions and novel targets for UBE4B ubiquitin ligase activity and a direct role for the ITCH-UBE4B complex in responses of neuroblastoma cells to HDAC inhibition, suggesting that the ITCH-UBE4B complex plays a critical role in responses of neuroblastoma to therapy and identifying a potential mechanism underlying the association of UBE4B expression with neuroblastoma patient outcomes.
Collapse
Affiliation(s)
- Christophe Le Clorennec
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Divya Subramonian
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Yuchen Huo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Peter E Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA.
- Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital, San Diego, CA, USA.
| |
Collapse
|
2
|
Wang H, Wang X, Xu L. Chromosome 1p36 candidate gene ZNF436 predicts the prognosis of neuroblastoma: a bioinformatic analysis. Ital J Pediatr 2023; 49:145. [PMID: 37904225 PMCID: PMC10617224 DOI: 10.1186/s13052-023-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Genetic 1p deletion is reported in 30% of all neuroblastoma and is associated with the unfavorable prognosis of neuroblastoma. The expressions and prognosis of 1p candidate genes in neuroblastoma are unclear. METHODS Public neuroblastoma cohorts were obtained for secondary analysis. The prognosis of 1p candidate genes in neuroblastoma was determined using Kaplan-Meier and cox regression analysis. The prediction of the nomogram model was determined using timeROC. RESULTS First, we confirmed the bad prognosis of 1p deletion in neuroblastoma. Moreover, zinc finger protein 436 (ZNF436) located at 1p36 region was down-regulated in 1p deleted neuroblastoma and higher ZNF436 expression was associated with the longer event free survival and overall survival of neuroblastoma. The expression levels of ZNF436 were lower in neuroblastoma patients with MYCN amplification or age at diagnosis ≥ 18months, or with stage 4 neuroblastoma. ZNF436 had robust predictive values of MYCN amplification and overall survival of neuroblastoma. Furthermore, the prognostic significance of ZNF436 in neuroblastoma was independent of MYCN amplification and age of diagnosis. Combinations of ZNF436 with MYCN amplification or age of diagnosis achieved better prognosis. At last, we constructed a nomogram risk model based on age, MYCN amplification and ZNF436. The nomogram model could predict the overall survival of neuroblastoma with high specificity and sensitivity. CONCLUSIONS Chromosome 1p36 candidate gene ZNF436 was a prognostic maker of neuroblastoma.
Collapse
Affiliation(s)
- Haiwei Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Xinrui Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Liangpu Xu
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Cheng F, Tang YF, Cao Y, Peng SQ, Zhu XR, Sun Y, Wang SH, Wang B, Lu YM. KCNAB2 overexpression inhibits human non-small-cell lung cancer cell growth in vitro and in vivo. Cell Death Discov 2023; 9:382. [PMID: 37852974 PMCID: PMC10584983 DOI: 10.1038/s41420-023-01679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases. NSCLC patients often have poor prognosis demanding urgent identification of novel biomarkers and potential therapeutic targets. KCNAB2 (regulatory beta subunit2 of voltage-gated potassium channel), encoding aldosterone reductase, plays a pivotal role in regulating potassium channel activity. In this research, we tested the expression of KCNAB2 as well as its potential functions in human NSCLC. Bioinformatics analysis shows that expression of KCNAB2 mRNA is significantly downregulated in human NSCLC, correlating with poor overall survival. In addition, decreased KCNAB2 expression was detected in different NSCLC cell lines and local human NSCLC tissues. Exogenous overexpression of KCNAB2 potently suppressed growth, proliferation and motility of established human NSCLC cells and promoted NSCLC cells apoptosis. In contrast, CRISPR/Cas9-induced KCNAB2 knockout further promoted the malignant biological behaviors of NSCLC cells. Protein chip analysis in the KCNAB2-overexpressed NSCLC cells revealed that KCNAB2 plays a possible role in AKT-mTOR cascade activation. Indeed, AKT-mTOR signaling activation was potently inhibited following KCNAB2 overexpression in NSCLC cells. It was however augmented by KCNAB2 knockout. In vivo, the growth of subcutaneous KCNAB2-overexpressed A549 xenografts was significantly inhibited. Collectively, KCNAB2 could be a novel effective gene for prognosis prediction of NSCLC. Targeting KCNAB2 may lead to the development of advanced therapies.
Collapse
Affiliation(s)
- Feng Cheng
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Yu-Fei Tang
- Department of Soochow Medical college, Soochow University, Suzhou, China
| | - Yang Cao
- Department of Respiratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Shi-Qing Peng
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Xiao-Ren Zhu
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yue Sun
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Shu-Hang Wang
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Bin Wang
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China.
| | - Yi-Min Lu
- Department of Respiratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| |
Collapse
|
4
|
Ren J, Fu Z, Zhao Y. Clinical value of 18F-FDG PET/CT to predict MYCN gene, chromosome 1p36 and 11q status in pediatric neuroblastoma and ganglioneuroblastoma. Front Oncol 2023; 13:1099290. [PMID: 37035169 PMCID: PMC10079884 DOI: 10.3389/fonc.2023.1099290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Objective To explore the value of 18F-2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography(CT) in MYCN gene and chromosome 1p36 and 11 statuses in newly diagnosed pediatric NB(neuroblastoma) and GNB(ganglioneuroblastoma). Methods We retrospectively analyzed newly diagnosed patients with 48 NB and 12 with GNB in our hospital. The data obtained from the clinical medical records included age, sex, pathologic type, and laboratory parameters such as lactate dehydrogenase (LDH), neuron-specific enolase (NSE) and the status of MYCN gene and chromosome 1p36 and 11q. The bone conditions were also obtained in the examination of bone marrow biopsy. Primary tumors were manually segmented to measure the maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), tumor volume(MTV) and total lesion glycolysis(TLG) and the maximal length of the lesion in the axial image(LEGmax). Results The differences in bone marrow involvement and lymph node metastases in patients with chromosome 11q deletions were statistically significant (all p < 0.05). Chromosome 11q deletion was an independent factor affecting bone marrow involvement (OR=17.796, p=0.011). The levels of NSE, LDH, LEGmax and SUVmax, SUVmean, MTV, TLG all predicted MYCN gene amplification (all p < 0.05). The levels of LDH, LEGmax and MTV, TLG all predicted deletions in chromosomes 1p36 (all p < 0.05), while NSE, SUVmax and SUVmean did not (all p > 005). Conclusion The LDH levels, LEGmax, MTV and TLG can effectively predict the status of the MYCN oncogene and chromosome 1p36 in pediatric neuroblastoma and ganglioneuroblastoma. Those patients with chromosome 11q deletions are more likely to develop bone marrow involvement and lymph node metastases, showing a worse progression-free survival.
Collapse
Affiliation(s)
- Jiazhong Ren
- Department of Medical Imaging, PET-CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zheng Fu
- Department of Medical Imaging, PET-CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yaqing Zhao
- Department of General Affairs Section, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Yaqing Zhao,
| |
Collapse
|
5
|
Alves G, Ornellas MH, Liehr T. The role of Calmodulin Binding Transcription Activator 1 (CAMTA1) gene and its putative genetic partners in the human nervous system. Psychogeriatrics 2022; 22:869-878. [PMID: 35949142 DOI: 10.1111/psyg.12881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
The Calmodulin Binding Transcription Activator 1 (CAMTA1) gene plays a central role in the human nervous system. Here evidence-based perspectives on its clinical value for the screening of CAMTA1 malfunction is provided and argued that in future, patients suffering from brain tumours and/or neurological disorders could benefit from this diagnostic. In neuroblastomas as well as in low-grade gliomas, the influence of reduced expression of CAMTA1 results in opposite prognosis, probably because of different carcinogenic pathways in which CAMTA1 plays different roles, but the exact genetics bases remains unsolved. Rearrangements, mutations and variants of CAMTA1 were associated with human neurodegenerative disorders, while some CAMTA1 single nucleotide polymorphisms were associated with poorer memory in clinical cases and also amyotrophic lateral sclerosis. So far, the follow-up of patients with neurological diseases with alterations in CAMTA1 indicates that defects (expression, mutations, and rearrangements) in CAMTA1 alone are not sufficient to drive carcinogenesis. It is necessary to continue studying CAMTA1 rearrangements and expression in more cases than done by now. To understand the influence of CAMTA1 variants and their role in nervous system tumours and in several psychiatric disorders is currently a challenge.
Collapse
Affiliation(s)
- Gilda Alves
- Circulating Biomarkers Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Helena Ornellas
- Circulating Biomarkers Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| |
Collapse
|
6
|
Lyu Y, Wang Q, Liang J, Zhang L, Zhang H. The Ion Channel Gene KCNAB2 Is Associated with Poor Prognosis and Loss of Immune Infiltration in Lung Adenocarcinoma. Cells 2022; 11:3438. [PMID: 36359834 PMCID: PMC9653610 DOI: 10.3390/cells11213438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 10/20/2023] Open
Abstract
The malignancy with the greatest global mortality rate is lung cancer. Lung adenocarcinoma (LUAD) is the most common subtype. The evidence demonstrated that voltage-gated potassium channel subunit beta-2 (KCNAB2) significantly participated in the initiation of colorectal cancer and its progression. However, the biological function of KCNAB2 in LUAD and its effect on the tumor immune microenvironment are still unknown. In this study, we found that the expression of KCNAB2 in tissues of patients with LUAD was markedly downregulated, and its downregulation was linked to accelerated cancer growth and poor clinical outcomes. In addition, low KCNAB2 expression was correlated with a deficiency in immune infiltration. The mechanism behind this issue might be that KCNAB2 influenced the immunological process such that the directed migration of immune cells was affected. Furthermore, overexpression of KCNAB2 in cell lines promoted the expression of CCL2, CCL3, CCL4, CCL18, CXCL9, CXCL10, and CXCL12, which are necessary for the recruitment of immune cells. In conclusion, KCNAB2 may play a key function in immune infiltration and can be exploited as a predictive biomarker for evaluating prognosis and a possible immunotherapeutic target.
