1
|
Al-Hussaini AS, Abdel-Hameed EM, Hassan MER. Efficient synthesis and photocatalytic activity of newly synthesized core-shell nanocomposites. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2023.2194371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Ayman S. Al-Hussaini
- Chemistry Department, Faculty of Science, Port Said University, Port Fouad, Egypt
| | | | - Mohamed E. R. Hassan
- Chemistry Department, Faculty of Science, Port Said University, Port Fouad, Egypt
| |
Collapse
|
2
|
Scale-up approach for the preparation of magnetic ferrite nanocubes and other shapes with benchmark performance for magnetic hyperthermia applications. Nat Protoc 2023; 18:783-809. [PMID: 36707724 DOI: 10.1038/s41596-022-00779-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/22/2022] [Indexed: 01/28/2023]
Abstract
Magnetic nanoparticles are increasingly used in medical applications, including cancer treatment by magnetic hyperthermia. This protocol describes a solvothermal-based process to prepare, at the gram scale, ferrite nanoparticles with well-defined shape, i.e., nanocubes, nanostars and other faceted nanoparticles, and with fine control of structural/magnetic properties to achieve point-of-reference magnetic hyperthermia performance. This straightforward method comprises simple steps: (i) making a homogeneous alcoholic solution of a surfactant and an alkyl amine; (ii) adding an organometallic metal precursor together with an aldehyde molecule, which acts as the key shape directing agent; and (iii) reacting the mixture in an autoclave for solvothermal crystallization. The shape of the ferrite nanoparticles can be controlled by the structure of the aldehyde ligand. Benzaldehyde and its aromatic derivatives favor the formation of cubic ferrite nanoparticles while aliphatic aldehydes result in spherical nanoparticles. The replacement of the primary amine, used in the nanocubes synthesis, with a secondary/tertiary amine results in nanoparticles with star-like shape. The well-defined control in terms of shape, narrow size distribution (below 5%), compositional tuning and crystallinity guarantees the preparation, at the gram scale, of nanocubes/star-like nanoparticles that possess, under magnetic field conditions of clinical use, specific adsorption rates comparable to or even superior to those obtained through thermal decomposition methods, which are typically prepared at the milligram scale. Here, gram-scale nanoparticle products with benchmark features for magnetic hyperthermia applications can be prepared in ~10 h with an average level of expertise in chemistry.
Collapse
|
3
|
Nanomaterials-Based Combinatorial Therapy as a Strategy to Combat Antibiotic Resistance. Antibiotics (Basel) 2022; 11:antibiotics11060794. [PMID: 35740200 PMCID: PMC9220075 DOI: 10.3390/antibiotics11060794] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/10/2023] Open
Abstract
Since the discovery of antibiotics, humanity has been able to cope with the battle against bacterial infections. However, the inappropriate use of antibiotics, the lack of innovation in therapeutic agents, and other factors have allowed the emergence of new bacterial strains resistant to multiple antibiotic treatments, causing a crisis in the health sector. Furthermore, the World Health Organization has listed a series of pathogens (ESKAPE group) that have acquired new and varied resistance to different antibiotics families. Therefore, the scientific community has prioritized designing and developing novel treatments to combat these ESKAPE pathogens and other emergent multidrug-resistant bacteria. One of the solutions is the use of combinatorial therapies. Combinatorial therapies seek to enhance the effects of individual treatments at lower doses, bringing the advantage of being, in most cases, much less harmful to patients. Among the new developments in combinatorial therapies, nanomaterials have gained significant interest. Some of the most promising nanotherapeutics include polymers, inorganic nanoparticles, and antimicrobial peptides due to their bactericidal and nanocarrier properties. Therefore, this review focuses on discussing the state-of-the-art of the most significant advances and concludes with a perspective on the future developments of nanotherapeutic combinatorial treatments that target bacterial infections.
Collapse
|
4
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
5
|
Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004951. [PMID: 34194936 PMCID: PMC8224446 DOI: 10.1002/advs.202004951] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 05/17/2023]
Abstract
Composite materials are made from two or more constituent materials with distinct physical or chemical properties that, when combined, produce a material with characteristics which are at least to some degree different from its individual components. Nanocomposite materials are composed of different materials of which at least one has nanoscale dimensions. Common types of nanocomposites consist of a combination of two different elements, with a nanoparticle that is linked to, or surrounded by, another organic or inorganic material, for example in a core-shell or heterostructure configuration. A general family of nanoparticle composites concerns the coating of a nanoscale material by a polymer, SiO2 or carbon. Other materials, such as graphene or graphene oxide (GO), are used as supports forming composites when nanoscale materials are deposited onto them. In this Review we focus on magnetic nanocomposites, describing their synthetic methods, physical properties and applications. Several types of nanocomposites are presented, according to their composition, morphology or surface functionalization. Their applications are largely due to the synergistic effects that appear thanks to the co-existence of two different materials and to their interface, resulting in properties often better than those of their single-phase components. Applications discussed concern magnetically separable catalysts, water treatment, diagnostics-sensing and biomedicine.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics GroupDepartment of Physics and AstronomyUniversity College LondonLondonWC1E 6BTUK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle StreetLondonW1S 4BSUK
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology‐Hellas (FORTH)100 Nikolaou PlastiraHeraklionCrete70013Greece
| | - Alec P. LaGrow
- International Iberian Nanotechnology LaboratoryBraga4715‐330Portugal
| |
Collapse
|
6
|
Oleksa V, Macková H, Patsula V, Dydowiczová A, Janoušková O, Horák D. Doxorubicin-Conjugated Iron Oxide Nanoparticles: Surface Engineering and Biomedical Investigation. Chempluschem 2021; 85:1156-1163. [PMID: 32496029 DOI: 10.1002/cplu.202000360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/14/2020] [Indexed: 01/01/2023]
Abstract
Development of therapeutic systems to treat glioblastoma, the most common and aggressive brain tumor, belongs to priority tasks in cancer research. We have synthesized colloidally stable magnetic nanoparticles (Dh =336 nm) coated with doxorubicin (Dox) conjugated copolymers of N,N-dimethylacrylamide and either N-acryloylglycine methyl ester or N-acryloylmethyl 6-aminohexanoate. The terminal carboxyl groups of the copolymers were reacted with alendronate by carbodiimide formation. Methyl ester groups were then transferred to hydrazides for binding Dox by a hydrolytically labile hydrazone bond. The polymers were subsequently bound on the magnetic nanoparticles through bisphosphonate terminal groups. Finally, the anticancer effect of the Dox-conjugated particles was investigated using the U-87 glioblastoma cell line in terms of particle internalization and cell viability, which decreased to almost zero at a concentration of 100 μg of particles per ml. These results confirmed that poly(N,N-dimethylacrylamide)-coated magnetic nanoparticles can serve as a solid support for Dox delivery to glioblastoma cells.
Collapse
Affiliation(s)
- Viktoriia Oleksa
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Hana Macková
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Vitalii Patsula
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Aneta Dydowiczová
- Department of Biological Models, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Olga Janoušková
- Department of Biological Models, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Daniel Horák
- Department of Polymer Particles, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| |
Collapse
|
7
|
In Vivo Positive Magnetic Resonance Imaging of Brain Cancer (U87MG) Using Folic Acid-Conjugated Polyacrylic Acid-Coated Ultrasmall Manganese Oxide Nanoparticles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ultrasmall nanoparticles are potential candidates for application as high-performance imaging agents. Herein, we present the synthesis and characterization of folic acid (FA)-conjugated polyacrylic acid (PAA)-coated MnO nanoparticles with an average particle diameter of 2.7 nm. FA conferred cancer-targeting ability, while PAA conferred good colloidal stability and low cellular cytotoxicity on the FA-PAA-coated MnO nanoparticles. Further, the nanoparticles exhibited a high relaxivity (r1) value of 9.3 s−1mM−1 (r2/r1 = 2.2). Their application potential as cancer-targeting T1 magnetic resonance imaging contrast agents was confirmed by their enhanced T1 contrast enhancements at the brain cancer (U87MG) site upon intravenous administration to mice tails.
