1
|
Bono S, Kinugasa H, Kajita H, Konishi S. Resonant oscillation of droplets under an alternating electric field to enhance solute diffusion. Sci Rep 2024; 14:21326. [PMID: 39266645 PMCID: PMC11393098 DOI: 10.1038/s41598-024-72089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
This study investigates a novel microfluidic mixing technique that uses the resonant oscillation of coalescent droplets. During the vertical contact-separation process, solutes are initially separated as a result of the combined effects of diffusion and gravity. We show that the application of alternating current (AC) voltage to microelectrodes below the droplets causes a resonant oscillation, which enhances the even distribution of the solute. The difference in concentration between the top and bottom droplets exhibits frequency dependence and indicates the existence of a particular AC frequency that results in a homogeneous concentration. This frequency corresponds to the resonance frequency of the droplet oscillation that is determined using particle tracking velocimetry. To understand the mixing process, a phenomenological model based on the equilibrium between surface tension, viscosity, and electrostatic force was developed. This model accurately predicted the resonance frequency of droplet flow and was consistent with the experimental results. These results suggest that the resonant oscillation of droplets driven by AC voltage significantly enhances the diffusion of solutes, which is an effective approach to microfluid mixing.
Collapse
Affiliation(s)
- Shinji Bono
- Research Organization of Science and Technology, Ritsumeikan University, Shiga, 525-8577, Japan.
- Ritsumeikan Advanced Research Academy, Kyoto, 604-8502, Japan.
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, 525-8577, Japan.
| | - Hiroki Kinugasa
- Graduate Course of Science and Engineering, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Hiroki Kajita
- Graduate Course of Science and Engineering, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Satoshi Konishi
- Research Organization of Science and Technology, Ritsumeikan University, Shiga, 525-8577, Japan
- Ritsumeikan Advanced Research Academy, Kyoto, 604-8502, Japan
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, 525-8577, Japan
- Graduate Course of Science and Engineering, Ritsumeikan University, Shiga, 525-8577, Japan
| |
Collapse
|
2
|
Khademi P, Tukmechi A, Sgroi G, Ownagh A, Enferadi A, Khalili M, Mardani K. Molecular and genotyping techniques in diagnosis of Coxiella burnetii: An overview. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105655. [PMID: 39116951 DOI: 10.1016/j.meegid.2024.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Although we live in the genomic era, the accessibility of the complete genome sequence of Coxiella burnetii, the etiological agent of Q fever, has increased knowledge in the field of genomic diversity of this agent However, it is still somewhat of a "question" microorganism. The epidemiology of Q fever is intricate due to its global distribution, repository and vector variety, as well as absence of surveys defining the dynamic interaction among these factors. Moreover, C. burnetii is a microbial agent that can be utilized as a bioterror weapon. Therefore, typing techniques used to recognize the strains can also be used to trace infections back to their source which is of great significance. In this paper, the latest and current typing techniques of C. burnetii spp. are reviewed illustrating their advantages and constraints. Recently developed multi locus VNTR analysis (MLVA) and single-nucleotide polymorphism (SNP) typing methods are promising in improving diagnostic capacity and enhancing the application of genotyping techniques for molecular epidemiologic surveys of the challenging pathogen. However, most of these studies did not differentiate between C. burnetii and Coxiella-like endosymbionts making it difficult to estimate the potential role that ticks play in the epidemiology of Q fever. Therefore, it is necessary to analyze the vector competence of different tick species to transmit C. burnetii. Knowledge of the vector and reservoir competence of ticks is important for taking adequate preventive measures to limit infection risks. The significant prevalence observed for the IS1111 gene underscores its substantial presence, while other genes display comparatively lower prevalence rates. Methodological variations, particularly between commercial and non-commercial kit-based methods, result in different prevalence outcomes. Variations in sample processing procedures also lead to significant differences in prevalence rates between mechanical and non-mechanical techniques.
Collapse
Affiliation(s)
- Peyman Khademi
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran; Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Amir Tukmechi
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Giovanni Sgroi
- Department of Animal Health, Experimental Zooprophylactic Institute of southern Italy, Portici, Naples, Italy
| | - Abdulghaffar Ownagh
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Ahmad Enferadi
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Mohammad Khalili
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Karim Mardani
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
3
|
Vladisaljević GT. Droplet Microfluidics for High-Throughput Screening and Directed Evolution of Biomolecules. MICROMACHINES 2024; 15:971. [PMID: 39203623 PMCID: PMC11356158 DOI: 10.3390/mi15080971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024]
Abstract
Directed evolution is a powerful technique for creating biomolecules such as proteins and nucleic acids with tailor-made properties for therapeutic and industrial applications by mimicking the natural evolution processes in the laboratory. Droplet microfluidics improved classical directed evolution by enabling time-consuming and laborious steps in this iterative process to be performed within monodispersed droplets in a highly controlled and automated manner. Droplet microfluidic chips can generate, manipulate, and sort individual droplets at kilohertz rates in a user-defined microchannel geometry, allowing new strategies for high-throughput screening and evolution of biomolecules. In this review, we discuss directed evolution studies in which droplet-based microfluidic systems were used to screen and improve the functional properties of biomolecules. We provide a systematic overview of basic on-chip fluidic operations, including reagent mixing by merging continuous fluid streams and droplet pairs, reagent addition by picoinjection, droplet generation, droplet incubation in delay lines, chambers and hydrodynamic traps, and droplet sorting techniques. Various microfluidic strategies for directed evolution using single and multiple emulsions and biomimetic materials (giant lipid vesicles, microgels, and microcapsules) are highlighted. Completely cell-free microfluidic-assisted in vitro compartmentalization methods that eliminate the need to clone DNA into cells after each round of mutagenesis are also presented.
Collapse
Affiliation(s)
- Goran T Vladisaljević
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
4
|
Zath GK, Thomas MM, Loveday EK, Bikos DA, Sanche S, Ke R, Brooke CB, Chang CB. Influenza A viral burst size from thousands of infected single cells using droplet quantitative PCR (dqPCR). PLoS Pathog 2024; 20:e1012257. [PMID: 38950082 PMCID: PMC11244780 DOI: 10.1371/journal.ppat.1012257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 07/12/2024] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
An important aspect of how viruses spread and infect is the viral burst size, or the number of new viruses produced by each infected cell. Surprisingly, this value remains poorly characterized for influenza A virus (IAV), commonly known as the flu. In this study, we screened tens of thousands of cells using a microfluidic method called droplet quantitative PCR (dqPCR). The high-throughput capability of dqPCR enabled the measurement of a large population of infected cells producing progeny virus. By measuring the fully assembled and successfully released viruses from these infected cells, we discover that the viral burst sizes for both the seasonal H3N2 and the 2009 pandemic H1N1 strains vary significantly, with H3N2 ranging from 101 to 104 viruses per cell, and H1N1 ranging from 101 to 103 viruses per cell. Some infected cells produce average numbers of new viruses, while others generate extensive number of viruses. In fact, we find that only 10% of the single-cell infections are responsible for creating a significant portion of all the viruses. This small fraction produced approximately 60% of new viruses for H3N2 and 40% for H1N1. On average, each infected cell of the H3N2 flu strain produced 709 new viruses, whereas for H1N1, each infected cell produced 358 viruses. This novel method reveals insights into the flu virus and can lead to improved strategies for managing and preventing the spread of viruses.
Collapse
Affiliation(s)
- Geoffrey K. Zath
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Mallory M. Thomas
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States of America
| | - Emma K. Loveday
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Dimitri A. Bikos
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Steven Sanche
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ruian Ke
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Christopher B. Brooke
- Department of Microbiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| | - Connie B. Chang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
5
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Wang Y, Zhou X, Yang Z, Xu T, Fu H, Fong CC, Sun J, Chin YR, Zhang L, Guan X, Yang M. An integrated and multi-functional droplet-based microfluidic platform for digital DNA amplification. Biosens Bioelectron 2024; 246:115831. [PMID: 38008058 DOI: 10.1016/j.bios.2023.115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
Digital DNA amplification is a powerful method for detecting and quantifying rare nucleic acids. In this study, we developed a multi-functional droplet-based platform that integrates the traditional digital DNA amplification workflow into a one-step device. This platform enables efficient droplet generation, transition, and signal detection within a 5-min timeframe, distributing the sample into a uniform array of 4 × 104 droplets (variation <2%) within a chamber. Subsequent in-situ DNA amplification, fluorescence detection, and signal analysis were carried out. To assess the platform's performance, we quantitatively detected the human epidermal growth factor receptor (EGFR) mutation and human papillomavirus (HPV) mutation using digital polymerase chain reaction (dPCR) and digital loop-mediated isothermal amplification (dLAMP), respectively. The fluorescence results exhibited a positive, linear, and statistically significant correlation with target DNA concentrations ranging from 101 to 105 copies/μL, demonstrating the capability and feasibility of the integrated device for dPCR and dLAMP. This platform offers high-throughput droplet generation, eliminates droplet fusion and transition, is user-friendly, reduces costs compared to current methods, and holds potential for thermocycling and isothermal nucleic acid quantification with high sensitivity and accuracy.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China; Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre of City University of Hong Kong, Shenzhen, Guangdong, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China; Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre of City University of Hong Kong, Shenzhen, Guangdong, China
| | - Zihan Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China; Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre of City University of Hong Kong, Shenzhen, Guangdong, China
| | - Tao Xu
- Cellomics (Shenzhen) Limited, Shenzhen, Guangdong, China
| | - Huayang Fu
- Cellomics (Shenzhen) Limited, Shenzhen, Guangdong, China
| | - Chi-Chun Fong
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China; Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre of City University of Hong Kong, Shenzhen, Guangdong, China
| | - Y Rebecca Chin
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China; Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre of City University of Hong Kong, Shenzhen, Guangdong, China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China; Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre of City University of Hong Kong, Shenzhen, Guangdong, China
| | - Xinyuan Guan
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China; Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre of City University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Quan PL, Alvarez-Amador M, Jiang Y, Sauzade M, Brouzes E. Robust and rapid partitioning in thermoplastic. Analyst 2023; 149:100-107. [PMID: 37982399 PMCID: PMC10777811 DOI: 10.1039/d3an01869e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Partitioning is the core technology supporting digital assays. It divides a sample into thousands of individual reactors prior to amplification and absolute quantification of target molecules. Thermoplastics are attractive materials for large scale manufacturing, however they have been seldomly used for fabricating partitioning arrays. Patitioning in thermoplastic devices has proven difficult due to the challenge of efficiently displacing the air trapped in the nanoliter structures during priming of thousands of chambers. Here, we report the design of an array of chambers made of thermoplastics where the progression of the liquid-air interface is controlled by capillary effects. Our device performs robust partitioning over a wide range of pressures and can be actuated at low pressure by a simple micropipette. Our thermoplastic device lays the foundation to cost-effective and instrument-free partitioning platforms, which could be deployed in low-resource settings.