Collapse
Affiliation(s)
- Yin Lyu
- Thoracic Surgery Laboratory, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221006, China
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, China
| | - Qiao Wang
- Thoracic Surgery Laboratory, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221006, China
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, China
| | - Jingtian Liang
- Thoracic Surgery Laboratory, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221006, China
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, China
| | - Li Zhang
- Thoracic Surgery Laboratory, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221006, China
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, China
| | - Hao Zhang
- Thoracic Surgery Laboratory, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221006, China
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, China
| |
Collapse
|
7
|
Xu L, Shao F, Luo T, Li Q, Tan D, Tan Y. Pan-Cancer Analysis Identifies CHD5 as a Potential Biomarker for Glioma. Int J Mol Sci 2022; 23:ijms23158489. [PMID: 35955624 PMCID: PMC9369136 DOI: 10.3390/ijms23158489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
The chromodomain helicase DNA binding domain 5 (CHD5) is required for neural development and plays an important role in the regulation of gene expression. Although CHD5 exerts a broad tumor suppressor effect in many tumor types, its specific functions regarding its expression levels, and impact on immune cell infiltration, proliferation and migration in glioma remain unclear. Here, we evaluated the role of CHD5 in tumor immunity in a pan-cancer multi-database using the R language. The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), and Cancer Cell Lines Encyclopedia (CCLE) datasets were utilized to determine the role of CHD5 in 33 types of cancers, including the expression level, prognosis, tumor progression, and immune microenvironment. Furthermore, we explored the effect of CHD5 on glioma proliferation and migration using the cell counting kit 8 (CCK-8) assay, transwell assays and western blot analysis. The findings from our pan-cancer analysis showed that CHD5 was differentially expressed in the tumor tissues as compared to the normal tissues. Survival analysis showed that CHD5 was generally associated with the prognosis of glioblastoma (GBM), low Grade Glioma (LGG) and neuroblastoma, where the low expression of CHD5 was associated with a worse prognosis in glioma patients. Then, we confirmed that the expression level of CHD5 was associated with tumor immune infiltration and tumor microenvironment, especially in glioma. Moreover, si-RNA mediated knockdown of CHD5 promoted the proliferation and migration of glioma cells in vitro. In conclusion, CHD5 was found to be differentially expressed in the pan-cancer analysis and might play an important role in antitumor immunity. CHD5 is expected to be a potential tumor prognostic marker, especially in glioma.
Collapse
Affiliation(s)
- Lei Xu
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China; (L.X.); (T.L.); (Q.L.); (D.T.)
| | - Fengling Shao
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China;
| | - Tengling Luo
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China; (L.X.); (T.L.); (Q.L.); (D.T.)
| | - Qijun Li
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China; (L.X.); (T.L.); (Q.L.); (D.T.)
| | - Dongmei Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China; (L.X.); (T.L.); (Q.L.); (D.T.)
| | - Yi Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China; (L.X.); (T.L.); (Q.L.); (D.T.)
- Correspondence:
| |
Collapse
|
8
|
Heidari Z, Asemi-Rad A, Moudi B, Mahmoudzadeh-Sagheb H. mRNA expression and epigenetic-based role of chromodomain helicase DNA-binding 5 in hepatocellular carcinoma. J Int Med Res 2022; 50:3000605221105344. [PMID: 35808817 PMCID: PMC9274423 DOI: 10.1177/03000605221105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective Chromodomain helicase DNA-binding 5 (CHD5) acts as a tumor
suppressor gene in some cancers. CHD5 expression levels may affect an
individual’s susceptibility to hepatocellular carcinoma (HCC). This study
aimed to evaluate the methylation pattern of the CHD5
promoter region and the gene’s corresponding mRNA expression in HCC patients
compared with healthy individuals. Methods In this case–control study, CHD5 mRNA gene expression levels
and DNA methylation patterns were analyzed in 81 HCC patients and 90 healthy
individuals by quantitative reverse transcription polymerase chain reaction
and methylation-specific polymerase chain reaction, respectively. Results The CHD5 gene was hypermethylated in 61.8% of the HCC
patients and 54.4% of the controls, and this difference was statistically
significant. The CHD5 mRNA expression levels were
significantly lower in the HCC patient group. Conclusions Hypermethylation of the CHD5 promoter region may
significantly lower the expression of this gene, affecting the incidence and
severity of HCC. The methylation status of CHD5 can also be
further studied as a prognostic factor in HCC.
Collapse
Affiliation(s)
- Zahra Heidari
- Infectious Disease and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Azam Asemi-Rad
- Department of Anatomical Sciences, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Bita Moudi
- Infectious Disease and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamidreza Mahmoudzadeh-Sagheb
- Infectious Disease and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
9
|
Keane S, de Weerd HA, Ejeskär K. DLG2 impairs dsDNA break repair and maintains genome integrity in neuroblastoma. DNA Repair (Amst) 2022; 112:103302. [DOI: 10.1016/j.dnarep.2022.103302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
|
10
|
Laut AK, Dorneburg C, Fürstberger A, Barth TFE, Kestler HA, Debatin KM, Beltinger C. CHD5 inhibits metastasis of neuroblastoma. Oncogene 2022; 41:622-633. [PMID: 34789839 PMCID: PMC8799470 DOI: 10.1038/s41388-021-02081-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022]
Abstract
CHD5, a tumor suppressor at 1p36, is frequently lost or silenced in poor prognosis neuroblastoma (NB) and many adult cancers. The role of CHD5 in metastasis is unknown. We confirm that low expression of CHD5 is associated with stage 4 NB. Forced expression of CHD5 in NB cell lines with 1p loss inhibited key aspects of the metastatic cascade in vitro: anchorage-independent growth, migration, and invasion. In vivo, formation of bone marrow and liver metastases developing from intravenously injected NB cells was delayed and decreased by forced CHD5 expression. Genome-wide mRNA sequencing revealed reduction of genes and gene sets associated with metastasis when CHD5 was overexpressed. Known metastasis-suppressing genes preferentially upregulated in CHD5-overexpressing NB cells included PLCL1. In patient NB, low expression of PLCL1was associated with metastatic disease and poor survival. Knockdown of PLCL1 and of p53 in IMR5 NB cells overexpressing CHD5 reversed CHD5-induced inhibition of invasion and migration in vitro. In summary, CHD5 is a metastasis suppressor in NB.
Collapse
Affiliation(s)
- Astrid K Laut
- Section Experimental Pediatric Oncology, Dept. of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Carmen Dorneburg
- Section Experimental Pediatric Oncology, Dept. of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Axel Fürstberger
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | | | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Klaus-Michael Debatin
- Dept. of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christian Beltinger
- Section Experimental Pediatric Oncology, Dept. of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
11
|
Ung CY, Levee TM, Zhang C, Correia C, Yeo KS, Li H, Zhu S. Gene utility recapitulates chromosomal aberrancies in advanced stage neuroblastoma. Comput Struct Biotechnol J 2022; 20:3291-3303. [PMID: 35832612 PMCID: PMC9251784 DOI: 10.1016/j.csbj.2022.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/11/2022] [Indexed: 11/03/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in children. Although only a few recurrent somatic mutations have been identified, chromosomal abnormalities, including the loss of heterozygosity (LOH) at the chromosome 1p and gains of chromosome 17q, are often seen in the high-risk cases. The biological basis and evolutionary forces that drive such genetic abnormalities remain enigmatic. Here, we conceptualize the Gene Utility Model (GUM) that seeks to identify genes driving biological signaling via their collective gene utilities and apply it to understand the impact of those differentially utilized genes on constraining the evolution of NB karyotypes. By employing a computational process-guided flow algorithm to model gene utility in protein–protein networks that built based on transcriptomic data, we conducted several pairwise comparative analyses to uncover genes with differential utilities in stage 4 NBs with distinct classification. We then constructed a utility karyotype by mapping these differentially utilized genes to their respective chromosomal loci. Intriguingly, hotspots of the utility karyotype, to certain extent, can consistently recapitulate the major chromosomal abnormalities of NBs and also provides clues to yet identified predisposition sites. Hence, our study not only provides a new look, from a gene utility perspective, into the known chromosomal abnormalities detected by integrative genomic sequencing efforts, but also offers new insights into the etiology of NB and provides a framework to facilitate the identification of novel therapeutic targets for this devastating childhood cancer.
Collapse
|
12
|
MYCN in Neuroblastoma: "Old Wine into New Wineskins". Diseases 2021; 9:diseases9040078. [PMID: 34842635 PMCID: PMC8628738 DOI: 10.3390/diseases9040078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
MYCN Proto-Oncogene, BHLH Transcription Factor (MYCN) has been one of the most studied genes in neuroblastoma. It is known for its oncogenetic mechanisms, as well as its role in the prognosis of the disease and it is considered one of the prominent targets for neuroblastoma therapy. In the present work, we attempted to review the literature, on the relation between MYCN and neuroblastoma from all possible mechanistic sites. We have searched the literature for the role of MYCN in neuroblastoma based on the following topics: the references of MYCN in the literature, the gene's anatomy, along with its transcripts, the protein's anatomy, the epigenetic mechanisms regulating MYCN expression and function, as well as MYCN amplification. MYCN plays a significant role in neuroblastoma biology. Its functions and properties range from the forming of G-quadraplexes, to the interaction with miRNAs, as well as the regulation of gene methylation and histone acetylation and deacetylation. Although MYCN is one of the most primary genes studied in neuroblastoma, there is still a lot to be learned. Our knowledge on the exact mechanisms of MYCN amplification, etiology and potential interventions is still limited. The knowledge on the molecular mechanisms of MYCN in neuroblastoma, could have potential prognostic and therapeutic advantages.
Collapse
|
13
|
Shawraba F, Hammoud H, Mrad Y, Saker Z, Fares Y, Harati H, Bahmad HF, Nabha S. Biomarkers in Neuroblastoma: An Insight into Their Potential Diagnostic and Prognostic Utilities. Curr Treat Options Oncol 2021; 22:102. [PMID: 34580780 DOI: 10.1007/s11864-021-00898-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2021] [Indexed: 12/23/2022]
Abstract
OPINION STATEMENT Neuroblastoma (NB) is a heterogeneous solid tumor of the pediatric population that originates from neural crest cells and affects the developing sympathetic nervous system. It is the most common neuroblastic tumor accounting for approximately 10% of all childhood cancers and 10-15% of pediatric tumor mortalities. The outcomes range from spontaneous tumor regression in low-risk groups to metastasis and death even after multimodal therapy in high-risk groups. Hence, the detection of NB at an early stage improves outcomes and provides a better prognosis for patients. Early detection and prognosis of NB depend on specific molecules termed biomarkers which can be tissue-specific or circulating. Certain biomarkers are employed in the classification of NB into different groups to improve the treatment and prognosis, and others can be used as therapeutic targets. Therefore, novel biomarker discovery is essential for the early detection of NB, predicting the course of the disease, and developing new targeted treatment strategies. In this review, we aim to summarize the literature pertinent to some important biomarkers of NB and discuss the prognostic role of these biomarkers as well as their potential role in targeted therapy.
Collapse
Affiliation(s)
- Fatima Shawraba
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Hussein Hammoud
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Yara Mrad
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Zahraa Saker
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon.,Department of Neurosurgery, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Hisham F Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL, 33140, USA.
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon.
| |
Collapse
|
14
|
Application of an LC-MS/MS Method for the Simultaneous Quantification of Homovanillic Acid and Vanillylmandelic Acid for the Diagnosis and Follow-Up of Neuroblastoma in 357 Patients. Molecules 2021; 26:molecules26113470. [PMID: 34200415 PMCID: PMC8201085 DOI: 10.3390/molecules26113470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022] Open
Abstract
Homovanillic acid (HVA) and vanillylmandelic acid (VMA) are end-stage metabolites of catecholamine and are clinical biomarkers for the diagnosis of neuroblastoma. For the first time in Korea, we implemented and validated a liquid chromatography tandem mass spectrometry (LC–MS/MS) assay to measure urinary concentrations of HVA and VMA according to Clinical and Laboratory Standards Institute guidelines. Our LC–MS/MS assay with minimal sample preparation was validated for linearity, lower limit of detection (LOD), lower limit of quantification (LLOQ), precision, accuracy, extraction recovery, carryover, matrix effect, and method comparison. A total of 1209 measurements was performed to measure HVA and VMA in spot urine between October 2019 and September 2020. The relationship between the two urinary markers, HVA and VMA, was analyzed and exhibited high agreement (89.1% agreement, kappa’s k = 0.6) and a strong correlation (Pearson’s r = 0.73). To our knowledge, this is the first study to utilize LC–MS/MS for simultaneous quantitation of spot urinary HVA and VMA and analyze the clinical application of both markers on a large scale for neuroblastoma patients.