Collapse
|
8
|
Al-Hussaini AS, Ossoss KM, Hassan MER. One-pot synthesis, characterization, and evaluation of novel Fe 2O 3@PANI-AA-o-PDA core-shell nanocomposites. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1888994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ayman S. Al-Hussaini
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Khaled M. Ossoss
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
- Physics and Engineering Mathematics Department, Faculty of Engineering, Port Said University, Port Said, Egypt
| | - Mohamed E. R. Hassan
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
9
|
Wei C, Wang P, Huang Z, He D, Zhu W, Liu H, Chen Z, Wang W, Li Y, Shen J, Qin L. Construction of Surface-Modified Polydopamine Nanoparticles for Sequential Drug Release and Combined Chemo-Photothermal Cancer Therapy. Mol Pharm 2021; 18:1327-1343. [PMID: 33530691 DOI: 10.1021/acs.molpharmaceut.0c01164] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single chemotherapy often causes severe adverse effects and drug resistance to limit therapeutic efficacy. As a noninvasive approach, photothermal therapy (PTT) represents an attractive option for cancer therapy due to the benefits of remote control and precise treatment methods. Nanomedicines constructed with combined chemo-photothermal properties may exert synergistic effects and improved antitumor efficacy. In this study, we developed polydopamine (PDA)-coated nanoparticles grafted with folic acid (FA) and polyethylene glycol to transport doxorubicin (DOX) for targeted cancer therapy. The results showed that this delivery vehicle has a nanoscale particle size and narrow size distribution. No particle aggregation or significant drug leakage was observed during the stability test. This system presented excellent photothermal conversion capability under near-infrared light (NIR) laser irradiation due to the PDA layer covering. In vitro dissolution profiles demonstrated that sequential and triggered DOX release from nanoparticles was pH-, NIR irradiation-, and redox level-dependent and could be best fitted with the Ritger-Peppas equation. FA modification effectively promoted the intracellular uptake of nanoparticles by HepG2 cells and therefore significantly inhibited cell recovery and induced tumor cell apoptosis. Compared to the free DOX group, nanoparticles reduced the DOX concentration in the heart to avoid drug-related cardiotoxicity. More importantly, the in vivo antitumor efficacy results showed that compared with the single chemotherapy strategy, the nanoparticle group exerted combined and satisfactory tumor growth inhibition effects with good biocompatibility. In summary, this nanocarrier delivery system can organically combine chemotherapy and PTT to achieve effective and precise cancer treatment.
Collapse
Affiliation(s)
- Cui Wei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pengfei Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhenpeng Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dahua He
- Department of Pharmacy, Guangdong Women and Children Hospital, Guangzhou 510010, China
| | - Wanye Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huan Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhihao Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wanting Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yusheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Juan Shen
- Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
10
|
Towards Appraising Influence of New Economical Polymeric Core–Shell Nanocomposites. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01755-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Effect of Magnesium Substitution on Structural, Magnetic and Biological Activity of Co(1-x)Mg(x)Fe2O4 Nano-colloids. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01862-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Balog S. Hydrodynamic Radius of Polymer-Coated Nanoparticles Measured by Taylor Dispersion: A Mathematical Model. Anal Chem 2020; 92:10693-10699. [PMID: 32567303 DOI: 10.1021/acs.analchem.0c01837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This theoretical work addresses the characterization of polymer-coated nanoparticles via the analysis of Taylor dispersion experiments. Our focus is on determining the apparent hydrodynamic radius and the related accuracy bias, which results from polydispersity and optical-absorption-weighted averages. To that end, we construct a statistical model addressing joint distributions of particle core size and ligand surface density, which determine the hydrodynamic radius and optical absorption of such nanoparticles. Our model predicts that a polymer shell that is thick compared with the core radius results in a smaller bias than a thin shell, and the bias may become even negative when ligand surface density is sufficiently high.
Collapse
Affiliation(s)
- Sandor Balog
- University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
13
|
Al-Hussaini AS, Abdel-Hameed EM, Hassan MER. Synthesis of Smart Core-shell Nanocomposites with Enhanced Photocatalytic Efficacy. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1784214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ayman S. Al-Hussaini
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | | | - Mohamed E. R. Hassan
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
14
|
García‐Rubio DL, de la Mora M, Cerecedo D, Saniger Blesa JM, Villagrán‐Muniz M. An optical-based biosensor of the epithelial sodium channel as a tool for diagnosing hypertension. Biosens Bioelectron 2020; 157:112151. [DOI: 10.1016/j.bios.2020.112151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 01/22/2023]
|
15
|
Bou S, Wang X, Anton N, Bouchaala R, Klymchenko AS, Collot M. Lipid-core/polymer-shell hybrid nanoparticles: synthesis and characterization by fluorescence labeling and electrophoresis. SOFT MATTER 2020; 16:4173-4181. [PMID: 32286601 DOI: 10.1039/d0sm00077a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Among the lipid nanoparticles, lipid polymer hybrid nanoparticles (HNPs) composed of an oily core and a polymeric shell display interesting features as efficient drug carriers due to the high loading capability of the oil phase and the stability and surface functionalization of the polymer shell. Herein, we formulated lipid-core/polymer-shell hybrid nanoparticles (HNPs) using a simple nanoprecipitation method involving Vitamin E Acetate (VEA) as the oily core and a tailor-made amphiphilic polymer as a wrapping shell. The fluorescence labeling of the oil, using a newly developed green fluorogenic BODIPY tracker, and of the polymer using a covalent attachment of a red emitting rhodamine was done to assess the formation, the composition and the stability of these new hybrid nanoparticles using dual color electrophoresis gel analysis. This technique, combined to conventional DLS and electronic microscopy analysis, allowed us to quickly determine that 20 wt% of the polymer was an optimal ratio for obtaining stable HNPs by nanoprecipiation. Finally, we showed that using different polymeric shells, various HNPs can be obtained and finely discriminated using a combined approach of electrophoresis and two-color labeling.
Collapse
Affiliation(s)
- Sophie Bou
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, University of Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
16
|
Zhang Y, Deng Z, Lou D, Wang Y, Wang R, Hu R, Zhang X, Zhu Q, Chen Y, Liu F. High-Efficiency Separation of Extracellular Vesicles from Lipoproteins in Plasma by Agarose Gel Electrophoresis. Anal Chem 2020; 92:7493-7499. [DOI: 10.1021/acs.analchem.9b05675] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yan Zhang
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Preventive Medicine, School of Medicine, Hangzhou Normal University, Hangzhou 310018, China
| | - Zaian Deng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Doudou Lou
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yong Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Rui Wang
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Rui Hu
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xueer Zhang
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qingfu Zhu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuchao Chen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Fei Liu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
17
|
Huang X, Hu J, Li Y, Xin F, Qiao R, Davis TP. Engineering Organic/Inorganic Nanohybrids through RAFT Polymerization for Biomedical Applications. Biomacromolecules 2019; 20:4243-4257. [DOI: 10.1021/acs.biomac.9b01158] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xumin Huang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Fangyun Xin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
18
|
Plan Sangnier A, Van de Walle AB, Curcio A, Le Borgne R, Motte L, Lalatonne Y, Wilhelm C. Impact of magnetic nanoparticle surface coating on their long-term intracellular biodegradation in stem cells. NANOSCALE 2019; 11:16488-16498. [PMID: 31453605 DOI: 10.1039/c9nr05624f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Magnetic nanoparticles (MNPs) internalized within stem cells have paved the way for remote magnetic cell manipulation and imaging in regenerative medicine. A full understanding of their interactions with stem cells and of their fate in the intracellular environment is then required, in particular with respect to their surface coatings. Here, we investigated the biological interactions of MNPs composed of an identical magnetic core but coated with different molecules: phosphonoacetic acid, polyethylene glycol phosphonic carboxylic acid, caffeic acid, citric acid, and polyacrylic acid. These coatings vary in the nature of the chelating function, the number of binding sites, and the presence or absence of a polymer. The nanoparticle magnetism was systematically used as an indicator of their internalization within human stem cells and of their structural long-term biodegradation in a 3D stem cell spheroid model. Overall, we evidence that the coating impacts the aggregation status of the nanoparticles and subsequently their uptake within stem cells, but it has little effect on their intracellular degradation. Only a high number of chelating functions (polyacrylic acid) had a significant protective effect. Interestingly, when the nanoparticles aggregated prior to cellular internalization, less degradation was also observed. Finally, for all coatings, a robust dose-dependent intracellular degradation rate was demonstrated, with higher doses of internalized nanoparticles leading to a lower degradation extent.
