1
|
Liu XY, Xie W, Zhou HY, Zhang HQ, Jin YS. A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin. JOURNAL OF INTEGRATIVE MEDICINE 2024:S2095-4964(24)00390-X. [PMID: 39368944 DOI: 10.1016/j.joim.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/07/2024] [Indexed: 10/07/2024]
Abstract
Natural product-based antiviral candidates have received significant attention. However, there is a lack of sufficient research in the field of antivirals to effectively combat patterns of drug resistance. Baicalein and its glucuronide derivative baicalin are two main components extracted from Scutellaria baicalensis Georgi. They have proven to be effective against a broad range of viruses by directly killing virus particles, protecting infected cells, and targeting viral antigens on their surface, among other mechanisms. As natural products, they both possess the advantage of lower toxicity, enhanced therapeutic efficacy, and even antagonistic effects against drug-resistant viral strains. Baicalein and baicalin exhibit promising potential as potent pharmacophore scaffolds, demonstrating their antiviral properties. However, to date, no review on the antiviral effects of baicalein and baicalin has been published. This review summarizes the recent research progress on antiviral effects of baicalein and baicalin against various types of viruses both in vitro and in vivo with a focus on the dosages and underlying mechanisms. The aim is to provide a basis for the rational development and utilization of baicalein and baicalin, as well as to promote antiviral drug research. Please cite this article as: Liu XY, Xie W, Zhou HY, Zhang HQ, Jin YS. A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin. J Integr Med. 2024; Epub ahead of print.
Collapse
Affiliation(s)
- Xin-Yang Liu
- School of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Wei Xie
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - He-Yang Zhou
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Hui-Qing Zhang
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China.
| | - Yong-Sheng Jin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Chang W, Wang J, Wu F, Zhang H, Yang M. Antiviral activity and underlying mechanisms of baicalin against porcine reproductive and respiratory syndrome virus in vitro. Microb Pathog 2024; 193:106712. [PMID: 38851360 DOI: 10.1016/j.micpath.2024.106712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a major challenge for the global swine industry, causing huge economic losses worldwide. To date, there are no effective measures to prevent and control the spread of PRRS virus (PRRSV). Baicalin (BA) is a natural flavonoid with various pharmacological effects, including antiviral, anti-inflammatory, antioxidant and immunomodulatory. Here, we demonstrate that BA exhibits potent anti-PRRSV activity in vitro, BA concentrations in the range of 5-20 μg/mL significantly inhibited PRRSV infection in a dose-dependent manner and were independent of PRRSV strain. Mechanistically, BA inhibited PRRSV replication by directly interacting with virions, thereby affecting multiple stages of the virus life cycle. Meanwhile, the preventive effect of BA on PRRSV could be realized by inhibiting CD151 and CD163 expression. Furthermore, BA reduced the PRRSV-induced expression of PAMs cytokines (IFN-α, IL-6, IL-8, and TNF-α), suggesting that BA-induced antiviral cytokines may help BA inhibit PRRSV infection. Taken together, BA can be used as an inhibitor of PRRSV infection in vitro, which provides a theoretical basis for the clinical application of BA and the prevention and control of PRRSV infection, which is worthy of further in vivo studies in swine.
Collapse
Affiliation(s)
- Weichen Chang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan province, China
| | - Jing Wang
- Henan Agricultural University, Zhengzhou, 450046, Henan province, China
| | - Feifan Wu
- Henan Agricultural University, Zhengzhou, 450046, Henan province, China
| | - Hongying Zhang
- Henan Agricultural University, Zhengzhou, 450046, Henan province, China
| | - Mingfan Yang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan province, China.
| |
Collapse
|
3
|
Xiong Y, Tan G, Tao K, Zhou Y, Li J, Ou W, Shen C, Xie T, Zhang C, Hou Y, Ji J. Emodin inhibits respiratory syncytial virus entry by interactions with fusion protein. Front Microbiol 2024; 15:1393511. [PMID: 38817970 PMCID: PMC11137228 DOI: 10.3389/fmicb.2024.1393511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Respiratory syncytial virus (RSV) fusion (F) protein is essential for facilitating virus entry into host cells, providing a hopeful path for combating viral diseases. However, F protein inhibitors can rapidly select for viral resistance. Thus, discovering new inhibitors of F-protein is necessary to enrich the RSV drug development pipeline. Methods In this study, we screen 25 bioactive compounds from Chinese herbal medicines that exhibit a strong binding to the RSV-F protein using surface plasmon resonance. Results After screening, we found emodin could strongly bind to RSV-F protein, and could effectively curb RSV infection. Further investigations certificated that emodin specifically disrupts the attachment and internalization phases of RSV infection by targeting the RSV-F protein. In vivo studies with mice infected with RSV demonstrated that emodin effectively reduces lung pathology. This therapeutic effect is attributed to emodin's capacity to diminish pro-inflammatory cytokine production and reduce viral load in the lungs. Discussion In conclusion, our findings provide initial insights into the mechanism by which emodin counters RSV infection via engagement with the RSV-F protein, establishing it as a viable contender for the development of novel therapeutic agents aimed at RSV.
Collapse
Affiliation(s)
- Yingcai Xiong
- Wuxi Traditional Chinese Medicine Hospial Afiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangxing Tan
- Wuxi Traditional Chinese Medicine Hospial Afiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China
| | - Keyu Tao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yinghui Zhou
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiying Ou
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Qin H, Luo J, Zhao N, Lou W, Chen P, Wang H, Pan Z, Xiong X. Xuanfei Formula inhibited RSV infection by normalizing the SREBP2-mediated cholesterol synthesis process. Front Microbiol 2024; 15:1387062. [PMID: 38765687 PMCID: PMC11100329 DOI: 10.3389/fmicb.2024.1387062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/02/2024] [Indexed: 05/22/2024] Open
Abstract
Background and aims Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in children and the elderly, often progressing to pneumonia and severe sequelae. However, there are currently no feasible and cost-effective interventions with proven efficacy for children, making medications with anti-RSV activity urgently needed. Traditional Chinese medicine has shown promising therapeutic efficacy in alleviating viral infection symptoms. Therefore, we aimed to develop effective strategies for RSV treatment based on traditional Chinese medicine. Methods and results The infection status was assessed in BALB/c mice with or without Xuanfei Formula (XFF) treatment over a one-week period using H&E staining, cytokine assays and RSV titer testing after RSV challenge. Remarkably, on the first day of XFF intervention, both the pro-inflammation cytokine levels in the serum and RSV-N gene copies in the lung of mice were plummeted, compared to the RSV-infected group. This implied that XFF might possess the immune-independent anti-RSV capability. To elucidate the underlying mechanism, we employed transcriptome analysis followed by k-means analysis. The reversal effects of XFF against RSV primarily focused on the processes of innate and adaptive immunity. Additionally, we found that XFF administration corrected the disordered fatty acid and cholesterol metabolism processes during RSV infection. Lipidomics profiling indicated consistent cholesterol abundance with transcriptional changes but not fatty acids. Cholesterol synthesis-related genes mRNA levels and cholesterol synthesis intermediates detection supported XFF's repression upon cholesterol biosynthesis. Aberrantly increased cholesterol production has been reported as necessary for RSV infection. To mimic that, we observed lovastatin treatment inhibited RSV replication and pro-inflammation cytokine expression in vitro. Transcription factor prediction of differentially expressed genes (DEGs) involved in cholesterol synthesis implicated SREBP2. Through network pharmacology, stigmasterol and β-sitosterol were identified as the effective active ingredients within the XFF, with the help of further molecular docking and mass spectrum detection. In vitro experiments demonstrated β-sitosterol and stigmasterol reinforced the bonding between SREBP cleavage-activation protein (SCAP) and insulin-induced gene proteins (INSIGs) to inhibit SREBP2 cleavage maturation and consequent RSV infection. Conclusion Xuanfei Formula (XFF) exhibits excellent anti-RSV efficacy by inhibiting SREBP2-mediated cholesterol synthesis to reduce RSV replication and ameliorate inflammation in the lung of infected mice.
Collapse
Affiliation(s)
- Huan Qin
- College of Life Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, China
- Department of Integrated Chinese and Western Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University and Technology, Wuhan, China
| | - Jin Luo
- Institute of Maternal and Child Health, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University and Technology, Wuhan, China
| | - Nan Zhao
- College of Life Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Wange Lou
- College of Life Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Peng Chen
- Department of Respiratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University and Technology, Wuhan, China
| | - Huihao Wang
- Information Department, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University and Technology, Wuhan, China
| | - Zishu Pan
- College of Life Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Xiaoli Xiong
- Clinical Laboratory, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Cho J, Hong E, Kim Y, Song J, Ju YH, Kim H, Lee H, Kim H, Nam M. Baicalin and baicalein from Scutellaria baicalensis Georgi alleviate aberrant neuronal suppression mediated by GABA from reactive astrocytes. CNS Neurosci Ther 2024; 30:e14740. [PMID: 38715318 PMCID: PMC11076983 DOI: 10.1111/cns.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/17/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
AIMS γ-aminobutyric acid (GABA) from reactive astrocytes is critical for the dysregulation of neuronal activity in various neuroinflammatory conditions. While Scutellaria baicalensis Georgi (S. baicalensis) is known for its efficacy in addressing neurological symptoms, its potential to reduce GABA synthesis in reactive astrocytes and the associated neuronal suppression remains unclear. This study focuses on the inhibitory action of monoamine oxidase B (MAO-B), the key enzyme for astrocytic GABA synthesis. METHODS Using a lipopolysaccharide (LPS)-induced neuroinflammation mouse model, we conducted immunohistochemistry to assess the effect of S. baicalensis on astrocyte reactivity and its GABA synthesis. High-performance liquid chromatography was performed to reveal the major compounds of S. baicalensis, the effects of which on MAO-B inhibition, astrocyte reactivity, and tonic inhibition in hippocampal neurons were validated by MAO-B activity assay, qRT-PCR, and whole-cell patch-clamp. RESULTS The ethanolic extract of S. baicalensis ameliorated astrocyte reactivity and reduced excessive astrocytic GABA content in the CA1 hippocampus. Baicalin and baicalein exhibited significant MAO-B inhibition potential. These two compounds downregulate the mRNA levels of genes associated with reactive astrogliosis or astrocytic GABA synthesis. Additionally, LPS-induced aberrant tonic inhibition was reversed by both S. baicalensis extract and its key compounds. CONCLUSIONS In summary, baicalin and baicalein isolated from S. baicalensis reduce astrocyte reactivity and alleviate aberrant tonic inhibition of hippocampal neurons during neuroinflammation.
Collapse
Affiliation(s)
- Juyeong Cho
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Eun‐Bin Hong
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Young‐Sik Kim
- Department of Herbology, College of Korean MedicineWoosuk UniversityJeonju‐siRepublic of Korea
| | - Jungbin Song
- Department of Herbal Pharmacology, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - Yeon Ha Ju
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Hyunjin Kim
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of KHU‐KIST Convergence Science and TechnologyKyung Hee UniversitySeoulRepublic of Korea
| | - Hyowon Lee
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - Min‐Ho Nam
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of KHU‐KIST Convergence Science and TechnologyKyung Hee UniversitySeoulRepublic of Korea
- Division of Bio‐Medical Science & Technology, KIST SchoolUniversity of Science and TechnologySeoulRepublic of Korea
| |
Collapse
|
6
|
Sharawi ZW, Ibrahim IM, Abd-Alhameed EK, Althagafy HS, Jaber FA, Harakeh S, Hassanein EHM. Baicalin and lung diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1405-1419. [PMID: 37725153 DOI: 10.1007/s00210-023-02704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Studies focusing on natural products have been conducted worldwide, and the results suggest that their natural ingredients effectively treat a wide range of illnesses. Baicalin (BIA) is a glycoside derived from the flavonoid baicalein present in Scutellaria baicalensis of the Lamiaceae family. Interestingly, BIA has been shown to protect the lungs in several animal models used in numerous studies. Therefore, we fully analyzed the data of the studies that focused on BIA's lung protective function against various injuries and included them in this review. Interestingly, BIA exhibits promising effects against acute lung injury, lung fibrosis, pulmonary embolism, and lung remodelling associated with COPD, LPS, and paraquat insecticide. BAI exhibits anticancer activity against lung cancer. Additionally, BIA potently attenuates lung damage associated with infections. BIA primarily exerts its therapeutic effects by suppressing inflammation, oxidative stress immune response, and apoptosis pathways. Nrf2/HO-1, PI3K/Akt, NF-κB, STAT3, MAPKs, TLR4, and NLRP3 are important targets in the pulmonary therapeutic effects of BIA on different lung disease models. Consequently, we recommend using it in future potential clinical applications, its contribution to treatment guidelines, and translating its promising effects to clinical practice in lung diseases.