Collapse
|
15
|
Wilson MM, Henshall DC, Byrne SM, Brennan GP. CHD2-Related CNS Pathologies. Int J Mol Sci 2021; 22:E588. [PMID: 33435571 PMCID: PMC7827033 DOI: 10.3390/ijms22020588] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Epileptic encephalopathies (EE) are severe epilepsy syndromes characterized by multiple seizure types, developmental delay and even regression. This class of disorders are increasingly being identified as resulting from de novo genetic mutations including many identified mutations in the family of chromodomain helicase DNA binding (CHD) proteins. In particular, several de novo pathogenic mutations have been identified in the gene encoding chromodomain helicase DNA binding protein 2 (CHD2), a member of the sucrose nonfermenting (SNF-2) protein family of epigenetic regulators. These mutations in the CHD2 gene are causative of early onset epileptic encephalopathy, abnormal brain function, and intellectual disability. Our understanding of the mechanisms by which modification or loss of CHD2 cause this condition remains poorly understood. Here, we review what is known and still to be elucidated as regards the structure and function of CHD2 and how its dysregulation leads to a highly variable range of phenotypic presentations.
Collapse
Affiliation(s)
- Marc-Michel Wilson
- Department of Physiology and Medical Physics, RCSI, University of Medicine and Health Sciences, Dublin 02, Ireland; (M.-M.W.); (D.C.H.)
- FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland;
| | - David C. Henshall
- Department of Physiology and Medical Physics, RCSI, University of Medicine and Health Sciences, Dublin 02, Ireland; (M.-M.W.); (D.C.H.)
- FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland;
| | - Susan M. Byrne
- FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland;
- Department of Paediatrics, RCSI, University of Medicine and Health Sciences, Dublin 02, Ireland
- Department of Paediatric Neurology, Our Ladies Children’s Hospital Crumlin, Dublin 12, Ireland
| | - Gary P. Brennan
- FutureNeuro SFI Research Centre, RCSI, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland;
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 04, Ireland
| |
Collapse
|
16
|
Shi H, Tao T, Abraham BJ, Durbin AD, Zimmerman MW, Kadoch C, Look AT. ARID1A loss in neuroblastoma promotes the adrenergic-to-mesenchymal transition by regulating enhancer-mediated gene expression. SCIENCE ADVANCES 2020; 6:eaaz3440. [PMID: 32832616 PMCID: PMC7439613 DOI: 10.1126/sciadv.aaz3440] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 06/02/2020] [Indexed: 05/11/2023]
Abstract
Mutations in genes encoding SWI/SNF chromatin remodeling complexes are found in approximately 20% of all human cancers, with ARID1A being the most frequently mutated subunit. Here, we show that disruption of ARID1A homologs in a zebrafish model accelerates the onset and increases the penetrance of MYCN-driven neuroblastoma by increasing cell proliferation in the sympathoadrenal lineage. Depletion of ARID1A in human NGP neuroblastoma cells promoted the adrenergic-to-mesenchymal transition with changes in enhancer-mediated gene expression due to alterations in the genomic occupancies of distinct SWI/SNF assemblies, BAF and PBAF. Our findings indicate that ARID1A is a haploinsufficient tumor suppressor in MYCN-driven neuroblastoma, whose depletion enhances tumor development and promotes the emergence of the more drug-resistant mesenchymal cell state.
Collapse
Affiliation(s)
- Hui Shi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ting Tao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Corresponding author. (A.T.L.); (T.T.)
| | - Brian J. Abraham
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Adam D. Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute, Cambridge, MA 02142, USA
| | - Mark W. Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute, Cambridge, MA 02142, USA
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Corresponding author. (A.T.L.); (T.T.)
| |
Collapse
|
17
|
Almstedt E, Elgendy R, Hekmati N, Rosén E, Wärn C, Olsen TK, Dyberg C, Doroszko M, Larsson I, Sundström A, Arsenian Henriksson M, Påhlman S, Bexell D, Vanlandewijck M, Kogner P, Jörnsten R, Krona C, Nelander S. Integrative discovery of treatments for high-risk neuroblastoma. Nat Commun 2020; 11:71. [PMID: 31900415 PMCID: PMC6941971 DOI: 10.1038/s41467-019-13817-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Despite advances in the molecular exploration of paediatric cancers, approximately 50% of children with high-risk neuroblastoma lack effective treatment. To identify therapeutic options for this group of high-risk patients, we combine predictive data mining with experimental evaluation in patient-derived xenograft cells. Our proposed algorithm, TargetTranslator, integrates data from tumour biobanks, pharmacological databases, and cellular networks to predict how targeted interventions affect mRNA signatures associated with high patient risk or disease processes. We find more than 80 targets to be associated with neuroblastoma risk and differentiation signatures. Selected targets are evaluated in cell lines derived from high-risk patients to demonstrate reversal of risk signatures and malignant phenotypes. Using neuroblastoma xenograft models, we establish CNR2 and MAPK8 as promising candidates for the treatment of high-risk neuroblastoma. We expect that our method, available as a public tool (targettranslator.org), will enhance and expedite the discovery of risk-associated targets for paediatric and adult cancers. We lack effective treatment for half of children with high-risk neuroblastoma. Here, the authors introduce an algorithm that can predict the effect of interventions on gene expression signatures associated with high disease processes and risk, and identify and validate promising drug targets.
Collapse
Affiliation(s)
- Elin Almstedt
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Ramy Elgendy
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Neda Hekmati
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Emil Rosén
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Caroline Wärn
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Thale Kristin Olsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Milena Doroszko
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Ida Larsson
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Sundström
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Marie Arsenian Henriksson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Sven Påhlman
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, SE-223 81, Lund, Sweden
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, SE-223 81, Lund, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden.,Department of Medicine, Integrated Cardio-Metabolic Centre Single Cell Facility, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Rebecka Jörnsten
- Mathematical Sciences, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Cecilia Krona
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
18
|
Ornell KJ, Coburn JM. Developing preclinical models of neuroblastoma: driving therapeutic testing. BMC Biomed Eng 2019; 1:33. [PMID: 32903387 PMCID: PMC7422585 DOI: 10.1186/s42490-019-0034-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022] Open
Abstract
Despite advances in cancer therapeutics, particularly in the area of immuno-oncology, successful treatment of neuroblastoma (NB) remains a challenge. NB is the most common cancer in infants under 1 year of age, and accounts for approximately 10% of all pediatric cancers. Currently, children with high-risk NB exhibit a survival rate of 40–50%. The heterogeneous nature of NB makes development of effective therapeutic strategies challenging. Many preclinical models attempt to mimic the tumor phenotype and tumor microenvironment. In vivo mouse models, in the form of genetic, syngeneic, and xenograft mice, are advantageous as they replicated the complex tumor-stroma interactions and represent the gold standard for preclinical therapeutic testing. Traditional in vitro models, while high throughput, exhibit many limitations. The emergence of new tissue engineered models has the potential to bridge the gap between in vitro and in vivo models for therapeutic testing. Therapeutics continue to evolve from traditional cytotoxic chemotherapies to biologically targeted therapies. These therapeutics act on both the tumor cells and other cells within the tumor microenvironment, making development of preclinical models that accurately reflect tumor heterogeneity more important than ever. In this review, we will discuss current in vitro and in vivo preclinical testing models, and their potential applications to therapeutic development.
Collapse
Affiliation(s)
- Kimberly J Ornell
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01605 USA
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01605 USA
| |
Collapse
|
19
|
Qin C, He X, Zhao Y, Tong CY, Zhu KY, Sun Y, Cheng C. Systematic computational identification of prognostic cytogenetic markers in neuroblastoma. BMC Med Genomics 2019; 12:192. [PMID: 31831008 PMCID: PMC6909636 DOI: 10.1186/s12920-019-0620-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/12/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial solid tumor found in children. The frequent gain/loss of many chromosome bands in tumor cells and absence of mutations found at diagnosis suggests that NB is a copy number-driven cancer. Despite the previous work, a systematic analysis that investigates the relationship between such frequent gain/loss of chromosome bands and patient prognosis has yet to be implemented. METHODS First, we analyzed two NB CNV datasets to select chromosomal bands with a high frequency of gain or loss. Second, we applied a computational approach to infer sample-specific CNVs for each chromosomal band selected in step 1 based on gene expression data. Third, we applied univariate Cox proportional hazards models to examine the association between the resulting inferred copy number values (iCNVs) and patient survival. Finally, we applied multivariate Cox proportional hazards models to select chromosomal bands that remained significantly associated with prognosis after adjusting for critical clinical variables, including age, stage, gender, and MYCN amplification status. RESULTS Here, we used a computational method to infer the copy number variations (CNVs) of sample-specific chromosome bands from NB patient gene expression profiles. The resulting inferred CNVs (iCNVs) were highly correlated with the experimentally determined CNVs, demonstrating CNVs can be accurately inferred from gene expression profiles. Using this iCNV metric, we identified 58 frequent gain/loss chromosome bands that were significantly associated with patient survival. Furthermore, we found that 7 chromosome bands were still significantly associated with patient survival even when clinical factors, such as MYCN status, were considered. Particularly, we found that the chromosome band chr11p14 has high potential as a novel candidate cytogenetic biomarker for clinical use. CONCLUSION Our analysis resulted in a comprehensive list of prognostic chromosome bands supported by strong statistical evidence. In particular, the chr11p14 gain event provided additional prognostic value in addition to well-established clinical factors, including MYCN status, and thereby represents a novel candidate cytogenetic biomarker with high clinical potential. Additionally, this computational framework could be readily extended to other cancer types, such as leukemia.