Collapse
Affiliation(s)
- Anouchka Plan Sangnier
- Laboratoire Matière et Systèmes, Complexes MSC, UMR 7057, CNRS & University Paris Diderot, 75205, Paris Cedex 13, France. and Inserm, U1148, Laboratory for Vascular Translational Science, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France.
| | - Aurore B Van de Walle
- Laboratoire Matière et Systèmes, Complexes MSC, UMR 7057, CNRS & University Paris Diderot, 75205, Paris Cedex 13, France.
| | - Alberto Curcio
- Laboratoire Matière et Systèmes, Complexes MSC, UMR 7057, CNRS & University Paris Diderot, 75205, Paris Cedex 13, France.
| | - Rémi Le Borgne
- Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Laurence Motte
- Inserm, U1148, Laboratory for Vascular Translational Science, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France.
| | - Yoann Lalatonne
- Inserm, U1148, Laboratory for Vascular Translational Science, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France. and Services de Biochimie et de Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, F-93009 Bobigny, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes, Complexes MSC, UMR 7057, CNRS & University Paris Diderot, 75205, Paris Cedex 13, France.
| |
Collapse
|
19
|
Novel Fe2O3@PANI-o-PDA core-shell nanocomposites for photocatalytic degradation of aromatic dyes. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1856-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Lay A, Sheppard OH, Siefe C, McLellan CA, Mehlenbacher RD, Fischer S, Goodman MB, Dionne JA. Optically Robust and Biocompatible Mechanosensitive Upconverting Nanoparticles. ACS CENTRAL SCIENCE 2019; 5:1211-1222. [PMID: 31403071 PMCID: PMC6661856 DOI: 10.1021/acscentsci.9b00300] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Indexed: 05/05/2023]
Abstract
Upconverting nanoparticles (UCNPs) are promising tools for background-free imaging and sensing. However, their usefulness for in vivo applications depends on their biocompatibility, which we define by their optical performance in biological environments and their toxicity in living organisms. For UCNPs with a ratiometric color response to mechanical stress, consistent emission intensity and color are desired for the particles under nonmechanical stimuli. Here, we test the biocompatibility and mechanosensitivity of α-NaYF4:Yb,Er@NaLuF4 nanoparticles. First, we ligand-strip these particles to render them dispersible in aqueous media. Then, we characterize their mechanosensitivity (∼30% in the red-to-green spectral ratio per GPa), which is nearly 3-fold greater than those coated in oleic acid. We next design a suite of ex vivo and in vivo tests to investigate their structural and optical properties under several biorelevant conditions: over time in various buffers types, as a function of pH, and in vivo along the digestive tract of Caenorhabditis elegans worms. Finally, to ensure that the particles do not perturb biological function in C. elegans, we assess the chronic toxicity of nanoparticle ingestion using a reproductive brood assay. In these ways, we determine that mechanosensitive UCNPs are biocompatible, i.e., optically robust and nontoxic, for use as in vivo sensors to study animal digestion.
Collapse
Affiliation(s)
- Alice Lay
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Olivia H. Sheppard
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Chris Siefe
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Claire A. McLellan
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Randy D. Mehlenbacher
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Stefan Fischer
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Miriam B. Goodman
- Department
of Molecular and Cellular Physiology, Stanford
University, Stanford, California 94305, United States
| | - Jennifer A. Dionne
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
21
|
Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A, Chakraborty I, Masood A, Casula MF, Kostopoulou A, Oh E, Susumu K, Stewart MH, Medintz IL, Stratakis E, Parak WJ, Kanaras AG. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chem Rev 2019; 119:4819-4880. [PMID: 30920815 DOI: 10.1021/acs.chemrev.8b00733] [Citation(s) in RCA: 484] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The design of nanoparticles is critical for their efficient use in many applications ranging from biomedicine to sensing and energy. While shape and size are responsible for the properties of the inorganic nanoparticle core, the choice of ligands is of utmost importance for the colloidal stability and function of the nanoparticles. Moreover, the selection of ligands employed in nanoparticle synthesis can determine their final size and shape. Ligands added after nanoparticle synthesis infer both new properties as well as provide enhanced colloidal stability. In this article, we provide a comprehensive review on the role of the ligands with respect to the nanoparticle morphology, stability, and function. We analyze the interaction of nanoparticle surface and ligands with different chemical groups, the types of bonding, the final dispersibility of ligand-coated nanoparticles in complex media, their reactivity, and their performance in biomedicine, photodetectors, photovoltaic devices, light-emitting devices, sensors, memory devices, thermoelectric applications, and catalysis.
Collapse
Affiliation(s)
- Amelie Heuer-Jungemann
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences , University of Southampton , Southampton SO17 1BJ , U.K
| | - Neus Feliu
- Department of Laboratory Medicine (LABMED) , Karolinska Institutet , Stockholm 171 77 , Sweden.,Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Ioanna Bakaimi
- School of Chemistry, Faculty of Engineering and Physical Sciences , University of Southampton , Southampton SO171BJ , U.K
| | - Majd Hamaly
- King Hussein Cancer Center , P. O. Box 1269, Al-Jubeiha, Amman 11941 , Jordan
| | - Alaaldin Alkilany
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy , The University of Jordan , Amman 11942 , Jordan.,Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | | | - Atif Masood
- Fachbereich Physik , Philipps Universität Marburg , 30357 Marburg , Germany
| | - Maria F Casula
- INSTM and Department of Chemical and Geological Sciences , University of Cagliari , 09042 Monserrato , Cagliari , Italy.,Department of Mechanical, Chemical and Materials Engineering , University of Cagliari , Via Marengo 2 , 09123 Cagliari , Italy
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser , Foundation for Research and Technology-Hellas , Heraklion , 71110 Crete , Greece
| | - Eunkeu Oh
- KeyW Corporation , Hanover , Maryland 21076 , United States.,Optical Sciences Division, Code 5600 , U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Kimihiro Susumu
- KeyW Corporation , Hanover , Maryland 21076 , United States.,Optical Sciences Division, Code 5600 , U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Michael H Stewart
- Optical Sciences Division, Code 5600 , U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900 , U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser , Foundation for Research and Technology-Hellas , Heraklion , 71110 Crete , Greece
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN , Universität Hamburg , 22607 Hamburg , Germany
| | - Antonios G Kanaras
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences , University of Southampton , Southampton SO17 1BJ , U.K
| |
Collapse
|
22
|
Salis B, Pugliese G, Pellegrino T, Diaspro A, Dante S. Polymer Coating and Lipid Phases Regulate Semiconductor Nanorods' Interaction with Neuronal Membranes: A Modeling Approach. ACS Chem Neurosci 2019; 10:618-627. [PMID: 30339349 DOI: 10.1021/acschemneuro.8b00466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The interplay between nanoparticles (NPs) and cell membranes is extremely important with regard to using NPs in biology applications. With the aim of unraveling the dominating factors on the molecular scale, we have studied the interaction between polymer-coated semiconductor nanorods (NRs) made of cadmium selenium/cadmium sulfur and model lipid membranes. The zeta potential (ζ) of the NRs was tuned from having a negative value (-24 mV) to having a positive one (+11 mV) by changing the amine content in the polymer coating. Supported lipid bilayers (SLBs) and lipid monolayers (LMs) were used as model membranes. Lipid mixtures containing anionic or cationic lipids were employed in order to change the membrane ζ from -77 to +49 mV; lipids with saturated hydrophobic chains were used to create phase-separated gel domains. NR adsorption to the SLBs was monitored by quartz crystal microbalance with dissipation monitoring; interactions with LMs with the same lipid composition were measured by surface pressure-area isotherms. The results showed that the NRs only interact with the model membrane if the mutual Δζ is higher than 70 mV; at the air-water interface, positively charged NRs remove lipids from the anionic lipid mixtures, and the negative ones penetrate the space between the polar heads in the cationic mixtures. However, the presence of gel domains in the membrane inhibits this interaction. The results of the Derjaguin-Landau-Verwey-Overbeek model frame indicate that the interaction occurs not only due to electrostatic and van der Waals forces, but also due to steric and/or hydration forces.
Collapse
Affiliation(s)
- Barbara Salis
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Università di Genova, Genova 16145, Italy
- Nanoscopy&NIC@IIT, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Giammarino Pugliese
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia, Genova 16146, Italy
| | - Teresa Pellegrino
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia, Genova 16146, Italy
| | - Alberto Diaspro
- Nanoscopy&NIC@IIT, Istituto Italiano di Tecnologia, Genova 16163, Italy
- Dipartimento di Fisica, Università di Genova, Genova 16163, Italy
| | - Silvia Dante
- Nanoscopy&NIC@IIT, Istituto Italiano di Tecnologia, Genova 16163, Italy
| |
Collapse
|
23
|
Kim YJ, Lee B. Unique p-n Heterostructured Water-Borne Nanoparticles Exhibiting Impressive Charge-Separation Ability. CHEMSUSCHEM 2018; 11:1628-1638. [PMID: 29663700 DOI: 10.1002/cssc.201800091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/21/2018] [Indexed: 06/08/2023]
Abstract
The ecofriendly synthesis of organic semiconductors with heterojunctions is of interest and requires surfactants to stabilize colloidal nanoparticles (NPs) in aqueous solution. The use of conventional surfactants results in p-n heterostructured NPs, in which both p- and n-type semiconductors are phase separated and confined within a core surrounded by the surfactant shell. The performances of these devices, however, are not comparable to those of solid organic semiconductor films. Further efforts are required to understand and control the morphological structure of the nanoparticles to improve their performances. Here, by using a new class of polyethyleneglycol-based surfactant, PEG-C60, we synthesized unique p-n heterostructured water-borne NPs that comprise a p-type semiconductor core and an n-type PEG-C60 shell. We demonstrate that the morphology gives rise to charge separation superior to conventional water-borne NPs. These PEG-C60-based water-borne NPs can, thus, provide a new paradigm in the current field of water-based organic semiconductor colloids.