Collapse
Affiliation(s)
- Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah, 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Lateef Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| |
Collapse
|
7
|
Su J, Chen XM, Xie YL, Li MQ, Shang Q, Zhang DK, Cai XF, Liu H, Huang HZ, Zheng C, Han L. Clinical efficacy, pharmacodynamic components, and molecular mechanisms of antiviral granules in the treatment of influenza: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117011. [PMID: 37567423 DOI: 10.1016/j.jep.2023.117011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/29/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Antiviral Granules (AG) are derived from the classical famous prescription, which is composed of 9 traditional Chinese medicines, namely Radix Isatidis (called Banlangen, BLG in Chinese), Forsythiae Fructus (called Lianqiao, LQ in Chinese), Gypsum fibrosum, Anemarrhenae Rhizoma (called Zhimu, ZM in Chinese), Phragmitis Rhizoma (called Lugen, LG in Chinese), Rehmanniae Radix (called Dihuang, DH in Chinese), Pogostemonis Herba (called Guanghuoxiang, GHX in Chinese), Acori Tatarinowii Rhizoma (called Shichangpu, SCP in Chinese), and Curcumae Radix (called Yujin, YJ in Chinese), and has shown an excellent therapeutic effect in clinical treatment of influenza. However, there are few studies on the anti-influenza mechanism of AG, and the mechanism of action is still unclear. AIM OF THE STUDY The purpose is to provide the latest information about the clinical efficacy, pharmacodynamic composition and mechanism of AG based on scientific literature, so as to enhance the utilization of AG in the treatment of influenza and related diseases, and promote the development and innovation of novel anti-influenza drugs targeting the influenza virus. MATERIALS AND METHODS Enter the data retrieval room, search for Antiviral Granules, as well as the scientific names, common names, and Chinese names of each Chinese medicine. Additionally, search for the relevant clinical applications, pharmacodynamic composition, pharmacological action, and molecular mechanism of both Antiviral Granules and single-ingredient medicines. Keywords includes terms such as "antiviral granules", "influenza", "Isatis indigotica Fort.", "Radix Isatidis", "Banlangeng", "pharmacology", "clinical application", "pharmacologic action", etc. and their combinations. Obtain results from the Web of Science, PubMed, Google Scholar, Sci Finder Scholar, CNKI and other resources. RESULTS AG is effective in the treatment of influenza and is often used in combination with other drugs to treat viral diseases. Its chemical composition is complex, including alkaloids, polysaccharides, volatile oils, steroid saponins, phenylpropanoids, terpenoids and other compounds. These compounds have a variety of pharmacological activities, which can interfere with the replication cycle of the influenza virus, regulate RIG-I-MAVS, JAK/STAT, TLRs/MyD88, NF-κB signaling pathways and related cytokines, regulate intestinal microorganisms, and protect both the lungs and extrapulmonary organs. CONCLUSIONS AG can overcome the limitations of traditional antiviral drug therapy, play a synergistic role in fighting influenza virus with the characteristics of multi-component, multi-pathway and multi-target therapy, and reverse the bodily function damage caused by influenza virus. AG may be a potential drug in the prevention and treatment of influenza and related diseases.
Collapse
Affiliation(s)
- Juan Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin-Ming Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi-Ling Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Meng-Qi Li
- Pharmacy Department, Sichuan Nursing Vocational College, Chengdu, 610100, China
| | - Qiang Shang
- Sichuan Provincial Engineering Research Center for Antiviral Chinese Medicine Industrialization, Sichuan Guangda Pharmaceutical Co., Ltd., Pengzhou, 611930, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Pengzhou, 611930, China
| | - Xin-Fu Cai
- Sichuan Provincial Engineering Research Center for Antiviral Chinese Medicine Industrialization, Sichuan Guangda Pharmaceutical Co., Ltd., Pengzhou, 611930, China
| | - Hui Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hao-Zhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
8
|
Bueno CA, Salinas FM, Vazquez L, Alché LE, Michelini FM. Two synthetic steroid analogs reduce human respiratory syncytial virus replication and the immune response to infection both in vitro and in vivo. Heliyon 2023; 9:e20148. [PMID: 37822633 PMCID: PMC10562772 DOI: 10.1016/j.heliyon.2023.e20148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
HRSV is responsible for many acute lower airway infections and hospitalizations in infants, the elderly and those with weakened immune systems around the world. The strong inflammatory response that mediates viral clearance contributes to pathogenesis, and is positively correlated with disease severity. There is no specific effective therapy on hand. Antiviral synthetic stigmastanes (22S, 23S)-22,23-dihydroxystigmast-4-en-3-one (Compound 1) and 22,23-dihydroxystigmasta-1,4-dien-3-one (Compound 2) have shown to be active inhibiting unrelated virus like Herpes Simplex type 1 virus (HSV-1) and Adenovirus, without cytotoxicity. We have also shown that Compound 1 modulates the activation of cell signaling pathways and cytokine secretion in infected epithelial cells as well as in inflammatory cells activated by nonviral stimuli. In the present work, we investigated the inhibitory effect of both compounds on HRSV replication and their modulatory effect on infected epithelial and inflammatory cells. We show that compounds 1 and 2 inhibit in vitro HRSV replication and propagation and reduce cytokine secretion triggered by HRSV infection in epithelial and inflammatory cells. The compounds reduce viral loads and inflammatory infiltration in the lungs of mice infected with HRSV.
Collapse
Affiliation(s)
- Carlos A. Bueno
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Franco M. Salinas
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - L. Vazquez
- UOCCB (Unidad Operativa Centro de Contención Biológica), Instituto Dr. Carlos G. Malbrán, ANLIS (Administración Nacional de Laboratorios e Institutos de Salud), Argentina
| | - Laura E. Alché
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Flavia M. Michelini
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| |
Collapse
|
9
|
Wang Y, Jia M, Gao Y, Zhao B. Multiplex Quantitative Analysis of 9 Compounds of Scutellaria baicalensis Georgi in the Plasma of Respiratory Syncytial Virus-Infected Mice Based on HPLC-MS/MS and Pharmacodynamic Effect Correlation Analysis. Molecules 2023; 28:6001. [PMID: 37630252 PMCID: PMC10460054 DOI: 10.3390/molecules28166001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
According to traditional Chinese medicine, Scutellaria baicalensis Georgi possesses the therapeutic properties of heat-clearing, dampness-drying, diarrhea alleviation, and detoxification, making it a clinically used remedy for respiratory infections. The objective of this study was to investigate the changes in constituent content, pharmacodynamic effects, and material basis of Scutellaria baicalensis Georgi in the plasma of mice infected with respiratory syncytial virus (RSV). The results showed that a sensitive and efficient high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) method was established in this study. Multiple quantitative analyses of Baicalein, Apigenin-7-glucuronide, Baicalin, Oroxylin A 7-O-beta-d-glucuronide, Wogonoside, Norwogonin, Wogonin, Chrysin, and Oroxylin A in mouse plasma revealed a bimodal absorption phenomenon within the time frame of 0.167 h to 6 h post-administration, with the exception of chrysin. Following 6 h of administration, the concentrations of 9 components continued to decrease until they became undetectable. In comparison to the model group, all administered groups exhibited significant reductions in lung index and viral load, with their lung index repair rate and viral suppression rate aligning with the blood concentration-time curve. Finally, through the application of the gray correlation analysis method, we identified Baicalein, Baicalin, Oroxylin A 7-O-beta-d-glucuronide, Wogonoside, Norwogonin, and Wogonin as potential pharmacodynamic material bases of Scutellaria baicalensis Georgi against RSV infection.
Collapse
Affiliation(s)
| | | | - Yan Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.W.); (M.J.)
| | - Bonian Zhao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.W.); (M.J.)
| |
Collapse
|
10
|
Dinda B, Dinda M, Dinda S, De UC. An overview of anti-SARS-CoV-2 and anti-inflammatory potential of baicalein and its metabolite baicalin: Insights into molecular mechanisms. Eur J Med Chem 2023; 258:115629. [PMID: 37437351 DOI: 10.1016/j.ejmech.2023.115629] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
The current Coronavirus Disease 2019 (COVID-19) pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is highly contagious infection that breaks the healthcare systems of several countries worldwide. Till to date, no effective antiviral drugs against COVID-19 infection have reached the market, and some repurposed drugs and vaccines are prescribed for the treatment and prevention of this disease. The currently prescribed COVID-19 vaccines are less effective against the newly emergent variants of concern of SARS-CoV-2 due to several mutations in viral spike protein and obviously there is an urgency to develop new antiviral drugs against this disease. In this review article, we systematically discussed the anti-SARS-CoV-2 and anti-inflammatory efficacy of two flavonoids, baicalein and its 7-O-glucuronide, baicalin, isolated from Scutellaria baicalensis, Oroxylum indicum, and other plants as well as their pharmacokinetics and oral bioavailability, for development of safe and effective drugs for COVID-19 treatment. Both baicalein and baicalin target the activities of viral S-, 3CL-, PL-, RdRp- and nsp13-proteins, and host mitochondrial OXPHOS for suppression of viral infection. Moreover, these compounds prevent sepsis-related inflammation and organ injury by modulation of host innate immune responses. Several nanoformulated and inclusion complexes of baicalein and baicalin have been reported to increase oral bioavailability, but their safety and efficacy in SARS-CoV-2-infected transgenic animals are not yet evaluated. Future studies on these compounds are required for use in clinical trials of COVID-19 patients.
Collapse
Affiliation(s)
- Biswanath Dinda
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, India.
