1
|
Wang T, Tan HS, Wang AJ, Li SS, Feng JJ. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens Bioelectron 2024; 257:116323. [PMID: 38669842 DOI: 10.1016/j.bios.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.
Collapse
Affiliation(s)
- Tong Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hong-Sheng Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
2
|
Zhou T, Li L, Zhu Z, Chen X, Wang Q, Zhu WH. Serum-Based Detection of Liver Pathology Using a Fluorogenic Alkaline Phosphatase Probe. Chembiochem 2023; 24:e202300321. [PMID: 37218114 DOI: 10.1002/cbic.202300321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
Development of "ultrahigh contrast" fluorogenic probes for trapping alkaline phosphatase (ALP) activities in human serum is highly desirable for clinical auxiliary diagnosis for hepatobiliary diseases. However, the intrinsic dilemma of incomplete ionization of intramolecular charge transfer (ICT)-based ALP fluorophores and autofluorescence interference of serum result in low sensitivity and accuracy. Given that unique halogen effects could lead to a drastic decrease in the pKa value and a significant enhancement in the fluorescence quantum yield, herein we report an enzyme-activatable near-infrared probe based on a difluoro-substituted dicyanomethylene-4H-chromenep for achieving fluorescent quantification of human serum ALP. Rational design strategy is demonstrated by altering the substituted halogen groups to well regulate the pKa for meeting the physiological precondition. Owing to the complete ionization at pH 7.4 with tremendous fluorescence enhancement, the difluoro-substituted DCM-2F-HP manifests a linear relationship between the emission intensity and ALP concentration in both solution and serum samples. Along with measuring 77 human serum samples, the DCM-2F-HP based fluorescence method not only exhibits significant correlations with clinical colorimetry, but also distinguishes ALP patients from healthy volunteers, as well as assessing the progress of liver disease, thus providing a potential toolbox for quantitatively detecting ALP and warning the stage of hepatopathy.
Collapse
Affiliation(s)
- Tijian Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Li Li
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhirong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Xiaoyan Chen
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Wei-Hong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China
| |
Collapse
|
3
|
Ding Z, Li Z, Zhao X, Miao Y, Yuan Z, Jiang Y, Lu Y. Self-deposited ultrasmall Ru nanoparticles on carbon nitride with high peroxidase-mimicking activity for the colorimetric detection of alkaline phosphatase. J Colloid Interface Sci 2022; 631:86-95. [DOI: 10.1016/j.jcis.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
4
|
Recent Advancements in Developments of Novel Fluorescent Probes: In Cellulo Recognitions of Alkaline Phosphatases. Symmetry (Basel) 2022. [DOI: 10.3390/sym14081634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Alkaline phosphatase (ALP) is one of the vital phospho-ester bond cleaving biocatalysts that has inevitable significance in cellular systems, viz., early-stage osteoblast differentiation, cell integrity in tissues, bone mineralization, cancer biomarker, liver dysfunction, cellular osmotic pressure, protein folding and many more. Variation from optimal levels of ALP in intra and extracellular fluids can cause severe diseases, including death. Due to these reasons, ALP is considered as a vital biomarker for various preclinical and medical diagnosis. Fluorescence image-based diagnosis is the most widely used method, owing to its simplicity, robustness, non-invasive properties and excellent spatio-temporal resolution (up to the nM/pM level), as compared to conventional analytical techniques, such as the electroanalytical method, nuclear magnetic resonance (NMR) and high-performance liquid chromatography (HPLC). Most of the reviews reported for ALP’s recognition in the literature scarcely explain the structurally related, photophysical and biophysical parameters; and the sub-cellular localizations. Considering these facts, in order to enhance the opto-analytical parameters of fluorescence-based diagnostic materials at the cellular level, herein we have systematically documented recent developments in the opto-analytical capabilities of quencher-free probes for ALP, used in in vitro (biological buffers) to in cellulo conditions, along with in vivo models.
Collapse
|
5
|
Xiang J, Liu J, Liu X, Zhou Q, Zhao Z, Piao Y, Shao S, Zhou Z, Tang J, Shen Y. Enzymatic drug release cascade from polymeric prodrug nanoassemblies enables targeted chemotherapy. J Control Release 2022; 348:444-455. [PMID: 35691498 DOI: 10.1016/j.jconrel.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 11/19/2022]
Abstract
Cancer drug delivery systems often suffer from premature drug leakage during transportation and/or inefficient drug release within cancer cells. We present here a polymeric prodrug nanoassembly that addresses these problems simultaneously. This nanoassembly comprises a polymeric prodrug with novel trivalent phenylboronate moieties for drug conjugation via ether linkages, as well as β-lapachone (Lapa). While the ether linkage enables nearly no drug release under physiological conditions, the Lapa molecules can induce the reactive oxygen species (ROS) burst specifically in cancer cells via NAD(P)H: quinone oxidoreductase-1 catalysis, which triggers the cleavage of the ether bonds and thus cascade amplification drug release in cancer cells. As a result, the nanoassemblies exhibit much higher cytotoxicity against cancer cells than normal cells, and also increased therapeutic efficacy and reduced side effects compared to the clinically used irinotecan. We anticipate that this strategy can be applied to other drug delivery platforms to enable more precise drug release.
Collapse
Affiliation(s)
- Jiajia Xiang
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Hangzhou, Zhejiang University, Hangzhou 310027, China
| | - Jing Liu
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Hangzhou, Zhejiang University, Hangzhou 310027, China
| | - Xin Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Quan Zhou
- School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhihao Zhao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Hangzhou, Zhejiang University, Hangzhou 310027, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Hangzhou, Zhejiang University, Hangzhou 310027, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Hangzhou, Zhejiang University, Hangzhou 310027, China.