Collapse
Affiliation(s)
- Yu Jin Kim
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Byeongdu Lee
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| |
Collapse
|
24
|
Synthesis of Au@polymer nanohybrids with transited core-shell morphology from concentric to eccentric Emoji-N or Janus nanoparticles. Sci Rep 2018; 8:5721. [PMID: 29636519 PMCID: PMC5893630 DOI: 10.1038/s41598-018-24078-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/27/2018] [Indexed: 11/25/2022] Open
Abstract
The combination of multifunctionality and synergestic effect displayed by hybrid nanoparticles (NPs) has been revealed as an effective stratagem in the development of advanced nanostructures with unique biotechnology and optoelectronic applications. Although important work has been devoted, the demand of facile, versatile and efficient synthetic approach remains still challenging. Herein, we report a feasible and innovative way for polymer-shell assembling onto gold nanoparticles in competitive conditions of hydrophobic/hydrophilic feature and interfacial energy of components to generate core-shell nanohybrids with singular morphologies. The fine control of reaction parameters allows a modulated transformation from concentric to eccentric nanostructure-geometries. In this regard, a rational selection of the components and solvent ratio guarantee the reproducibility and efficiency on hybrid-nanoassembly. Furthermore, the simplicity of the synthetic approach offers the possibility to obtain asymmetric Janus NPs and new morphologies (quizzical-aspheric polymer-shell, named Emoji-N-hybrids) with adjustable surface-coating, leading to new properties and applications that are unavailable to their symmetrical or single components.
Collapse
|
25
|
Kakwere H, Materia ME, Curcio A, Prato M, Sathya A, Nitti S, Pellegrino T. Dually responsive gold-iron oxide heterodimers: merging stimuli-responsive surface properties with intrinsic inorganic material features. NANOSCALE 2018; 10:3930-3944. [PMID: 29423465 DOI: 10.1039/c7nr06726g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate a versatile approach for the preparation of dually responsive smart inorganic heterostructures (HSs) with the potential for exploitation in nanomedicine. We utilize Au-FexOy dimers as templates for generating smart inorganic HSs with a pH-responsive coating and a thermo-responsive coating attached to iron oxide and gold nanoparticles (NPs), respectively. First, a thiol-modified thermo-responsive (PNIPAAM-co-PEGA) polymer could be selectively attached to the gold domain by ligand exchange. The sequential attachment of a catechol-modified initiator to the iron oxide surface enables the in situ polymerization of a pH-responsive (PDMAEA) polymer. As hereby shown, the presence of the two distinct polymer domains on each NP subdomain enables each side of the HS to be loaded with different agents. Indeed, by a gel electrophoresis experiment we demonstrate the loading of siRNA on the pH-responsive polymer and the loading of Nile Blue dye, used as a drug model molecule, on the thermo-responsive polymer. The smart HSs exhibited good biocompatibility and downregulated GFP production when loaded with anti-GFP siRNA molecules. In addition, an investigation of the magnetic relaxivity times revealed that the high R2 relaxivity values of the HSs suggest their potential as contrast agents in magnetic resonance imaging (MRI) applications.
Collapse
Affiliation(s)
- Hamilton Kakwere
- Istituto Italiano di Tecnologia, via Morego 30, 16145, Genoa, Italy.
| | | | | | | | | | | | | |
Collapse
|
26
|
Fang F, Liu J, Li Y, Yang J, Yang J. A New Colorimetric Platform for Protein Detection Based on Recognition-Induced Cascade of Polymeric Nanoparticles Disassembly. Macromol Biosci 2018; 18. [DOI: 10.1002/mabi.201700392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/07/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Fang Fang
- State Key Laboratory of Chemical Resource Engineering; Beijing Key Laboratory of Bioprocess; College of Life Science and Technology; Beijing University of Chemical Technology; Beijing 100029 China
| | - Jin Liu
- State Key Laboratory of Chemical Resource Engineering; Beijing Key Laboratory of Bioprocess; College of Life Science and Technology; Beijing University of Chemical Technology; Beijing 100029 China
| | - Yushu Li
- State Key Laboratory of Chemical Resource Engineering; Beijing Key Laboratory of Bioprocess; College of Life Science and Technology; Beijing University of Chemical Technology; Beijing 100029 China
| | - Junjiao Yang
- College of Science; Beijing University of Chemical Technology; Beijing 100029 China
| | - Jing Yang
- State Key Laboratory of Chemical Resource Engineering; Beijing Key Laboratory of Bioprocess; College of Life Science and Technology; Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
27
|
Castellanos-Rubio I, Munshi R, Qadri S, Pralle A. Nanoparticle Preparation for Magnetothermal Genetic Stimulation in Cell Culture and in the Brain of Live Rodents. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-1-4939-7584-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
28
|
Schrittwieser S, Reichinger D, Schotter J. Applications, Surface Modification and Functionalization of Nickel Nanorods. MATERIALS (BASEL, SWITZERLAND) 2017; 11:E45. [PMID: 29283415 PMCID: PMC5793543 DOI: 10.3390/ma11010045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
The growing number of nanoparticle applications in science and industry is leading to increasingly complex nanostructures that fulfill certain tasks in a specific environment. Nickel nanorods already possess promising properties due to their magnetic behavior and their elongated shape. The relevance of this kind of nanorod in a complex measurement setting can be further improved by suitable surface modification and functionalization procedures, so that customized nanostructures for a specific application become available. In this review, we focus on nickel nanorods that are synthesized by electrodeposition into porous templates, as this is the most common type of nickel nanorod fabrication method. Moreover, it is a facile synthesis approach that can be easily established in a laboratory environment. Firstly, we will discuss possible applications of nickel nanorods ranging from data storage to catalysis, biosensing and cancer treatment. Secondly, we will focus on nickel nanorod surface modification strategies, which represent a crucial step for the successful application of nanorods in all medical and biological settings. Here, the immobilization of antibodies or peptides onto the nanorod surface adds another functionality in order to yield highly promising nanostructures.
Collapse
Affiliation(s)
- Stefan Schrittwieser
- Molecular Diagnostics, AIT Austrian Institute of Technology, 1220 Vienna, Austria.
| | - Daniela Reichinger
- Molecular Diagnostics, AIT Austrian Institute of Technology, 1220 Vienna, Austria.
| | - Joerg Schotter
- Molecular Diagnostics, AIT Austrian Institute of Technology, 1220 Vienna, Austria.
| |
Collapse
|
29
|
Dante S, Petrelli A, Petrini EM, Marotta R, Maccione A, Alabastri A, Quarta A, De Donato F, Ravasenga T, Sathya A, Cingolani R, Proietti Zaccaria R, Berdondini L, Barberis A, Pellegrino T. Selective Targeting of Neurons with Inorganic Nanoparticles: Revealing the Crucial Role of Nanoparticle Surface Charge. ACS NANO 2017; 11:6630-6640. [PMID: 28595006 PMCID: PMC6090505 DOI: 10.1021/acsnano.7b00397] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Nanoparticles (NPs) are increasingly used in biomedical applications, but the factors that influence their interactions with living cells need to be elucidated. Here, we reveal the role of NP surface charge in determining their neuronal interactions and electrical responses. We discovered that negatively charged NPs administered at low concentration (10 nM) interact with the neuronal membrane and at the synaptic cleft, whereas positively and neutrally charged NPs never localize on neurons. This effect is shape and material independent. The presence of negatively charged NPs on neuronal cell membranes influences the excitability of neurons by causing an increase in the amplitude and frequency of spontaneous postsynaptic currents at the single cell level and an increase of both the spiking activity and synchronous firing at neural network level. The negatively charged NPs exclusively bind to excitable neuronal cells, and never to nonexcitable glial cells. This specific interaction was also confirmed by manipulating the electrophysiological activity of neuronal cells. Indeed, the interaction of negatively charged NPs with neurons is either promoted or hindered by pharmacological suppression or enhancement of the neuronal activity with tetrodotoxin or bicuculline, respectively. We further support our main experimental conclusions by using numerical simulations. This study demonstrates that negatively charged NPs modulate the excitability of neurons, revealing the potential use of NPs for controlling neuron activity.