Collapse
Affiliation(s)
- Chao Qin
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, No.3 Shangyuancun, Beijing, 100044 Haidian District China
- Department of Medicine, Baylor College of Medicine, BCM451, Suite 100D, Houston, TX 77030 USA
| | - Xiaoyan He
- Center for Clinical Molecular Medicine, Children’s Hospital, Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014 China
| | - Yanding Zhao
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03766 USA
| | - Chun-Yip Tong
- Department of Medicine, Baylor College of Medicine, BCM451, Suite 100D, Houston, TX 77030 USA
| | - Kenneth Y. Zhu
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - Yongqi Sun
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, No.3 Shangyuancun, Beijing, 100044 Haidian District China
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, BCM451, Suite 100D, Houston, TX 77030 USA
| |
Collapse
|
20
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
21
|
Applebaum MA, Barr EK, Karpus J, Nie J, Zhang Z, Armstrong AE, Uppal S, Sukhanova M, Zhang W, Chlenski A, Salwen HR, Wilkinson E, Dobratic M, Grossman R, Godley LA, Stranger BE, He C, Cohn SL. 5-Hydroxymethylcytosine Profiles Are Prognostic of Outcome in Neuroblastoma and Reveal Transcriptional Networks That Correlate With Tumor Phenotype. JCO Precis Oncol 2019; 3. [PMID: 31179414 PMCID: PMC6553657 DOI: 10.1200/po.18.00402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Whole-genome profiles of the epigenetic modification 5-hydroxymethylcytosine (5-hmC) are robust diagnostic biomarkers in adult patients with cancer. We investigated if 5-hmC profiles would serve as novel prognostic markers in neuroblastoma, a clinically heterogeneous pediatric cancer. Because this DNA modification facilitates active gene expression, we hypothesized that 5-hmC profiles would identify transcriptomic networks driving the clinical behavior of neuroblastoma. PATIENTS AND METHODS Nano-hmC-Seal sequencing was performed on DNA from Discovery (n = 51), Validation (n = 38), and Children’s Oncology Group (n = 20) cohorts of neuroblastoma tumors. RNA was isolated from 48 tumors for RNA sequencing. Genes with differential 5-hmC or expression between clusters were identified using DESeq2. A 5-hmC model predicting outcome in high-risk patients was established using linear discriminant analysis. RESULTS Comparison of low- versus high-risk tumors in the Discovery cohort revealed 577 genes with differential 5-hmC. Hierarchical clustering of tumors from the Discovery and Validation cohorts using these genes identified two main clusters highly associated with established prognostic markers, clinical risk group, and outcome. Genes with increased 5-hmC and expression in the favorable cluster were enriched for pathways of neuronal differentiation and KRAS activation, whereas genes involved in inflammation and the PRC2 complex were identified in the unfavorable cluster. The linear discriminant analysis model trained on high-risk Discovery cohort tumors was prognostic of outcome when applied to high-risk tumors from the Validation and Children’s Oncology Group cohorts (hazard ratio, 3.8). CONCLUSION 5-hmC profiles may be optimal DNA-based biomarkers in neuroblastoma. Analysis of transcriptional networks regulated by these epigenomic modifications may lead to a deeper understanding of drivers of neuroblastoma phenotype.
Collapse
Affiliation(s)
| | - Erin K Barr
- Texas Tech University Health Sciences, Lubbock, TX
| | | | - Ji Nie
- University of Chicago, Chicago, IL
| | | | | | | | | | - Wei Zhang
- Northwestern University, Chicago, IL
| | | | | | | | | | | | | | | | - Chuan He
- University of Chicago, Chicago, IL.,Howard Hughes Medical Institute, Chevy Chase, MD
| | | |
Collapse
|
22
|
Aygun N, Altungoz O. MYCN is amplified during S phase, and c‑myb is involved in controlling MYCN expression and amplification in MYCN‑amplified neuroblastoma cell lines. Mol Med Rep 2018; 19:345-361. [PMID: 30483774 PMCID: PMC6297758 DOI: 10.3892/mmr.2018.9686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/03/2018] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma derived from primitive sympathetic neural precursors is a common type of solid tumor in infants. MYCN proto-oncogene bHLH transcription factor (MYCN) amplification and 1p36 deletion are important factors associated with the poor prognosis of neuroblastoma. Expression levels of MYCN and c-MYB proto-oncogene transcription factor (c-myb) decline during the differentiation of neuroblastoma cells; E2F transcription factor 1 (E2F1) activates the MYCN promoter. However, the underlying mechanism of MYCN overexpression and amplification requires further investigation. In the present study, potential c-Myb target genes, and the effect of c-myb RNA interference (RNAi) on MYCN expression and amplification were investigated in MYCN-amplified neuroblastoma cell lines. The mRNA expression levels and MYCN gene copy number in five neuroblastoma cell lines were determined by quantitative polymerase chain reaction. In addition, variations in potential target gene expression and MYCN gene copy number between pre- and post-c-myb RNAi treatment groups in MYCN-amplified Kelly, IMR32, SIMA and MHH-NB-11 cell lines, normalized to those of non-MYCN-amplified SH-SY5Y, were examined. To determine the associations between gene expression levels and chromosomal aberrations, MYCN amplification and 1p36 alterations in interphases/metaphases were analyzed using fluorescence in situ hybridization. Statistical analyses revealed correlations between 1p36 alterations and the expression of c-myb, MYB proto-oncogene like 2 (B-myb) and cyclin dependent kinase inhibitor 1A (p21). Additionally, the results of the present study also demonstrated that c-myb may be associated with E2F1 and L3MBTL1 histone methyl-lysine binding protein (L3MBTL1) expression, and that E2F1 may contribute to MYCN, B-myb, p21 and chromatin licensing and DNA replication factor 1 (hCdt1) expression, but to the repression of geminin (GMNN). On c-myb RNAi treatment, L3MBTL1 expression was silenced, while GMNN was upregulated, indicating G2/M arrest. In addition, MYCN gene copy number increased following treatment with c-myb RNAi. Notably, the present study also reported a 43.545% sequence identity between upstream of MYCN and Drosophila melanogaster amplification control element 3, suggesting that expression and/or amplification mechanisms of developmentally-regulated genes may be evolutionarily conserved. In conclusion, c-myb may be associated with regulating MYCN expression and amplification. c-myb, B-myb and p21 may also serve a role against chromosome 1p aberrations. Together, it was concluded that MYCN gene is amplified during S phase, potentially via a replication-based mechanism.
Collapse
Affiliation(s)
- Nevim Aygun
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Oguz Altungoz
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| |
Collapse
|
23
|
Ritenour LE, Randall MP, Bosse KR, Diskin SJ. Genetic susceptibility to neuroblastoma: current knowledge and future directions. Cell Tissue Res 2018; 372:287-307. [PMID: 29589100 DOI: 10.1007/s00441-018-2820-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
Neuroblastoma, a malignancy of the developing peripheral nervous system that affects infants and young children, is a complex genetic disease. Over the past two decades, significant progress has been made toward understanding the genetic determinants that predispose to this often lethal childhood cancer. Approximately 1-2% of neuroblastomas are inherited in an autosomal dominant fashion and a combination of co-morbidity and linkage studies has led to the identification of germline mutations in PHOX2B and ALK as the major genetic contributors to this familial neuroblastoma subset. The genetic basis of "sporadic" neuroblastoma is being studied through a large genome-wide association study (GWAS). These efforts have led to the discovery of many common susceptibility alleles, each with modest effect size, associated with the development and progression of sporadic neuroblastoma. More recently, next-generation sequencing efforts have expanded the list of potential neuroblastoma-predisposing mutations to include rare germline variants with a predicted larger effect size. The evolving characterization of neuroblastoma's genetic basis has led to a deeper understanding of the molecular events driving tumorigenesis, more precise risk stratification and prognostics and novel therapeutic strategies. This review details the contemporary understanding of neuroblastoma's genetic predisposition, including recent advances and discusses ongoing efforts to address gaps in our knowledge regarding this malignancy's complex genetic underpinnings.
Collapse
Affiliation(s)
- Laura E Ritenour
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael P Randall
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristopher R Bosse
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon J Diskin
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Johnsen JI, Dyberg C, Fransson S, Wickström M. Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacol Res 2018; 131:164-176. [PMID: 29466695 DOI: 10.1016/j.phrs.2018.02.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022]
Abstract
Neuroblastoma is the most common extracranical tumor of childhood and the most deadly tumor of infancy. It is characterized by early age onset and high frequencies of metastatic disease but also the capacity to spontaneously regress. Despite intensive therapy, the survival for patients with high-risk neuroblastoma and those with recurrent or relapsed disease is low. Hence, there is an urgent need to develop new therapies for these patient groups. The molecular pathogenesis based on high-throughput omics technologies of neuroblastoma is beginning to be resolved which have given the opportunity to develop personalized therapies for high-risk patients. Here we discuss the potential of developing targeted therapies against aberrantly expressed molecules detected in sub-populations of neuroblastoma patients and how these selected targets can be drugged in order to overcome treatment resistance, improve survival and quality of life for these patients and also the possibilities to transfer preclinical research into clinical testing.
Collapse
Affiliation(s)
- John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden.
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| | - Susanne Fransson
- Department of Pathology and Genetics, Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| |
Collapse
|
25
|
Di C, Mladkova N, Lin J, Fee B, Rivas M, Chunsheng K, Bigner D, Adamson DC. AJAP1 expression modulates glioma cell motility and correlates with tumor growth and survival. Int J Oncol 2018; 52:47-54. [PMID: 29115565 PMCID: PMC5743336 DOI: 10.3892/ijo.2017.4184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/21/2017] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common primary malignant brain tumors. Unraveling the molecular and genetic complexity that determines GBM's pronounced migratory property could provide new options for therapeutic targeting that may significantly complement current surgical and chemoradiation therapy and alter the current poor outcome. In this study, we establish stable AJAP1 overexpressing glioma cells in order to examine in vivo tumor growth. We examine AJAP1 localization by confocal microscopy and AJAP1's functional effect on migration and invasion across surfaces coated with laminin. Finally, analysis of AJAP1 expression in murine xenografts and GBM primary tumors revealed its association with tumor growth and survival. Stable overexpression of AJAP1 promotes adherence, decreases invasion of glioma cells through an extracellular-like matrix, and slows migration in the presence of laminin. These observations are reversed by gene knockdown using multiple siRNAs. Additionally, overexpression of AJAP1 decreases colony formation in glioma cells, and leads to smaller tumor growth with increased survival in glioma xenograft mice. Loss of AJAP1 protein expression predicts worse survival in GBM patients. AJAP1 overexpression decreases cell motility in the presence of laminin and decreases tumor growth in xenografts. Its loss of expression predicts worse survival in patients. This study extends our prior observations and implicates AJAP1 as a potential prognostic marker and a viable target for therapeutic intervention in GBM.