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Hangzhou, Zhejiang University, Hangzhou 310027, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Hangzhou, Zhejiang University, Hangzhou 310027, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Hangzhou, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
6
|
de Saint Germain A, Clavé G, Schouveiler P, Pillot JP, Singh AV, Chevalier A, Daignan Fornier S, Guillory A, Bonhomme S, Rameau C, Boyer FD. Expansion of the Strigolactone Profluorescent Probes Repertory: The Right Probe for the Right Application. FRONTIERS IN PLANT SCIENCE 2022; 13:887347. [PMID: 35720613 PMCID: PMC9201908 DOI: 10.3389/fpls.2022.887347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/02/2022] [Indexed: 05/29/2023]
Abstract
Strigolactones (SLs) are intriguing phytohormones that not only regulate plant development and architecture but also interact with other organisms in the rhizosphere as root parasitic plants (Striga, Orobanche, and Phelipanche) and arbuscular mycorrhizal fungi. Starting with a pioneering work in 2003 for the isolation and identification of the SL receptor in parasitic weeds, fluorescence labeling of analogs has proven a major strategy to gain knowledge in SL perception and signaling. Here, we present novel chemical tools for understanding the SL perception based on the enzymatic properties of SL receptors. We designed different profluorescent SL Guillaume Clavé (GC) probes and performed structure-activity relationship studies on pea, Arabidopsis thaliana, and Physcomitrium (formerly Physcomitrella) patens. The binding of the GC probes to PsD14/RMS3, AtD14, and OsD14 proteins was tested. We demonstrated that coumarin-based profluorescent probes were highly bioactive and well-adapted to dissect the enzymatic properties of SL receptors in pea and a resorufin profluorescent probe in moss, contrary to the commercially available fluorescein profluorescent probe, Yoshimulactone Green (YLG). These probes offer novel opportunities for the studies of SL in various plants.
Collapse
Affiliation(s)
| | - Guillaume Clavé
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Paul Schouveiler
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Jean-Paul Pillot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Abhay-Veer Singh
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Arnaud Chevalier
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Suzanne Daignan Fornier
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Ambre Guillory
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sandrine Bonhomme
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Catherine Rameau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - François-Didier Boyer
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Huang X, Chen X, Chen S, Zhang X, Wang L, Hou S, Ma X. Novel ratiometric fluorescent probe for real-time detection of alkaline phosphatase and its application in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119953. [PMID: 34030036 DOI: 10.1016/j.saa.2021.119953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
A novel ratiometric fluorescent probe has been developed through a simple synthetic route for the detection of alkaline phosphatase(ALP) in aqueous media and for fluorescence imaging in living cells. The introduction of a spontaneous-degradation spacer in the design of the fluorescent probe is beneficial for the ratio detection method and allows the selection of a fluorophore with an amino group. Under catalysis by ALP, the phosphate monoester bond breaks; this is followed by 1,4-elimination, decomposition of the carbamate moiety, and subsequent formation of the 4-amine-1,8-naphthalimide fluorophore. The probe APN shows a significant fluorescence colour change from blue to green in response to ALP, and the fluorescence intensity ratio of the probe solution (F550/F480) has a good linear relationship with the ALP concentration in the range of 0 to 100 U L-1. Our studies have demonstrated that APN exhibits high accuracy in recognising ALP, with a detection limit as low as 0.16 U L-1. Furthermore, the probe shows very good biocompatibility, which is beneficial for its application in biological systems.
Collapse
Affiliation(s)
- Xiaoqian Huang
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Xiangzhu Chen
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Shijun Chen
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Xueyan Zhang
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Lin Wang
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Shicong Hou
- College of Science, China Agricultural University, Beijing 100193, PR China.
| | - Xiaodong Ma
- College of Science, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
8
|
Tan Q, Zhao S, Li Y, Jiang J, Tang H, Chen Y, Peng Y, Xie H. Regioselective Difluoromethane sulfonylation and Triflylation of Resorufin Derivatives. Org Lett 2021; 23:8477-8481. [PMID: 34661414 DOI: 10.1021/acs.orglett.1c03192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reported herein is a regioselective difluoromethane sulfonylation or triflylation of resorufin derivatives, which allows easy access to 2-difluoromethane sulfonylated or triflylated resorufin derivatives in good yields. The installation of a difluoromethane sulfonyl group significantly increases the solubility of the chromophore and expands its Stokes shift. A difluoromethane sulfonylated resorufin-based fluorogenic probe proved to be able to image enzyme activity in live cells with a stronger fluorescence signal compared with its resorufin counterpart.