Collapse
Affiliation(s)
- Phenix-Lan Quan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Maria Alvarez-Amador
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Yuhe Jiang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Martin Sauzade
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Eric Brouzes
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Cancer Center, Stony Brook School of Medicine, Stony Brook, NY 11794, USA
- Institute for Engineering Driven Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
8
|
Takahara H, Tanaka H, Hashimoto M. Fast Thermocycling in Custom Microfluidic Cartridge for Rapid Single-Molecule Droplet PCR. SENSORS (BASEL, SWITZERLAND) 2023; 23:9884. [PMID: 38139729 PMCID: PMC10747138 DOI: 10.3390/s23249884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
The microfluidic droplet polymerase chain reaction (PCR), which enables simultaneous DNA amplification in numerous droplets, has led to the discovery of various applications that were previously deemed unattainable. Decades ago, it was demonstrated that the temperature holding periods at the denaturation and annealing stages in thermal cycles for PCR amplification could be essentially eliminated if a rapid change of temperature for an entire PCR mixture was achieved. Microfluidic devices facilitating the application of such fast thermocycling protocols have significantly reduced the time required for PCR. However, in microfluidic droplet PCR, ensuring successful amplification from single molecules within droplets has limited studies on accelerating assays through fast thermocycling. Our developed microfluidic cartridge, distinguished for its convenience in executing single-molecule droplet PCR with common laboratory equipment, features droplets positioned on a thin glass slide. We hypothesized that applying fast thermocycling to this cartridge would achieve single-molecule droplet PCR amplification. Indeed, the application of this fast protocol demonstrated successful amplification in just 22 min for 30 cycles (40 s/cycle). This breakthrough is noteworthy for its potential to expedite microfluidic droplet PCR assays, ensuring efficient single-molecule amplification within a remarkably short timeframe.
Collapse
Affiliation(s)
| | | | - Masahiko Hashimoto
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321, Kyoto, Japan
| |
Collapse
|
9
|
Huang Y, Sun L, Liu W, Yang L, Song Z, Ning X, Li W, Tan M, Yu Y, Li Z. Multiplex single-cell droplet PCR with machine learning for detection of high-risk human papillomaviruses. Anal Chim Acta 2023; 1252:341050. [PMID: 36935138 DOI: 10.1016/j.aca.2023.341050] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/12/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
High-risk human papillomavirus (HPV) testing can significantly decline the incidence and mortality of cervical cancer. Microfluidic technology provides an effective method for accurate detection of high-risk HPV by utilizing multiplex single-cell droplet polymerase chain reaction (PCR). However, current strategies are limited by low-integration microfluidic chip, complex reagent system, expensive detection equipment and time-consuming droplet identification. Here, we developed a novel multiplex droplet PCR method that directly detected high-risk HPV sequences in single cells. A multiplex microfluidic chip integrating four flow-focusing structures was designed for one-step and parallel droplet preparation. Using single-cell droplet PCR, multi-target sequences were detected simultaneously based on a monochromatic fluorescence signal. We applied machine learning to automatically identify the large populations of single-cell droplets with 97% accuracy. HPV16, 18 and 45 sequences were sensitively detected without cross-contamination in mixed CaSki and Hela cells. The approach enables rapid and reliable detection of multi-target sequences in single cells, making it powerful for investigating cellular heterogeneity related to cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yizheng Huang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China; College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linjun Sun
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology, Beijing, 100083, China
| | - Wenwen Liu
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Ling Yang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Zhigang Song
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Xin Ning
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology, Beijing, 100083, China
| | - Weijun Li
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology, Beijing, 100083, China
| | - Manqing Tan
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China; College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yude Yu
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China; College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China
| | - Zhao Li
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China; College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China.
| |
Collapse
|
10
|
Xu D, Zhang W, Li H, Li N, Lin JM. Advances in droplet digital polymerase chain reaction on microfluidic chips. LAB ON A CHIP 2023; 23:1258-1278. [PMID: 36752545 DOI: 10.1039/d2lc00814a] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The PCR technique has been known to the general public since the pandemic outbreak of COVID-19. This technique has progressed through three stages: from simple PCR to real-time fluorescence PCR to digital PCR. Among them, the microfluidic-based droplet digital PCR technique has attracted much attention and has been widely applied due to its advantages of high throughput, high sensitivity, low reagent consumption, low cross-contamination, and absolute quantification ability. In this review, we introduce various designs of microfluidic-based ddPCR developed within the last decade. The microfluidic-based droplet generation methods, thermal cycle strategies, and signal counting approaches are described, and the applications in the fields of single-cell analysis, disease diagnosis, and pathogen detection are introduced. Further, the challenges and prospects of microfluidic-based ddPCR are discussed. We hope that this review can contribute to the further development of the microfluidic-based ddPCR technique.
Collapse
Affiliation(s)
- Danfeng Xu
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.
| | - Weifei Zhang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.
| | - Hongmei Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.
| | - Nan Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), China.
| |
Collapse
|
11
|
Iida T, Ando J, Shinoda H, Makino A, Yoshimura M, Murai K, Mori M, Takeuchi H, Noda T, Nishimasu H, Watanabe R. Compact wide-field femtoliter-chamber imaging system for high-speed and accurate digital bioanalysis. LAB ON A CHIP 2023; 23:684-691. [PMID: 36255223 DOI: 10.1039/d2lc00741j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The femtoliter-chamber array is a bioanalytical platform that enables highly sensitive and quantitative analysis of biological reactions at the single-molecule level. This feature has been considered a key technology for "digital bioanalysis" in the biomedical field; however, its versatility is limited by the need for a large and expensive setup such as a fluorescence microscope, which requires a long time to acquire the entire image of a femtoliter-chamber array. To address these issues, we developed a compact and inexpensive wide-field imaging system (COWFISH) that can acquire fluorescence images with a large field of view (11.8 mm × 7.9 mm) and a high spatial resolution of ∼ 3 μm, enabling high-speed analysis of sub-million femtoliter chambers in 20 s. Using COWFISH, we demonstrated a CRISPR-Cas13a-based digital detection of viral RNA of SARS-CoV-2 with an equivalent detection sensitivity (limit of detection: 480 aM) and a 10-fold reduction in total imaging time, as compared to confocal fluorescence microscopy. In addition, we demonstrated the feasibility of COWFISH to discriminate between SARS-CoV-2-positive and -negative clinical specimens with 95% accuracy, showing its application in COVID-19 diagnosis. Therefore, COWFISH can serve as a compact and inexpensive imaging system for high-speed and accurate digital bioanalysis, paving a way for various biomedical applications, such as diagnosis of viral infections.
Collapse
Affiliation(s)
| | - Jun Ando
- Cluster for Pioneering Research, RIKEN, Japan.
| | | | | | | | - Kazue Murai
- Cluster for Pioneering Research, RIKEN, Japan.
| | - Makiko Mori
- Cluster for Pioneering Research, RIKEN, Japan.