Collapse
Affiliation(s)
- Chunhui Di
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center
| | - Nikol Mladkova
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center
| | - James Lin
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center
| | - Brian Fee
- Durham VA Medical Center, Durham, NC, USA
| | | | - Kang Chunsheng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Darell Bigner
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - David Cory Adamson
- Atlanta VA Medical Center, Decatur, GA
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| |
Collapse
|
26
|
Naraparaju K, Kolla V, Zhuang T, Higashi M, Iyer R, Kolla S, Okawa ER, Blobel GA, Brodeur GM. Role of microRNAs in epigenetic silencing of the CHD5 tumor suppressor gene in neuroblastomas. Oncotarget 2017; 7:15977-85. [PMID: 26895110 PMCID: PMC4941291 DOI: 10.18632/oncotarget.7434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/05/2016] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB), a tumor of the sympathetic nervous system, is the most common extracranial solid tumor of childhood. We and others have identified distinct patterns of genomic change that underlie diverse clinical behaviors, from spontaneous regression to relentless progression. We first identified CHD5 as a tumor suppressor gene that is frequently deleted in NBs. Mutation of the remaining CHD5 allele is rare in these tumors, yet expression is very low or absent, so expression is likely regulated by epigenetic mechanisms. In order to understand the potential role of miRNA regulation of CHD5 protein expression in NBs, we examined all miRNAs that are predicted to target the 3′-UTR using miRanda, TargetScan and other algorithms. We identified 18 miRNAs that were predicted by 2 or more programs: miR-204, -211, -216b, -17, -19ab, -20ab, -93, -106ab, -130ab, -301ab, -454, -519d, -3666. We then performed transient transfections in two NB cell lines, NLF (MYCN amplified) and SY5Y (MYCN non-amplified), with the reporter plasmid and miRNA mimic, as well as appropriate controls. We found seven miRNAs that significantly downregulated CHD5 expression in NB: miR-211, 17, -93, -20b, -106b, -204, and -3666. Interestingly, MYCN upregulates several of the candidates we identified: miR-17, -93, -106b & -20b. This suggests that miRNAs driven by MYCN and other genes represent a potential epigenetic mechanism to regulate CHD5 expression.
Collapse
Affiliation(s)
- Koumudi Naraparaju
- Division of Oncology and Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Venkatadri Kolla
- Division of Oncology and Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Tiangang Zhuang
- Division of Oncology and Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Mayumi Higashi
- Division of Oncology and Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Radhika Iyer
- Division of Oncology and Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Sriharsha Kolla
- Division of Oncology and Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Erin R Okawa
- Division of Oncology and Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerd A Blobel
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Garrett M Brodeur
- Division of Oncology and Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Deconvolution of DNA methylation identifies differentially methylated gene regions on 1p36 across breast cancer subtypes. Sci Rep 2017; 7:11594. [PMID: 28912426 PMCID: PMC5599639 DOI: 10.1038/s41598-017-10199-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a complex disease consisting of four distinct molecular subtypes. DNA methylation-based (DNAm) studies in tumors are complicated further by disease heterogeneity. In the present study, we compared DNAm in breast tumors with normal-adjacent breast samples from The Cancer Genome Atlas (TCGA). We constructed models stratified by tumor stage and PAM50 molecular subtype and performed cell-type reference-free deconvolution to control for cellular heterogeneity. We identified nineteen differentially methylated gene regions (DMGRs) in early stage tumors across eleven genes (AGRN, C1orf170, FAM41C, FLJ39609, HES4, ISG15, KLHL17, NOC2L, PLEKHN1, SAMD11, WASH5P). These regions were consistently differentially methylated in every subtype and all implicated genes are localized to the chromosomal cytoband 1p36.3. Seventeen of these DMGRs were independently validated in a similar analysis of an external data set. The identification and validation of shared DNAm alterations across tumor subtypes in early stage tumors advances our understanding of common biology underlying breast carcinogenesis and may contribute to biomarker development. We also discuss evidence of the specific importance and potential function of 1p36 in cancer.
Collapse
|
28
|
Pilarowski GO, Vernon HJ, Applegate CD, Boukas L, Cho MT, Gurnett CA, Benke PJ, Beaver E, Heeley JM, Medne L, Krantz ID, Azage M, Niyazov D, Henderson LB, Wentzensen IM, Baskin B, Sacoto MJG, Bowman GD, Bjornsson HT. Missense variants in the chromatin remodeler CHD1 are associated with neurodevelopmental disability. J Med Genet 2017; 55:561-566. [PMID: 28866611 DOI: 10.1136/jmedgenet-2017-104759] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/07/2017] [Accepted: 08/04/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND The list of Mendelian disorders of the epigenetic machinery has expanded rapidly during the last 5 years. A few missense variants in the chromatin remodeler CHD1 have been found in several large-scale sequencing efforts focused on uncovering the genetic aetiology of autism. OBJECTIVES To explore whether variants in CHD1 are associated with a human phenotype. METHODS We used GeneMatcher to identify other physicians caring for patients with variants in CHD1. We also explored the epigenetic consequences of one of these variants in cultured fibroblasts. RESULTS Here we describe six CHD1 heterozygous missense variants in a cohort of patients with autism, speech apraxia, developmental delay and facial dysmorphic features. Importantly, three of these variants occurred de novo. We also report on a subject with a de novo deletion covering a large fraction of the CHD1 gene without any obvious neurological phenotype. Finally, we demonstrate increased levels of the closed chromatin modification H3K27me3 in fibroblasts from a subject carrying a de novo variant in CHD1. CONCLUSIONS Our results suggest that variants in CHD1 can lead to diverse phenotypic outcomes; however, the neurodevelopmental phenotype appears to be limited to patients with missense variants, which is compatible with a dominant negative mechanism of disease.
Collapse
Affiliation(s)
- Genay O Pilarowski
- Predoctoral Program in Human Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hilary J Vernon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Carolyn D Applegate
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Leandros Boukas
- Predoctoral Program in Human Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Christina A Gurnett
- Department of Neurology, Division of Pediatric Neurology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Paul J Benke
- Joe DiMaggio Children's Hospital, Florida Atlantic School of Medicine, Hollywood, Florida, USA
| | - Erin Beaver
- Mercy Kids Genetics, Mercy Hospital, Saint Louis, Missouri, USA
| | | | - Livija Medne
- Division of Human Genetics, Department of Pediatrics, Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ian D Krantz
- Division of Human Genetics, Department of Pediatrics, Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Meron Azage
- Department of Pediatrics, Ochsner Clinic, New Orleans, Louisiana, USA
| | - Dmitriy Niyazov
- Department of Pediatrics, Ochsner Clinic, New Orleans, Louisiana, USA
| | | | | | | | | | - Gregory D Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hans T Bjornsson
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
29
|
Combined epigenetic and differentiation-based treatment inhibits neuroblastoma tumor growth and links HIF2α to tumor suppression. Proc Natl Acad Sci U S A 2017; 114:E6137-E6146. [PMID: 28696319 DOI: 10.1073/pnas.1700655114] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma is a pediatric cancer characterized by variable outcomes ranging from spontaneous regression to life-threatening progression. High-risk neuroblastoma patients receive myeloablative chemotherapy with hematopoietic stem-cell transplant followed by adjuvant retinoid differentiation treatment. However, the overall survival remains low; hence, there is an urgent need for alternative therapeutic approaches. One feature of high-risk neuroblastoma is the high level of DNA methylation of putative tumor suppressors. Combining the reversibility of DNA methylation with the differentiation-promoting activity of retinoic acid (RA) could provide an alternative strategy to treat high-risk neuroblastoma. Here we show that treatment with the DNA-demethylating drug 5-Aza-deoxycytidine (AZA) restores high-risk neuroblastoma sensitivity to RA. Combined systemic distribution of AZA and RA impedes tumor growth and prolongs survival. Genome-wide analysis of treated tumors reveals that this combined treatment rapidly induces a HIF2α-associated hypoxia-like transcriptional response followed by an increase in neuronal gene expression and a decrease in cell-cycle gene expression. A small-molecule inhibitor of HIF2α activity diminishes the tumor response to AZA+RA treatment, indicating that the increase in HIF2α levels is a key component in tumor response to AZA+RA. The link between increased HIF2α levels and inhibited tumor growth is reflected in large neuroblastoma patient datasets. Therein, high levels of HIF2α, but not HIF1α, significantly correlate with expression of neuronal differentiation genes and better prognosis but negatively correlate with key features of high-risk tumors, such as MYCN amplification. Thus, contrary to previous studies, our findings indicate an unanticipated tumor-suppressive role for HIF2α in neuroblastoma.
Collapse
|
30
|
Liu L, Wang HD, Cui CY, Wu D, Li T, Fan TB, Peng BT, Zhang LZ, Wang CZ. Application of array-comparative genomic hybridization in tetralogy of Fallot. Medicine (Baltimore) 2016; 95:e5552. [PMID: 27930557 PMCID: PMC5266029 DOI: 10.1097/md.0000000000005552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To explore the underlying pathogenesis and provide references for genetic counseling and prenatal gene diagnosis, we analyzed the chromosome karyotypes and genome-wide copy number variations (CNVs) in 86 patients with tetralogy of Fallot (TOF) by G-banding karyotype analysis and array-comparative genomic hybridization (aCGH), respectively. And then quantitative polymerase chain reaction was used to validate these candidate CNVs. Based on their different properties, CNVs were categorized into benign CNVs, suspiciously pathogenic CNVs, and indefinite CNVs. Data analysis was based on public databases such as UCSC, DECIPHER, DGV, ISCA, and OMIM.The karyotype was normal in all the 86 patients with TOF. CNVs were detected in 11 patients by aCGH and quantitative polymerase chain reaction. Patient no. 0001, 0010, and 0029 had 2.52-Mb deletion in the chromosome 22q11.21 region; patient no. 0008 had both 595- and 428-kb duplications, respectively, in 12p12.3p12.2 and 14q23.2q23.3 regions; patient no. 0009 had 1.46-Mb duplication in the 1q21.1q21.2 region; patient no. 0016 had 513-kb duplication in the 1q42.13 region; patient no. 0024 had 292-kb duplication in the 16q11.2 region; patient no. 0026 had 270-kb duplication in the 16q24.1 region; patient no. 0028 had 222-kb deletion in the 7q31.1 region; patient no. 0033 had 1.73-Mb duplication in the 17q12 region; and patient no. 0061 had 5.79-Mb deletion in the 1p36.33p36.31 region.aCGH can accurately detect CNVs in the patients with TOF. This is conducive to genetic counseling and prenatal diagnosis for TOF and provides a new clue and theoretical basis for exploring the pathogenesis of congenital heart disease.
Collapse
Affiliation(s)
- Lin Liu
- Department of Cardiovascular Ultrasound
| | | | | | - Dong Wu
- Institute of Medical Genetics
| | - Tao Li
- Institute of Medical Genetics
| | - Tai-Bing Fan
- Children's Heart Center, Henan Provincial People's Hospital, Zhengzhou University People's Hospital
| | - Bang-Tian Peng
- Children's Heart Center, Henan Provincial People's Hospital, Zhengzhou University People's Hospital
| | | | - Cheng-Zeng Wang
- Department of Ultrasound, Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou 450008, China
| |
Collapse
|
31
|
PRDM16 Suppresses MLL1r Leukemia via Intrinsic Histone Methyltransferase Activity. Mol Cell 2016; 62:222-236. [PMID: 27151440 DOI: 10.1016/j.molcel.2016.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/10/2015] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
Abstract
PRDM16 is a transcription co-factor that plays critical roles in development of brown adipose tissue, as well as maintenance of adult hematopoietic and neural stem cells. Here we report that PRDM16 is a histone H3K4 methyltransferase on chromatin. Mutation in the N-terminal PR domain of PRDM16 abolishes the intrinsic enzymatic activity of PRDM16. We show that the methyltransferase activity of PRDM16 is required for specific suppression of MLL fusion protein-induced leukemogenesis both in vitro and in vivo. Mechanistic studies show that PRDM16 directly activates the SNAG family transcription factor Gfi1b, which in turn downregulates the HOXA gene cluster. Knockdown Gfi1b represses PRDM16-mediated tumor suppression, while Gfi1b overexpression mimics PRDM16 overexpression. In further support of the tumor suppressor function of PRDM16, silencing PRDM16 by DNA methylation is concomitant with MLL-AF9-induced leukemic transformation. Taken together, our study reveals a previously uncharacterized function of PRDM16 that depends on its PR domain activity.