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Subhajit Dinda
- Department of Chemistry, Government Degree College, Kamalpur, Dhalai, Tripura, India
| | - Utpal Chandra De
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, India
| |
Collapse
|
11
|
Jiang J, Kao TC, Hu S, Li Y, Feng W, Guo X, Zeng J, Ma X. Protective role of baicalin in the dynamic progression of lung injury to idiopathic pulmonary fibrosis: A meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154777. [PMID: 37018850 DOI: 10.1016/j.phymed.2023.154777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND PURPOSE The pathological progression of lung injury (LI) to idiopathic pulmonary fibrosis (IPF) is a common feature of the development of lung disease. At present, effective strategies for preventing this progression are unavailable. Baicalin has been reported to specifically inhibit the progression of LI to IPF. Therefore, this meta-analysis aimed to assess its clinical application and its potential as a therapeutic drug for lung disease based on integrative analysis. METHODS We systematically searched preclinical articles in eight databases and reviewed them subjectively. The CAMARADES scoring system was used to assess the degree of bias and quality of evidence, whereas the STATA software (version 16.0 software) was used for statistical analysis, including a 3D analysis of the effects of dosage frequency of baicalin in LI and IPF. The protocol of this meta-analysis is documented in the PROSPERO database (CRD42022356152). RESULTS A total of 23 studies and 412 rodents were included after several rounds of screening. Baicalin was found to reduce the levels of TNF-α, IL-1β, IL-6, HYP, TGF-β and MDA and the W/D ratio and increase the levels of SOD. Histopathological analysis of lung tissue validated the regulatory effects of baicalin, and the 3D analysis of dosage frequency revealed that the effective dose of baicalin is 10-200 mg/kg. Mechanistically, baicalin can prevent the progression of LI to IPF by modulating p-Akt, p-NF-κB-p65 and Bcl-2-Bax-caspase-3 signalling. Additionally, baicalin is involved in signalling pathways closely related to anti-apoptotic activity and regulation of lung tissue and immune cells. CONCLUSION Baicalin at the dose of 10-200 mg/kg exerts protective effects against the progression of LI to IPF through anti-inflammatory and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Jiajie Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Te-Chan Kao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Sihan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Weiyi Feng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaochuan Guo
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
12
|
Ponticelli M, Bellone ML, Parisi V, Iannuzzi A, Braca A, de Tommasi N, Russo D, Sileo A, Quaranta P, Freer G, Pistello M, Milella L. Specialized metabolites from plants as a source of new multi-target antiviral drugs: a systematic review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:1-79. [PMID: 37359711 PMCID: PMC10008214 DOI: 10.1007/s11101-023-09855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/30/2023] [Indexed: 06/28/2023]
Abstract
Viral infections have always been the main global health challenge, as several potentially lethal viruses, including the hepatitis virus, herpes virus, and influenza virus, have affected human health for decades. Unfortunately, most licensed antiviral drugs are characterized by many adverse reactions and, in the long-term therapy, also develop viral resistance; for these reasons, researchers have focused their attention on investigating potential antiviral molecules from plants. Natural resources indeed offer a variety of specialized therapeutic metabolites that have been demonstrated to inhibit viral entry into the host cells and replication through the regulation of viral absorption, cell receptor binding, and competition for the activation of intracellular signaling pathways. Many active phytochemicals, including flavonoids, lignans, terpenoids, coumarins, saponins, alkaloids, etc., have been identified as potential candidates for preventing and treating viral infections. Using a systematic approach, this review summarises the knowledge obtained to date on the in vivo antiviral activity of specialized metabolites extracted from plant matrices by focusing on their mechanism of action.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Laura Bellone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Valentina Parisi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Annamaria Iannuzzi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandra Braca
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Nunziatina de Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Daniela Russo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Annalisa Sileo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | | | - Giulia Freer
- Virology Unit, Pisa University Hospital, Pisa, Italy
| | | | - Luigi Milella
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
13
|
Wang D, Li Y. Pharmacological effects of baicalin in lung diseases. Front Pharmacol 2023; 14:1188202. [PMID: 37168996 PMCID: PMC10164968 DOI: 10.3389/fphar.2023.1188202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
The flavonoids baicalin and baicalein were discovered in the root of Scutellaria baicalensis Georgi and are primarily used in traditional Chinese medicine, herbal supplements and healthcare. Recently, accumulated investigations have demonstrated the therapeutic benefits of baicalin in treating various lung diseases due to its antioxidant, anti-inflammatory, immunomodulatory, antiapoptotic, anticancer, and antiviral effects. In this review, the PubMed database and ClinicalTrials website were searched with the search string "baicalin" and "lung" for articles published between September 1970 and March 2023. We summarized the therapeutic role that baicalin plays in a variety of lung diseases, such as chronic obstructive pulmonary disease, asthma, pulmonary fibrosis, pulmonary hypertension, pulmonary infections, acute lung injury/acute respiratory distress syndrome, and lung cancer. We also discussed the underlying mechanisms of baicalin targeting in these lung diseases.
Collapse
Affiliation(s)
- Duoning Wang
- Chengdu Hi-tech Nanxili Jiuzheng Clinic, Chengdu, Sichuan, China
| | - Yi Li
- Chengdu Hi-tech Nanxili Jiuzheng Clinic, Chengdu, Sichuan, China
- *Correspondence: Yi Li, /
| |
Collapse
|
14
|
Liao H, Ye J, Gao Y, Lian C, Liu L, Xu X, Feng Y, Yang Y, Yang Y, Shen Q, Gao L, Liu Z, Liu Y. Baicalein self-microemulsion based on drug-phospholipid complex for the alleviation of cytokine storm. Bioeng Transl Med 2023; 8:e10357. [PMID: 36684101 PMCID: PMC9842031 DOI: 10.1002/btm2.10357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
Cytokine storm is a phenomenon whereby the overreaction of the human immune system leads to the release of inflammatory cytokines, which can lead to multiple organ dysfunction syndrome. At present, the existing drugs for the treatment of cytokine storm have limited efficacy and severe adverse effects. Here, we report a lymphatic targeting self-microemulsifying drug delivery system containing baicalein to effectively inhibit cytokine storm. Baicalein self-microemulsion with phospholipid complex as an intermediate carrier (BAPC-SME) prepared in this study could be spontaneously emulsified to form 12-nm oil-in-water nanoemulsion after administration. And then BAPC-SME underwent uptake by enterocyte through endocytosis mediated by lipid valve and clathrin, and had obvious characteristics of mesenteric lymph node targeting distribution. Oral administration of BAPC-SME could significantly inhibit the increase in plasma levels of 14 cytokines: TNF-α, IL-6, IFN-γ, MCP-1, IL-17A, IL-27, IL-1α, GM-CSF, MIG, IFN-β, IL-12, MIP-3α, IL-23, and RANTES in mice experiencing systemic cytokine storm. BAPC-SME could also significantly improve the pathological injury and inflammatory cell infiltration of lung tissue in mice experiencing local cytokine storm. This study does not only provide a new lymphatic targeted drug delivery strategy for the treatment of cytokine storm but also has great practical significance for the clinical development of baicalein self-microemulsion therapies for cytokine storm.
Collapse
Affiliation(s)
- Hengfeng Liao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chunfang Lian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lu Liu
- Research and Development DepartmentBeijing Wehand‐Bio Pharmaceutical Co. LtdBeijingChina
| | - Xiaoyan Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Feng
- Research and Development DepartmentBeijing Wehand‐Bio Pharmaceutical Co. LtdBeijingChina
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuqi Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qiqi Shen
- Research and Development DepartmentBeijing Wehand‐Bio Pharmaceutical Co. LtdBeijingChina
| | - Lili Gao
- Research and Development DepartmentBeijing Wehand‐Bio Pharmaceutical Co. LtdBeijingChina
| | - Zhihua Liu
- Research and Development DepartmentBeijing Wehand‐Bio Pharmaceutical Co. LtdBeijingChina
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
15
|
Phytocompounds as a source for the development of new drugs to treat respiratory viral infections. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2023; 77:187-240. [PMCID: PMC10204935 DOI: 10.1016/b978-0-323-91294-5.00007-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Respiratory viruses have an important history as a threat to global health. However, this problem has been aggravated due to the appearance of new outbreaks caused by a newly discovered virus or variant. Recently, the new coronavirus (SARS-CoV-2) has been a major concern for health authorities, and it was classified as a pandemic by the World Health Organization. Secondary metabolites obtained from plants represent an alternative to the discovery of new active molecules and have already shown potential to combat different viruses. In an effort to demonstrate the broad spectrum of antiviral action from these metabolites, this work describes the compounds that were effective against the major viruses that cause respiratory infections in humans. In addition, their mechanisms of action were highlighted as an approach to better understanding the virus-bioactive substance relationship. Finally, this study warns that, although phytocompounds have a broad antiviral action spectrum, the development of products and clinical trials based on these secondary metabolites is still scarce and therefore deserves greater attention from the scientific community.
Collapse
|
16
|
Bao M, Ma Y, Liang M, Sun X, Ju X, Yong Y, Liu X. Research progress on pharmacological effects and new dosage forms of baicalin. Vet Med Sci 2022; 8:2773-2784. [DOI: 10.1002/vms3.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Minglong Bao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Yunfei Ma
- College of Veterinary Medicine, China Agricultural University Beijing P. R. China
| | - Mei Liang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xinyi Sun
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| |
Collapse
|
17
|
Carinci M, Palumbo L, Pellielo G, Agyapong ED, Morciano G, Patergnani S, Giorgi C, Pinton P, Rimessi A. The Multifaceted Roles of Autophagy in Infectious, Obstructive, and Malignant Airway Diseases. Biomedicines 2022; 10:biomedicines10081944. [PMID: 36009490 PMCID: PMC9405571 DOI: 10.3390/biomedicines10081944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy is a highly conserved dynamic process by which cells deliver their contents to lysosomes for degradation, thus ensuring cell homeostasis. In response to environmental stress, the induction of autophagy is crucial for cell survival. The dysregulation of this degradative process has been implicated in a wide range of pathologies, including lung diseases, representing a relevant potential target with significant clinical outcomes. During lung disease progression and infections, autophagy may exert both protective and harmful effects on cells. In this review, we will explore the implications of autophagy and its selective forms in several lung infections, such as SARS-CoV-2, Respiratory Syncytial Virus (RSV) and Mycobacterium tuberculosis (Mtb) infections, and different lung diseases such as Cystic Fibrosis (CF), Chronic Obstructive Pulmonary Disease (COPD), and Malignant Mesothelioma (MM).
Collapse
Affiliation(s)
- Marianna Carinci
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Laura Palumbo
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Giulia Pellielo
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Esther Densu Agyapong
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Giampaolo Morciano
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Via Fossato di Mortara, 70, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Laboratory for Technologies of Advanced Therapies, Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Via Fossato di Mortara, 70, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
18
|
Prediction of the Active Components and Mechanism of Forsythia suspensa Leaf against Respiratory Syncytial Virus Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5643345. [PMID: 35911158 PMCID: PMC9328944 DOI: 10.1155/2022/5643345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Abstract
Objective Forsythia suspensa leaf (FSL) has been used as a health tea in China for centuries. Previous experiments have proved that FSL extract has a good effect on the antirespiratory syncytial virus (RSV) in vitro, but its exact mechanism is not clear. Therefore, this study aims to determine the active components and targets of FSL and further explore its anti-RSV mechanism. Methods UPLC-Q-Exactive-MS was used to analyze the main chemical components of FSL. The compound disease target network, PPI, GO, and KEGG were used to obtain key targets and potential ways. Then, the molecular docking was verified by Schrödinger Maestro software. Next, the cell model of RSV infection was established, and the inhibitory effect of each drug on RSV was detected. Finally, western blotting was used to detect the effect of the active components of FSL on the expression of PI3K/AKT signaling pathway-related protein. Results UPLC-Q-Exactive-MS analysis showed that there were 67 main chemical constituents in FSL, while network pharmacological analysis showed that there were 169 anti-RSV targets of the active components in FSL, involving 177 signal pathways, among which PI3K/AKT signal pathway played an important role in the anti-RSV process of FSL. The results of molecular docking showed that cryptochlorogenic acid, phillyrin, phillygenin, rutin, and rosmarinic acid had higher binding activities to TP53, STAT3, MAPK1, AKT1, and MAPK3, respectively. In vitro experiments showed that phillyrin and rosmarinic acid could effectively improve the survival rate of RSV-infected cells, increase the expression level of PI3K, and decrease the expression level of AKT. Conclusion The active ingredients of FSL, phillyrin, and rosmarinic acid can play an anti-RSV role by inhibiting PI3K/AKT signaling pathway. This study provides reliable theoretical and experimental support for the anti-RSV treatment of FSL.
Collapse
|
19
|
Bagde H, Dhopte A. Effects of Plant Metabolites on the Growth of COVID-19 (Coronavirus Disease-19) Including Omicron Strain. Cureus 2022; 14:e26549. [PMID: 35936126 PMCID: PMC9348519 DOI: 10.7759/cureus.26549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
According to recent reports out of India, a new strain of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) B1.1.529 Omicron virus has emerged. In comparison to the Wuhan (WHU) strain and the delta variant, this variant showed a far stronger effect on the angiotensin converting enzyme2 (ACE2) receptor. There are several medicinal compounds in plant metabolites, and their diverse chemical structures make them ideal for the treatment of serious illnesses. It's possible that some of these could be useful alternative pharmaceuticals, as well as a starting point for the repurposing of existing medications and new chemical discoveries. SARS-CoV-2 infection triggered a worldwide epidemic of the severe acute respiratory syndrome (SARS). There have been trials for different therapies for SARS-CoV-2 and so also there are recent announcements of extensive research into the development of viable medicines for this global health calamity. After a thorough examination of plant-derived treatments for COVID-19, investigators in the current study decided to focus on plant-derived secondary metabolites (PSMs). According to some researchers, new MDR (Multi-Drug Resistant) antibiotics may one day be developed due to the adaptability of secondary metabolites. Identifying plant metabolites that can treat a wide range of viral infections was one of the study's aims. Many natural medications that could be recommended for the treatment of COVID-19 were discovered as a result of this research, including remedies from plant families, viral candidates that are susceptible, antiviral assays, and mechanisms of therapeutic action. The findings of this study will inspire further research and speed up the development of new antiviral plant-based medications.