Collapse
Affiliation(s)
- Silvia Dante
- Fondazione
Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- E-mail:
| | - Alessia Petrelli
- Fondazione
Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | | | - Roberto Marotta
- Fondazione
Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Alessandro Maccione
- Fondazione
Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | | | - Alessandra Quarta
- Fondazione
Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- CNR
NANOTEC, Institute of Nanotechnology, c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Francesco De Donato
- Fondazione
Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Tiziana Ravasenga
- Fondazione
Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Ayyappan Sathya
- Fondazione
Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Roberto Cingolani
- Fondazione
Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | | | - Luca Berdondini
- Fondazione
Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Andrea Barberis
- Fondazione
Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Teresa Pellegrino
- Fondazione
Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- E-mail:
| |
Collapse
|
30
|
Riccardi L, Gabrielli L, Sun X, De Biasi F, Rastrelli F, Mancin F, De Vivo M. Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition. Chem 2017; 3:92-109. [PMID: 28770257 PMCID: PMC5521955 DOI: 10.1016/j.chempr.2017.05.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/20/2017] [Accepted: 05/24/2017] [Indexed: 11/25/2022]
Abstract
The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which could explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs. Synthesis and molecular simulations of AuNPs for chemosensing A rationale for the molecular recognition ability of functionalized AuNPs Functionalized coating ligands form transient protein-like binding pockets Toward the computational nanodesign of intelligent nanoreceptors for chemosensing
The functionalization of monolayer-protected nanoparticles is at the frontier of nanotechnology, such that innovative applications are emerging in fields such as nanomedicine, chemosensing, and even catalysis. Importantly, the nanoparticle's functionality is mainly defined by the nature of the ligands forming the coating monolayer. Here, we show how the self-organization of functionalized coating ligands in monolayer-protected gold nanoparticles (AuNPs) affects their solubility and molecular recognition abilities. We found that coating ligands form transient, protein-like binding pockets in functionalized AuNPs. Thus, we reveal that nanoparticle-based chemosensing operates through a recognition process that is similar to that for protein-ligand complex formation. These findings could now herald the arrival of the computational nanodesign of intelligent nanodevices with recognition abilities toward small molecules such as drugs, metabolites, illegal drugs, and small molecular markers for cancer.
Collapse
Affiliation(s)
- Laura Riccardi
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Luca Gabrielli
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Xiaohuan Sun
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Federico De Biasi
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Federico Rastrelli
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.,IAS-5/INM-9 Computational Biomedicine Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
31
|
Jain A, Ranjan S, Dasgupta N, Ramalingam C. Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 2017; 58:297-317. [DOI: 10.1080/10408398.2016.1160363] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Aditi Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Shivendu Ranjan
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
- Research Wing, Veer Kunwar Singh Memorial Trust, Chapra, Bihar, India
- Xpert Arena Technological Services Pvt. Ltd., Chapra, Bihar, India
| | - Nandita Dasgupta
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Chidambaram Ramalingam
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
32
|
Joris F, Valdepérez D, Pelaz B, Wang T, Doak SH, Manshian BB, Soenen SJ, Parak WJ, De Smedt SC, Raemdonck K. Choose your cell model wisely: The in vitro nanoneurotoxicity of differentially coated iron oxide nanoparticles for neural cell labeling. Acta Biomater 2017; 55:204-213. [PMID: 28373085 DOI: 10.1016/j.actbio.2017.03.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023]
Abstract
Currently, there is a large interest in the labeling of neural stem cells (NSCs) with iron oxide nanoparticles (IONPs) to allow MRI-guided detection after transplantation in regenerative medicine. For such biomedical applications, excluding nanotoxicity is key. Nanosafety is primarily evaluated in vitro where an immortalized or cancer cell line of murine origin is often applied, which is not necessarily an ideal cell model. Previous work revealed clear neurotoxic effects of PMA-coated IONPs in distinct cell types that could potentially be applied for nanosafety studies regarding neural cell labeling. Here, we aimed to assess if DMSA-coated IONPs could be regarded as a safer alternative for this purpose and how the cell model impacted our nanosafety optimization study. Hereto, we evaluated cytotoxicity, ROS production, calcium levels, mitochondrial homeostasis and cell morphology in six related neural cell types, namely neural stem cells, an immortalized cell line and a cancer cell line from human and murine origin. The cell lines mostly showed similar responses to both IONPs, which were frequently more pronounced for the PMA-IONPs. Of note, ROS and calcium levels showed opposite trends in the human and murine NSCs, indicating the importance of the species. Indeed, the human cell models were overall more sensitive than their murine counterpart. Despite the clear cell type-specific nanotoxicity profiles, our multiparametric approach revealed that the DMSA-IONPs outperformed the PMA-IONPs in terms of biocompatibility in each cell type. However, major cell type-dependent variations in the observed effects additionally warrant the use of relevant human cell models. STATEMENT OF SIGNIFICANCE Inorganic nanoparticle (NP) optimization is chiefly performed in vitro. For the optimization of iron oxide (IO)NPs for neural stem cell labeling in the context of regenerative medicine human or rodent neural stem cells, immortalized or cancer cell lines are applied. However, the use of certain cell models can be questioned as they phenotypically differ from the target cell. The impact of the neural cell model on nanosafety remains relatively unexplored. Here we evaluated cell homeostasis upon exposure to PMA- and DMSA-coated IONPs. Of note, the DMSA-IONPs outperformed the PMA-IONPs in each cell type. However, distinct cell type-specific effects were witnessed, indicating that nanosafety should be evaluated in a human cell model that represents the target cell as closely as possible.
Collapse
Affiliation(s)
- Freya Joris
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Daniel Valdepérez
- Philipps University of Marburg, Department of Physics, Renthof 7, D-35037 Marburg, Germany
| | - Beatriz Pelaz
- Philipps University of Marburg, Department of Physics, Renthof 7, D-35037 Marburg, Germany
| | - Tianqiang Wang
- Philipps University of Marburg, Department of Physics, Renthof 7, D-35037 Marburg, Germany
| | - Shareen H Doak
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, Wales SA2 8PP, UK
| | - Bella B Manshian
- Biomedical MRI Unit/MoSAIC, Department of Medicine, KULeuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Stefaan J Soenen
- Biomedical MRI Unit/MoSAIC, Department of Medicine, KULeuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Wolfgang J Parak
- Philipps University of Marburg, Department of Physics, Renthof 7, D-35037 Marburg, Germany
| | - Stefaan C De Smedt
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Koen Raemdonck
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
33
|
Di Paola M, Quarta A, Conversano F, Sbenaglia EA, Bettini S, Valli L, Gigli G, Casciaro S. Human Hepatocarcinoma Cell Targeting by Glypican-3 Ligand Peptide Functionalized Silica Nanoparticles: Implications for Ultrasound Molecular Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4490-4499. [PMID: 28420236 DOI: 10.1021/acs.langmuir.7b00327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Silica nanoparticles (SiNPs) are widely studied nanomaterials for their potential employment in advanced biomedical applications, such as selective molecular imaging and targeted drug delivery. SiNPs are generally low cost and highly biocompatible, can be easily functionalized with a wide variety of functional ligands, and have been demonstrated to be effective in enhancing ultrasound contrast at clinical diagnostic frequencies. Therefore, SiNPs might be used as contrast agents in echographic imaging. In this work, we have developed a SiNPs-based system for the in vitro molecular imaging of hepatocellular carcinoma cells that express high levels of glypican-3 protein (GPC-3) on their surface. In this regard, a novel GPC-3 targeting peptide was designed and conjugated to fluorescent silica nanoparticles. The physicochemical properties, acoustic behavior, and biocompatibility profile of the functionalized SiNPs were characterized; then binding and uptake of both naked and functionalized SiNPs were analyzed by laser scanning confocal microscopy and transmission electron microscopy in GPC-3 positive HepG2 cells, a human hepatocarcinoma cell line. The results obtained showed that GPC-3-functionalized fluorescent SiNPs significantly enhanced the ultrasound contrast and were effectively bound and taken up by HepG2 cells without affecting their viability.