Collapse
Affiliation(s)
- Qingwei Tan
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shuxuan Zhao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuyao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jialing Jiang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huiling Tang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yefeng Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Peng
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
Ye W, Li L, Feng Z, Tu B, Hu Z, Xiao X, Wu T. Sensitive detection of alkaline phosphatase based on terminal deoxynucleotidyl transferase and endonuclease IV-assisted exponential signal amplification. J Pharm Anal 2021; 12:692-697. [PMID: 36105169 PMCID: PMC9463482 DOI: 10.1016/j.jpha.2021.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
|
10
|
Shin J, Kang DM, Yoo J, Heo J, Jeong K, Chung JH, Han YS, Kim S. Superoxide-responsive fluorogenic molecular probes for optical bioimaging of neurodegenerative events in Alzheimer's disease. Analyst 2021; 146:4748-4755. [PMID: 34231563 DOI: 10.1039/d1an00692d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since oxidative stress has been recognized as a major factor contributing to the progression of several neurodegenerative disorders, reactive oxygen species (ROS) including superoxide have received great attention as a representative molecular marker for the diagnosis of Alzheimer's disease (AD). Here, superoxide-sensitive fluorogenic molecular probes, benzenesulfonylated resorufin derivatives (BSRs), were newly devised for optical bioimaging of oxidative events in neurodegenerative processes. BSRs, fluorescence-quenched benzenesulfonylated derivatives of resorufin, were designed to recover their fluorescence upon exposure to superoxide through a selective nucleophilic uncaging reaction of the benzenesulfonyl cage. Among BSRs, BSR6 presented the best sensitivity and selectivity to superoxide likely due to the optimal reactivity matching between the nucleophilicity of superoxide and its electrophilicity ascribed to the highly electron-withdrawing pentafluoro-substitution on the benzenesulfonyl cage. Fluorescence imaging of inflammatory cells and animal models presented the potential of BSR6 for optical sensing of superoxide in vitro and in vivo. Furthermore, microglial cell (Bv2) imaging with BSR6 enabled the optical monitoring of intracellular oxidative events upon treatment with an oxidative stimulus (amyloid beta, Aβ) or the byproduct of oxidative stress (4-hydroxynonenal, HNE).
Collapse
Affiliation(s)
- Jawon Shin
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang LJ, Liu H, Zou X, Xu Q, Zhang CY. 3'-Terminal Repair-Powered Dendritic Nanoassembly of Polyadenine Molecular Beacons for One-Step Quantification of Alkaline Phosphatase in Human Serum. Anal Chem 2021; 93:10704-10711. [PMID: 34292701 DOI: 10.1021/acs.analchem.1c02285] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alkaline phosphatase (ALP) is an important hydrolase with crucial roles in biological processes, and the dysregulation of ALP may cause various human diseases. The conventional ALP assays usually involve cumbersome procedures with poor sensitivity. Herein, taking advantage of intrinsic superiorities of molecular beacons (MBs) and unique features of terminal deoxynucleotidyl transferase (TdT), we demonstrate for the first time the 3'-terminal repair-powered dendritic nanoassembly of polyadenine (A) MBs for one-step quantification of ALP in human serum. When ALP is present, it catalyzes 3'-terminal dephosphorylation of poly-A MBs to induce TdT-mediated template-free polymerization, generating long chains of polythymidine (T) sequences. The long poly-T chains can function as the anchoring templates to hybridize with many poly-A MBs, leading to the unfolding of loop structures and the dissociation of FAM/BHQ1 pairs (the 1st amplification stage). Subsequently, all 3'-hydroxylated poly-A MBs can be extended with the assistance of TdT to generate the branched long poly-T chains, leading to the hybridization of more poly-A MBs and the dissociation of more FAM/BHQ1 pairs (the 2nd amplification stage). Through multiple rounds of extension, assembly, and activation of poly-A MBs, dendritic DNA nanostructures are automatically formed, resulting in the dissociation of abundant fluorophores from the FAM/BHQ1 pairs to generate an exponentially amplified fluorescence signal (the nth amplification stage). This strategy possesses high sensitivity and excellent specificity, and the detection limit can reach 1 cell. Moreover, it can evaluate kinetic parameters, screen inhibitors, estimate cellular inhibition effects, and measure ALP in human serums.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.,School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
12
|
Hu Y, Zhang J, Miao Y, Wen X, Wang J, Sun Y, Chen Y, Lin J, Qiu L, Guo K, Chen H, Ye D. Enzyme‐Mediated In Situ Self‐Assembly Promotes In Vivo Bioorthogonal Reaction for Pretargeted Multimodality Imaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yinxing Miao
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211800 China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211800 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
13
|
Hu Y, Zhang J, Miao Y, Wen X, Wang J, Sun Y, Chen Y, Lin J, Qiu L, Guo K, Chen HY, Ye D. Enzyme-Mediated In Situ Self-Assembly Promotes In Vivo Bioorthogonal Reaction for Pretargeted Multimodality Imaging. Angew Chem Int Ed Engl 2021; 60:18082-18093. [PMID: 34010512 DOI: 10.1002/anie.202103307] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/01/2021] [Indexed: 12/13/2022]
Abstract
Pretargeted imaging has emerged as a promising approach to advance nuclear imaging of malignant tumors. Herein, we combine the enzyme-mediated fluorogenic reaction and in situ self-assembly with the inverse electron demand Diels-Alder (IEDDA) reaction to develop an activatable pretargeted strategy for multimodality imaging. The trans-cyclooctene (TCO) bearing small-molecule probe, P-FFGd-TCO, can be activated by alkaline phosphatase and in situ self-assembles into nanoaggregates (FMNPs-TCO) retained on the membranes, permitting to (1) amplify near-infrared (NIR) fluorescence (FL) and magnetic resonance imaging (MRI) signals, and (2) enrich TCOs to promote IEDDA ligation. The Gallium-68 (68 Ga) labeled tetrazine can readily conjugate the tumor-retained FMNPs-TCO to enhance radioactivity uptake in tumors. Strong NIR FL, MRI, and positron emission tomography (PET) signals are concomitantly achieved, allowing for pretargeted multimodality imaging of ALP activity in HeLa tumor-bearing mice.