Collapse
|
20
|
Qin S, Huang X, Qu S. Baicalin Induces a Potent Innate Immune Response to Inhibit Respiratory Syncytial Virus Replication via Regulating Viral Non-Structural 1 and Matrix RNA. Front Immunol 2022; 13:907047. [PMID: 35812414 PMCID: PMC9259847 DOI: 10.3389/fimmu.2022.907047] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection is the most frequent cause of hospitalization in pediatric patients. Current systemic treatment and vaccines are not curative and re-infection is often associated with a more drastic incidence of the disease. Baicalin is a flavonoid isolated from Scutellaria baicalensis with potent anti-viral characteristics, namely against RSV. However, its precise mechanism of action remains unclear. Here, using in vitro methods and an in vivo murine model of RSV infection, we showed that baicalin inhibits RSV replication induces translational upregulation of type I interferons (IFNs), IFN-α and IFN-β, and reverses epithelial thickening in lung tissues. Moreover, baicalin inhibits transcription of the RSV non-structural proteins NS1 and NS2. Molecular docking and surface plasmon resonance-based affinity analysis showed that baicalin also binds to the α3 helix of the NS1 protein with an affinity constant of 1.119 × 10−5 M. Polysome profiling showed that baicalin inhibits translation of the RSV matrix protein (M) RNA. Baicalin mediates increased release of the ribosomal protein L13a from the large ribosomal subunit, where the extra ribosomal subunit L13a inhibits M RNA translation. These results comprehensively establish the multiple mechanisms by which baicalin induces a potent innate immune response against RSV infection.
Collapse
Affiliation(s)
- Sheng Qin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Xianzhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Shaogang Qu, ; Xianzhang Huang,
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
- *Correspondence: Shaogang Qu, ; Xianzhang Huang,
| |
Collapse
|
21
|
Fujikane A, Sakamoto A, Fujikane R, Nishi A, Ishino Y, Hiromatsu K, Nabeshima S. Ephedrae Herba and Cinnamomi Cortex interactions with G glycoprotein inhibit respiratory syncytial virus infectivity. Commun Biol 2022; 5:94. [PMID: 35079103 PMCID: PMC8789818 DOI: 10.1038/s42003-022-03046-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Although respiratory syncytial virus (RSV) is a major cause of respiratory tract infection in children, no effective therapies are available. Recently, RSV G, the attachment glycoprotein, has become a major focus in the development of therapeutic strategies against RSV infection. Treatment of RSV-infected cultured cells with maoto, a traditional herbal medicine for acute febrile diseases, significantly reduced the viral RNA and titers. RSV attachment to the cell surface was inhibited both in the presence of maoto and when RSV particles were pre-treated with maoto. We demonstrated that maoto components, Ephedrae Herba (EH) and Cinnamomi Cortex (CC), specifically interacted with the central conserved domain (CCD) of G protein, and also found that this interaction blocked viral attachment to the cellular receptor CX3CR1. Genetic mutation of CX3C motif on the CCD, the epitope for CX3CR1, decreased the binding capacity to EH and CC, suggesting that CX3C motif was the target for EH and CC. Finally, oral administration of maoto for five days to RSV-infected mice significantly reduced the lung viral titers. These experiments clearly showed the anti-RSV activity of EH and CC mixed in maoto. Taken together, this study provides insights for the rational design of therapies against RSV infection.
Collapse
Affiliation(s)
- Aya Fujikane
- General Medicine, Fukuoka University Hospital, Fukuoka, Japan.,Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Atsuhiko Sakamoto
- General Medicine, Fukuoka University Hospital, Fukuoka, Japan.,Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Ryosuke Fujikane
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.,Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Akinori Nishi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Hiromatsu
- Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | |
Collapse
|
22
|
Peng LY, Shi HT, Tan YR, Shen SY, Yi PF, Shen HQ, Fu BD. Baicalin inhibits APEC-induced lung injury by regulating gut microbiota and SCFA production. Food Funct 2021; 12:12621-12633. [PMID: 34821232 DOI: 10.1039/d1fo02407h] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Baicalin is a plant-derived flavonoid from Scutellaria baicalensis Georgi with multiple bioactivities and has a protective effect against avian pathogenic Escherichia coli (APEC) infection. However, the underlying mechanism of baicalin against APEC infection is still unknown. Therefore, we aimed to explore whether the protective effects and mechanisms of baicalin on APEC-induced lung inflammation were related to the regulation of gut microbiota. The results showed that baicalin significantly reduced APEC colonization and pro-inflammatory cytokines production, and additionally recovered air-blood barrier integrity in the lungs after APEC challenge. However, depletion of gut microbiota significantly weakened the protective effects of baicalin against APEC infection as mentioned above. Furthermore, baicalin markedly restored the dysbiosis of gut microbiota induced by APEC as well as increased the abundance of short chain fatty acid (SCFA)-producing bacteria and the production of SCFAs including acetic acid, propionic acid and butyric acid, especially acetic acid. In addition, the concentrations of acetic acid and its receptor free fatty acid receptor 2 (FFAR2) were significantly upregulated in the lung tissues after baicalin treatment. In conclusion, gut microbiota played a key role in the pharmacological action of baicalin against APEC-induced lung inflammation. Baicalin remodeled the dysbiosis of gut microbiota caused by APEC and increased the production of SCFAs, especially acetic acid in the gut, and then the increased acetate may circulate to the lungs to activate FFAR2 to defend APEC infection. Together, our study suggested that baicalin inhibited APEC infection through remodeling the gut microbiota dysbiosis and increasing the SCFA production. Furthermore, baicalin may serve as an alternative antibiotic and a novel therapeutic drug to prevent or treat APEC infection.
Collapse
Affiliation(s)
- Lu-Yuan Peng
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Hai-Tao Shi
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Yue-Rong Tan
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Si-Yang Shen
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Peng-Fei Yi
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Hai-Qing Shen
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Ben-Dong Fu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| |
Collapse
|
23
|
Targeting autophagy with natural products to prevent SARS-CoV-2 infection. J Tradit Complement Med 2021; 12:55-68. [PMID: 34664025 PMCID: PMC8516241 DOI: 10.1016/j.jtcme.2021.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a catabolic process that maintains internal homeostasis and energy balance through the lysosomal degradation of redundant or damaged cellular components. During virus infection, autophagy is triggered both in parenchymal and in immune cells with different finalistic objectives: in parenchymal cells, the goal is to destroy the virion particle while in macrophages and dendritic cells the goal is to expose virion-derived fragments for priming the lymphocytes and initiate the immune response. However, some viruses have developed a strategy to subvert the autophagy machinery to escape the destructive destiny and instead exploit it for virion assembly and exocytosis. Coronaviruses (like SARS-CoV-2) possess such ability. The autophagy process requires a set of proteins that constitute the core machinery and is controlled by several signaling pathways. Here, we report on natural products capable of interfering with SARS-CoV-2 cellular infection and replication through their action on autophagy. The present study provides support to the use of such natural products as adjuvant therapeutics for the management of COVID-19 pandemic to prevent the virus infection and replication, and so mitigating the progression of the disease.
Collapse
|
24
|
Li K, Liang Y, Cheng A, Wang Q, Li Y, Wei H, Zhou C, Wan X. Antiviral Properties of Baicalin: a Concise Review. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2021; 31:408-419. [PMID: 34642508 PMCID: PMC8493948 DOI: 10.1007/s43450-021-00182-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Baicalin is one of the bioactive flavonoid glycosides isolated from the dried root of Scutellaria baicalensis Georgi, Lamiaceae, with antiviral properties. In recent years, the antiviral activity of baicalin has been widely investigated to explore its molecular mechanism of action. In this mini-review, the molecular mechanisms of action of baicalin as an antiviral agent are evaluated, which included three categories: the inhibition or stimulation of JAK/STAT, TLRs, and NF-κB pathways; up or down modulation of the expression levels of IFN, IL, SOCS1/3, PKR protein, Mx1 protein, and AP-1 protein; and inhibition of cell apoptosis caused by virus infection. In addition, clinical studies of baicalin are also discussed. This literature search suggested that baicalin can serve as a potential candidate for the development of a novel broad-spectrum antiviral drug.
Collapse
Affiliation(s)
- Kunwei Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Yiyu Liang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Ao Cheng
- Qingdao University of Technology, Qingdao, 266033 China
| | - Qi Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Ying Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Haocheng Wei
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Changzheng Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Xinhuan Wan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| |
Collapse
|
25
|
Ni L, Wen Z, Hu X, Tang W, Wang H, Zhou L, Wu L, Wang H, Xu C, Xu X, Xiao Z, Li Z, Li C, Liu Y, Duan J, Chen C, Li D, Zhang R, Li J, Yi Y, Huang W, Chen Y, Zhao J, Zuo J, Weng J, Jiang H, Wang DW. Effects of Shuanghuanglian oral liquids on patients with COVID-19: a randomized, open-label, parallel-controlled, multicenter clinical trial. Front Med 2021; 15:704-717. [PMID: 33909260 PMCID: PMC8079840 DOI: 10.1007/s11684-021-0853-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/29/2022]
Abstract
We conducted a randomized, open-label, parallel-controlled, multicenter trial on the use of Shuanghuanglian (SHL), a traditional Chinese patent medicine, in treating cases of COVID-19. A total of 176 patients received SHL by three doses (56 in low dose, 61 in middle dose, and 59 in high dose) in addition to standard care. The control group was composed of 59 patients who received standard therapy alone. Treatment with SHL was not associated with a difference from standard care in the time to disease recovery. Patients with 14-day SHL treatment had significantly higher rate in negative conversion of SARS-CoV-2 in nucleic acid swab tests than the patients from the control group (93.4% vs. 73.9%, P = 0.006). Analysis of chest computed tomography images showed that treatment with high-dose SHL significantly promoted absorption of inflammatory focus of pneumonia, which was evaluated by density reduction of inflammatory focus from baseline, at day 7 (mean difference (95% CI), -46.39 (-86.83 to -5.94) HU; P = 0.025) and day 14 (mean difference (95% CI), -74.21 (-133.35 to -15.08) HU; P = 0.014). No serious adverse events occurred in the SHL groups. This study illustrated that SHL in combination with standard care was safe and partially effective for the treatment of COVID-19.
Collapse
Affiliation(s)
- Li Ni
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaowen Hu
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230026, China
| | - Wei Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haisheng Wang
- Harbin Pharmaceutical Group Co., Ltd., Harbin, 150070, China
| | - Ling Zhou
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chang Xu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xizhen Xu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhichao Xiao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zongzhe Li
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chene Li
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujian Liu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jialin Duan
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Li
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Runhua Zhang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinliang Li
- The Sixth Hospital of Harbin, Harbin, 150036, China
| | - Yongxiang Yi
- The Second Hospital of Nanjing and the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Wei Huang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Cardiology, Chinese People's Liberation Army Central War Command General Hospital, Wuhan, 430010, China
| | - Yanyan Chen
- Department of Information Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianping Zhao
- Division of Respiratory, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianping Zuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jianping Weng
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230026, China.
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
26
|
Li BH, Li ZY, Liu MM, Tian JZ, Cui QH. Progress in Traditional Chinese Medicine Against Respiratory Viruses: A Review. Front Pharmacol 2021; 12:743623. [PMID: 34531754 PMCID: PMC8438140 DOI: 10.3389/fphar.2021.743623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 01/07/2023] Open
Abstract
Respiratory viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV)-1, SARS-CoV-2, influenza A viruses, and respiratory syncytial virus, pose a serious threat to society. Based on the guiding principles of “holism” and “syndrome differentiation and treatment”, traditional Chinese medicine (TCM) has unique advantages in the treatment of respiratory virus diseases owing to the synergistic effect of multiple components and targets, which prevents drug resistance from arising. According to TCM theory, there are two main strategies in antiviral treatments, namely “dispelling evil” and “fu zheng”. Dispelling evil corresponds to the direct inhibition of virus growth and fu zheng corresponds to immune regulation, inflammation control, and tissue protection in the host. In this review, current progress in using TCMs against respiratory viruses is summarized according to modern biological theories. The prospects for developing TCMs against respiratory viruses is discussed to provide a reference for the research and development of innovative TCMs with multiple components, multiple targets, and low toxicity.