Collapse
Affiliation(s)
- Marco Di Paola
- Institute of Clinical Physiology, National Research Council , c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Alessandra Quarta
- Institute of Clinical Physiology, National Research Council , c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Francesco Conversano
- Institute of Clinical Physiology, National Research Council , c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Enzo Antonio Sbenaglia
- Institute of Clinical Physiology, National Research Council , c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Simona Bettini
- Institute of Clinical Physiology, National Research Council , c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Ludovico Valli
- Institute of Clinical Physiology, National Research Council , c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Institute of Clinical Physiology, National Research Council , c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Sergio Casciaro
- Institute of Clinical Physiology, National Research Council , c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
34
|
Zhu H, Chen Y, Yan FJ, Chen J, Tao XF, Ling J, Yang B, He QJ, Mao ZW. Polysarcosine brush stabilized gold nanorods for in vivo near-infrared photothermal tumor therapy. Acta Biomater 2017; 50:534-545. [PMID: 28027959 DOI: 10.1016/j.actbio.2016.12.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 11/26/2022]
Abstract
Gold nanorods (AuNRs) are suitable candidates for photothermal therapy in vivo, because of their excellent ability to transfer near-infrared (NIR) light into heat. However, appropriate surface should be generated on AuNRs before their in vivo application because of the low colloidal stability in complicate biological environment and relatively strong toxicity compared to their pristine stabilizer cetyltrimethylammonium bromide. In the current study, polysarcosine (PS), a non-ionic hydrophilic polypeptoid whose structure is similar to polypeptides, bearing repeating units of natural α-amino acid, was used to stabilize AuNRs due to its excellent hydrophilicity and biocompatibility. Polysarcosine with optimized molecular weight was synthesized and used to modify AuNRs by traditional ligand exchange. The grafting of PS on AuNRs was evidenced by fourier transform infrared (FTIR) spectroscopy and the alternation of surface zeta potential. The polysarcosine coated AuNRs (Au@PS) showed good stabilities in wide pH range and simulated physiological buffer with the ligand competition of dithiothreitol (DTT). The Au@PS NRs had neglectable cytotoxicity and showed efficient ablation of tumor cells in vitro. Moreover, Au@PS NRs had a longer circulation time in body that resulted in a higher accumulation in solid tumors after intravenous injection, compared to AuNRs capped with polyethylene glycol (PEG). Photothermal therapy in vivo demonstrated that the tumors were completely destroyed by single-time irradiation of NIR laser after one-time injection of the polysarcosine capped AuNRs. The Au@PS NRs did not cause obvious toxicity in vivo, suggesting promising potential in cancer therapy. STATEMENT OF SIGNIFICANCE In current study, polysarcosine (PS), a non-ionic hydrophilic polypeptoid whose structure is similar to polypeptides, bearing repeating units of natural α-amino acid, was used to stabilize AuNRs due to its excellent hydrophilicity and biocompatibility. The polysarcosine coated AuNRs (Au@PS) showed good stabilities in wide pH range and simulated physiological buffer. The Au@PS NRs had very low cytotoxicity and showed high efficacy for the ablation of cancer cells in vitro. Moreover, Au@PS NRs had a longer circulation time in blood that led to a higher accumulation in tumors after intravenous injection, compared to AuNRs capped with polyethylene glycol (PEG). In vivo photothermal therapy showed that tumors were completely cured without reoccurrence by one-time irradiation of NIR laser after a single injection of the polysarcosine modified AuNRs.
Collapse
|
35
|
Chen Y, Xu Z, Zhu D, Tao X, Gao Y, Zhu H, Mao Z, Ling J. Gold nanoparticles coated with polysarcosine brushes to enhance their colloidal stability and circulation time in vivo. J Colloid Interface Sci 2016; 483:201-210. [DOI: 10.1016/j.jcis.2016.08.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 11/27/2022]
|
36
|
Wu W, Jiang CZ, Roy VAL. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. NANOSCALE 2016; 8:19421-19474. [PMID: 27812592 DOI: 10.1039/c6nr07542h] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Iron oxide nanoparticles (NPs) hold great promise for future biomedical applications because of their magnetic properties as well as other intrinsic properties such as low toxicity, colloidal stability, and surface engineering capability. Numerous related studies on iron oxide NPs have been conducted. Recent progress in nanochemistry has enabled fine control over the size, crystallinity, uniformity, and surface properties of iron oxide NPs. This review examines various synthetic approaches and surface engineering strategies for preparing naked and functional iron oxide NPs with different physicochemical properties. Growing interest in designed and surface-engineered iron oxide NPs with multifunctionalities was explored in in vitro/in vivo biomedical applications, focusing on their combined roles in bioseparation, as a biosensor, targeted-drug delivery, MR contrast agents, and magnetic fluid hyperthermia. This review outlines the limitations of extant surface engineering strategies and several developing strategies that may overcome these limitations. This study also details the promising future directions of this active research field.
Collapse
Affiliation(s)
- Wei Wu
- Laboratory of Printable Functional Nanomaterials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan 430072, P. R. China. and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. China.
| | - Chang Zhong Jiang
- School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
| | - Vellaisamy A L Roy
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. China.
| |
Collapse
|
37
|
Graña-Suárez L, Verboom W, Sarkar S, Mahalingam V, Huskens J. Versatile, Fast, and Easy One-Step Method for the Synthesis of Hydrophilic Lanthanide-Doped Nanoparticles. ChemistrySelect 2016. [DOI: 10.1002/slct.201601057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Laura Graña-Suárez
- Molecular Nanofabrication group; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Willem Verboom
- Molecular Nanofabrication group; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Shyam Sarkar
- Department of Chemistry; Ananda Mohan College; 102/1, Raja Rammohan Sarani Kolkata 700009, W.B. India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER); Kolkata, Mohanpur 741246, W.B. India
| | - Jurriaan Huskens
- Molecular Nanofabrication group; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
38
|
Spano F, Quarta A, Martelli C, Ottobrini L, Rossi RM, Gigli G, Blasi L. Fibrous scaffolds fabricated by emulsion electrospinning: from hosting capacity to in vivo biocompatibility. NANOSCALE 2016; 8:9293-9303. [PMID: 27088757 DOI: 10.1039/c6nr00782a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electrospinning is a versatile method for preparing functional three-dimensional scaffolds. Synthetic and natural polymers have been used to produce micro- and nanofibers that mimic extracellular matrices. Here, we describe the use of emulsion electrospinning to prepare blended fibers capable of hosting aqueous species and releasing them in solution. The existence of an aqueous and a non-aqueous phase allows water-soluble molecules to be introduced without altering the structure and the degradation of the fibers, and means that their release properties under physiological conditions can be controlled. To demonstrate the loading capability and flexibility of the blend, various species were introduced, from magnetic nanoparticles and quantum rods to biological molecules. Cellular studies showed the spontaneous adhesion and alignment of cells along the fibers. Finally, in vivo experiments demonstrated the high biocompatibility and safety of the scaffolds up to 21 days post-implantation.
Collapse
Affiliation(s)
- F Spano
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Protection and Physiology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland and Center for Biomolecular Nanotechnologies (CBN) @UNILE, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano (LE), Lecce, Italy
| | - A Quarta
- Nanotechnology Institute (CNR-NANOTEC), Via Monteroni, 73100, Lecce, Italy.
| | - C Martelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - L Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy and Institute of Molecular Bioimaging and Physiology (IBFM), National Researches Council (CNR), Segrate, Milan, Italy
| | - R M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Protection and Physiology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - G Gigli
- Nanotechnology Institute (CNR-NANOTEC), Via Monteroni, 73100, Lecce, Italy.
| | - L Blasi
- Center for Biomolecular Nanotechnologies (CBN) @UNILE, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano (LE), Lecce, Italy and Nanotechnology Institute (CNR-NANOTEC), Via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
39
|
Zarschler K, Rocks L, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA. Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1663-701. [PMID: 27013135 DOI: 10.1016/j.nano.2016.02.019] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/31/2022]
Abstract
Ultrasmall nanoparticulate materials with core sizes in the 1-3nm range bridge the gap between single molecules and classical, larger-sized nanomaterials, not only in terms of spatial dimension, but also as regards physicochemical and pharmacokinetic properties. Due to these unique properties, ultrasmall nanoparticles appear to be promising materials for nanomedicinal applications. This review overviews the different synthetic methods of inorganic ultrasmall nanoparticles as well as their properties, characterization, surface modification and toxicity. We moreover summarize the current state of knowledge regarding pharmacokinetics, biodistribution and targeting of nanoscale materials. Aside from addressing the issue of biomolecular corona formation and elaborating on the interactions of ultrasmall nanoparticles with individual cells, we discuss the potential diagnostic, therapeutic and theranostic applications of ultrasmall nanoparticles in the emerging field of nanomedicine in the final part of this review.
Collapse
Affiliation(s)
- Kristof Zarschler
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany.
| | - Louise Rocks
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nadia Licciardello
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany; Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, Strasbourg, France; Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT) Campus North, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Luca Boselli
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ester Polo
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Karina Pombo Garcia
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany
| | - Luisa De Cola
- Laboratoire de Chimie et des Biomatériaux Supramoléculaires, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, Strasbourg, France; Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT) Campus North, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, Dresden, Germany
| | - Kenneth A Dawson
- Centre For BioNano Interactions (CBNI), School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
40
|
Shargh VH, Hondermarck H, Liang M. Antibody-targeted biodegradable nanoparticles for cancer therapy. Nanomedicine (Lond) 2016; 11:63-79. [DOI: 10.2217/nnm.15.186] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of nanotechnology has great potentials to revolutionize the future cancer diagnosis and therapy. In this context, various nanoparticles (NPs) have been developed for targeted delivery of diagnostic/therapeutic agents to the tumor sites, which thus result in greater efficacy and much less side effects. The targeting property of NPs is often achieved by functionalizing their surface with tumor-specific ligands, such as antibodies, peptides, small molecules and oligonucleotides. In this review, we will discuss recent progress in the multifunctional design of antibody-targeted NPs with a special focus on liposomal, polymeric and protein-based delivery systems.