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University, Japan
| | - Takeshi Noda
- Institute for Life and Medical Sciences, Kyoto University, Japan
| | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Japan
- RCAST, The University of Tokyo, Japan
| | | |
Collapse
|
12
|
Zhou Y, Yu Z, Wu M, Lan Y, Jia C, Zhao J. Single-cell sorting using integrated pneumatic valve droplet microfluidic chip. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Chen L, Zhang C, Yadav V, Wong A, Senapati S, Chang HC. A home-made pipette droplet microfluidics rapid prototyping and training kit for digital PCR, microorganism/cell encapsulation and controlled microgel synthesis. Sci Rep 2023; 13:184. [PMID: 36604528 PMCID: PMC9813469 DOI: 10.1038/s41598-023-27470-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Droplet microfluidics offers a platform from which new digital molecular assay, disease screening, wound healing and material synthesis technologies have been proposed. However, the current commercial droplet generation, assembly and imaging technologies are too expensive and rigid to permit rapid and broad-range tuning of droplet features/cargoes. This rapid prototyping bottleneck has limited further expansion of its application. Herein, an inexpensive home-made pipette droplet microfluidics kit is introduced. This kit includes elliptical pipette tips that can be fabricated with a simple DIY (Do-It-Yourself) tool, a unique tape-based or 3D printed shallow-center imaging chip that allows rapid monolayer droplet assembly/immobilization and imaging with a smart-phone camera or miniature microscope. The droplets are generated by manual or automatic pipetting without expensive and lab-bound microfluidic pumps. The droplet size and fluid viscosity/surface tension can be varied significantly because of our particular droplet generation, assembly and imaging designs. The versatility of this rapid prototyping kit is demonstrated with three representative applications that can benefit from a droplet microfluidic platform: (1) Droplets as microreactors for PCR reaction with reverse transcription to detect and quantify target RNAs. (2) Droplets as microcompartments for spirulina culturing and the optical color/turbidity changes in droplets with spirulina confirm successful photosynthetic culturing. (3) Droplets as templates/molds for controlled synthesis of gold-capped polyacrylamide/gold composite Janus microgels. The easily fabricated and user-friendly portable kit is hence ideally suited for design, training and educational labs.
Collapse
Affiliation(s)
- Liao Chen
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Chenguang Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Vivek Yadav
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Angela Wong
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
14
|
Li B, Ma X, Cheng J, Tian T, Guo J, Wang Y, Pang L. Droplets microfluidics platform-A tool for single cell research. Front Bioeng Biotechnol 2023; 11:1121870. [PMID: 37152651 PMCID: PMC10154550 DOI: 10.3389/fbioe.2023.1121870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Cells are the most basic structural and functional units of living organisms. Studies of cell growth, differentiation, apoptosis, and cell-cell interactions can help scientists understand the mysteries of living systems. However, there is considerable heterogeneity among cells. Great differences between individuals can be found even within the same cell cluster. Cell heterogeneity can only be clearly expressed and distinguished at the level of single cells. The development of droplet microfluidics technology opens up a new chapter for single-cell analysis. Microfluidic chips can produce many nanoscale monodisperse droplets, which can be used as small isolated micro-laboratories for various high-throughput, precise single-cell analyses. Moreover, gel droplets with good biocompatibility can be used in single-cell cultures and coupled with biomolecules for various downstream analyses of cellular metabolites. The droplets are also maneuverable; through physical and chemical forces, droplets can be divided, fused, and sorted to realize single-cell screening and other related studies. This review describes the channel design, droplet generation, and control technology of droplet microfluidics and gives a detailed overview of the application of droplet microfluidics in single-cell culture, single-cell screening, single-cell detection, and other aspects. Moreover, we provide a recent review of the application of droplet microfluidics in tumor single-cell immunoassays, describe in detail the advantages of microfluidics in tumor research, and predict the development of droplet microfluidics at the single-cell level.
Collapse
Affiliation(s)
- Bixuan Li
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Xi Ma
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Jianghong Cheng
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Tian Tian
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Jiao Guo
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Yang Wang
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
- *Correspondence: Yang Wang,
| | - Long Pang
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| |
Collapse
|
15
|
Shum EY, Lai JH, Li S, Lee HG, Soliman J, Raol VK, Lee CK, Fodor SP, Fan HC. Next-Generation Digital Polymerase Chain Reaction: High-Dynamic-Range Single-Molecule DNA Counting via Ultrapartitioning. Anal Chem 2022; 94:17868-17876. [PMID: 36508568 PMCID: PMC9798378 DOI: 10.1021/acs.analchem.2c03649] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Digital PCR (dPCR) was first conceived for single-molecule quantitation. However, current dPCR systems often require DNA templates to share partitions due to limited partitioning capacities. Here, we introduce UltraPCR, a next-generation dPCR system where DNA counting is performed in a single-molecule regimen through a 6-log dynamic range using a swift and parallelized workflow. Each UltraPCR reaction is divided into >30 million partitions without microfluidics to achieve single template occupancy. Combined with a unique emulsion chemistry, partitions are optically clear, enabling the use of a three-dimensional imaging technique to rapidly detect DNA-positive partitions. Single-molecule occupancy also allows for more straightforward multiplex assay development due to the absence of partition-specific competition. As a proof of concept, we developed a 222-plex UltraPCR assay and demonstrated its potential use as a rapid, low-cost screening assay for noninvasive prenatal testing for as low as 4% trisomy fraction samples with high precision, accuracy, and reproducibility.
Collapse
|
16
|
Shi W, Bell S, Iyer H, Brenden CK, Zhang Y, Kim S, Park I, Bashir R, Sweedler J, Vlasov Y. Integrated silicon microfluidic chip for picoliter-scale analyte segmentation and microscale printing for mass spectrometry imaging. LAB ON A CHIP 2022; 23:72-80. [PMID: 36477760 PMCID: PMC9764807 DOI: 10.1039/d2lc00688j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/12/2022] [Indexed: 06/17/2023]
Abstract
A silicon single-chip microfluidics system that integrates microscale fluidic channels, an analyte segmentation device, and a nozzle for electrohydrodynamic-assisted printing is designed for hyphenation with MALDI mass spectrometry (MS) imaging. A miniaturized T-junction segments analytes into monodisperse picoliter oil-isolated compartments. The printing nozzle deposits generated droplets one-by-one into an array on a conductive substrate without splitting or coalescing. Virtually single-shot MS analysis is enabled due to the ultrasmall droplet volumes and highly localized printing. The signal-to-noise ratio indicates that detection limits at the attomole level are achieved for γ-aminobutyric acid.
Collapse
Affiliation(s)
- Weihua Shi
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, IL 61801, USA.
| | - Sara Bell
- Department of Chemistry and the Beckman Institute, University of Illinois Urbana Champaign, IL 61801, USA
| | - Hrishikesh Iyer
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, IL 61801, USA.
| | | | - Yan Zhang
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, IL 61801, USA.
| | - Sungho Kim
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, IL 61801, USA.
| | - Insu Park
- Department of Bioengineering, University of Illinois Urbana Champaign, IL 61801, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois Urbana Champaign, IL 61801, USA
| | - Jonathan Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois Urbana Champaign, IL 61801, USA
| | - Yurii Vlasov
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, IL 61801, USA.
- Department of Bioengineering, University of Illinois Urbana Champaign, IL 61801, USA
| |
Collapse
|
17
|
Rojek K, Ćwiklińska M, Kuczak J, Guzowski J. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chem Rev 2022; 122:16839-16909. [PMID: 36108106 PMCID: PMC9706502 DOI: 10.1021/acs.chemrev.1c00798] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.
Collapse
Affiliation(s)
- Katarzyna
O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Ćwiklińska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Kuczak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
18
|
Shen R, Lv A, Yi S, Wang P, Mak PI, Martins RP, Jia Y. Nucleic acid analysis on electrowetting-based digital microfluidics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Xia Y, Chu X, Zhao C, Wang N, Yu J, Jin Y, Sun L, Ma S. A Glass-Ultra-Thin PDMS Film-Glass Microfluidic Device for Digital PCR Application Based on Flexible Mold Peel-Off Process. MICROMACHINES 2022; 13:mi13101667. [PMID: 36296020 PMCID: PMC9608979 DOI: 10.3390/mi13101667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 05/27/2023]
Abstract
The microfluidic device (MFD) with a glass−PDMS−glass (G-P-G) structure is of interest for a wide range of applications. However, G-P-G MFD fabrication with an ultra-thin PDMS film (especially thickness less than 200 μm) is still a big challenge because the ultra-thin PDMS film is easily deformed, curled, and damaged during demolding and transferring. This study aimed to report a thickness-controllable and low-cost fabrication process of the G-P-G MFD with an ultra-thin PDMS film based on a flexible mold peel-off process. A patterned photoresist layer was deposited on a polyethylene terephthalate (PET) film to fabricate a flexible mold that could be demolded softly to achieve a rigid structure of the glass−PDMS film. The thickness of ultra-thin patterned PDMS could reach less than 50 μm without damage to the PDMS film. The MFD showcased the excellent property of water evaporation inhibition (water loss < 10%) during PCR thermal cycling because of the ultra-thin PDMS film. Its low-cost fabrication process and excellent water evaporation inhibition present extremely high prospects for digital PCR application.