Collapse
Affiliation(s)
- Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yinxing Miao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
14
|
Abe A, Kamiya M. A versatile toolbox for investigating biological processes based on quinone methide chemistry: From self-immolative linkers to self-immobilizing agents. Bioorg Med Chem 2021; 44:116281. [PMID: 34216983 DOI: 10.1016/j.bmc.2021.116281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/12/2021] [Indexed: 11/26/2022]
Abstract
Quinone methide (QM) species have been included in the design of various functional molecules. In this review, we present a comprehensive overview of bioanalytical tools based on QM chemistry. In the first part, we focus on self-immolative linkers that have been incorporated into functional molecules such as prodrugs and fluorescent probes. In the latter half, we outline how the highly electrophilic property of QMs, enabling them to react rapidly with neighboring nucleophiles, has been applied to develop inhibitors or labeling probes for enzymes, as well as self-immobilizing fluorogenic probes with high spatial resolution. This review systematically summarizes the versatile QM toolbox available for investigating biological processes.
Collapse
Affiliation(s)
- Atsuki Abe
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
15
|
|
16
|
Wang K, Wang W, Zhang XY, Jiang AQ, Yang YS, Zhu HL. Fluorescent probes for the detection of alkaline phosphatase in biological systems: Recent advances and future prospects. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116189] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Pramanik SK, Das A. Small luminescent molecular probe for developing as assay for alkaline phosphatase. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Pang X, Li Y, Lu Q, Ni Z, Zhou Z, Xie R, Wu C, Li H, Zhang Y. A turn-on near-infrared fluorescent probe for visualization of endogenous alkaline phosphatase activity in living cells and zebrafish. Analyst 2021; 146:521-528. [PMID: 33227102 DOI: 10.1039/d0an01863e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alkaline phosphatase (ALP) is an essential hydrolase and widely distributed in living organisms. It plays important roles in various physiological and pathological processes. Herein, a turn-on near-infrared (NIR) fluorescent probe (DXMP) was developed for sensitive detection of ALP activity both in vitro and in vivo based on the intramolecular charge transfer (ICT) mechanism. Upon incubation with ALP, DXMP exhibited a strong fluorescence increment at 640 nm, which was attributed to the fact that ALP-catalyzed cleavage of the phosphate group in DXMP induced the transformation of DXMP into DXM-OH. The probe exhibited prominent features including outstanding selectivity, high sensitivity, and excellent biocompatibility. More importantly, it has been successfully used to detect and image endogenous ALP in living cells and zebrafish.
Collapse
Affiliation(s)
- Xiao Pang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang WX, Jiang WL, Guo H, Li Y, Li CY. Real-time imaging of alkaline phosphatase activity of diabetes in mice via a near-infrared fluorescent probe. Chem Commun (Camb) 2021; 57:480-483. [DOI: 10.1039/d0cc07292c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel water-soluble near-infrared fluorescent probe named QX-P with simple synthesis is developed for detecting ALP. The probe can not only visualize ALP activity in four cell lines, but also real-time image ALP activity of diabetes in mice.
Collapse
Affiliation(s)
- Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Hong Guo
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan
| |
Collapse
|
20
|
Tian L, Feng H, Dai Z, Zhang R. Resorufin-based responsive probes for fluorescence and colorimetric analysis. J Mater Chem B 2020; 9:53-79. [PMID: 33226060 DOI: 10.1039/d0tb01628d] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The fluorescence imaging technique has attracted increasing attention in the detection of various biological molecules in situ and in real-time owing to its inherent advantages including high selectivity and sensitivity, outstanding spatiotemporal resolution and fast feedback. In the past few decades, a number of fluorescent probes have been developed for bioassays and imaging by exploiting different fluorophores. Among various fluorophores, resorufin exhibits a high fluorescence quantum yield, long excitation/emission wavelength and pronounced ability in both fluorescence and colorimetric analysis. This fluorophore has been widely utilized in the design of responsive probes specific for various bioactive species. In this review, we summarize the advances in the development of resorufin-based fluorescent probes for detecting various analytes, such as cations, anions, reactive (redox-active) sulfur species, small molecules and biological macromolecules. The chemical structures of probes, response mechanisms, detection limits and practical applications are investigated, which is followed by the discussion of recent challenges and future research perspectives. This review article is expected to promote the further development of resorufin-based responsive fluorescent probes and their biological applications.
Collapse
Affiliation(s)
- Lu Tian
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| | | | | | | |
Collapse
|
21
|
Morsby JJ, Dharmarwardana M, McGarraugh H, Smith BD. Supramolecular optimization of the visual contrast for colorimetric indicator assays that release resorufin dye. Chem Commun (Camb) 2020; 56:9296-9299. [PMID: 32666982 PMCID: PMC7429340 DOI: 10.1039/d0cc03551c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A tetralactam macrocycle acts as a novel supramolecular adjuvant to capture a released resorufin dye and create a higher contrasting yellow/blue color change for enhanced naked eye interpretation of a colorimetric indicator assay.
Collapse
Affiliation(s)
- Janeala J Morsby
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA.
| | - Madushani Dharmarwardana
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA.
| | - Hannah McGarraugh
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA.