Collapse
Affiliation(s)
- Vahid Heravi Shargh
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mingtao Liang
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
41
|
Zhang X, Wang J, He X, Chen L, Zhang Y. Tailor-Made Boronic Acid Functionalized Magnetic Nanoparticles with a Tunable Polymer Shell-Assisted for the Selective Enrichment of Glycoproteins/Glycopeptides. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24576-84. [PMID: 26479332 DOI: 10.1021/acsami.5b06445] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Biomedical sciences, and in particular biomarker research, demand efficient glycoproteins enrichment platforms. In this work, we present a facile and time-saving method to synthesize phenylboronic acid and copolymer multifunctionalized magnetic nanoparticles (NPs) using a distillation-precipitation polymerization (DPP) technique. The polymer shell is obtained through copolymerization of two monomers-affinity ligand 3-acrylaminophenylboronic acid (AAPBA) and a hydrophilic functional monomer. The resulting hydrophilic Fe3O4@P(AAPBA-co-monomer) NPs exhibit an enhanced binding capacity toward glycoproteins by an additional functional monomer complementary to the surface presentation of the target protein. The effects of monomer ratio of AAPBA to hydrophilic comonomers on the binding of glycoproteins are systematically investigated. The morphology, structure, and composition of all the synthesized microspheres are characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The hydrophilic Fe3O4@P(AAPBA-co-monomer) microspheres show an excellent performance in the separation of glycoproteins with high binding capacity; And strong magnetic response allows them to be easily separated from solution in the presence of an external magnetic field. Moreover, both synthetic Fe3O4@P(AAPBA) and copolymeric NPs show good adsorption to glycoproteins in physiological conditions (pH 7.4). The Fe3O4@P(AAPBA-co-monomer) NPs are successfully utilized to selectively capture and identify the low-abundance glycopeptides from the tryptic digest of horseradish peroxidase (HRP). In addition, the selective isolation and enrichment of glycoproteins from the egg white samples at physiological condition is obtained by Fe3O4@P(AAPBA-co-monomer) NPs as adsorbents.
Collapse
Affiliation(s)
- Xihao Zhang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Jiewen Wang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Xiwen He
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Langxing Chen
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Yukui Zhang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University , Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116011, China
| |
Collapse
|
42
|
Kakwere H, Leal MP, Materia ME, Curcio A, Guardia P, Niculaes D, Marotta R, Falqui A, Pellegrino T. Functionalization of strongly interacting magnetic nanocubes with (thermo)responsive coating and their application in hyperthermia and heat-triggered drug delivery. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10132-45. [PMID: 25840122 DOI: 10.1021/am5088117] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Herein, we prepare nanohybrids by incorporating iron oxide nanocubes (cubic-IONPs) within a thermoresponsive polymer shell that can act as drug carriers for doxorubicin(doxo). The cubic-shaped nanoparticles employed are at the interface between superparamagnetic and ferromagnetic behavior and have an exceptionally high specific absorption rate (SAR), but their functionalization is extremely challenging compared to bare superparamagnetic iron oxide nanoparticles as they strongly interact with each other. By conducting the polymer grafting reaction using reversible addition-fragmentation chain transfer (RAFT) polymerization in a viscous solvent medium, we have here developed a facile approach to decorate the nanocubes with stimuli-responsive polymers. When the thermoresponsive shell is composed of poly(N-isopropylacrylamide-co-polyethylene glycolmethyl ether acrylate), nanohybrids have a phase transition temperature, the lower critical solution temperature (LCST), above 37 °C in physiological conditions. Doxo loaded nanohybrids exhibited a negligible drug release below 37 °C but showed a consistent release of their cargo on demand by exploiting the capability of the nanocubes to generate heat under an alternating magnetic field (AMF). Moreover, the drug free nanocarrier does not exhibit cytotoxicity even when administered at high concentration of nanocubes (1g/L of iron) and internalized at high extent (260 pg of iron per cell). We have also implemented the synthesis protocol to decorate the surface of nanocubes with poly(vinylpyridine) polymer and thus prepare pH-responsive shell coated nanocubes.
Collapse
Affiliation(s)
- Hamilton Kakwere
- †Istituto Italiano di Tecnologia, via Morego 30, 16143, Genova, Italy
| | | | | | - Alberto Curcio
- †Istituto Italiano di Tecnologia, via Morego 30, 16143, Genova, Italy
| | - Pablo Guardia
- †Istituto Italiano di Tecnologia, via Morego 30, 16143, Genova, Italy
| | - Dina Niculaes
- †Istituto Italiano di Tecnologia, via Morego 30, 16143, Genova, Italy
| | - Roberto Marotta
- †Istituto Italiano di Tecnologia, via Morego 30, 16143, Genova, Italy
| | - Andrea Falqui
- †Istituto Italiano di Tecnologia, via Morego 30, 16143, Genova, Italy
- ‡King Abdullah University of Science and Technology (KAUST), BESE division, Thuwal, Kingdom of Saudi Arabia
| | - Teresa Pellegrino
- †Istituto Italiano di Tecnologia, via Morego 30, 16143, Genova, Italy
| |
Collapse
|
43
|
Peng E, Wang F, Xue JM. Nanostructured magnetic nanocomposites as MRI contrast agents. J Mater Chem B 2015; 3:2241-2276. [PMID: 32262055 DOI: 10.1039/c4tb02023e] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) has become an integral part of modern clinical imaging due to its non-invasiveness and versatility in providing tissue and organ images with high spatial resolution. With the current MRI advancement, MRI imaging probes with suitable biocompatibility, good colloidal stability, enhanced relaxometric properties and advanced functionalities are highly demanded. As such, MRI contrast agents (CAs) have been an extensive research and development area. In the recent years, different inorganic-based nanoprobes comprising inorganic magnetic nanoparticles (MNPs) with an organic functional coating have been engineered to obtain a suitable contrast enhancement effect. For biomedical applications, the organic functional coating is critical to improve colloidal stability and biocompatibility. Simultaneously, it also provides a building block for generating a higher dimensional secondary structure. In this review, the combinatorial design approach by a self-assembling pre-formed hydrophobic inorganic MNPs core (from non-polar thermolysis synthesis) into various functional organic coatings (e.g. ligands, amphiphilic polymers and graphene oxide) to form water soluble nanocomposites will be discussed. The resultant magnetic ensembles were classified based on their dimensionality, namely, 0-D, 1-D, 2-D and 3-D structures. This classification provides further insight into their subsequent potential use as MRI CAs. Special attention will be dedicated towards the correlation between the spatial distribution and the associated MRI applications, which include (i) coating optimization-induced MR relaxivity enhancement, (ii) aggregation-induced MR relaxivity enhancement, (iii) off-resonance saturation imaging (ORS), (iv) magnetically-induced off-resonance imaging (ORI), (v) dual-modalities MR imaging and (vi) multifunctional nanoprobes.
Collapse
Affiliation(s)
- Erwin Peng
- Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore.
| | | | | |
Collapse
|
44
|
Quarta A, Bernareggi D, Benigni F, Luison E, Nano G, Nitti S, Cesta MC, Di Ciccio L, Canevari S, Pellegrino T, Figini M. Targeting FR-expressing cells in ovarian cancer with Fab-functionalized nanoparticles: a full study to provide the proof of principle from in vitro to in vivo. NANOSCALE 2015; 7:2336-2351. [PMID: 25504081 DOI: 10.1039/c4nr04426f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Efficient targeting in tumor therapies is still an open issue: systemic biodistribution and poor specific accumulation of drugs weaken efficacy of treatments. Engineered nanoparticles are expected to bring benefits by allowing specific delivery of drug to the tumor or acting themselves as localized therapeutic agents. In this study we have targeted epithelial ovarian cancer with inorganic nanoparticles conjugated to a human antibody fragment against the folate receptor over-expressed on cancer cells. The conjugation approach is generally applicable. Indeed several types of nanoparticles (either magnetic or fluorescent) were engineered with the fragment, and their biological activity was preserved as demonstrated by biochemical methods in vitro. In vivo studies with mice bearing orthotopic and subcutaneous tumors were performed. Elemental and histological analyses showed that the conjugated magnetic nanoparticles accumulated specifically and were retained at tumor sites longer than the non-conjugated nanoparticles.
Collapse
Affiliation(s)
- Alessandra Quarta
- Nanoscience Institute of CNR, National Nanotechnology Laboratory, via Arnesano, 73100, Lecce, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Peng E, Wang F, Tan S, Zheng B, Li SFY, Xue JM. Tailoring a two-dimensional graphene oxide surface: dual T1 and T2 MRI contrast agent materials. J Mater Chem B 2015; 3:5678-5682. [DOI: 10.1039/c5tb00902b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A water-soluble hybrid two-dimensional nanostructured dual T1–T2 MRI contrast agent with fair T1 and T2 nanoparticle separation distance and negligible T1/T2 signal quenching was developed.