Collapse
|
32
|
Zhu S, Thomas Look A. Neuroblastoma and Its Zebrafish Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:451-78. [PMID: 27165366 DOI: 10.1007/978-3-319-30654-4_20] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuroblastoma, an important developmental tumor arising in the peripheral sympathetic nervous system (PSNS), accounts for approximately 10 % of all cancer-related deaths in children. Recent genomic analyses have identified a spectrum of genetic alterations in this tumor. Amplification of the MYCN oncogene is found in 20 % of cases and is often accompanied by mutational activation of the ALK (anaplastic lymphoma kinase) gene, suggesting their cooperation in tumor initiation and spread. Understanding how complex genetic changes function together in oncogenesis has been a continuing and daunting task in cancer research. This challenge was addressed in neuroblastoma by generating a transgenic zebrafish model that overexpresses human MYCN and activated ALK in the PSNS, leading to tumors that closely resemble human neuroblastoma and new opportunities to probe the mechanisms that underlie the pathogenesis of this tumor. For example, coexpression of activated ALK with MYCN in this model triples the penetrance of neuroblastoma and markedly accelerates tumor onset, demonstrating the interaction of these modified genes in tumor development. Further, MYCN overexpression induces adrenal sympathetic neuroblast hyperplasia, blocks chromaffin cell differentiation, and ultimately triggers a developmentally-timed apoptotic response in the hyperplastic sympathoadrenal cells. In the context of MYCN overexpression, activated ALK provides prosurvival signals that block this apoptotic response, allowing continued expansion and oncogenic transformation of hyperplastic neuroblasts, thus promoting progression to neuroblastoma. This application of the zebrafish model illustrates its value in rational assessment of the multigenic changes that define neuroblastoma pathogenesis and points the way to future studies to identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Cancer Center and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55902, USA.
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
33
|
Xie CR, Li Z, Sun HG, Wang FQ, Sun Y, Zhao WX, Zhang S, Zhao WX, Wang XM, Yin ZY. Mutual regulation between CHD5 and EZH2 in hepatocellular carcinoma. Oncotarget 2015; 6:40940-52. [PMID: 26517514 PMCID: PMC4747380 DOI: 10.18632/oncotarget.5724] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/20/2015] [Indexed: 11/25/2022] Open
Abstract
Chromodomain helicase DNA binding protein 5 (CHD5) acts as a tumor suppressor in many cancers. In the present study, we demonstrated that reduced levels of CHD5 in hepatocellular carcinoma (HCC) tissues were significantly associated with metastasis and poor prognosis. Gain-of-function assays revealed that CHD5 suppressed motility and invasion of HCC cells. Subsequent investigations showed that CHD5 was epigenetically silenced by polycomb repressive complex 2 (PRC2)-mediated the trimethylation of histone H3 at lysine 27 (H3K27me3) in HCC cells. Furthermore, overexpression of CHD5 repressed enhancer of zeste homolog 2 (EZH2) and activated PRC2 target genes, such as p16 and p21. Chromatin immunoprecipitation and luciferase reporter assays also showed that CHD5 and EZH2 bind to each other's promoters and inhibit transcription. These findings uncovered, for the first time, a mutual suppression regulation between CHD5 and EZH2, which may provide new insights into their potential therapeutic significance for HCC.
Collapse
Affiliation(s)
- Cheng-Rong Xie
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Fujian, P.R. China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Fujian, P.R. China
| | - Hong-Guang Sun
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Fujian, P.R. China
| | - Fu-Qiang Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Fujian, P.R. China
| | - Yu Sun
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Fujian, P.R. China
| | - Wen-Xiu Zhao
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Fujian, P.R. China
| | - Sheng Zhang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Fujian, P.R. China
| | - Wen-Xing Zhao
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Fujian, P.R. China
| | - Xiao-Min Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Fujian, P.R. China
| | - Zhen-Yu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Fujian, P.R. China
| |
Collapse
|
34
|
Higashi M, Kolla V, Iyer R, Naraparaju K, Zhuang T, Kolla S, Brodeur GM. Retinoic acid-induced CHD5 upregulation and neuronal differentiation of neuroblastoma. Mol Cancer 2015; 14:150. [PMID: 26245651 PMCID: PMC4527355 DOI: 10.1186/s12943-015-0425-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/30/2015] [Indexed: 01/09/2023] Open
Abstract
Background Chromodomain-helicase DNA binding protein 5 (CHD5) is an important tumor suppressor gene deleted from 1p36.31 in neuroblastomas (NBs). High CHD5 expression is associated with a favorable prognosis, but deletion or low expression is frequent in high-risk tumors. We explored the role of CHD5 expression in the neuronal differentiation of NB cell lines. Methods NB cell lines SH-SY5Y (SY5Y), NGP, SK-N-DZ, IMR5, LAN5, SK-N-FI, NB69 and SH-EP were treated with 1–10 μM 13-cis-retinoic acid (13cRA) for 3–12 days. qRT-PCR and Western blot analyses were performed to measure mRNA and protein expression levels, respectively. Morphological differences were examined by both phase contrast and immunofluorescence studies. Results Treatment of SY5Y cells with 13cRA caused upregulation of CHD5 expression in a time- and dose-dependent manner (1, 5, or 10 μM for 7 or 12 days) and also induced neuronal differentiation. Furthermore, both NGP and SK-N-DZ cells showed CHD5 upregulation and neuronal differentiation after 13cRA treatment. In contrast, 13cRA treatment of IMR5, LAN5, or SK-N-FI induced neither CHD5 expression nor neuronal differentiation. NB69 cells showed two different morphologies (neuronal and substrate adherent) after 12 days treatment with 10 μM of 13cRA. CHD5 expression was high in the neuronal cells, but low/absent in the flat, substrate adherent cells. Finally, NGF treatment caused upregulation of CHD5 expression and neuronal differentiation in SY5Y cells transfected to express TrkA (SY5Y-TrkA) but not in TrkA-null parental SY5Y cells, and both changes were blocked by a pan-TRK inhibitor. Conclusions Treatment with 13cRA induces neuronal differentiation only in NB cells that upregulate CHD5. In addition, NGF induced CHD5 upregulation and neuronal differentiation only in TrkA expressing cells. Together, these results suggest that CHD5 is downstream of TrkA, and CHD5 expression may be crucial for neuronal differentiation induced by either 13cRA or TrkA/NGF signaling. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0425-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mayumi Higashi
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA. .,Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602 - 8566, Japan.
| | - Venkatadri Kolla
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| | - Radhika Iyer
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| | - Koumudi Naraparaju
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| | - Tiangang Zhuang
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| | - Sriharsha Kolla
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| | - Garrett M Brodeur
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| |
Collapse
|
35
|
Abstract
Eukaryotic gene expression is developmentally regulated, in part by chromatin remodelling, and its dysregulation has been linked to cancer. CHD5 (chromodomain helicase DNA-binding protein 5) is a tumour suppressor gene (TSG) that maps to a region of consistent deletion on 1p36.31 in neuroblastomas (NBs) and other tumour types. CHD5 encodes a protein with chromatin remodelling, helicase and DNA-binding motifs that is preferentially expressed in neural and testicular tissues. CHD5 is highly homologous to CHD3 and CHD4, which are the core subunits of nucleosome remodelling and deacetylation (NuRD) complexes. To determine if CHD5 forms a similar complex, we performed studies on nuclear extracts from NBLS, SY5Y (both with endogenous CHD5 expression), NLF (CHD5 null) and NLF cells stably transfected with CHD5 cDNA (wild-type and V5-histidine-tagged). Immunoprecipitation (IP) was performed with either CHD5 antibody or antibody to V5/histidine-tagged protein. We identified NuRD components both by GST-FOG1 (Friend Of GATA1) pull-down and by IP. We also performed MS/MS analysis to confirm the presence of CHD5 or other protein components of the NuRD complex, as well as to identify other novel proteins. CHD5 was clearly associated with all canonical NuRD components, including metastasis-associated protein (MTA)1/2, GATA zinc finger domain containing 2A (GATAD2A), histone deacetylase (HDAC)1/2, retinoblastoma-binding protein (RBBP)4/7 and methyl DNA-binding domain protein (MBD)2/3, as determined by Western blotting and MS/MS. Our data suggest CHD5 forms a NuRD complex similar to CHD4. However, CHD5-NuRD may also have unique protein associations that confer functional specificity and may contribute to normal development and to tumour suppression in NB and other cancers.
Collapse
|
36
|
Comparative genetic study of intratumoral heterogenous MYCN amplified neuroblastoma versus aggressive genetic profile neuroblastic tumors. Oncogene 2015; 35:1423-32. [PMID: 26119945 DOI: 10.1038/onc.2015.200] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/08/2015] [Accepted: 05/10/2015] [Indexed: 12/18/2022]
Abstract
Intratumoral heterogeneous MYCN amplification (hetMNA) is an unusual event in neuroblastoma with unascertained biological and clinical implications. Diagnosis is based on the detection of MYCN amplification surrounded by non-amplified tumor cells by fluorescence in situ hybridization (FISH). To better define the genetic features of hetMNA tumors, we studied the Spanish cohort of neuroblastic tumors by FISH and single nucleotide polymorphism arrays. We compared hetMNA tumors with homogeneous MNA (homMNA) and nonMNA tumors with 11q deletion (nonMNA w11q-). Of 1091 primary tumors, 28 were hetMNA by FISH. Intratumoral heterogeneity of 1p, 2p, 11q and 17q was closely associated with hetMNA tumors when analyzing different pieces for each case. For chromosome 2, 16 cases showed 2p intact, 4 focal gain at 2p24.3 and 8 MNA. The lengths of the smallest regions of overlap (SROs) for 2p gains and 1p deletions were between the SRO lengths observed in homMNA and nonMNA w11q- tumors. Co-occurrence of 11q- and +17q was frequently found with the largest SROs for both aberrations. The evidence for and frequency of different genetic subpopulations representing a hallmark of the hetMNA subgroup of NB indicates, on one hand, the presence of a considerable genetic instability with different SRO of either gains and losses compared with those of the other NB groups and highlights and, on the other hand, the need for multiple sampling from distant and macroscopically and microscopically distinct tumor areas. Narrowing down the different SRO for both deletions and gains in NB groups would be crucial to pinpointing the candidate gene(s) and the critical gene dosage with prognostic and therapeutic significance. This complexity of segmental chromosomal aberration patterns reinforces the necessity for a larger cohort study using FISH and pangenomic techniques to develop a suitable therapeutic strategy for these patients.