Collapse
Affiliation(s)
- Yanming Xia
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Xianglong Chu
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
| | - Caiming Zhao
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanxin Wang
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Juan Yu
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
| | - Yufeng Jin
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lijun Sun
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shenglin Ma
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
20
|
Postek W, Pacocha N, Garstecki P. Microfluidics for antibiotic susceptibility testing. LAB ON A CHIP 2022; 22:3637-3662. [PMID: 36069631 DOI: 10.1039/d2lc00394e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rise of antibiotic resistance is a threat to global health. Rapid and comprehensive analysis of infectious strains is critical to reducing the global use of antibiotics, as informed antibiotic use could slow down the emergence of resistant strains worldwide. Multiple platforms for antibiotic susceptibility testing (AST) have been developed with the use of microfluidic solutions. Here we describe microfluidic systems that have been proposed to aid AST. We identify the key contributions in overcoming outstanding challenges associated with the required degree of multiplexing, reduction of detection time, scalability, ease of use, and capacity for commercialization. We introduce the reader to microfluidics in general, and we analyze the challenges and opportunities related to the field of microfluidic AST.
Collapse
Affiliation(s)
- Witold Postek
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA 02142, USA.
| | - Natalia Pacocha
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| |
Collapse
|
21
|
Zhu M, Shan Z, Ning W, Wu X. Image Segmentation and Quantification of Droplet dPCR Based on Thermal Bubble Printing Technology. SENSORS (BASEL, SWITZERLAND) 2022; 22:7222. [PMID: 36236321 PMCID: PMC9573249 DOI: 10.3390/s22197222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Thermal inkjet printing can generate more than 300,000 droplets of picoliter scale within one second stably, and the image analysis workflow is used to quantify the positive and negative values of the droplets. In this paper, the SimpleBlobDetector detection algorithm is used to identify and localize droplets with a volume of 24 pL in bright field images and suppress bright spots and scratches when performing droplet location identification. The polynomial surface fitting of the pixel grayscale value of the fluorescence channel image can effectively compensate and correct the image vignetting caused by the optical path, and the compensated fluorescence image can accurately classify positive and negative droplets by the k-means clustering algorithm. 20 µL of the sample solution in the result reading chip can produce more than 100,000 effective droplets. The effective droplet identification correct rate of 20 images of random statistical samples can reach more than 99% and the classification accuracy of positive and negative droplets can reach more than 98% on average. This paper overcomes the problem of effectively classifying positive and negative droplets caused by the poor image quality of photographed picolitre ddPCR droplets caused by optical hardware limitations.
Collapse
Affiliation(s)
- Mingjie Zhu
- School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Zilong Shan
- School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Wei Ning
- Shanghai Industrial µTechnology Research Institute, Shanghai 201800, China
| | - Xuanye Wu
- School of Microelectronics, Shanghai University, Shanghai 200444, China
- Shanghai Industrial µTechnology Research Institute, Shanghai 201800, China
| |
Collapse
|
22
|
Ogo A, Okayama S, Nakatani M, Hashimoto M. CO 2-Laser-Micromachined, Polymer Microchannels with a Degassed PDMS slab for the Automatic Production of Monodispersed Water-in-Oil Droplets. MICROMACHINES 2022; 13:1389. [PMID: 36144013 PMCID: PMC9502940 DOI: 10.3390/mi13091389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
In our recent study, we fabricated a pump/tube-connection-free microchip comprising top and bottom polydimethylsiloxane (PDMS) slabs to produce monodispersed water-in-oil droplets in a fully automated, fluid-manipulation fashion. All microstructures required for droplet production were directly patterned on the surfaces of the two PDMS slabs through CO2-laser micromachining, facilitating the fast fabrication of the droplet-production microchips. In the current extension study, we replaced the bottom PDMS slab, which served as a microfluidic layer in the microchip, with a poly(methyl methacrylate) (PMMA) slab. This modification was based on our idea that the bottom PDMS slab does not contribute to the automatic fluid manipulation and that replacing the bottom PDMS slab with a more affordable and accessible, ready-to-use polymer slab, such as a PMMA, would further facilitate the rapid and low-cost fabrication of the connection-free microchips. Using a new PMMA/PDMS microchip, we produced water-in-oil droplets with high degree of size-uniformity (a coefficient of variation for droplet diameters of <5%) without a decrease in the droplet production rate (~270 droplets/s) as compared with that achieved via the previous PDMS/PDMS microchip (~220 droplets/s).
Collapse
|
23
|
Iyer V, Yang Z, Ko J, Weissleder R, Issadore D. Advancing microfluidic diagnostic chips into clinical use: a review of current challenges and opportunities. LAB ON A CHIP 2022; 22:3110-3121. [PMID: 35674283 PMCID: PMC9798730 DOI: 10.1039/d2lc00024e] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Microfluidic diagnostic (μDX) technologies miniaturize sensors and actuators to the length-scales that are relevant to biology: the micrometer scale to interact with cells and the nanometer scale to interrogate biology's molecular machinery. This miniaturization allows measurements of biomarkers of disease (cells, nanoscale vesicles, molecules) in clinical samples that are not detectable using conventional technologies. There has been steady progress in the field over the last three decades, and a recent burst of activity catalyzed by the COVID-19 pandemic. In this time, an impressive and ever-growing set of technologies have been successfully validated in their ability to measure biomarkers in clinical samples, such as blood and urine, with sensitivity and specificity not possible using conventional tests. Despite our field's many accomplishments to date, very few of these technologies have been successfully commercialized and brought to clinical use where they can fulfill their promise to improve medical care. In this paper, we identify three major technological trends in our field that we believe will allow the next generation of μDx to have a major impact on the practice of medicine, and which present major opportunities for those entering the field from outside disciplines: 1. the combination of next generation, highly multiplexed μDx technologies with machine learning to allow complex patterns of multiple biomarkers to be decoded to inform clinical decision points, for which conventional biomarkers do not necessarily exist. 2. The use of micro/nano devices to overcome the limits of binding affinity in complex backgrounds in both the detection of sparse soluble proteins and nucleic acids in blood and rare circulating extracellular vesicles. 3. A suite of recent technologies that obviate the manual pre-processing and post-processing of samples before they are measured on a μDX chip. Additionally, we discuss economic and regulatory challenges that have stymied μDx translation to the clinic, and highlight strategies for successfully navigating this challenging space.
Collapse
Affiliation(s)
- Vasant Iyer
- Electrical and Systems Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Zijian Yang
- Mechanical Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jina Ko
- Bioengineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts, USA
| | - David Issadore
- Electrical and Systems Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Bioengineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Jiang W, Chen L, Wang J, Shao X, Jiang M, Chen Z, Wang J, Huang Y, Fei P. Open-top light-sheet imaging of CLEAR emulsion for high-throughput loss-free analysis of massive fluorescent droplets. Biomed Phys Eng Express 2022; 8. [PMID: 35767965 DOI: 10.1088/2057-1976/ac7d0f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022]
Abstract
Digital droplet PCR (ddPCR) is classified as the third-generation PCR technology that enables absolute quantitative detection of nucleic acid molecules and has become an increasingly powerful tool for clinic diagnosis. We previously established a CLEAR-dPCR technique based on the combination of CLEAR droplets generated by micro-centrifuge-based microtubule arrays (MiCA) andinsitu3D readout by light-sheet fluorescence imaging. This CLEAR-dPCR technique attains very high readout speed and dynamic range. Meanwhile, it is free from sample loss and contamination, showing its advantages over commercial d-PCR technologies. However, a conventional orthogonal light-sheet imaging setup in CLEAR d-PCR cannot image multiple centrifuge tubes, thereby limiting its widespread application to large-scale, high-speed dd-PCR assays. Herein, we propose an in-parallel 3D dd-PCR readout technique based on an open-top light-sheet microscopy setup. This approach can continuously scan multiple centrifuge tubes which contain CLEAR emulsions with highly diverse concentrations, and thus further boost the scale and throughput of our 3D dd-PCR technique.
Collapse
Affiliation(s)
- Wen Jiang
- School of Optical and Electronic Information , Huazhong University of Science and Technology, E417, Wuhan, Hubei, 430074, CHINA
| | - Longbiao Chen
- School of Optical and Electronic Information , Huazhong University of Science and Technology, E417, Wuhan, Hubei, 430074, CHINA
| | - Jie Wang
- Huazhong University of Science and Technology, E417, School of Optical and Electronic Information, Wuhan, Hubei, 430074, CHINA
| | - Xinyang Shao
- Peking-Tsinghua Center for Life Sciences, Peking University, Peking-Tsinghua Center for Life Sciences, Beijing, Beijing, 100871, CHINA
| | - Mengcheng Jiang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Biomedical Pioneering Innovation Center (BIOPIC), Beijing, Beijing, 100871, CHINA
| | - Zitian Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Biomedical Pioneering Innovation Center (BIOPIC), Beijing, Beijing, 100871, CHINA
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, School of Life Sciences, Beijing, Beijing, 100084, CHINA
| | - Yanyi Huang
- College of Engineering, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, College of Engineering, and Biodynamic Optical Imaging Center (BIOPIC), Beijing, 100871, CHINA
| | - Peng Fei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, E417, Wuhan, 430074, CHINA
| |
Collapse
|
25
|
Yaginuma H, Ohtake K, Akamatsu T, Noji H, Tabata KV. A microreactor sealing method using adhesive tape for digital bioassays. LAB ON A CHIP 2022; 22:2001-2010. [PMID: 35481587 DOI: 10.1039/d2lc00065b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Digital assays using microreactors fabricated on solid substrates are useful for carrying out sensitive assays of infectious diseases and other biological tests. However, sealing of the microchambers using fluid oil is difficult for non-experts, and thus hinders the widespread use of digital microreactor assays. Here, we propose the physical isolation of tiny reactors with adhesive tape (PITAT) using simple, commercially available pressure-sensitive adhesive (PSA) tape as a separator of the microreactors. We confirmed that PSA tape can effectively seal the microreactors and prevent molecules from diffusing out. By testing several types of adhesive tape, we found that rubber-based adhesives are the most suitable for this purpose. In addition, we demonstrated that single-molecule enzyme assays can be successfully performed inside microreactors sealed with PSA tape. The results obtained using PITAT are quantitatively comparable to conventional oil sealing, although it is quick and cost-effective. Finally, we demonstrated that single-particle virus counting of the influenza virus can be achieved using PITAT. Collectively, our results suggest that PITAT may be suitable for use in the design of sensitive tests for infectious diseases at the point of care, where no sophisticated equipment or machines are available.