Collapse
Affiliation(s)
- Bao-Hong Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhong-Yuan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miao-Miao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing-Zhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing-Hua Cui
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
27
|
Chen K, Wu W, Hou X, Yang Q, Li Z. A review: antimicrobial properties of several medicinal plants widely used in Traditional Chinese Medicine. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Due to the dramatic increase in the use of antibiotics and growing health threat of bacterial resistance to many commonly used antibiotics, many studies have been directed at developing new and effective antibacterial compounds, among which many new, natural, and effective antibacterial compounds discovered from medicinal plants have drawn great interest and raised new hope for treating the challenges of antibiotic resistance. This review aimed to summarize the most important and widely used medicinal plants that were reported to have antibacterial activities. A general literature search from 2010 to 2020 was conducted using different databases, including Science Direct, Web of Science, and PubMed. According to the literature, three medicinal plants with outstanding antibacterial activities, Taraxacum officinale, Coptis Rhizome, and Scutellaria baicalensis, were screened and reviewed by prioritization. The extraction methods, antibacterial activities of different parts of plants or the plant-derived compounds, spectra of antibacterial activities, and toxicity were described, respectively. However, the antibacterial activities of the extracts or pure compounds as reported in the reviewed literature were mostly based on in vitro assays, and moreover, the deeper antibacterial mechanisms have not been elucidated clearly. Therefore, further studies are required in the fields of purification and identification of the antibacterial compounds, its mechanisms of action, and synergistic effects in combination with other antibacterial drugs, which may be helpful in the development of new antibacterial drugs.
Collapse
|
28
|
Wang Q, Wang S, Sun Z. Kidney-Specific Klotho Gene Deletion Causes Aortic Aneurysm via Hyperphosphatemia. Hypertension 2021; 78:308-319. [PMID: 34176284 DOI: 10.1161/hypertensionaha.121.17299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Qiongxin Wang
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center (Q.W., S.W., Z.S.)
| | - Shirley Wang
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center (Q.W., S.W., Z.S.).,Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis (S.W., Z.S.)
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center (Q.W., S.W., Z.S.).,Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis (S.W., Z.S.)
| |
Collapse
|
29
|
Wang Z, Hou D, Fang J, Zhu L, Sun Y, Tan Y, Gu Z, Shan L. Screening and pharmacodynamic evaluation of the antirespiratory syncytial virus activity of steroidal pyridine compounds in vitro and in vivo. J Med Virol 2021; 93:3428-3438. [PMID: 33064304 DOI: 10.1002/jmv.26604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022]
Abstract
Respiratory syncytial virus (RSV) causes serious lower respiratory tract infections and there are currently no safer or more effective drugs available. It is important to find novel medications for RSV infection. A series of steroidal pyridines were synthesized for screening and evaluation of their antiviral activity and investigation of their antiviral mechanism of action. Compound 3l had the highest antiviral activity, with a half-maximal effective concentration (EC50 ) of 3.13 μM. Compound 3l was explored for its effects in vitro on RSV 2 h before infection (pretreatment), at the time of infection (competition), and 2 h after infection (postinfection). Toll-like receptor (TLR)-3, retinoic acid-inducible gene (RIG)-I, interleukin (IL)-6, and interferon (IFN)-β were suppressed at the cellular level. Mouse lung tissue was subjected to hematoxylin and eosin (HE) staining and immunohistochemistry, which showed that RSV antigen and M gene expression could be reduced by compound 3l. Decreased expression of TLR-3, RIG-I, IL-6, IFN-β, and IL-10 was also found in vivo. The results indicated that compound 3l exerted its antiviral effects mainly through inhibition of viral replication and downregulation of inflammatory factors.
Collapse
Affiliation(s)
- Zhenya Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, Henan, China
| | - Duoduo Hou
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, Henan, China
| | - Jieyu Fang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, Henan, China
| | - Li Zhu
- Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Yingying Sun
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, Henan, China
| | - Yayun Tan
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, Henan, China
| | - Zichen Gu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, Henan, China
| | - Lihong Shan
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
30
|
Zhai C, Wang D. Baicalin regulates the development of pediatric asthma via upregulating microRNA-103 and mediating the TLR4/NF-κB pathway. J Recept Signal Transduct Res 2021; 42:230-240. [PMID: 33730981 DOI: 10.1080/10799893.2021.1900865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pediatric asthma seriously endangers the well-being and health of children worldwide. Baicalin (BA) protects against diverse disorders, including asthma. Therefore, this study explored the mechanism of BA in pediatric asthma. The ovalbumin (OVA)-induced asthmatic mouse model was established to evaluate BA efficacy from aspects of oxidative stress, inflammation, blood cells in bronchoalveolar lavage fluid (BALF) and collagen deposition. Differentially expressed microRNAs (miRs) in BA-treated mice were analyzed. Effects of BA on PDGF-BB-induced smooth muscle cells (SMCs) were assessed. miR downstream mRNA and the related pathway were predicted and verified, and their effects on asthmatic mice were evaluated. BA effectively reversed OVA-induced oxidative stress and inflammation, as well as decreased the number of total cells, eosinophils and neutrophils in BALF, and collagen deposition. miR-103 was significantly upregulated after BA treatment. BA inhibited the abnormal proliferation of PDGF-BB-induced SMCs, which was prevented by miR-103 knockdown. miR-103 targeted TLR4 and regulated the extent of NF-κB phosphorylation. In vivo, miR-103 inhibition weakened the alleviating effects of BA on asthma, which was then reversed after silencing of TLR4. We highlighted that BA has the potency to halt the pediatric asthma progression via miR-103 upregulation and the TLR4/NF-κB axis inhibition.
Collapse
Affiliation(s)
- Chuanhua Zhai
- Department of Pediatrics, Suzhou Integrated Traditional Chinese and Western Medicine Hospital, Jiangsu, Suzhou, P.R. China
| | - Debing Wang
- Department of Pediatrics, Suzhou Integrated Traditional Chinese and Western Medicine Hospital, Jiangsu, Suzhou, P.R. China
| |
Collapse
|
31
|
Xie L, Wang Y, Yin H, Li J, Xu Z, Sun Z, Liu F, Zhang X, Liu S, Sun J, Tian X, Huang C. Identification of the absorbed ingredients and metabolites in rats after an intravenous administration of Tanreqing injection using high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Sep Sci 2021; 44:2097-2112. [PMID: 33719190 DOI: 10.1002/jssc.202000898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022]
Abstract
The metabolic profiles of Tanreqing injection, which is a traditional Chinese medicine recommended for complementary administration to treat a novel coronavirus, have remained unclear, which inhibit the understanding of the effective chemical compounds of Tanreqing injection. In this study, a sensitive high-performance liquid chromatography quadrupole time-of-flight mass spectrometry method was used to identify the compounds and metabolites in various biosamples, including plasma, bile, liver, lung, kidney, urine, and feces, following the intravenous administration of Tanreqing injection in rats. A total of 89 compounds were characterized in the biosamples of Tanreqing injection-treated rats including 25 precursor constituents and 64 metabolites. Nine flavonoid compounds, twelve phenolic acids, and four iridoid glycosides were identified in the rats. Their metabolites were mainly produced by glucuronidation, deglucuronidation, glycosylation, deglycosylation, methylation, demethylation, N-heterocyclisation, sulphation, dehydroxylation, decarboxylation, dehydration, hydroxylation, and corresponding recombination reactions. This study was the first to comprehensively investigate the metabolic profile of Tanreqing injection and provides a scientific basis to further elucidate the pharmacodynamic material basis and therapeutic mechanism of Tanreqing injection.
Collapse
Affiliation(s)
- Like Xie
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yangyang Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hao Yin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jiajia Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhou Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhaolin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Fang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoli Zhang
- Shanghai Kaibao Pharmaceutical Co. Ltd, Shanghai, P. R. China
| | - Shaoyong Liu
- Shanghai Kaibao Pharmaceutical Co. Ltd, Shanghai, P. R. China
| | - Jianguo Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
32
|
Komolafe K, Komolafe TR, Fatoki TH, Akinmoladun AC, Brai BIC, Olaleye MT, Akindahunsi AA. Coronavirus Disease 2019 and Herbal Therapy: Pertinent Issues Relating to Toxicity and Standardization of Phytopharmaceuticals. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2021; 31:142-161. [PMID: 33727754 PMCID: PMC7951132 DOI: 10.1007/s43450-021-00132-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a virulent viral disease that has now become a public health emergency of global significance and still without an approved treatment regimen or cure. In the absence of curative drugs and with vaccines development still in progress, alternative approaches to stem the tide of the pandemic are being considered. The potential of a phytotherapeutic approach in the management of the dreaded disease has gained attention, especially in developing countries, with several claims of the development of anti-COVID-19 herbal formulations. This is a plausible approach especially with the increasing acceptance of herbal medicine in both alternative and orthodox medical practices worldwide. Also, the established efficacy of herbal remedies in the treatment of numerous viral diseases including those caused by coronaviruses, as well as diseases with symptoms associated with COVID-19, presents a valid case for serious consideration of herbal medicine in the treatment of COVID-19. However, there are legitimate concerns and daunting challenges with the use of herbs and herbal products. These include issues of quality control, unethical production practice, inadequate information on the composition, use and mechanisms, weak regulatory policies, herb-drug interactions and adverse reactions, and the tendency for abuse. This review discusses the feasibility of intervention with herbal medicine in the COVID-19 pandemic and the need to take proactive measures to protect public health by improving the quality and safety of herbal medicine deployed to combat the disease. Graphical abstract. Supplementary Information The online version contains supplementary material available at 10.1007/s43450-021-00132-x.
Collapse
Affiliation(s)
- Kayode Komolafe
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, PMB 373, Oye-Ekiti, Nigeria
| | - Titilope Ruth Komolafe
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, PMB 373, Oye-Ekiti, Nigeria
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | - Toluwase Hezekiah Fatoki
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | - Afolabi Clement Akinmoladun
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | - Bartholomew I. C. Brai
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, PMB 373, Oye-Ekiti, Nigeria
| | - Mary Tolulope Olaleye
- Department of Biochemistry, School of Sciences, The Federal University of Technology, PMB 704, Akure, Nigeria
| | | |
Collapse
|
33
|
The anti-rotavirus effect of baicalin via the gluconeogenesis-related p-JNK-PDK1-AKT-SIK2 signaling pathway. Eur J Pharmacol 2021; 897:173927. [PMID: 33567320 DOI: 10.1016/j.ejphar.2021.173927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Rotavirus (RV) infection is a leading cause of severe, dehydrating gastroenteritis in children < 5 years of age, and by now, the prevention and treatment of RV are still the major public health problems due to a lack of specific clinical drugs. Thus, the aims of this study are to explore the anti-RV effect of baicalin and its influence on glucose metabolism. Here, we demonstrated for the first time that baicalin had an anti-RV attachment effect with the strongest effect at a concentration of 100 μM, and also inhibited the replication of RV at concentrations of 100, 125, 150, 175, and 200 μM. Moreover, baicalin helped to overcome the weight loss and reduced the diarrhea rate and score with the best therapeutic effect at a concentration of 0.3 mg/g in RV-infected neonatal mice. Interestingly, baicalin decreased glucose consumption in RV-infected Caco-2 cells with the optimal concentration of 125 μM. Next, metabolomic analysis indicated that there were 68 differentially expressed metabolites, including an increase in pyruvic acid, asparagine, histidine and serine, and a decrease in dihydroxyacetone phosphate, which suggested that the underlying signaling pathway was gluconeogenesis. Further studies demonstrated that baicalin inhibited gluconeogenesis via improving glucose 6-phosphatase (G-6-Pase) and phosphoenolpyruvate carboxylase (PEPCK). Moreover, baicalin upregulated the potential gluconeogenesis proteins named salt inducible kinase 2, pyruvate dehydrogenase kinase 1, AKT serine/threonine kinase 1 and down-regulated phosphorylated c-Jun NH2-terminal kinase, which are associated with G-6-Pase and PEPCK expressions. Therefore, baicalin improved the gluconeogenesis disruption caused by RV.