Collapse
|
37
|
Zhao R, Wang N, Huang H, Ma W, Yan Q. CHD5 a tumour suppressor is epigenetically silenced in hepatocellular carcinoma. Liver Int 2014; 34:e151-60. [PMID: 24529164 DOI: 10.1111/liv.12503] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 02/08/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chromodomain helicase DNA binding protein 5 (CHD5) has recently been identified as a potent tumour suppressor by acting as a master regulator of a tumour-suppressive network. Its inactivation resulted from aberrant methylation in the promoter occurs in several types of human malignancy and is associated with malignant tumour behaviour. In human hepatocellular carcinoma (HCC), CHD5 gene expression, methylation status and tumour-suppressive function have not been elucidated. AIMS In this study, we focused on the epigenetic modification and tumour-suppressive mechanism of CHD5 gene in HCC. METHODS CHD5 expression in nine HCC cell lines and 30 pairs of HCC specimens and adjacent non-cancerous tissues were analysed by quantitative reverse transcription PCR and Western blotting. Methylation-specific sequencing and methylation-specific PCR were performed to examine DNA methylation status of the CHD5 promoter in HCC cell lines and samples. The effect of CHD5 restoration on proliferation, colony formation, senescence, apoptosis and tumourigenicity were examined. RESULTS CHD5 expression was sinificantly down-regulated in HCC cell lines and tissues examined, and the -841 to -470 region of CHD5 promoter was hypermethylated in these samples. Treatment with DNA methyltransferase inhibitor 5-aza-2-deoxycytidine resulted in a striking regional demethylation of the -841 to -470 region of CHD5 promoter and an increase in CHD5 expression. The restoration of CHD5 expression inhibited tumour cell proliferation, colony formation and tumourigenicity and caused cellular senescence. CONCLUSIONS Our findings demonstrate that CHD5 is a potential tumour suppressor gene epigenetically silenced in HCC.
Collapse
Affiliation(s)
- Rui Zhao
- Institute of Molecular Biology, Southern Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
38
|
ZENG LIANG, FEE BRIANE, RIVAS MIRIAMV, LIN JAMES, ADAMSON DAVIDCORY. Adherens junctional associated protein-1: A novel 1p36 tumor suppressor candidate in gliomas. Int J Oncol 2014; 45:13-7. [DOI: 10.3892/ijo.2014.2425] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/14/2014] [Indexed: 11/06/2022] Open
|
39
|
Yamaguchi Y, Takenobu H, Ohira M, Nakazawa A, Yoshida S, Akita N, Shimozato O, Iwama A, Nakagawara A, Kamijo T. Novel 1p tumour suppressor Dnmt1-associated protein 1 regulates MYCN/ataxia telangiectasia mutated/p53 pathway. Eur J Cancer 2014; 50:1555-65. [PMID: 24559687 DOI: 10.1016/j.ejca.2014.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/27/2014] [Indexed: 12/11/2022]
Abstract
Neuroblastoma (NB) is a paediatric solid tumour which originates from sympathetic nervous tissues. Deletions in chromosome 1p are frequently found in unfavourable NBs and are correlated with v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN) amplification; however, it remains to be elucidated how the 1p loss contributes to MYCN-related oncogenic processes in NB. In this study, we identified the role of Dnmt1-associated protein 1 (DMAP1), coded on chromosome 1p34, in the processes. We studied the expression and function of DMAP1 in NB and found that low-level expression of DMAP1 related to poor prognosis, unfavourable histology and 1p Loss of heterozygosity (LOH) of primary NB samples. Intriguingly, DMAP1 induced ataxia telangiectasia mutated (ATM) phosphorylation and focus formation in the presence of a DNA damage reagent, doxorubicin. By DMAP1 expression in NB and fibroblasts, p53 was activated in an ATM-dependent manner and p53-downstream pro-apoptotic Bcl-2 family molecules were induced at the mRNA level, resulting in p53-induced apoptotic death. BAX and p21(Cip1/Waf1) promoter activity dependent on p53 was clearly up-regulated by DMAP1. Further, MYCN transduction in MYCN single-copy NB cells accelerated doxorubicin (Doxo)-induced apoptotic cell death; MYCN is implicated in DMAP1 protein stabilisation and ATM phosphorylation in these situations. DMAP1 knockdown attenuated MYCN-dependent ATM phosphorylation and NB cell apoptosis. Together, DMAP1 appears to be a new candidate for a 1p tumour suppressor and its reduction contributes to NB tumourigenesis via inhibition of MYCN-related ATM/p53 pathway activation.
Collapse
Affiliation(s)
- Yohko Yamaguchi
- Division of Biochemistry and Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Japan
| | - Hisanori Takenobu
- Division of Biochemistry and Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Japan
| | - Miki Ohira
- Laboratory of Cancer Genomics, Chiba Cancer Center Research Institute, Japan
| | - Atsuko Nakazawa
- Department of Pathology, National Center for Child Health and Development, Japan
| | - Sayaka Yoshida
- Division of Biochemistry and Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Japan
| | - Nobuhiro Akita
- Division of Biochemistry and Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Japan
| | - Osamu Shimozato
- Division of Biochemistry and Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akira Nakagawara
- Division of Biochemistry and Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Japan
| | - Takehiko Kamijo
- Division of Biochemistry and Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Japan.
| |
Collapse
|
40
|
Kolla V, Zhuang T, Higashi M, Naraparaju K, Brodeur GM. Role of CHD5 in human cancers: 10 years later. Cancer Res 2014; 74:652-8. [PMID: 24419087 DOI: 10.1158/0008-5472.can-13-3056] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CHD5 was first identified because of its location on 1p36 in a region of frequent deletion in neuroblastomas. CHD5 (chromodomain-helicase-DNA-binding-5) is the fifth member of a family of chromatin remodeling proteins, and it probably functions by forming a nucleosome remodeling and deacetylation (NuRD) complex that regulates transcription of particular genes. CHD5 is preferentially expressed in the nervous system and testis. On the basis of its position, pattern of expression, and function in neuroblastoma cells and xenografts, CHD5 was identified as a tumor suppressor gene (TSG). Evidence soon emerged that CHD5 also functioned as a TSG in gliomas and a variety of other tumor types, including breast, colon, lung, ovary, and prostate cancers. Although one copy of CHD5 is deleted frequently, inactivating mutations of the remaining allele are rare. However, DNA methylation of the CHD5 promoter is found frequently, and this epigenetic mechanism leads to biallelic inactivation. Furthermore, low CHD5 expression is strongly associated with unfavorable clinical and biologic features as well as outcome in neuroblastomas and many other tumor types. Thus, based on its likely involvement as a TSG in neuroblastomas, gliomas, and many common adult tumors, CHD5 may play an important developmental role in many other tissues besides the nervous system and testis.
Collapse
Affiliation(s)
- Venkatadri Kolla
- Authors' Affiliations: Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia; and The University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
41
|
Zhao R, Meng F, Wang N, Ma W, Yan Q. Silencing of CHD5 gene by promoter methylation in leukemia. PLoS One 2014; 9:e85172. [PMID: 24454811 PMCID: PMC3890315 DOI: 10.1371/journal.pone.0085172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/23/2013] [Indexed: 01/25/2023] Open
Abstract
Chromodomain helicase DNA binding protein 5 (CHD5) was previously proposed to function as a potent tumor suppressor by acting as a master regulator of a tumor-suppressive network. CHD5 is down-regulated in several cancers, including leukemia and is responsible for tumor generation and progression. However, the mechanism of CHD5 down-regulation in leukemia is largely unknown. In this study, quantitative reverse-transcriptase polymerase chain reaction and western blotting analyses revealed that CHD5 was down-regulated in human leukemia cell lines and samples. Luciferase reporter assays showed that most of the baseline regulatory activity was localized from 500 to 200 bp upstream of the transcription start site. Bisulfite DNA sequencing of the identified regulatory element revealed that the CHD5 promoter was hypermethylated in human leukemia cells and samples. Thus, CHD5 expression was inversely correlated with promoter DNA methylation in these samples. Treatment with DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (DAC) activates CHD5 expression in human leukemia cell lines. In vitro luciferase reporter assays demonstrated that methylation of the CHD5 promoter repressed its promoter activity. Furthermore, a chromatin immunoprecipitation assay combined with qualitative PCR identified activating protein 2 (AP2) as a potential transcription factor involved in CHD5 expression and indicated that treatment with DAC increases the recruitment of AP2 to the CHD5 promoter. In vitro transcription-factor activity studies showed that AP2 over-expression was able to activate CHD5 promoter activity. Our findings indicate that repression of CHD5 gene expression in human leukemia is mediated in part by DNA methylation of its promoter.
Collapse
Affiliation(s)
- Rui Zhao
- Institute of Molecular Biology, Southern Medical University, Guangzhou, PR China,
| | - Fanyi Meng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Nisha Wang
- Institute of Molecular Biology, Southern Medical University, Guangzhou, PR China,
| | - Wenli Ma
- Institute of Molecular Biology, Southern Medical University, Guangzhou, PR China,
| | - Qitao Yan
- Institute of Molecular Biology, Southern Medical University, Guangzhou, PR China,
- * E-mail:
| |
Collapse
|
42
|
Molecular oncology of neuroblastoma. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
43
|
Fatemi M, Paul TA, Brodeur GM, Shokrani B, Brim H, Ashktorab H. Epigenetic silencing of CHD5, a novel tumor-suppressor gene, occurs in early colorectal cancer stages. Cancer 2013; 120:172-80. [PMID: 24243398 DOI: 10.1002/cncr.28316] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/30/2013] [Accepted: 06/24/2013] [Indexed: 11/06/2022]
Abstract
BACKGROUND Chromodomain helicase DNA binding protein 5 (CHD5) is a family member of chromatin remodeling factors. The epigenetic silencing mechanisms of CHD5 in colorectal cancer have not been well studied. METHODS Here we analyzed CHD5 methylation and mRNA expression in vitro and in clinical samples from African American patients. DNA and RNA were isolated from formalin fixed paraffin embedded (FFPE) colon tissues. DNA was tested for methylation using methylation-specific polymerase chain reation (PCR) and bisulfite sequencing. RNA was used for mRNA quantification using qRT-PCR. The RKO cell line was treated with 5-Aza-dC and SAHA. RKO cells were also stably transfected with a CHD5-expressing vector. The transcriptional activity was studied in the 1 kb upstream region of the CHD5 promoter using the dual reporter assay. We performed cell proliferation, migration, and invasion assays using the RKO cell line. RESULTS In most adenoma samples, CHD5 expression was not detected in contrast to normal tissues. In RKO cells, CHD5 silencing was associated with DNA methylation and repressive histone modifications. CHD5 expression was restored after treatment with 5-Aza-dC and SAHA. CHD5 reactivation reduced cell proliferation, migration, and invasion. The reporter assay indicated that the main regulatory region of the CHD5 promoter is encompassed in the -489 to -823 region with important transcriptional regulatory sites (TCF/LEF, SP1, and AP-2). CONCLUSIONS The CHD5 gene is repressed in all types of adenomas, either epigenetically or by chromosomal deletion. CHD5 activity is regulated by DNA methylation and repressive histone modifications. CHD5 likely acts as a tumor-suppressor gene in early colorectal carcinogenesis.