Collapse
Affiliation(s)
- Hideyuki Yaginuma
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Kuniko Ohtake
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Takako Akamatsu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Kazuhito V Tabata
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
- Sothis Technologies, Tokyo, Japan
| |
Collapse
|
26
|
Man J, Man L, Zhou C, Li J, Liang S, Zhang S, Li J. A Facile Single-Phase-Fluid-Driven Bubble Microfluidic Generator for Potential Detection of Viruses Suspended in Air. BIOSENSORS 2022; 12:294. [PMID: 35624594 PMCID: PMC9138964 DOI: 10.3390/bios12050294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Microfluidics devices have widely been employed to prepare monodispersed microbubbles/droplets, which have promising applications in biomedical engineering, biosensor detection, drug delivery, etc. However, the current reported microfluidic devices need to control at least two-phase fluids to make microbubbles/droplets. Additionally, it seems to be difficult to make monodispersed microbubbles from the ambient air using currently reported microfluidic structures. Here, we present a facile approach to making monodispersed microbubbles directly from the ambient air by driving single-phase fluid. The reported single-phase-fluid microfluidic (SPFM) device has a typical co-flow structure, while the adjacent space between the injection tube and the collection tube is open to the air. The flow condition inside the SPFM device was systematically studied. By adjusting the flow rate of the single-phase fluid, bubbles were generated, the sizes of which could be tuned precisely. This facile bubble generator may have significant potential as a detection sensor in detecting viruses in spread droplets or haze particles in ambient air.
Collapse
Affiliation(s)
- Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (L.M.); (C.Z.); (J.L.); (S.Z.); (J.L.)
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Luming Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (L.M.); (C.Z.); (J.L.); (S.Z.); (J.L.)
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Chenchen Zhou
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (L.M.); (C.Z.); (J.L.); (S.Z.); (J.L.)
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (L.M.); (C.Z.); (J.L.); (S.Z.); (J.L.)
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Shuaishuai Liang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100084, China;
| | - Song Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (L.M.); (C.Z.); (J.L.); (S.Z.); (J.L.)
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (L.M.); (C.Z.); (J.L.); (S.Z.); (J.L.)
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| |
Collapse
|
27
|
Zhang J, Shu S, Guan X, Yang N. Lattice Boltzmann simulation of drop splitting in a fractal tree-like microchannel. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Yan Z, Zhang H, Wang X, Gaňová M, Lednický T, Zhu H, Liu X, Korabečná M, Chang H, Neužil P. An image-to-answer algorithm for fully automated digital PCR image processing. LAB ON A CHIP 2022; 22:1333-1343. [PMID: 35258048 DOI: 10.1039/d1lc01175h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The digital polymerase chain reaction (dPCR) is an irreplaceable variant of PCR techniques due to its capacity for absolute quantification and detection of rare deoxyribonucleic acid (DNA) sequences in clinical samples. Image processing methods, including micro-chamber positioning and fluorescence analysis, determine the reliability of the dPCR results. However, typical methods demand high requirements for the chip structure, chip filling, and light intensity uniformity. This research developed an image-to-answer algorithm with single fluorescence image capture and known image-related error removal. We applied the Hough transform to identify partitions in the images of dPCR chips, the 2D Fourier transform to rotate the image, and the 3D projection transformation to locate and correct the positions of all partitions. We then calculated each partition's average fluorescence amplitudes and generated a 3D fluorescence intensity distribution map of the image. We subsequently corrected the fluorescence non-uniformity between partitions based on the map and achieved statistical results of partition fluorescence intensities. We validated the proposed algorithms using different contents of the target DNA. The proposed algorithm is independent of the dPCR chip structure damage and light intensity non-uniformity. It also provides a reliable alternative to analyze the results of chip-based dPCR systems.
Collapse
Affiliation(s)
- Zhiqiang Yan
- School of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, P.R. China.
| | - Haoqing Zhang
- School of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, P.R. China.
| | - Xinlu Wang
- School of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, P.R. China.
| | - Martina Gaňová
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Tomáš Lednický
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Hanliang Zhu
- School of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, P.R. China.
| | - Xiaocheng Liu
- School of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, P.R. China.
| | - Marie Korabečná
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague, Czech Republic
| | - Honglong Chang
- School of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, P.R. China.
| | - Pavel Neužil
- School of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, P.R. China.
| |
Collapse
|
29
|
Tan LL, Loganathan N, Agarwalla S, Yang C, Yuan W, Zeng J, Wu R, Wang W, Duraiswamy S. Current commercial dPCR platforms: technology and market review. Crit Rev Biotechnol 2022; 43:433-464. [PMID: 35291902 DOI: 10.1080/07388551.2022.2037503] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Digital polymerase chain reaction (dPCR) technology has provided a new technique for molecular diagnostics, with superior advantages, such as higher sensitivity, precision, and specificity over quantitative real-time PCRs (qPCR). Eight companies have offered commercial dPCR instruments: Fluidigm Corporation, Bio-Rad, RainDance Technologies, Life Technologies, Qiagen, JN MedSys Clarity, Optolane, and Stilla Technologies Naica. This paper discusses the working principle of each offered dPCR device and compares the associated: technical aspects, usability, costs, and current applications of each dPCR device. Lastly, up-and-coming dPCR technologies are also presented, as anticipation of how the dPCR device landscape may likely morph in the next few years.
Collapse
Affiliation(s)
- Li Ling Tan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore.,Materials Science and Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Nitin Loganathan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Sushama Agarwalla
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Chun Yang
- Mechanical and Aerospace Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Weiyong Yuan
- Faculty of Materials & Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, China.,Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, China
| | - Jasmine Zeng
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Ruige Wu
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Wei Wang
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Suhanya Duraiswamy
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| |
Collapse
|
30
|
Yu Y, Yu Z, Pan X, Xu L, Guo R, Qian X, Shen F. Multiplex digital PCR with digital melting curve analysis on a self-partitioning SlipChip. Analyst 2022; 147:625-633. [PMID: 35107102 DOI: 10.1039/d1an01916c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Digital polymerase chain reaction (digital PCR) can provide absolute quantification of target nucleic acids with high sensitivity, excellent precision, and superior resolution. Digital PCR has broad applications in both life science research and clinical molecular diagnostics. However, limited by current fluorescence imaging methods, parallel quantification of multiple target molecules in a single digital PCR remains challenging. Here, we present a multiplex digital PCR method using digital melting curve analysis (digital MCA) with a SlipChip microfluidic system. The self-partitioning SlipChip (sp-SlipChip) can generate an array of nanoliter microdroplets with trackable physical positions using a simple loading-and-slipping operation. A fluorescence imaging adaptor and an in situ thermal cycler can be used to perform digital PCR and digital MCA on the sp-SlipChip. The unique signature melting temperature (Tm) designed for amplification products can be used as a fingerprint to further classify the positive amplification partitions into different subgroups. Amplicons with Tm differences as low as 1.5 degrees celsius were clearly separated, and multiple amplicons in the same partition could also be distinguished by digital MCA. We further demonstrated this digital MCA method with simultaneous digital quantification of five common respiratory pathogens, including Staphylococcus aureus, Acinetobacter baumannii, Streptococcus pneumoniae, Hemophilus influenzae, and Klebsiella pneumoniae. Since digital MCA only requires an intercalation dye instead of sequence-specific hydrolysis probes to perform multiplex digital PCR analysis, it can be less expensive and not limited to the number of fluorescence channels.