Collapse
Affiliation(s)
- Erwin Peng
- Department of Materials Science and Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore 117576
- Singapore
| | - Fenghe Wang
- Department of Materials Science and Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore 117576
- Singapore
| | - Suhui Tan
- Department of Materials Science and Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore 117576
- Singapore
| | - Bingwen Zheng
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| | - Sam Fong Yau Li
- Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
- NUS Environment Research Institute (NERI)
| | - Jun Min Xue
- Department of Materials Science and Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore 117576
- Singapore
| |
Collapse
|
46
|
Zacheo A, Quarta A, Zizzari A, Monteduro AG, Maruccio G, Arima V, Gigli G. One step preparation of quantum dot-embedded lipid nanovesicles by a microfluidic device. RSC Adv 2015. [DOI: 10.1039/c5ra18862h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthetic carriers that mimic “natural lipid-based vesicles” (micro/nanovesicles, exosomes) have found broad application in biomedicine for the delivery of biomolecules and drugs. Here, an innovative approach for their production is presented.
Collapse
Affiliation(s)
- A. Zacheo
- Department of Mathematics and Physics “Ennio De Giorgi”
- Università del Salento
- 73100 Lecce
- Italy
- CNR–Istituto di Nanotecnologia (NANOTEC)
| | - A. Quarta
- CNR–Istituto di Nanotecnologia (NANOTEC)
- 73100 Lecce
- Italy
| | - A. Zizzari
- Department of Mathematics and Physics “Ennio De Giorgi”
- Università del Salento
- 73100 Lecce
- Italy
| | - A. G. Monteduro
- Department of Mathematics and Physics “Ennio De Giorgi”
- Università del Salento
- 73100 Lecce
- Italy
- CNR–Istituto di Nanotecnologia (NANOTEC)
| | - G. Maruccio
- Department of Mathematics and Physics “Ennio De Giorgi”
- Università del Salento
- 73100 Lecce
- Italy
- CNR–Istituto di Nanotecnologia (NANOTEC)
| | - V. Arima
- CNR–Istituto di Nanotecnologia (NANOTEC)
- 73100 Lecce
- Italy
| | - G. Gigli
- Department of Mathematics and Physics “Ennio De Giorgi”
- Università del Salento
- 73100 Lecce
- Italy
- CNR–Istituto di Nanotecnologia (NANOTEC)
| |
Collapse
|
47
|
Liu X, Li H, Jin Q, Ji J. Surface tailoring of nanoparticles via mixed-charge monolayers and their biomedical applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4230-4242. [PMID: 25123827 DOI: 10.1002/smll.201401440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/26/2014] [Indexed: 06/03/2023]
Abstract
The recent convergence of nanomaterials and medicine has provided an expanding horizon for people to achieve encouraging advances in many biomedical applications such as cancer diagnosis and therapy. However, to realize desirable functions in the rather complex biological systems, a suitable surface coating is greatly in need for nanoparticles (NPs), regardless of the species. In this review, a recently developed surface modification strategy is highlighted--mixed-charge monolayers--with an emphasis on the nanointerfaces of inorganic NPs. Two typical mixed-charge gold NPs (AuNPs) prepared from surface modifications with different combinations of oppositely charged alkanethiols are shown as detailed examples to discuss how the mixed-charge monolayer can help NPs meet the criteria for in vitro and in vivo biomedical applications, including those critical issues like colloidal stability, nonfouling properties, and smart responses (pH-sensitivity) for tumor targeting.
Collapse
Affiliation(s)
- Xiangsheng Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | | | | |
Collapse
|
48
|
Pombo García K, Zarschler K, Barbaro L, Barreto JA, O'Malley W, Spiccia L, Stephan H, Graham B. Zwitterionic-coated "stealth" nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2516-29. [PMID: 24687857 DOI: 10.1002/smll.201303540] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Indexed: 05/20/2023]
Abstract
Nanoparticles represent highly promising platforms for the development of imaging and therapeutic agents, including those that can either be detected via more than one imaging technique (multi-modal imaging agents) or used for both diagnosis and therapy (theranostics). A major obstacle to their medical application and translation to the clinic, however, is the fact that many accumulate in the liver and spleen as a result of opsonization and scavenging by the mononuclear phagocyte system. This focused review summarizes recent efforts to develop zwitterionic-coatings to counter this issue and render nanoparticles more biocompatible. Such coatings have been found to greatly reduce the rate and/or extent of non-specific adsorption of proteins and lipids to the nanoparticle surface, thereby inhibiting production of the "biomolecular corona" that is proposed to be a universal feature of nanoparticles within a biological environment. Additionally, in vivo studies have demonstrated that larger-sized nanoparticles with a zwitterionic coating have extended circulatory lifetimes, while those with hydrodynamic diameters of ≤5 nm exhibit small-molecule-like pharmacokinetics, remaining sufficiently small to pass through the fenestrae and slit pores during glomerular filtration within the kidneys, and enabling efficient excretion via the urine. The larger particles represent ideal candidates for use as blood pool imaging agents, whilst the small ones provide a highly promising platform for the future development of theranostics with reduced side effect profiles and superior dose delivery and image contrast capabilities.
Collapse
Affiliation(s)
- Karina Pombo García
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, PF 510119, Dresden, 01314, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Cargnello M, Gordon TR, Murray CB. Solution-Phase Synthesis of Titanium Dioxide Nanoparticles and Nanocrystals. Chem Rev 2014; 114:9319-45. [DOI: 10.1021/cr500170p] [Citation(s) in RCA: 294] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Matteo Cargnello
- Department of Chemistry and ‡Department of
Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Thomas R. Gordon
- Department of Chemistry and ‡Department of
Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christopher B. Murray
- Department of Chemistry and ‡Department of
Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
50
|
Herranz F, Salinas B, Groult H, Pellico J, Lechuga-Vieco AV, Bhavesh R, Ruiz-Cabello J. Superparamagnetic Nanoparticles for Atherosclerosis Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2014; 4:408-438. [PMID: 28344230 PMCID: PMC5304673 DOI: 10.3390/nano4020408] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 12/12/2022]
Abstract
The production of magnetic nanoparticles of utmost quality for biomedical imaging requires several steps, from the synthesis of highly crystalline magnetic cores to the attachment of the different molecules on the surface. This last step probably plays the key role in the production of clinically useful nanomaterials. The attachment of the different biomolecules should be performed in a defined and controlled fashion, avoiding the random adsorption of the components that could lead to undesirable byproducts and ill-characterized surface composition. In this work, we review the process of creating new magnetic nanomaterials for imaging, particularly for the detection of atherosclerotic plaque, in vivo. Our focus will be in the different biofunctionalization techniques that we and several other groups have recently developed. Magnetic nanomaterial functionalization should be performed by chemoselective techniques. This approach will facilitate the application of these nanomaterials in the clinic, not as an exception, but as any other pharmacological compound.
Collapse
Affiliation(s)
- Fernando Herranz
- Advanced Imaging Unit, Department of Epidemiology, Atherothrombosis and Imaging, Spanish National Centre for Cardiovascular Research (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
- CIBER of Pulmonary Diseases, Biomedical Research Network, Carlos III Health Institute, 28029 Madrid, Spain.
| | - Beatriz Salinas
- Advanced Imaging Unit, Department of Epidemiology, Atherothrombosis and Imaging, Spanish National Centre for Cardiovascular Research (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
- CIBER of Pulmonary Diseases, Biomedical Research Network, Carlos III Health Institute, 28029 Madrid, Spain.
| | - Hugo Groult
- Advanced Imaging Unit, Department of Epidemiology, Atherothrombosis and Imaging, Spanish National Centre for Cardiovascular Research (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
- CIBER of Pulmonary Diseases, Biomedical Research Network, Carlos III Health Institute, 28029 Madrid, Spain.
| | - Juan Pellico
- Advanced Imaging Unit, Department of Epidemiology, Atherothrombosis and Imaging, Spanish National Centre for Cardiovascular Research (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
- CIBER of Pulmonary Diseases, Biomedical Research Network, Carlos III Health Institute, 28029 Madrid, Spain.
| | - Ana V Lechuga-Vieco
- Advanced Imaging Unit, Department of Epidemiology, Atherothrombosis and Imaging, Spanish National Centre for Cardiovascular Research (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
- CIBER of Pulmonary Diseases, Biomedical Research Network, Carlos III Health Institute, 28029 Madrid, Spain.
| | - Riju Bhavesh
- Advanced Imaging Unit, Department of Epidemiology, Atherothrombosis and Imaging, Spanish National Centre for Cardiovascular Research (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
| | - J Ruiz-Cabello
- Advanced Imaging Unit, Department of Epidemiology, Atherothrombosis and Imaging, Spanish National Centre for Cardiovascular Research (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
- CIBER of Pulmonary Diseases, Biomedical Research Network, Carlos III Health Institute, 28029 Madrid, Spain.
- Department of Physicochemistry II, Faculty of Pharmacy, Complutense University Madrid (UCM), Plaza Ramón y Cajal s/n Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|