Collapse
|
34
|
Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res 2020; 10:354-367. [PMID: 31788762 PMCID: PMC7097340 DOI: 10.1007/s13346-019-00691-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viral infections affect three to five million patients annually. While commonly used antivirals often show limited efficacy and serious adverse effects, herbal extracts have been in use for medicinal purposes since ancient times and are known for their antiviral properties and more tolerable side effects. Thus, naturally based pharmacotherapy may be a proper alternative for treating viral diseases. With that in mind, various pharmaceutical formulations and delivery systems including micelles, nanoparticles, nanosuspensions, solid dispersions, microspheres and crystals, self-nanoemulsifying and self-microemulsifying drug delivery systems (SNEDDS and SMEDDS) have been developed and used for antiviral delivery of natural products. These diverse technologies offer effective and reliable delivery of medicinal phytochemicals. Given the challenges and possibilities of antiviral treatment, this review provides the verified data on the medicinal plants and related herbal substances with antiviral activity, as well as applied strategies for the delivery of these plant extracts and biologically active phytochemicals. Graphical Abstract.
Collapse
Affiliation(s)
- Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| | | | - Daniel Porat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Arik Dahan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
35
|
Liao H, Ye J, Gao L, Liu Y. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review. Biomed Pharmacother 2020; 133:110917. [PMID: 33217688 DOI: 10.1016/j.biopha.2020.110917] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/11/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Scutellaria baicalensis Georgi., a plant used in traditional Chinese medicine, has multiple biological activities, including anti-inflammatory, antiviral, antitumor, antioxidant, and antibacterial effects, and can be used to treat respiratory tract infections, pneumonia, colitis, hepatitis, and allergic diseases. The main active substances of S. baicalensis, baicalein, baicalin, wogonin, wogonoside, and oroxylin A, can act directly on immune cells such as lymphocytes, macrophages, mast cells, dendritic cells, monocytes, and neutrophils, and inhibit the production of the inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α, and other inflammatory mediators such as nitric oxide, prostaglandins, leukotrienes, and reactive oxygen species. The molecular mechanisms underlying the immunomodulatory and anti-inflammatory effects of the active compounds of S. baicalensis include downregulation of toll-like receptors, activation of the Nrf2 and PPAR signaling pathways, and inhibition of the nuclear thioredoxin system and inflammation-associated pathways such as those of MAPK, Akt, NFκB, and JAK-STAT. Given that in addition to the downregulation of cytokine production, the active constituents of S. baicalensis also have antiviral and antibacterial effects, they may be more promising candidate therapeutics for the prevention of infection-related cytokine storms than are drugs having only antimicrobial or anti-inflammatory activities.
Collapse
Affiliation(s)
- Hengfeng Liao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
36
|
Huynh DL, Ngau TH, Nguyen NH, Tran GB, Nguyen CT. Potential therapeutic and pharmacological effects of Wogonin: an updated review. Mol Biol Rep 2020; 47:9779-9789. [PMID: 33165817 DOI: 10.1007/s11033-020-05972-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Flavonoids are members of polyphenolic compounds, which are naturally presented in fruits, vegetables, and some medicinal plants. Traditionally, the root of Scutellaria baicalensis is widely used as Chinese herbal medicine and contains several major bioactive compounds such as Wogonin, Scutellarein, Baicalein, and Baicalin. Experimental and clinical evidence has been proving that Wogonin exhibits diverse biological activities such as anti-cancer, anti-inflammation, and treatment of bacterial and viral infections. In this review, we summarize and emphasize the benefits of Wogonin as a therapeutic adjuvant for anti-viral infection, anti-inflammation, neuroprotection as well as anxiolytic and anticonvulsant. Moreover, the molecular mechanism(s) how Wogonin mediates the cellular signal pathways and immune responses are also discussed and highlighted valuable properties of Wogonin in multiple therapies.
Collapse
Affiliation(s)
- Do Luong Huynh
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| | - Tran Hoang Ngau
- Faculty of Biotechnology, Ho Chi Minh University of Food and Industry, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh City, Vietnam
| | - Gia-Buu Tran
- Department of Biotechnology, Institute of Biotechnology and Food-Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| | - Cuong Thach Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
37
|
Song JW, Long JY, Xie L, Zhang LL, Xie QX, Chen HJ, Deng M, Li XF. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi. and its probably potential therapeutic effects on COVID-19: a review. Chin Med 2020; 15:102. [PMID: 32994803 PMCID: PMC7517065 DOI: 10.1186/s13020-020-00384-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Scutellaria baicalensis Georgi. (SB) is a common heat-clearing medicine in traditional Chinese medicine (TCM). It has been used for thousands of years in China and its neighboring countries. Clinically, it is mostly used to treat diseases such as cold and cough. SB has different harvesting periods and processed products for different clinical symptoms. Botanical researches proved that SB included in the Chinese Pharmacopoeia (1st, 2020) was consistent with the medicinal SB described in ancient books. Modern phytochemical analysis had found that SB contains hundreds of active ingredients, of which flavonoids are its major components. These chemical components are the material basis for SB to exert pharmacological effects. Pharmacological studies had shown that SB has a wide range of pharmacological activities such as antiinflammatory, antibacterial, antiviral, anticancer, liver protection, etc. The active ingredients of SB were mostly distributed in liver and kidney, and couldn't be absorbed into brain via oral absorption. SB's toxicity was mostly manifested in liver fibrosis and allergic reactions, mainly caused by baicalin. The non-medicinal application prospects of SB were broad, such as antibacterial plastics, UV-resistant silk, animal feed, etc. In response to the Coronavirus Disease In 2019 (COVID-19), based on the network pharmacology research, SB's active ingredients may have potential therapeutic effects, such as baicalin and baicalein. Therefore, the exact therapeutic effects are still need to be determined in clinical trials. SB has been reviewed in the past 2 years, but the content of these articles were not comprehensive and accurate. In view of the above, we made a comprehensive overview of the research progress of SB, and expect to provide ideas for the follow-up study of SB.
Collapse
Affiliation(s)
- Jia-Wen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Jia-Ying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Lin-Lin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Qing-Xuan Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Hui-Juan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| | - Xiao-Fang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137 China
| |
Collapse
|
38
|
Kwon S, Lee W, Jin C, Jang I, Jung WS, Moon SK, Cho KH. Could herbal medicine (Soshihotang) be a new treatment option for COVID-19?: a narrative review. Integr Med Res 2020; 9:100480. [PMID: 32742920 PMCID: PMC7366961 DOI: 10.1016/j.imr.2020.100480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND While the world struggles under the coronavirus disease 2019 (COVID-19) pandemic, a variety of antiviral agents and symptomatic treatments are being administered to patients and urgent clinical trials are underway. Under these circumstances, it is important to explore various possibilities for the treatment of COVID-19 including herbal medicines. Among various herbal medicines, Soshihotang (SSHT, Xiao Chai Hu Tang in Chinese) has been prescribed to treat various viral diseases and is used in combination with other herbal medicines depending on the patient's symptoms. METHODS For conducting the present review, we searched electronic databases focusing on the antiviral effect of SSHT in experimental and clinical study until April 2020. The search keywords included SSHT, constituents of SSHT, and antiviral effect. We also searched for materials related to topic directly from websites and published books. Based on these search results, we summarized the results of the included materials in the form of a narrative review. RESULTS In a number of recent clinical studies, treatment with SSHT improved the infection status of the respiratory and hepatobiliary systems, and experimental studies demonstrated the antiviral effect of SSHT and its components. Furthermore, SSHT are being used in China-where COVID-19 outbreak first took place-and offer a new option to treat COVID-19. CONCLUSION Based on the present evidences, it is believed that SSHT is likely to be a new therapeutic option for COVID-19. Conducting further studies might provide improved understanding regarding the use of SSHT in treating COVID-19.
Collapse
Affiliation(s)
- Seungwon Kwon
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Wonhaeng Lee
- Leewonhaeng-Whajubmong Korean Medicine Clinic, Goyang, South Korea
| | - Chul Jin
- Department of Korean Medicine Cardiology and Neurology, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Insoo Jang
- Department of Internal Medicine, College of Korean Medicine, Woosuk University, Jeonju, South Korea
| | - Woo-Sang Jung
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sang-Kwan Moon
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ki-Ho Cho
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
39
|
Bhuiyan FR, Howlader S, Raihan T, Hasan M. Plants Metabolites: Possibility of Natural Therapeutics Against the COVID-19 Pandemic. Front Med (Lausanne) 2020; 7:444. [PMID: 32850918 PMCID: PMC7427128 DOI: 10.3389/fmed.2020.00444] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
COVID-19, a disease induced by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2), has been the cause of a worldwide pandemic. Though extensive research works have been reported in recent days on the development of effective therapeutics against this global health crisis, there is still no approved therapy against SARS-CoV-2. In the present study, plant-synthesized secondary metabolites (PSMs) have been prioritized to make a review focusing on the efficacy of plant-originated therapeutics for the treatment of COVID-19. Plant metabolites are a source of countless medicinal compounds, while the diversity of multidimensional chemical structures has made them superior to treat serious diseases. Some have already been reported as promising alternative medicines and lead compounds for drug repurposing and discovery. The versatility of secondary metabolites may provide novel antibiotics to tackle MDR (Multi-Drug Resistant) microbes too. This review attempted to find out plant metabolites that have the therapeutic potential to treat a wide range of viral pathogens. The study includes the search of remedies belonging to plant families, susceptible viral candidates, antiviral assays, and the mode of therapeutic action; this attempt resulted in the collection of an enormous number of natural therapeutics that might be suggested for the treatment of COVID-19. About 219 plants from 83 families were found to have antiviral activity. Among them, 149 plants from 71 families were screened for the identification of the major plant secondary metabolites (PSMs) that might be effective for this pandemic. Our investigation revealed that the proposed plant metabolites can serve as potential anti- SARS-CoV-2 lead molecules for further optimization and drug development processes to combat COVID-19 and future pandemics caused by viruses. This review will stimulate further analysis by the scientific community and boost antiviral plant-based research followed by novel drug designing.
Collapse
Affiliation(s)
- Farhana Rumzum Bhuiyan
- Department of Botany, University of Chittagong, Chittagong, Bangladesh
- Laboratory of Biotechnology and Molecular Biology, Department of Botany, University of Chittagong, Chittagong, Bangladesh
| | - Sabbir Howlader
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chittagong, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
40
|
Huang ST, Lai HC, Lin YC, Huang WT, Hung HH, Ou SC, Lin HJ, Hung MC. Principles and treatment strategies for the use of Chinese herbal medicine in patients at different stages of coronavirus infection. Am J Cancer Res 2020; 10:2010-2031. [PMID: 32774998 PMCID: PMC7407358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a novel, human-infecting β-coronavirus enveloped, positive-sense single-stranded RNA viruses, similar to the severe acute respiratory syndrome (SARS) infection that emerged in November 2002. In traditional Chinese medicine (TCM), the epidemic disease concepts of "febrile epidemics" (wenyi) or "warm diseases" (wenbing) are based on geographic and cultural aspects, and Chinese herbal medicine (CHM) played an important role in the treatment of epidemic diseases. CHM was widely used to treat patients suffered with SARS almost two decades ago during outbreak of SARS, with proven safety and potential benefits. TCM has also been widely used to treat cancer patients for a long history and much of them associate with immunomodulatory activity and are used to treat coronavirus-related diseases. We propose the use of CHM treatment principles for clinical practice, based on four main stages of COVID-19 infection: early, intermediate, severe, and convalescence. We suggest corresponding decoctions that exhibit antiviral activity and anti-inflammatory effects in the early stage of infection; preventing the disease from progressing from an intermediate to severe stage of infection; restoring normal lung function and improving consciousness in the severe stage; and ameliorating pulmonary and vascular injury in the convalescent stage. We summarize the pharmaceutical mechanisms of CHM for treating coronavirus via antiviral, anti-inflammatory and immunomodulatory effects.