Collapse
Affiliation(s)
- Yan Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Ziqing Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Xufeng Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Rui Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Xiaohua Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| |
Collapse
|
31
|
Advances in improvement strategies of digital nucleic acid amplification for pathogen detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Oikemus SR, Pfister EL, Sapp E, Chase KO, Kennington LA, Hudgens E, Miller R, Zhu LJ, Chaudhary A, Mick EO, Sena-Esteves M, Wolfe SA, DiFiglia M, Aronin N, Brodsky MH. Allele-Specific Knockdown of Mutant Huntingtin Protein via Editing at Coding Region Single Nucleotide Polymorphism Heterozygosities. Hum Gene Ther 2022; 33:25-36. [PMID: 34376056 PMCID: PMC8819514 DOI: 10.1089/hum.2020.323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Huntington's disease (HD) is a devastating, autosomal dominant neurodegenerative disease caused by a trinucleotide repeat expansion in the huntingtin (HTT) gene. Inactivation of the mutant allele by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 based gene editing offers a possible therapeutic approach for this disease, but permanent disruption of normal HTT function might compromise adult neuronal function. Here, we use a novel HD mouse model to examine allele-specific editing of mutant HTT (mHTT), with a BAC97 transgene expressing mHTT and a YAC18 transgene expressing normal HTT. We achieve allele-specific inactivation of HTT by targeting a protein coding sequence containing a common, heterozygous single nucleotide polymorphism (SNP). The outcome is a marked and allele-selective reduction of mHTT protein in a mouse model of HD. Expression of a single CRISPR-Cas9 nuclease in neurons generated a high frequency of mutations in the targeted HD allele that included both small insertion/deletion (InDel) mutations and viral vector insertions. Thus, allele-specific targeting of InDel and insertion mutations to heterozygous coding region SNPs provides a feasible approach to inactivate autosomal dominant mutations that cause genetic disease.
Collapse
Affiliation(s)
- Sarah R. Oikemus
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Edith L. Pfister
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Ellen Sapp
- Department of Neurology, Harvard Medical School and MassGeneral Institute for Neurodegenerative Disease, Charlestown, Massachusetts, USA
| | - Kathryn O. Chase
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lori A. Kennington
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Edward Hudgens
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Rachael Miller
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lihua Julie Zhu
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Akanksh Chaudhary
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Eric O. Mick
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Miguel Sena-Esteves
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Scot A. Wolfe
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Marian DiFiglia
- Department of Neurology, Harvard Medical School and MassGeneral Institute for Neurodegenerative Disease, Charlestown, Massachusetts, USA
| | - Neil Aronin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Michael H. Brodsky
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
33
|
Yao J, Luo Y, Zhang Z, Li J, Li C, Li C, Guo Z, Wang L, Zhang W, Zhao H, Zhou L. The development of real-time digital PCR technology using an improved data classification method. Biosens Bioelectron 2021; 199:113873. [PMID: 34953301 DOI: 10.1016/j.bios.2021.113873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 02/09/2023]
Abstract
For digital polymerase chain reaction (PCR), data classification is always a crucial task. The dynamic real-time amplification process information of each partition is always ignored in typical digital PCR analysis, which can easily lead to inaccurate outcomes. In this work, an integrated device that offers real-time chip-based digital PCR analysis was established. In addition, an enhanced process-based classification model (PAM) was built and trained. And then the device and the analytical model were employed in classification tasks for different concentrations of Epstein-Barr Virus (EBV) plasmid quantification assays. The results indicated that the real-time analysis device achieved a linearity of 0.97, the classification method was able to distinguish the false-positive curves, and the recognition error of positive wells was decreased by 64.4% compared with typical static analysis techniques when low concentrations of samples were tested. With these advantages, it is supposed that the real-time digital PCR analysis apparatus and the improved classification method can be employed to enhance the performance of digital PCR technology.
Collapse
Affiliation(s)
- Jia Yao
- School of Electronic and Information Engineering, Soochow University, Suzhou, 215006, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Yuanyuan Luo
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Zhiqi Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Jinze Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Chuanyu Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen Guo
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Lirong Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Heming Zhao
- School of Electronic and Information Engineering, Soochow University, Suzhou, 215006, China.
| | - Lianqun Zhou
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
34
|
Hilton SH, White IM. Advances in the analysis of single extracellular vesicles: A critical review. SENSORS AND ACTUATORS REPORTS 2021; 3:100052. [PMID: 35098157 PMCID: PMC8792802 DOI: 10.1016/j.snr.2021.100052] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There is an ever-growing need for new cancer diagnostic approaches that provide earlier diagnosis as well as richer diagnostic, prognostic, and resistance information. Extracellular vesicles (EVs) recovered from a liquid biopsy have paradigm-shifting potential to offer earlier and more complete diagnostic information in the form of a minimally invasive liquid biopsy. However, much remains unknown about EVs, and current analytical approaches are unable to provide precise information about the contents and source of EVs. New approaches have emerged to analyze EVs at the single particle level, providing the opportunity to study biogenesis, correlate markers for higher specificity, and connect EV cargo with the source or destination. In this critical review we describe and analyze methods for single EV analysis that have emerged over the last five years. In addition, we note that current methods are limited in their adoption due to cost and complexity and we offer opportunities for the research community to address this challenge.
Collapse
|
35
|
Shen J, Zheng J, Li Z, Liu Y, Jing F, Wan X, Yamaguchi Y, Zhuang S. A rapid nucleic acid concentration measurement system with large field of view for a droplet digital PCR microfluidic chip. LAB ON A CHIP 2021; 21:3742-3747. [PMID: 34378610 DOI: 10.1039/d1lc00532d] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Droplet digital polymerase chain reaction (ddPCR) is an effective technique, with unparalleled sensitivity, for the absolute quantification of target nucleic acids. However, current commercial ddPCR devices for detecting the gene chip are time consuming due to complex image stitching. To address this issue, we propose a universal concentration determination system and realize one-time gene chip imaging with high resolution. All the functional units are controlled by self-developed software using the PyQt5 module in Python. Without stitching technology, images of the ddPCR chip (28 mm × 18 mm) containing 20 000 independent 0.81 nL micro chambers can be obtained in less than 15 seconds, which saves about 165 seconds. A white laser light source (2 mW cm-2) was employed as a substitute for the mercury lamp. Its wavelength matches well with typical fluorescent dyes (e.g., HEX, ROX and Cy5), and thus it can strengthen the fluorescence intensity for weak signals. The results also demonstrated that the correlation coefficient for the measured concentration and theoretical value was above 99%, by testing the ddPCR products with COVID-19 virus. Such a system can greatly reduce the time required for image acquisition and DNA concentration determination, and thus is able to speed up the lab-to-application process for ddPCR technology.
Collapse
Affiliation(s)
- Jinrong Shen
- Shanghai Key Lab of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jihong Zheng
- Shanghai Key Lab of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhenqing Li
- Shanghai Key Lab of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yourong Liu
- Shanghai Key Lab of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Fengxiang Jing
- Shanghai Turtle Technology Limited, Shanghai 200439, China
| | - Xinjun Wan
- Shanghai Key Lab of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yoshinori Yamaguchi
- Oono Joint Research laboratory, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Songlin Zhuang
- Shanghai Key Lab of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
36
|
Lyu W, Zhang J, Yu Y, Xu L, Shen F. Slip formation of a high-density droplet array for nucleic acid quantification by digital LAMP with a random-access system. LAB ON A CHIP 2021; 21:3086-3093. [PMID: 34160518 DOI: 10.1039/d1lc00361e] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Digital nucleic acid analysis (digital NAA) is an important tool for the precise quantification of nucleic acids. Various microfluidic-based approaches for digital NAA have been developed, but most methods require complex auxiliary control instruments, cumbersome device fabrication, or inconvenient preparation processes. A SlipChip is a microfluidic device that can generate and manipulate liquid partitions through simple movements of two microfluidic plates in close contact. However, the traditional SlipChip requires accurate alignment of microfeatures on different plates; therefore, the dimensions of the microwells and density of partitions can be constrained. Here, we developed a droplet array SlipChip (da-SlipChip) that can form droplets of various sizes at high density in a single slipping step. This process does not require precise overlapping microfeatures on different plates; therefore, the design flexibility and partition density can be significantly increased. We quantified SARS-CoV-2 nucleic acids extracted from the COVID-19 pseudovirus by digital loop-mediated isothermal amplification (LAMP) on a da-SlipChip with 21 696 of 0.25 nL droplets, and the results were in good agreement with those of the commercial digital PCR method of Stilla. Furthermore, we demonstrated a random-access system with a single-throughput fluorescence imager and a stackable thermal control instrument with nine independent heating modules. This random-access system with the da-SlipChip can greatly improve the total throughput and flexibility for digital isothermal nucleic acid quantification and significantly reduce the total waiting time.
Collapse
Affiliation(s)
- Weiyuan Lyu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Jiajie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Yan Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Lei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| |
Collapse
|
37
|
Sun C, Liu L, Vasudevan HN, Chang KC, Abate AR. Accurate Bulk Quantitation of Droplet Digital Polymerase Chain Reaction. Anal Chem 2021; 93:9974-9979. [PMID: 34252272 PMCID: PMC8829825 DOI: 10.1021/acs.analchem.1c00877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Droplet digital PCR
provides superior accuracy for nucleic acid
quantitation. The requirement of microfluidics to generate and analyze
the emulsions, however, is a barrier to its adoption, particularly
in low resource settings or clinical laboratories. Here, we report
a novel method to prepare ddPCR droplets by vortexing and readout
of the results by bulk analysis of recovered amplicons. We demonstrate
the approach by accurately quantitating SARS-CoV-2 sequences using
entirely bulk processing and no microfluidics. Our approach for quantitating
reactions should extend to all digital assays that generate amplicons,
including digital PCR and LAMP conducted in droplets, microchambers,
or nanoliter wells. More broadly, our approach combines important
attributes of ddPCR, including enhanced accuracy and robustness to
inhibition, with the high-volume sample processing ability of quantitative
PCR.