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA.
| |
Collapse
|
22
|
A novel alkaline phosphatase activity sensing strategy combining enhanced peroxidase-mimetic feature of sulfuration-engineered CoO x with electrostatic aggregation. Anal Bioanal Chem 2020; 412:5551-5561. [PMID: 32671451 DOI: 10.1007/s00216-020-02815-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/14/2020] [Accepted: 07/10/2020] [Indexed: 02/02/2023]
Abstract
Given alkaline phosphatase (ALP) takes part in the phosphorylation/dephosphorylation processes in the body, its activity is universally taken as an important indicator of many diseases, and thus developing reliable and efficient methods for ALP activity determination becomes quite important. Here, we propose a new sensing strategy for ALP activity by integrating the improved peroxidase-mimicking catalysis of sulfuration-engineered CoOx with the hexametaphosphate ion (HMPi)-mediated electrostatic aggregation. After sulfuration engineering, the CoOx composite coming from the pyrolysis of ZIF-67 exhibits enhanced peroxidase-mimetic catalytic ability to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to its oxide TMBox, offering a remarkable color change from colorless to mazarine; with the presence of HMPi, the rapid electrostatic assembly of negatively charged HMPi and positively charged TMBox leads to the aggregation of the latter, resulting in a color fading phenomenon; when ALP is added in advance to hydrolyze the HMPi mediator, the aggregation procedure is significantly suppressed, and such that the solution color can be recovered. Based on this principle, efficient determination of ALP activity was gained, giving a wide detection scope from 0.8 to 320 U/L and a detection limit as low as 0.38 U/L. Reliable analysis of the target in serum samples was also achieved, verifying the feasibility and practicability of our strategy in measuring ALP activity for clinical applications. Graphical abstract.
Collapse
|
23
|
Ma L, Han X, Xia L, Qu F, Kong RM. A label-free G-quadruplex-based fluorescence assay for sensitive detection of alkaline phosphatase with the assistance of Cu 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117607. [PMID: 31654846 DOI: 10.1016/j.saa.2019.117607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/07/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
The level of alkaline phosphate (ALP) is a significant biomarker index in organism. In this work, a label-free and sensitive G-quadruplex fluorescence assay for monitoring ALP activity has been developed with the assistance of Cu2+ based on the competitive binding effect between pyrophosphate (PPi) and G-quadruplex-N-methylmesoporphyrin (G4/NMM) complex to Cu2+. In the sensing assay, the G4/NMM complex is employed as a signal indicator, while the Cu2+ as a quencher and the PPi as recovery agent as well as the hydrolytic substance for ALP. In details, the fluorescence of the G4/NMM complex was efficiently quenched by introducing Cu2+ due to the proximal carboxylate groups of NMM coordinating with the Cu2+ as well as the unfolding of G-quadruplex by Cu2+, while the higher affinity between PPi and Cu2+ could lead to the fluorescence recovery. However, in the presence of ALP, the PPi was hydrolyzed to phosphate ions (Pi) which cannot integrate with Cu2+, resulting in the fluorescence quenching once again. Thus, a simple and facile way to inspect ALP has been exploited. The proposed assay shows a good linear relationship in the range from 0.5 to 100 U/L with the detection limit of 0.3 U/L. Moreover, the fabricated method is succeeded in detecting ALP in human serum samples, indicating the potential as a profitable candidate in biological and biomedical application.
Collapse
Affiliation(s)
- Lin Ma
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, PR China
| | - Xue Han
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, PR China
| | - Lian Xia
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, PR China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, PR China
| | - Rong-Mei Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, PR China.
| |
Collapse
|
24
|
Sun C, Shi Y, Tang M, Hu X, Long Y, Zheng H. A signal amplification strategy for prostate specific antigen detection via releasing oxidase-mimics from coordination nanoparticles by alkaline phosphatase. Talanta 2020; 213:120827. [PMID: 32200923 DOI: 10.1016/j.talanta.2020.120827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/15/2022]
Abstract
A novel signal amplification method for prostate specific antigen (PSA) is developed by freeing fluorescein with photoinduced oxidase-like activity from coordination nanoparticles (CNPs) in the presence of alkaline phosphatase (ALP). CNPs loaded with fluorescein (F@CNPs) are obtained in aqueous solution by self-assembly using Tb3+ as metal ion, guanosine monophosphate (5'-GMP) as ligand, and fluorescein as signal molecule. The F@CNPs display outstanding properties of simple synthesis, low cost, good water solubility, negligible leakage and satisfactory load capacity. Fluorescein is quantitatively encapsulated in CNPs with a binding ratio of 92.72%. Meanwhile, ALP can specifically hydrolyze the phosphate group of 5'-GMP ligand, triggering the destruction of F@CNPs and leakage of fluorescein. Fluorescein, a photoinduced oxidase mimic, can catalyze the oxidation of non-fluorescent Amplex UltraRed (AUR) into fluorescent resorufin under LED lamp. This strategy exhibits good sensitivity for ALP detection. In addition, a new immunoassay for PSA is validated by labelling ALP on PSA antibody. The low detection limit of 0.04 ng mL-1 in detecting PSA is appropriate for PSA detection in real samples. Therefore, the work not only establishes a new strategy for ALP and PSA determination, but also provides a new conception for putting photoinduced oxidase-like fluorescein in practical application.
Collapse
Affiliation(s)
- Chaoqun Sun
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Ying Shi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Menghuan Tang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Xuemei Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Yijuan Long
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Huzhi Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
25
|
Yang XZ, Wei XR, Sun R, Xu YJ, Ge JF. Benzoxazine-based fluorescent probes with different auxochrome groups for cysteine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117582. [PMID: 31629978 DOI: 10.1016/j.saa.2019.117582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Three 5H-benzo[a]phenoxazin-5-one-based (benzoresorufin and nile-red) Cysteine (Cys) detection probes have been comparatively designed and synthesized in this paper. The optical experiments exhibit probe 1b with a crotonoyl group has no response toward Cys; while probes 1a and 1c have the same reaction site (acryloyl group), their optical responses to Cys are quite different. The benzoresorufin-based-probe 1a shows a turn-on fluorescence response (118-fold) to Cys at 631 nm and affords a very low detection limit (DL = 19.8 nM). Compared with probe 1a, the nile-red-based probe 1c displays gradually diminishing fluorescence intensity with increased Cys concentration at 665 nm. And the notable different fluorescence response mechanisms of probes 1a and 1c toward Cys can be interpreted by HRMS and time-dependent density functional theorety (TDDFT) calculations. Furthermore, both of the two probes indicate high sensitivity and selectivity toward Cys over other similar structured amino acids including homocysteine (Hcy) and glutathione (GSH). Further cellular applications of the two probes have been successfully performed in HeLa cells.