Collapse
Affiliation(s)
- Mehrnaz Fatemi
- Department of Medicine and Cancer Center, Howard University, College of Medicine, Washington, District of Columbia
| | | | | | | | | | | |
Collapse
|
44
|
Lipska BS, Koczkowska M, Wierzba J, Ploszynska A, Iliszko M, Izycka-Swieszewska E, Adamkiewicz-Drozynska E, Limon J. On the significance of germline cytogenetic rearrangements at MYCN locus in neuroblastoma. Mol Cytogenet 2013; 6:43. [PMID: 24131700 PMCID: PMC3819649 DOI: 10.1186/1755-8166-6-43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/20/2013] [Indexed: 01/11/2023] Open
Abstract
Background MYCN oncogene amplification is the most important prognostic factor in neuroblastoma. 25% neuroblastoma tumors have somatic amplifications at this locus but little is known about its constitutional aberrations and their potential role in carcinogenesis. Here, we have performed an array-CGH and qPCR characterization of two patients with constitutional partial 2p trisomy including MYCN genomic region. Results One of the patients had congenital neuroblastoma and showed presence of minute areas of gains and losses within the common fragile site FRA2C at 2p24 encompassing MYCN. The link between 2p24 germline rearrangements and neuroblastoma development was reassessed by reviewing similar cases in the literature. Conclusions It appears that constitutional rearrangements involving chromosome 2p24 may play role in NB development.
Collapse
Affiliation(s)
- Beata S Lipska
- Department of Biology and Genetics, Medical University of Gdansk, Debinki 1str, 80211 Gdansk, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Vestin A, Mills AA. The tumor suppressor Chd5 is induced during neuronal differentiation in the developing mouse brain. Gene Expr Patterns 2013; 13:482-9. [PMID: 24120991 DOI: 10.1016/j.gep.2013.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/28/2013] [Accepted: 09/30/2013] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation of gene expression orchestrates dynamic cellular processes that become perturbed in human disease. An understanding of how subversion of chromatin-mediated events leads to pathologies such as cancer and neurodevelopmental syndromes may offer better treatment options for these pathological conditions. Chromodomain Helicase DNA-binding protein 5 (CHD5) is a dosage-sensitive tumor suppressor that is inactivated in human cancers, including neural-associated malignancies such as neuroblastoma and glioma. Here we report a detailed analysis of the temporal and cell type-specific expression pattern of Chd5 in the mammalian brain. By analyzing endogenous Chd5 protein expression during mouse embryogenesis, in the neonate, and in the adult, we found that Chd5 is expressed broadly in multiple brain regions, that Chd5 sub-cellular localization undergoes a switch from the cytoplasm to the nucleus during mid-gestation, and that Chd5 expression is retained at high levels in differentiated neurons of the adult. These findings may have important implications for defining the role of CHD5-mediated chromatin dynamics in the brain and for elucidating how perturbation of these epigenetic processes leads to neuronal malignancies, neurodegenerative diseases, and neurodevelopmental syndromes.
Collapse
Affiliation(s)
- Assaf Vestin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
46
|
|
47
|
Owens C, Irwin M. Neuroblastoma: the impact of biology and cooperation leading to personalized treatments. Crit Rev Clin Lab Sci 2012; 49:85-115. [PMID: 22646747 DOI: 10.3109/10408363.2012.683483] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor in children. It is a heterogeneous disease, consisting of neural crest-derived tumors with remarkably different clinical behaviors. It can present in a wide variety of ways, including lesions which have the potential to spontaneously regress, or as an extremely aggressive form of metastatic cancer which is resistant to all forms of modern therapy. They can arise anywhere along the sympathetic nervous system. The median age of presentation is approximately 18 months of age. Urinary catecholamines (HVA and VMA) are extremely sensitive and specific tumor markers and are used in diagnosis, treatment response assessment and post-treatment surveillance. The largest national treatment groups from North America, Europe and Japan have formed the International Neuroblastoma Risk Group Task Force (INRG) to identify prognostic factors, to understand the mechanisms of tumorigenesis in this rare disease and to develop multi-modality therapies to improve outcomes and decrease treatment-related toxicities. This international cooperation has resulted in a significant leap in our understanding of the molecular pathogenesis of neuroblastoma. Lower staged disease can be cured if the lesion is resectable. Treatment of unresectable disease (loco-regional and metastatic) is stratified depending on clinical features (age at presentation, staging investigations) and specific tumor biological markers that include histopathological analyses, chromosomal abnormalities and the quantification of expression of an oncogene (MYCN). Modern treatment of high-risk neuroblastoma is the paradigm for the evolution of therapy in pediatric oncology. Outcomes have improved substantially with multi-modality therapy, including chemotherapy, surgery, radiation therapy, myeloablative therapy with stem cell transplant, immunotherapy and differentiation therapy; these comprise the standard of care worldwide. In addition, newer targeted therapies are being tested in phase I/II trials. If successful these agents will be incorporated into mainstream treatment programs.
Collapse
Affiliation(s)
- Cormac Owens
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
48
|
Du X, Wu T, Lu J, Zang L, Song N, Yang T, Zhao H, Wang S. Decreased expression of chromodomain helicase DNA-binding protein 5 is an unfavorable prognostic marker in patients with primary gallbladder carcinoma. Clin Transl Oncol 2012; 15:198-204. [PMID: 22855185 DOI: 10.1007/s12094-012-0903-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
AIM Chromodomain helicase DNA-binding protein 5 (CHD5) plays a role in normal neural development and in tumorigenesis of various human cancers. However, its role in primary gallbladder carcinoma (PGC) is still unclear. The aim of this study was to investigate CHD5 expression in PGC and its clinical significance. METHODS CHD5 mRNA and protein expression in 120 PGC and 20 normal gallbladder specimens was determined by quantitative reverse transcription-polymerase chain reaction (QRT-PCR) and Western blotting analysis, respectively. RESULTS The expression levels of CHD5 mRNA and protein in PGC tissues were both significantly lower than those in the normal epithelium of the gallbladder (mRNA: P = 0.006; protein: P = 0.01). CHD5 mRNA expression was closely correlated with its protein expression (r = 0.8; P < 0.001). Additionally, the low expression of CHD5 protein was significantly associated with high pathologic T stage (P = 0.01) and clinical stage (P = 0.008), and advanced histologic grade (P = 0.009). The expression levels of CHD5 protein in PGC tissues with positive nodal metastasis were also significantly lower than those without (P = 0.01). Survival analysis showed that low CHD5 expression was associated with shorter disease-free (P = 0.01) and overall survival (P = 0.008) compared to those with high CHD5 expression in PGC patients. Furthermore, multivariate analyses showed that the decreased expression of CHD5 was an independent prognostic marker for both unfavorable disease-free (P = 0.01) and overall survival (P = 0.006). CONCLUSION CHD5 may be involved in carcinogenesis of PGC and its down-regulation may be significantly correlated with unfavorable clinicopathologic features including poor overall and disease-free survival in patients.
Collapse
Affiliation(s)
- Xilin Du
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zage PE, Nolo R, Fang W, Stewart J, Garcia-Manero G, Zweidler-McKay PA. Notch pathway activation induces neuroblastoma tumor cell growth arrest. Pediatr Blood Cancer 2012; 58:682-9. [PMID: 21744479 PMCID: PMC3264695 DOI: 10.1002/pbc.23202] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/21/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Notch pathway signaling has critical roles in differentiation, proliferation, and survival, and has oncogenic or tumor suppressor effects in a variety of malignancies. The goal of this study was to evaluate the effects of Notch activation on human neuroblastoma cells. PROCEDURE Quantitative RT-PCR, immunoblots, and immunohistochemistry were used to determine the expression of Notch receptors (Notch1-4), cleaved Notch1 (ICN1), and downstream targets (HES1-5) in human neuroblastoma cell lines and patient tumor samples. Notch pathway signaling was induced using intracellular Notch (ICN1-3) and HES gene constructs or direct culture on Notch ligands. Quantitative methylation-specific PCR was used to quantify methylation of the HES gene promoters, and the effects of treatment with decitabine were measured. RESULTS Neuroblastoma cells express varying levels of Notch receptors and low levels of HES genes at baseline. However, no endogenous activation of the Notch pathway was detected in neuroblastoma cell lines or patient tumor samples. Expression of activated Notch intracellular domains and HES gene products led to growth arrest. The HES2 and HES5 gene promoters were found to be heavily methylated in most neuroblastoma lines, and HES gene expression could be induced through treatment with decitabine. CONCLUSIONS We report that neuroblastoma cell lines express multiple Notch receptors, which are inactive at baseline. Activation of the Notch pathway via ligand binding consistently resulted in growth arrest. HES gene expression appears to be regulated epigenetically and could be induced with decitabine. These findings support a tumor suppressor role for Notch signaling in neuroblastoma.
Collapse
Affiliation(s)
- Peter E. Zage
- Division of Pediatrics, Children’s Cancer Hospital, The University of Texas M.D. Anderson Cancer Center, Houston, TX,The University of Texas Graduate School of Biomedical Sciences, Houston, TX
| | - Riitta Nolo
- Division of Pediatrics, Children’s Cancer Hospital, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Wendy Fang
- Division of Pediatrics, Children’s Cancer Hospital, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - John Stewart
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | | | - Patrick A. Zweidler-McKay
- Division of Pediatrics, Children’s Cancer Hospital, The University of Texas M.D. Anderson Cancer Center, Houston, TX,The University of Texas Graduate School of Biomedical Sciences, Houston, TX
| |
Collapse
|
50
|
Abstract
AIM: To investigate epigenetic changes of the chromodomain helicase DNA-binding protein 5 (CHD5) gene during esophageal carcinogenesis, and to explore the possibility of using CHD5 promoter methylation as a marker for human esophageal cancer.
METHODS: Methylation-specific polymerase chain reaction (MSP) was used to detect the methylation status of CHD5 in 72 cases of esophageal cancer and matched tumor-adjacent tissue, 9 cases of normal esophageal mucosa, and 4 esophageal cancer cell lines. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect the expression of CHD5 in esophageal cancer cell lines mentioned above.
RESULTS: CHD5 methylation was detected in 69% (50∕72) of cases of esophageal cancer and 32% (23∕72) of cases of matched tumor-adjacent tissue (χ2 = 20.254, P < 0.05), but not detected in 9 cases of normal esophageal mucosa. Loss of CHD5 expression was found in 2 esophageal cancer cell lines which showed CHD5 promoter methylation, and after treatment with 5-aza-deoxycytidine for 96 h, CHD5 was re-expressed.
CONCLUSION: CHD5 is frequently methylated in esophageal cancer. Epigenetic change may be an important mechanism for regulation of CHD5 expression, and CHD5 promoter methylation may be used as a marker for human esophageal cancer.
Collapse
|