Collapse
Affiliation(s)
- Chen Sun
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Leqian Liu
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Harish N Vasudevan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States.,Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94158, United States
| | - Kai-Chun Chang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States.,California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California 94158, United States.,Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
38
|
Del Giudice F, D'Avino G, Maffettone PL. Microfluidic formation of crystal-like structures. LAB ON A CHIP 2021; 21:2069-2094. [PMID: 34002182 DOI: 10.1039/d1lc00144b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Crystal-like structures find application in several fields ranging from biomedical engineering to material science. For instance, droplet crystals are critical for high throughput assays and material synthesis, while particle crystals are important for particles and cell encapsulation, Drop-seq technologies, and single-cell analysis. Formation of crystal-like structures relies entirely on the possibility of manipulating with great accuracy the micrometer-size objects forming the crystal. In this context, microfluidic devices offer versatile tools for the precise manipulation of droplets and particles, thus enabling fabrication of crystal-like structures that form due to hydrodynamic interactions among droplets or particles. In this review, we aim at providing an holistic representation of crystal-like structure formation mediated by hydrodynamic interactions in microfluidic devices. We also discuss the physical origin of these hydrodynamic interactions and their relation to parameters such as device geometry, fluid properties, and flow conditions.
Collapse
Affiliation(s)
- Francesco Del Giudice
- System and Process Engineering Centre, College of Engineering, Fabian Way, Swansea, SA1 8EN, UK.
| | - Gaetano D'Avino
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Universitá degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Pier Luca Maffettone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Universitá degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
39
|
Xu G, Si H, Jing F, Sun P, Wu D. A Self-Priming Microfluidic Chip with Cushion Chambers for Easy Digital PCR. BIOSENSORS-BASEL 2021; 11:bios11050158. [PMID: 34069758 PMCID: PMC8155915 DOI: 10.3390/bios11050158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/17/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
A polydimethylsiloxane (PDMS)-based self-priming microfluidic chip with cushion chambers is presented in this study for robust and easy-operation digital polymerase chain reaction (dPCR). The chip has only one inlet and can partition samples autonomously through negative pressure, provided by a de-gassed PDMS layer with a multi-level vertical branching microchannel design. Meanwhile, cushion chambers make the chip capable of very robust use for sample partitioning. Finally, the proposed microfluidic chip showed excellent performance in the absolute quantification of a target gene by performing quantitative detection of a 10-fold serial dilution DNA template. Owing to its characteristics of easy operation, low cost, and high robustness, the proposed dPCR chip is expected to further promote the extensive application of digital PCR, especially in resource-limited settings.
Collapse
Affiliation(s)
- Gangwei Xu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China; (G.X.); (H.S.); (P.S.)
| | - Huaqing Si
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China; (G.X.); (H.S.); (P.S.)
| | - Fengxiang Jing
- Shanghai Turtle Technology Company Limited, Shanghai 200439, China;
| | - Peng Sun
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China; (G.X.); (H.S.); (P.S.)
| | - Dongping Wu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China; (G.X.); (H.S.); (P.S.)
- Correspondence:
| |
Collapse
|
40
|
Khater A, Abdelrehim O, Mohammadi M, Mohamad A, Sanati-Nezhad A. Thermal droplet microfluidics: From biology to cooling technology. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Meng X, Yu Y, Jin G. Numerical Simulation and Experimental Verification of Droplet Generation in Microfluidic Digital PCR Chip. MICROMACHINES 2021; 12:409. [PMID: 33917077 PMCID: PMC8067688 DOI: 10.3390/mi12040409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
The generation of droplets is one of the most critical steps in the droplet digital polymerase chain reaction (ddPCR) procedure. In this study, the mechanism of droplet formation in microchannel structure and factors affecting droplet formation were studied. The physical field of laminar two-phase flow level was used to simulate the process of droplet generation through microfluidic technology. The effect of the parameters including flow rate, surface tension, and viscosity on the generated droplet size were evaluated by the simulation. After that, the microfluidic chip that has the same dimension as the simulation was then, fabricated and evaluated. The chip was made by conventional SU-8 photolithography and injection molding. The accuracy of the simulation was validated by comparing the generated droplets in the real scenario with the simulation result. The relative error (RE) between experimentally measured droplet diameter and simulation results under different flow rate, viscosity, surface tension and contact angle was found less than 3.5%, 1.8%, 1.4%, and 1.2%, respectively. Besides, the coefficient of variation (CV) of the droplet diameter was less than 1%, which indicates the experimental droplet generation was of high stability and reliability. This study provides not only fundamental information for the design and experiment of droplet generation by microfluidic technology but also a reliable and efficient investigation method in the ddPCR field.
Collapse
Affiliation(s)
- Xiangkai Meng
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China; (X.M.); (Y.Y.)
- School of Science, Changchun University of Science and Technology, Changchun 130022, China
| | - Yuanhua Yu
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China; (X.M.); (Y.Y.)
- Key Laboratory of Biological Detection Engineering, Changchun 130022, China
| | - Guangyong Jin
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China; (X.M.); (Y.Y.)
- School of Science, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
42
|
Takahara H, Matsushita H, Inui E, Ochiai M, Hashimoto M. Convenient microfluidic cartridge for single-molecule droplet PCR using common laboratory equipment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:974-985. [PMID: 33533381 DOI: 10.1039/d0ay01779e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We have previously established a cost-efficient in-house system for single-molecule droplet polymerase chain reaction (PCR) using a polydimethylsiloxane microfluidic cartridge and common laboratory equipment. However, the microfluidic cartridge was only capable of generating monodisperse water-in-oil droplets. Therefore, careful and time-consuming manual droplet handling using a micropipette was required to transfer droplets between the three discrete steps involved in the workflow of droplet PCR-i.e., (1) droplet generation; (2) PCR amplification; and (3) determination of the fluorescence intensity of the thermocycled droplets. In the current study, we developed a new microfluidic cartridge consisting of four layers, with a thin glass slide as the bottom layer. In this cartridge, droplets generated in the uppermost polydimethylsiloxane microfluidic layer are delivered to the glass slide in an online fashion. After the accumulation of many droplets on the glass slide, the cartridge is placed on the flatbed heat block of a thermocycler for PCR amplification. Direct fluorescence imaging of the thermocycled droplets on the glass slide is then carried out using a conventional fluorescence microscope. Efficient heat transfer from the heat block to the settled droplets through the thin glass slide was confirmed by successful PCR amplification inside the droplets, even from single template molecules. The new cartridge eliminates the need for manual droplet transfer between the major steps of droplet PCR analysis, allowing more convenient single-molecule droplet PCR than in our previous studies.
Collapse
Affiliation(s)
- Hirokazu Takahara
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321, Japan.
| | - Hiroo Matsushita
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321, Japan.
| | - Erika Inui
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321, Japan.
| | - Masashi Ochiai
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321, Japan.
| | - Masahiko Hashimoto
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321, Japan.
| |
Collapse
|
43
|
Portable integrated digital PCR system for the point-of-care quantification of BK virus from urine samples. Biosens Bioelectron 2021; 175:112908. [DOI: 10.1016/j.bios.2020.112908] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 01/28/2023]
|
44
|
Schulz M, Ruediger J, Landmann E, Bakheit M, Frischmann S, Rassler D, Homann AR, von Stetten F, Zengerle R, Paust N. High Dynamic Range Digital Assay Enabled by Dual-Volume Centrifugal Step Emulsification. Anal Chem 2021; 93:2854-2860. [PMID: 33481582 DOI: 10.1021/acs.analchem.0c04182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We implement dual-volume centrifugal step emulsification on a single chip to extend the dynamic range of digital assays. Compared to published single-volume approaches, the range between the lower detection limit (LDL) and the upper limit of quantification (ULQ) increases by two orders of magnitude. In comparison to existing multivolume approaches, the dual-volume centrifugal step emulsification requires neither complex manufacturing nor specialized equipment. Sample metering into two subvolumes, droplet generation, and alignment of the droplets in two separate monolayers are performed automatically by microfluidic design. Digital quantification is demonstrated by exemplary droplet digital loop-mediated isothermal amplification (ddLAMP). Within 5 min, the reaction mix is split into subvolumes of 10.5 and 2.5 μL, and 2,5k and 176k droplets are generated with diameters of 31.6 ± 1.4 and 213.9 ± 7.5 μm, respectively. After 30 min of incubation, quantification over 5 log steps is demonstrated with a linearity of R2 ≥ 0.992.