Collapse
Affiliation(s)
- Xiu-Zhi Yang
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou, 215123, China
| | - Xue-Rui Wei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou, 215123, China.
| | - Yu-Jie Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou, 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| |
Collapse
|
26
|
Dhiman S, Ahmad M, Singla N, Kumar G, Singh P, Luxami V, Kaur N, Kumar S. Chemodosimeters for optical detection of fluoride anion. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213138] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Han Y, Chen J, Li Z, Chen H, Qiu H. Recent progress and prospects of alkaline phosphatase biosensor based on fluorescence strategy. Biosens Bioelectron 2020; 148:111811. [DOI: 10.1016/j.bios.2019.111811] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
|
28
|
Gong Q, Qin W, Xiao P, Wu X, Li L, Zhang G, Zhang R, Sun J, Yao SQ, Huang W. Internal standard fluorogenic probe based on vibration-induced emission for visualizing PTP1B in living cells. Chem Commun (Camb) 2020; 56:58-61. [DOI: 10.1039/c9cc07680h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, as a proof of concept, we developed the first enzymatic VIE fluorogenic probe for protein tyrosine phosphatase 1B (PTP1B).
Collapse
Affiliation(s)
- Qiuyu Gong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing
- P. R. China
- Department of Chemistry
| | - Wenjing Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing
- P. R. China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education
- Department of Biochemistry and Molecular Biology
- Shandong University School of Medicine
- Jinan
- P. R. China
| | - Xiang Wu
- Key Laboratory Experimental Teratology of the Ministry of Education
- Department of Biochemistry and Molecular Biology
- Shandong University School of Medicine
- Jinan
- P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing
- P. R. China
| | - Gaobin Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing
- P. R. China
| | - Renshuai Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing
- P. R. China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education
- Department of Biochemistry and Molecular Biology
- Shandong University School of Medicine
- Jinan
- P. R. China
| | - Shao Q. Yao
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (Nanjing Tech)
- Nanjing
- P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE)
| |
Collapse
|
29
|
Qi S, Zheng H, Qin H, Zhai H. Development of a facile and sensitive method for detecting alkaline phosphatase activity in serum with fluorescent gold nanoclusters based on the inner filter effect. Analyst 2020; 145:3871-3877. [DOI: 10.1039/d0an00052c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, a simple and sensitive method based on the inner filter effect (IFE) of p-nitrophenol (PNP) on the fluorescence of gold nanoclusters (AuNCs) has been developed for detecting alkaline phosphatase (ALP) activity.
Collapse
Affiliation(s)
- Shengda Qi
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Huanhuan Zheng
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Hongyan Qin
- Department of Pharmacy
- First Hospital of Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Honglin Zhai
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| |
Collapse
|
30
|
Singh H, Tiwari K, Tiwari R, Pramanik SK, Das A. Small Molecule as Fluorescent Probes for Monitoring Intracellular Enzymatic Transformations. Chem Rev 2019; 119:11718-11760. [DOI: 10.1021/acs.chemrev.9b00379] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Harwinder Singh
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Karishma Tiwari
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Rajeshwari Tiwari
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Amitava Das
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
31
|
Chen Z, Liu S, Yu X, Hao L, Wang L, Liu S. Responsive methylene blue release from lanthanide coordination polymer for label-free, immobilization-free and sensitive electrochemical alkaline phosphatase activity assay. Analyst 2019; 144:5971-5979. [PMID: 31498361 DOI: 10.1039/c9an01325c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alkaline phosphatase (ALP) is an important enzyme related to many clinical diseases and also widely used as a labeling enzyme for immunoassay. Herein, a new electrochemical sensing strategy for ALP activity was proposed, which was based on the ALP-triggered methylene blue (MB) release from a lanthanide coordination polymer and successive penetration through a self-assembled dodecanethiol monolayer for electrochemical response. The supramolecular lanthanide coordination polymer was constructed by using guanine monophosphate (GMP) and Tb3+ as the ligand and the metal ion, respectively, and the encapsulated MB as the signal molecule. ALP catalyzed the cleavage of the phosphate group from the GMP ligand and disrupted the coordination polymer network to release abundant MB molecules for electrochemical responses related to ALP activity. The obtained lanthanide coordination polymers were well characterized by various techniques. The fabricated electrochemical sensor for ALP activity assay shows distinct advantages such as being one-step, label-free, immobilization-free and highly sensitive. The detection limit toward ALP activity was down to 0.5 U L-1. With the aid of a MB enrichment process on the modified electrode before measurement, the detection limit could be further improved to 0.1 U L-1. Moreover, the assay method could be applied for ALP detection in complex matrixes such as human serum and also for efficient inhibitor evaluation. Thus, the current study provides a new pathway to the fabrication of a coordination polymer-based electrochemical sensing platform for applications in disease diagnosis and drug discovery.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | | | | | | | | | | |
Collapse
|
32
|
Niu X, Ye K, Wang L, Lin Y, Du D. A review on emerging principles and strategies for colorimetric and fluorescent detection of alkaline phosphatase activity. Anal Chim Acta 2019; 1086:29-45. [PMID: 31561792 DOI: 10.1016/j.aca.2019.07.068] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022]
Abstract
Alkaline phosphatase (ALP) is a natural enzyme that is able to catalyze the dephosphorylation of phosphate esters. It participates in a great number of biological processes ranging from various metabolisms to signal transduction and cellular regulation. Since the abnormality of ALP activity in body is closely associated with many diseases, it has become an important biomarker for clinical diagnosis and treatment. Besides, it is often utilized in enzyme-linked immunosorbent assays. Given these demands, in the last few years considerable interest has been focused on exploring new materials and methods for ALP activity detection. In this review, we first made a clear classification on the principles that could be used for ALP activity determination. After that, emerging colorimetric and fluorescent strategies designed on the basis of these principles were systematically summarized. Finally, some perspectives on ALP activity analysis were discussed, hoping to inspire future efforts in the field.