Collapse
Affiliation(s)
- Sheng-Teng Huang
- School of Chinese Medicine, China Medical UniversityTaichung, Taiwan
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
- Research Cancer Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University HospitalTaichung, Taiwan
- An-Nan Hospital, China Medical UniversityTainan, Taiwan
| | - Hsiang-Chun Lai
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Yu-Chun Lin
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Wei-Te Huang
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Hao-Hsiu Hung
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Shi-Chen Ou
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Hung-Jen Lin
- School of Chinese Medicine, China Medical UniversityTaichung, Taiwan
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical UniversityTaichung, Taiwan
| |
Collapse
|
41
|
Ni L, Chen L, Huang X, Han C, Xu J, Zhang H, Luan X, Zhao Y, Xu J, Yuan W, Chen H. Combating COVID-19 with integrated traditional Chinese and Western medicine in China. Acta Pharm Sin B 2020; 10:1149-1162. [PMID: 32834946 PMCID: PMC7319939 DOI: 10.1016/j.apsb.2020.06.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
COVID-19, an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread throughout the world. China has achieved rapid containment of this highly infectious disease following the principles of early detection, early quarantine and early treatment with integrated traditional Chinese and Western medicine. The inclusion of traditional Chinese medicine (TCM) in the Chinese protocol is based on its successful historic experience in fighting against pestilence. Current findings have shown that the Chinese medicine can reduce the incidence of severe or critical events, improve clinical recovery and help alleviate symptoms such as cough or fever. To date there are over 133 ongoing registered clinical studies on TCM/integrated traditional Chinese and Western medicine. The three Chinese patent medicines (Lianhua Qingwen Keli/Jiaonang (Forsythiae and Honeysuckle Flower Pestilence-Clearing Granules/Capsules), Jinhua Qinggan Keli (Honeysuckle Flower Cold-Relieving Granules) and Xuebijing (Stasis-Resolving & Toxin-Removing) Injection were officially approved by the National Medical Products Administration to list COVID-19 as an additional indication. The pharmacological studies have suggested that Chinese medicine is effective for COVID-19 probably through its host-directed regulation and certain antiviral effects.
Collapse
Affiliation(s)
- Liqiang Ni
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xia Huang
- Ruijin Hospitol, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Chouping Han
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianrong Xu
- Department of Phamacology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Hong Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Luan
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongfang Zhao
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianguang Xu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weian Yuan
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Corresponding authors.
| | - Hongzhuan Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Phamacology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Corresponding authors.
| |
Collapse
|
42
|
Zhang Y, Zhang M, Hu G, Zhang Z, Song R. Elevated system exposures of baicalin after combinatory oral administration of rhein and baicalin: Mainly related to breast cancer resistance protein (ABCG2), not UDP-glucuronosyltransferases. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112528. [PMID: 31884038 DOI: 10.1016/j.jep.2019.112528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/10/2019] [Accepted: 12/25/2019] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A traditional Chinese medicine (TCM) prescription follows the principle of compatibility (peiwu) to achieve the fundamental purpose: to increase efficacy and reduce toxicity. Rhei rhizoma, commonly known as Chinese rhubarb, is the most frequently used herb with Radix Scutellariaee. This classic fixed compatibility is considered for heat-clearing, qi regulation and detoxifying to gain better efficacy and reduce cytotoxicity with respect to unilateral medicine. With this in mind, we propose it is highly promising to find ingredients in rhubarb to increase the bioavailability of baicalin. AIM OF STUDY In the present study, effect of rhien on pharmacokinetic profile of baicalin in rat plasma was investigated, and the underlying mechanisms were partly dissected through intestinal absorption, metabolism and biliary excretion with in vivo, in vitro and in situ assays. MATERIALS AND METHODS Pharmacokinetic analysis in rats was first performed to provide a general overview of the in vivo exposure of baicalin and rhein after co-administration, while the biliary excretion study provided insight to the effect of rhein on the transport of baicalin from hepatocytes to bile. In vitro incubation and inhibition studies in human/rat liver microsome and human/rat intestinal S9 fraction were conducted to elucidate the role of uridine diphosphate-glucuronosyltransferases (UGTs) on the hepatic and intestinal metabolism of baicalein (the aglycone of baicalin), and to determine whether rhein can affect the UGT-mediated glucuronidation of baicalein. In situ intestinal perfusion study was designed to investigate the effect of rhein on intestinal absorption of baicalin, and breast cancer resistance protein (BCRP) inhibitor was co-perfused as positive control to demonstrate the role of the efflux transporter, while BCRP-MDCK II cell(Madin-Daby canine kidney cell) model was used as an in vitro approach to further confirm the conclusion. RESULTS The AUC and Cmax of baicalin were increased to 189.93% and 305.73%, respectively, and the clearance of baicalin was significantly decreased from 4.17 ± 2.40 to 1.65 ± 0.79 L/h/kg following oral co-administration of rhein. The AUC of baicalin was markedly increased and the biliary clearance was significantly decreased when baicalin and rhein were co-administered intravenously. The effect of rhein on the glucuronidation of baicalein in various subcellular fractions was examined, and it was found that rhein did not affect the UGT-mediated glucuronidation of baicalein. Results of in situ intestinal perfusion revealed that co-perfusion with Ko143 (a potent BCRP inhibitor) or rhein significantly reduced the cumulative excretion amount of baicalin, from 9.27 ± 2.79 to 2.80 ± 0.97 or 4.84 ± 0.60 nM, respectively. Additionally, the efflux ratio Papp(BL-AP)/Papp(AP-BL) of baicalin in BCRP-MDCK II was decreased significantly in the presence of rhein or Ko143, which meant rhein could inhibit the BCRP-mediated efflux transport of baicalin. CONCLUSIONS These results indicated that rhein can increase the bioavailability of baicalin by inhibiting BCRP-mediated efflux transport of baicalin in enterocytes and hepatocytes rather than by affecting the activity of UGT enzyme.
Collapse
Affiliation(s)
- Yaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China; Analysis Center, Hubei Bio-Pharmaceutical Industrial Technological Institute Co., Ltd, Wuhan, 430075, China.
| | - Mei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guangnan Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China.
| | - Rui Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
43
|
Guo L, Liu J, Zhang Y, Fu S, Qiu Y, Ye C, Liu Y, Wu Z, Hou Y, Hu CAA. The Effect of Baicalin on the Expression Profiles of Long Non-Coding RNAs and mRNAs in Porcine Aortic Vascular Endothelial Cells Infected with Haemophilus parasuis. DNA Cell Biol 2020; 39:801-815. [PMID: 32096672 DOI: 10.1089/dna.2019.5340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Haemophilus parasuis can elicit serious inflammatory responses, which contribute to huge economic losses to the swine industry. However, the pathogenic mechanisms underlying inflammation-related damage induced by H. parasuis remain unclear. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) have important functions in the regulation of autoimmune disorders. Baicalin has been shown to have anti-inflammatory, anti-microbial, and anti-oxidant activities. In this study, we investigated whether lncRNAs were involved in the vascular injury or inflammation triggered by H. parasuis and whether baicalin regulated the lncRNA profiles of porcine aortic vascular endothelial cells (PAVECs) infected with H. parasuis. The results showed that the lncRNA and mRNA expression profiles of PAVECs were changed by H. parasuis. Important functions of lncRNAs and mRNAs were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that the targets of differentially expressed lncRNAs of H. parasuis infected PAVECs were mainly involved in the tumor necrosis factor (TNF) signaling pathway, apoptosis, and N-glycan biosynthesis; whereas nicotinate and nicotinamide metabolism, the cytosolic DNA-sensing pathway, the TNF signaling pathway, and the nuclear factor (NF)-kappa B signaling pathway were enriched in PAVECs pretreated with baicalin. In addition, top hub genes and lncRNAs were identified and validated by quantitative polymerase chain reaction. CCL5, GBP1, and SAMHD1 were significantly upregulated after H. parasuis infection, whereas they were significantly downregulated with baicalin pretreatment. LncRNA ALDBSSCT0000001677, ALDBSSCT0000001353, MSTRG.10724.2, and ALDBSSCT0000010434 had the same expression pattern. Collectively, these data suggested that baicalin could modify changes to the lncRNAs profiles or regulate lncRNAs that participate in inflammation-related signaling pathways, thereby alleviating tissue damage or inflammatory responses induced by H. parasuis. To our best knowledge, this is the first article of H. parasuis stimulating changes to the lncRNA profiles of PAVECs and the capability of baicalin to regulate lncRNA changes in PAVECs infected with H. parasuis, which might provide a novel therapeutic target for the control of H. parasuis infection.
Collapse
Affiliation(s)
- Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Jun Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Yunfei Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, P.R. China
| | - Chien-An Andy Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, P.R. China.,Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
44
|
Shen C, Zhang Z, Xie T, Ji J, Xu J, Lin L, Yan J, Kang A, Dai Q, Dong Y, Shan J, Wang S, Zhao X. Rhein Suppresses Lung Inflammatory Injury Induced by Human Respiratory Syncytial Virus Through Inhibiting NLRP3 Inflammasome Activation via NF-κB Pathway in Mice. Front Pharmacol 2020; 10:1600. [PMID: 32047436 PMCID: PMC6997271 DOI: 10.3389/fphar.2019.01600] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/10/2019] [Indexed: 11/17/2022] Open
Abstract
Rhein is one of active anthraquinone components in traditional Chinese herbal medicine Rheum palmatum L., possessing anti-inflammatory, antioxidant, antitumor, antiviral, and hepatoprotective activities. Human respiratory syncytial virus (RSV), a common virus, is able to result in pneumonia and bronchitis, which usually can be seen in infants. However, so far the effects of Rhein on RSV-induced pneumonia are still unknown. As the NLRP3 inflammasome is activated excessively, it is able to lead to inflammatory response and tissue injury in most viral infection process (including RSV infection) of respiratory tract. Therefore, we designed experiments to reveal whether Rhein can treat RSV-induced pneumonia by inhibiting NLRP3 inflammasome activation. In present research, we established the pneumonia model of BALB/C mice caused by RSV. First of all, the pathology of lung tissue and the weight of mice were evaluated, and the corresponding lung index was calculated. Additionally, the expression of pro-inflammatory mediators in serum and lung tissues, and related proteins (NLRP3, ASC and Caspase-1) of NLRP3 inflammasome and NF-κB pathway were detected by Enzyme-linked immunosorbent assay (ELISA), Real-time PCR (RT-PCR), Immunohistochemistry (IHC), and Western blot (WB), respectively. The determination of lung index and lung tissue pathological evaluation revealed that Rhein was able to alleviate lung infection and injury caused by RSV. The results of ELISA showed that Rhein was able to reduce the release of pro-inflammatory cytokines in the serum and lung tissues of RSV-induced BALB/c mice, including IL-1β, IL-6, TNF-α, IL-18, and IL-33. Additionally, it was revealed that Rhein inhibited the immune inflammatory response of RSV-infected mice, which was likely to be associated with the inhibition the NLRP3 inflammasome activation via NF-κB pathway. To sum up, our results indicated that Rhein may inhibit RSV-induced pulmonary inflammatory response effectively; meanwhile, it is emphasized that Rhein therapy is likely to be a promising treatment on the RSV-infected lung inflammation and avoidance of lung tissue damage.