Collapse
Affiliation(s)
- Martin Schulz
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Julian Ruediger
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Emelie Landmann
- Mast Diagnostica GmbH, Feldstraße 20, 23858 Reinfeld, Germany
| | | | | | - Daniela Rassler
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Ana R Homann
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Nils Paust
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
45
|
A Novel Approach to the Bioluminescent Detection of the SARS-CoV-2 ORF1ab Gene by Coupling Isothermal RNA Reverse Transcription Amplification with a Digital PCR Approach. Int J Mol Sci 2021; 22:ijms22031017. [PMID: 33498408 PMCID: PMC7864175 DOI: 10.3390/ijms22031017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 01/17/2023] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus, which first emerged in December 2019, represents an ongoing global public health emergency. Here, we developed an improved and highly sensitive approach to SARS-CoV-2 detection via coupling bioluminescence in real-time (BART) and reverse-transcriptase loop-mediated amplification (RT-LAMP) protocols (RT-LAMP-BART) and was also compatible with a digital LAMP system (Rainsuit), which did not allow for real-time quantification but did, nonetheless, facilitate absolute quantification with a comparable detection limit of 104 copies/mL. Through improving RNA availability in samples to ensure the target RNA present in reaction, we additionally developed a simulated digital RT-LAMP approach using this same principle to enlarge the overall reaction volume and to achieve real-time detection with a limit of detection of 10 copies/mL, and with further improvements in the overall dynamic range of this assay system being achieved through additional optimization.
Collapse
|
46
|
Sun C, Liu L, Vasudevan HN, Chang KC, Abate AR. Accurate bulk quantitation of droplet digital PCR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.13.424628. [PMID: 33469578 PMCID: PMC7814815 DOI: 10.1101/2021.01.13.424628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Droplet digital PCR provides superior accuracy in nucleic acid quantitation. The requirement of microfluidics to generate and analyze the emulsions, however, is a barrier to its adoption, particularly in low resource or clinical settings. Here, we report a novel method to prepare ddPCR droplets by vortexing and readout the results by bulk analysis of recovered amplicons. We demonstrate the approach by accurately quantitating SARS-CoV-2 sequences using entirely bulk processing and no microfluidics. Our approach for quantitating reactions should extend to all digital assays that generate amplicons, including digital PCR and LAMP conducted in droplets, microchambers, or nanoliter wells. More broadly, our approach combines important attributes of ddPCR, including enhanced accuracy and robustness to inhibition, with the high-volume sample processing ability of quantitative PCR.
Collapse
Affiliation(s)
- Chen Sun
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Leqian Liu
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Harish N. Vasudevan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kai-Chun Chang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Adam R. Abate
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
47
|
Bioluminescent detection of isothermal DNA amplification in microfluidic generated droplets and artificial cells. Sci Rep 2020; 10:21886. [PMID: 33318599 PMCID: PMC7736893 DOI: 10.1038/s41598-020-78996-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/02/2020] [Indexed: 12/02/2022] Open
Abstract
Microfluidic droplet generation affords precise, low volume, high throughput opportunities for molecular diagnostics. Isothermal DNA amplification with bioluminescent detection is a fast, low-cost, highly specific molecular diagnostic technique that is triggerable by temperature. Combining loop-mediated isothermal nucleic acid amplification (LAMP) and bioluminescent assay in real time (BART), with droplet microfluidics, should enable high-throughput, low copy, sequence-specific DNA detection by simple light emission. Stable, uniform LAMP–BART droplets are generated with low cost equipment. The composition and scale of these droplets are controllable and the bioluminescent output during DNA amplification can be imaged and quantified. Furthermore these droplets are readily incorporated into encapsulated droplet interface bilayers (eDIBs), or artificial cells, and the bioluminescence tracked in real time for accurate quantification off chip. Microfluidic LAMP–BART droplets with high stability and uniformity of scale coupled with high throughput and low cost generation are suited to digital DNA quantification at low template concentrations and volumes, where multiple measurement partitions are required. The triggerable reaction in the core of eDIBs can be used to study the interrelationship of the droplets with the environment and also used for more complex chemical processing via a self-contained network of droplets, paving the way for smart soft-matter diagnostics.
Collapse
|
48
|
Otuboah FY, Zheng J, Chen C, Wang Z, Wan X, Sun L. High-throughput and uniform large field-of-view multichannel fluorescence microscopy with super-thin dichroism for a dPCR gene chip. APPLIED OPTICS 2020; 59:10768-10776. [PMID: 33361897 DOI: 10.1364/ao.403495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
With the rapid development of digital precision medicine, the digital polymerase chain reaction (dPCR) deoxyribonucleic acid (DNA) gene chip integrates more channels with smaller size and larger area, which leads to a higher technical requirement for commercial optical fluorescence microscopy. The multitime image splicing method is widely used for DNA detection. However, it consumes time and has visible seamless image results. This work has demonstrated the design and fabrication of a three channel reversed and reduced fluorescence microscopic imaging system with high-resolution and large field of view for one-time imaging. We introduced the super ultra-thin dichroic mirror into the space between the objective lens and the gene chip to achieve a uniform illumination and a strong signal for the large area gene chip. The fabricated new fluorescence microscopy can take a one-time imaging for the 28×18mm dPCR gene chip with more than 20,000 multi micro-droplets within FAM, HEX, and ROX fluorescence channels. The optical system was designed with a numerical aperture (NA) of 0.106. Modulation transfer function (MTF) is higher than 0.675 at 70 lp/mm, and the function resolution capability is 10 µm with the whole magnification of -0.65times. The fly's eye lens-based illumination system was tested with a uniform output of over 90% in the whole ϕ34.7mm chip area. The design was tested, and the experimental results showed that this new system provides a fast, efficient, and professional optical imaging method for detection of the new emerged digital PCR gene chip, which has larger area and more channels.
Collapse
|
49
|
Feng Y, White AK, Hein JB, Appel EA, Fordyce PM. MRBLES 2.0: High-throughput generation of chemically functionalized spectrally and magnetically encoded hydrogel beads using a simple single-layer microfluidic device. MICROSYSTEMS & NANOENGINEERING 2020; 6:109. [PMID: 33299601 PMCID: PMC7704393 DOI: 10.1038/s41378-020-00220-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 05/04/2023]
Abstract
The widespread adoption of bead-based multiplexed bioassays requires the ability to easily synthesize encoded microspheres and conjugate analytes of interest to their surface. Here, we present a simple method (MRBLEs 2.0) for the efficient high-throughput generation of microspheres with ratiometric barcode lanthanide encoding (MRBLEs) that bear functional groups for downstream surface bioconjugation. Bead production in MRBLEs 2.0 relies on the manual mixing of lanthanide/polymer mixtures (each of which comprises a unique spectral code) followed by droplet generation using single-layer, parallel flow-focusing devices and the off-chip batch polymerization of droplets into beads. To streamline downstream analyte coupling, MRBLEs 2.0 crosslinks copolymers bearing functional groups on the bead surface during bead generation. Using the MRBLEs 2.0 pipeline, we generate monodisperse MRBLEs containing 48 distinct well-resolved spectral codes with high throughput (>150,000/min and can be boosted to 450,000/min). We further demonstrate the efficient conjugation of oligonucleotides and entire proteins to carboxyl MRBLEs and of biotin to amino MRBLEs. Finally, we show that MRBLEs can also be magnetized via the simultaneous incorporation of magnetic nanoparticles with only a minor decrease in the potential code space. With the advantages of dramatically simplified device fabrication, elimination of the need for custom-made equipment, and the ability to produce spectrally and magnetically encoded beads with direct surface functionalization with high throughput, MRBLEs 2.0 can be directly applied by many labs towards a wide variety of downstream assays, from basic biology to diagnostics and other translational research.
Collapse
Affiliation(s)
- Yinnian Feng
- Department of Genetics, Stanford University, Stanford, CA 94305 USA
| | - Adam K. White
- Department of Genetics, Stanford University, Stanford, CA 94305 USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA
| | - Jamin B. Hein
- Department of Biology, Stanford University, Stanford, CA 94305 USA
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Eric A. Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305 USA
| | - Polly M. Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305 USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305 USA
- Chan Zuckerberg Biohub, San Francisco, CA 94110 USA
| |
Collapse
|
50
|
Compressed Air-Driven Continuous-Flow Thermocycled Digital PCR for HBV Diagnosis in Clinical-Level Serum Sample Based on Single Hot Plate. Molecules 2020; 25:molecules25235646. [PMID: 33266146 PMCID: PMC7731400 DOI: 10.3390/molecules25235646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
We report a novel compressed air-driven continuous-flow digital PCR (dPCR) system based on a 3D microfluidic chip and self-developed software system to realize real-time monitoring. The system can ensure the steady transmission of droplets in long tubing without an external power source and generate stable droplets of suitable size for dPCR by two needles and a narrowed Teflon tube. The stable thermal cycle required by dPCR can be achieved by using only one constant temperature heater. In addition, our system has realized the real-time detection of droplet fluorescence in each thermal cycle, which makes up for the drawbacks of the end-point detection method used in traditional continuous-flow dPCR. This continuous-flow digital PCR by the compressed air-driven method can meet the requirements of droplet thermal cycle and diagnosis in a clinical-level serum sample. Comparing the detection results of clinical samples (hepatitis B virus serum) with commercial instruments (CFX Connect; Bio Rad, Hercules, CA, USA), the linear correlation reached 0.9995. Because the system greatly simplified the traditional dPCR process, this system is stable and user-friendly.
Collapse
|