Collapse
Affiliation(s)
- Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| | - Kun Ye
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Linjie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
33
|
Gwynne L, Sedgwick AC, Gardiner JE, Williams GT, Kim G, Lowe JP, Maillard JY, Jenkins ATA, Bull SD, Sessler JL, Yoon J, James TD. Long Wavelength TCF-Based Fluorescent Probe for the Detection of Alkaline Phosphatase in Live Cells. Front Chem 2019; 7:255. [PMID: 31119120 PMCID: PMC6508040 DOI: 10.3389/fchem.2019.00255] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
A long wavelength TCF-based fluorescent probe (TCF-ALP) was developed for the detection of alkaline phosphatase (ALP). ALP-mediated hydrolysis of the phosphate group of TCF-ALP resulted in a significant fluorescence "turn on" (58-fold), which was accompanied by a colorimetric response from yellow to purple. TCF-ALP was cell-permeable, which allowed it to be used to image ALP in HeLa cells. Upon addition of bone morphogenic protein 2, TCF-ALP proved capable of imaging endogenously stimulated ALP in myogenic murine C2C12 cells. Overall, TCF-ALP offers promise as an effective fluorescent/colorimetric probe for evaluating phosphatase activity in clinical assays or live cell systems.
Collapse
Affiliation(s)
- Lauren Gwynne
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Adam C. Sedgwick
- Department of Chemistry, University of Texas at Austin, Austin, TX, United States
| | | | | | - Gyoungmi Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, South Korea
| | - John P. Lowe
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Jean-Yves Maillard
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | - Steven D. Bull
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Jonathan L. Sessler
- Department of Chemistry, University of Texas at Austin, Austin, TX, United States
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, South Korea
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
34
|
Zhang J, Chai X, He XP, Kim HJ, Yoon J, Tian H. Fluorogenic probes for disease-relevant enzymes. Chem Soc Rev 2019; 48:683-722. [PMID: 30520895 DOI: 10.1039/c7cs00907k] [Citation(s) in RCA: 376] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Traditional biochemical methods for enzyme detection are mainly based on antibody-based immunoassays, which lack the ability to monitor the spatiotemporal distribution and, in particular, the in situ activity of enzymes in live cells and in vivo. In this review, we comprehensively summarize recent progress that has been made in the development of small-molecule as well as material-based fluorogenic probes for sensitive detection of the activities of enzymes that are related to a number of human diseases. The principles utilized to design these probes as well as their applications are reviewed. Specific attention is given to fluorogenic probes that have been developed for analysis of the activities of enzymes including oxidases and reductases, those that act on biomacromolecules including DNAs, proteins/peptides/amino acids, carbohydrates and lipids, and those that are responsible for translational modifications. We envision that this review will serve as an ideal reference for practitioners as well as beginners in relevant research fields.
Collapse
Affiliation(s)
- Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | | | | | | | | | | |
Collapse
|
35
|
Ma F, Liu M, Zhang CY. Ligase amplification reaction-catalyzed assembly of a single quantum dot-based nanosensor for sensitive detection of alkaline phosphatase. Chem Commun (Camb) 2019; 55:8963-8966. [DOI: 10.1039/c9cc04369a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate the ligase amplification reaction-catalyzed assembly of a single quantum dot-based nanosensor for sensitive detection of alkaline phosphatase.
Collapse
Affiliation(s)
- Fei Ma
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Meng Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
36
|
Liang MY, Zhao B, Xiong Y, Chen WX, Huo JZ, Zhang F, Wang L, Li Y. A “turn-on” sensor based on MnO2coated UCNPs for detection of alkaline phosphatase and ascorbic acid. Dalton Trans 2019; 48:16199-16210. [DOI: 10.1039/c9dt02971k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A “turn-on” sensor was designed to detect ALP and AA based on the redox reaction between AA and MnO2coated UCNPs.
Collapse
Affiliation(s)
- Mei-yu Liang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Bing Zhao
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Yan Xiong
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Wen-xin Chen
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Jian-zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Fei Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Lu Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Yan Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| |
Collapse
|
37
|
Xu L, He X, Huang Y, Ma P, Jiang Y, Liu X, Tao S, Sun Y, Song D, Wang X. A novel near-infrared fluorescent probe for detecting intracellular alkaline phosphatase and imaging of living cells. J Mater Chem B 2019; 7:1284-1291. [DOI: 10.1039/c8tb03230k] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Design, synthesis and application of a fluorescent probe with a novel near-infrared fluorophore for in vivo imaging of alkaline phosphatase.