Collapse
Affiliation(s)
- Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengguang Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianya Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Yan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - An Kang
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qigang Dai
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingmei Dong
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xia Zhao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
45
|
Baicalin and its nanoliposomes ameliorates nonalcoholic fatty liver disease via suppression of TLR4 signaling cascade in mice. Int Immunopharmacol 2020; 80:106208. [PMID: 31955065 DOI: 10.1016/j.intimp.2020.106208] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
As a natural flavonoid compound, baicalin(BA)has been reported to exhibit hepatoprotective and anti-inflammatory properties. However, the characteristic of poor solubility and low bioavailability greatly limits its application. In addition, the effects and underlying mechanisms of BA in nonalcoholic fatty liver disease (NAFLD) remain elusive. In this study, Methionine and choline deficient diet (MCD)-induced NAFLD mice were treated with baicalin or baicalin-loaded nanoliposomes (BA-NL), then hepatic histopathological changes, biochemical parameters and inflammatory molecules were observed. We found that mice in MCD group showed significant increases in plasma transaminase, hepatocyte apoptosis, hepatic lipid accumulation, liver fibrosis, and infiltration of neutrophils and macrophages compared with control group, however, BA and BA-NL markedly attenuated MCD-induced the above changes. Besides, further analysis indicated that BA and BA-NL also inhibited the up-regulation of toll-like receptor 4 (TLR4) signal and the production of inflammatory mediators in MCD mice. Importantly, BA-NL was found to be more effective than baicalin on MCD-induced NAFLD in mice. These data suggested that BA and its nanoliposomes BA-NL could effectively protect mice against MCD-induced NAFLD, which might be mediated through inhibiting TLR4 signaling cascade.
Collapse
|
46
|
Ophthalmic Nanosystems with Antioxidants for the Prevention and Treatment of Eye Diseases. COATINGS 2020. [DOI: 10.3390/coatings10010036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxidative stress may induce a series of pathophysiological modifications that are directly involved in the development of ophthalmic diseases like age-related cataract, macular degeneration or diabetic retinopathy, considered to be responsible for the majority of vision loss cases. Although various treatment options for eye diseases are available, multiple factors could limit their efficacy. Recently, the accelerated development of ophthalmic nanosystems has provided new possibilities for overcoming the limitations of existing ocular drug delivery methods. This review evaluates the current status of ophthalmic nanosystems loaded with antioxidants for the prevention and treatment of several eye diseases.
Collapse
|
47
|
Wu Z, Chen C, Miao Y, Liu Y, Zhang Q, Li R, Ding L, Ishfaq M, Li J. Baicalin Attenuates Mycoplasma gallisepticum-Induced Inflammation via Inhibition of the TLR2-NF-κB Pathway in Chicken and DF-1 Cells. Infect Drug Resist 2019; 12:3911-3923. [PMID: 31908503 PMCID: PMC6929927 DOI: 10.2147/idr.s231908] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022] Open
Abstract
Background Previous reports demonstrated that baicalin possesses potential anti-inflammatory properties. The present study was conducted to determine the effects of baicalin against inflammatory responses in chicken and DF-1 cells infected with Mycoplasma gallisepticum (MG). Methods An MG infection model was developed in chickens to study the anti-inflammatory mechanism of baicalin. Baicalin was mixed in water at a dose of 450 mg/kg per day, and the treatment is continued for 7 consecutive days. Samples were taken at 1, 4, and 7 days post treatment. Results By using transmission electron microscopy, ultrastructure of lung and tracheal cells has been examined. It can be seen that the cilia cells in the MG-infected group have pyknosis, degeneration, and necrosis. In the lung tissues, alveolar type-I epithelial cells were severely damaged. In the baicalin-treated group, cilia were swollen, mushroom-shaped edema bubbles formed on the apex, and fused together. Alveolar type I epithelial cells injury was significantly reduced. Compared to MG-infection group, the levels of proinflammatory cytokines IL-1β and TNF-α were significantly decreased (P < 0.01). The corresponding proteins TLR2 and P-p65 decreased in the baicalin-treated group after 1 (p > 0.05), 4 (p < 0.05), and 7 days (p < 0.05), respectively. Conclusion The results showed that baicalin can interfere with inflammatory injury by suppressing the release of inflammatory cytokines IL-1β and TNF-α during MG infection both in vivo and in vitro. Meanwhile, baicalin suppressed TLR2-NFκB signaling pathway by inhibiting the phosphorylation of p65 and IκB, thereby affecting the expression of inflammatory factors. The results suggested that baicalin acts as a potential anti-inflammatory agent against MG infection in chicken and DF-1 cells.
Collapse
Affiliation(s)
- Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Chunli Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yusong Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuhao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qiaomei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Liangjun Ding
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Muhammad Ishfaq
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, People's Republic of China
| |
Collapse
|
48
|
Xu H, He L, Chen J, Hou X, Fan F, Wu H, Zhu H, Guo Y. Different types of effective fractions from Radix Isatidis revealed a multiple-target synergy effect against respiratory syncytial virus through RIG-I and MDA5 signaling pathways, a pilot study to testify the theory of superposition of traditional Chinese Medicine efficacy. JOURNAL OF ETHNOPHARMACOLOGY 2019; 239:111901. [PMID: 31051218 DOI: 10.1016/j.jep.2019.111901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Isatidis, a commonly used traditional Chinese medicine, is also documented in "Dictionary of Chinese Ethnic Medicine" being as an ethnic herb clinically utilized by different nations in China such as Mongol, Uygur, and Dong et al. It has been reported to have a very strong efficacy on respiratory viruses, but to date the mechanism remains unknown. Similarly, it is unclear how different types of effective fractions of Radix Isatidis interact to exert antiviral effects. AIM OF STUDY To reveal the underlying mechanisms for the inhibitory effects of three active fractions from Radix Isatidis, i.e. total alkaloids, lignans and organic acids, on respiratory syncytial virus when used alone or in combination. In addition, we investigated whether these three parts worked synergistically in vivo and in vitro. MATERIALS AND METHODS A mouse model of RSV infection was constructed by intranasal infection, and the pathological changes of lung tissues in different parts were observed. The level changes of IFNβ and inflammatory cytokines in the mouse alveolar lavage fluid were detected by enzyme-linked immunosorbent assay (ELISA). The anti-RSV effects of different effective fractions were evaluated by the plaque reduction test. The mRNA and protein expressions of RIG-I, MDA-5, MAVS and IRF3 in RAW264.7 cells were detected by RT-PCR and Western blot respectively. RESULTS HE staining showed that Radix Isatidis extracts alone or in combination relieved virus-induced mouse lung lesions. Compared with individual drugs, the lung lesions were alleviated more significantly after treatment with the three fractions in combination. ELISA demonstrated that the expression levels of IFNβ and inflammatory cytokines were maintained balanced between antiviral and proinflammatory effects. The plaque reduction test indicated that the antiviral effect of combination treatment was much stronger than those of individual drugs. RT-qPCR and Western blot suggested that the mRNA and protein expression levels of key signaling molecules in the RIG-I and MDA5 pathways in mouse macrophages were down-regulated by different effective parts alone or in combination. CONCLUSIONS The three effective fractions of Radix Isatidis have remarkable synergistic anti-RSV effects in vitro and in vivo, and total alkaloids and lignans show multi-target synergistic effects via the RIG-I and MDA5 signaling pathways.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Alkaloids/pharmacology
- Alkaloids/therapeutic use
- Animals
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Drug Synergism
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Female
- Hep G2 Cells
- Humans
- Interferon Regulatory Factor-3/genetics
- Interferon Regulatory Factor-3/metabolism
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/metabolism
- Lignans/pharmacology
- Lignans/therapeutic use
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Medicine, Chinese Traditional
- Mice, Inbred BALB C
- Pilot Projects
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Respiratory Syncytial Virus Infections/drug therapy
- Respiratory Syncytial Virus Infections/metabolism
- Respiratory Syncytial Virus Infections/pathology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Huiqin Xu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liwei He
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225312, China.
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Xianbang Hou
- Department of Pharmacology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225312, China
| | - Fangtian Fan
- Department of Pharmacology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225312, China
| | - Hongyan Wu
- Department of Pharmacology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225312, China
| | - Hepeng Zhu
- Department of Pharmacology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225312, China
| | - Yeqian Guo
- Department of Pharmacology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225312, China
| |
Collapse
|
49
|
Boyko NN, Pisarev DI, Zhilyakova ET, Maljutina AY, Novikov OO, Bocharnikova MA. STUDY OF BAICALIN HYDROLYSIS KINETICS IN THE PROCESS OF ITS EXTRACTION FROM SCUTELLARIA BAICALENSIS GEORGI ROOTS. PHARMACY & PHARMACOLOGY 2019. [DOI: 10.19163/2307-9266-2019-7-3-129-137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this study was to investigate the kinetics of baicalin hydrolysis in the process of its extraction from Scutellaria baicalensis Georgi roots.Materials and methods. For the studies, Scutellaria baicalensis Georgi roots with a particle range of 0.1–0.5 mm were used. The method of extraction was a simple maceration during a specified period of time, the ratio of plant raw material : extractant was 1:10 w/v at the temperature of 24±1°С. Baicalin and baicalein contents were analyzed by reverse phase high performance liquid chromatography (RP HPLC) at the analytical wavelength of 275 nm. The extractant was a water solution of ethanol 26, 43, 59, 72, 81, 97±1% v/v. The time of the extraction was from 1 to 24 hours.Results. The experimental points of dependency of baicalin concentration in the extract on the time of extraction for ethanol solutions with a concentration of 43 and 72% v/v are closely approximated by a linear equation in coordinates lnC=f(t). The value of determination coefficient is more than R²˃0,99. Half lifetime for baicalin has been calculated: for ethanol with the concentration of 43% v/v it is 4.3±0.7 hours, and for ethanol with the concentration of 72% v/v it is 42.3±1.8 hours.Conclusion. Baicalin hydrolysis kinetics in the process of its extraction from Scutellaria baicalensis Georgi roots with 43 and 72% v/v ethanol concentration. has been studied. It has been established that the process of baicalin hydrolysis is well described by the first order kinetic equation. The constants of baicalin hydrolysis during its extraction from Scutelaria baicalensis roots with ethanol having different concentrations have been calculated. Recommendations on technology optimization for baicalin or baicalein extraction from Scutellaria baicalensis Georgi roots have been given.
Collapse
|
50
|
Liu R, Li X, Wei J, Liu S, Chang Y, Zhang J, Zhang J, Zhang X, Fuhr U, Taubert M, Tian X. A Single Dose of Baicalin Has No Clinically Significant Effect on the Pharmacokinetics of Cyclosporine A in Healthy Chinese Volunteers. Front Pharmacol 2019; 10:518. [PMID: 31156436 PMCID: PMC6528491 DOI: 10.3389/fphar.2019.00518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/24/2019] [Indexed: 12/02/2022] Open
Abstract
Despite its narrow therapeutic window and large interindividual variability, cyclosporine A (CsA) is the first-line therapy following organ transplantation. Metabolized mainly by CYP3A and being a substrate of P-glycoprotein (P-gp), CsA is susceptible to drug–drug interactions. Baicalin (BG) is a drug used for adjuvant therapy of hepatitis in traditional Chinese medicine. Since its aglycone baicalein (B) inhibits CYP3A and P-gP, co-administration might affect CsA pharmacokinetics. This study investigated the effect of BG on CsA pharmacokinetics. In a two-period study, 16 healthy volunteers received a single 200 mg oral CsA dose alone (reference period) or in combination with 500 mg BG (test period). Pharmacokinetic evaluation of CsA was carried out using non-compartmental analysis (NCA) and population pharmacokinetics (popPK). Treatments were compared using the standard bioequivalence method. Based on NCA, 90% CIs of AUC and Cmax test-to-reference ratios were within bioequivalence boundaries. In the popPK analysis, a two-compartment model (clearance/F 62.8 L/h, central and peripheral volume of distribution/F 254 L and 388 L) with transit compartments for absorption appropriately described CsA concentrations. No clinically relevant effect of 500 mg BG co-administration on CsA pharmacokinetics was identified and both treatments were well tolerated.
Collapse
Affiliation(s)
- Ruijuan Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Xia Li
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Cologne, Germany
| | - Jingyao Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Shuaibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Yuanyuan Chang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Jiali Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Uwe Fuhr
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Cologne, Germany
| | - Max Taubert
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Cologne, Germany
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| |
Collapse
|