Collapse
Affiliation(s)
- Longbin Xu
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xu He
- College of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Yibing Huang
- College of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Pinyi Ma
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yanxiao Jiang
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xin Liu
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Shuo Tao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Ying Sun
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Daqian Song
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xinghua Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
38
|
Lin M, Huang J, Zeng F, Wu S. A Fluorescent Probe with Aggregation‐Induced Emission for Detecting Alkaline Phosphatase and Cell Imaging. Chem Asian J 2018; 14:802-808. [DOI: 10.1002/asia.201801540] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/13/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Mingang Lin
- State Key Laboratory of Luminescent Materials&DevicesCollege of Materials Science&EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Jing Huang
- State Key Laboratory of Luminescent Materials&DevicesCollege of Materials Science&EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials&DevicesCollege of Materials Science&EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials&DevicesCollege of Materials Science&EngineeringSouth China University of Technology Guangzhou 510640 China
| |
Collapse
|
39
|
Wang K, Jiang L, Zhang F, Wei Y, Wang K, Wang H, Qi Z, Liu S. Strategy for In Situ Imaging of Cellular Alkaline Phosphatase Activity Using Gold Nanoflower Probe and Localized Surface Plasmon Resonance Technique. Anal Chem 2018; 90:14056-14062. [DOI: 10.1021/acs.analchem.8b04179] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kan Wang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Ling Jiang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Fen Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Yuanqing Wei
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Huaisheng Wang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Zhengjian Qi
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
| |
Collapse
|
40
|
Yan J, Lee S, Zhang A, Yoon J. Self-immolative colorimetric, fluorescent and chemiluminescent chemosensors. Chem Soc Rev 2018; 47:6900-6916. [PMID: 30175338 DOI: 10.1039/c7cs00841d] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Self-immolative chemistry features a cascade of disassembly reactions in response to external stimuli, which provides great opportunities to design new self-immolative chemosensors with advanced performance and/or functions. Self-immolative spacers in these chemosensors not only facilitate the linkage of designed triggers to various chromophores or fluorophores, but can also be used to solve inherent problems associated with native chemosensors, such as low reactivities, poor stabilities and slow response times. Their capacity for stimuli-responsive release through operation of a self-immolative reaction further enables integration of sophisticated functions into chemosensors, including signal amplification, enzyme activity localization, and drug monitoring. Significant advances have been made in the field of self-immolative chemosensors, leading to intriguing applications to sensitive detection of analytes, bioimaging and cancer theranostics. This tutorial review summarizes this recent progress with a focus on their design strategies and sensing mechanisms.
Collapse
Affiliation(s)
- Jiatao Yan
- Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | | | | | | |
Collapse
|
41
|
Sanzhaeva U, Xu X, Guggilapu P, Tseytlin M, Khramtsov VV, Driesschaert B. Imaging of Enzyme Activity by Electron Paramagnetic Resonance: Concept and Experiment Using a Paramagnetic Substrate of Alkaline Phosphatase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Urikhan Sanzhaeva
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
- Department of Biochemistry; West Virginia University; School of Medicine; Morgantown WV 26506 USA
| | - Xuan Xu
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
- Lane Department of Computer Science and Electrical Engineering; West Virginia University; Morgantown WV 26505 USA
| | - Priyaankadevi Guggilapu
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
| | - Mark Tseytlin
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
- Department of Biochemistry; West Virginia University; School of Medicine; Morgantown WV 26506 USA
| | - Valery V. Khramtsov
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
- Department of Biochemistry; West Virginia University; School of Medicine; Morgantown WV 26506 USA
| | - Benoit Driesschaert
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center; West Virginia University; Morgantown, West Virginia 26506 USA
- Department of Biochemistry; West Virginia University; School of Medicine; Morgantown WV 26506 USA
- Current address: Department of Pharmaceutical Sciences; West Virginia University; School of Pharmacy; Morgantown WV 26506 USA
| |
Collapse
|
42
|
Sanzhaeva U, Xu X, Guggilapu P, Tseytlin M, Khramtsov VV, Driesschaert B. Imaging of Enzyme Activity by Electron Paramagnetic Resonance: Concept and Experiment Using a Paramagnetic Substrate of Alkaline Phosphatase. Angew Chem Int Ed Engl 2018; 57:11701-11705. [PMID: 30003653 PMCID: PMC6327950 DOI: 10.1002/anie.201806851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Indexed: 12/18/2022]
Abstract
Enzyme activities are well established biomarkers of many pathologies. Imaging enzyme activity directly in vivo may help to gain insight into the pathogenesis of various diseases but remains extremely challenging. In this communication, we report the use of EPR imaging (EPRI) in combination with a specially designed paramagnetic enzymatic substrate to map alkaline phosphatase activity with a high selectivity, thereby demonstrating the potential of EPRI to map enzyme activity.
Collapse
Affiliation(s)
- Urikhan Sanzhaeva
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Xuan Xu
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, 26505, USA
| | - Priyaankadevi Guggilapu
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
| | - Mark Tseytlin
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Valery V Khramtsov
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Benoit Driesschaert
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West, Virginia, 26506, USA
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
- Current address: Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV, 26506, USA
| |
Collapse
|
43
|
Joachimiak Ł, Błażewska KM. Phosphorus-Based Probes as Molecular Tools for Proteome Studies: Recent Advances in Probe Development and Applications. J Med Chem 2018; 61:8536-8562. [DOI: 10.1021/acs.jmedchem.8b00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Łukasz Joachimiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| | - Katarzyna M. Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
44
|
Żądło-Dobrowolska A, Szczygieł M, Koszelewski D, Paprocki D, Ostaszewski R. Self-immolative versatile fluorogenic probes for screening of hydrolytic enzyme activity. Org Biomol Chem 2018; 14:9146-9150. [PMID: 27714153 DOI: 10.1039/c6ob01488g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Enzyme triggered probes with a self-immolative linker for rapid and sensitive hydrolase detection through a cascade reaction have been reported. Their utility was proved by the preparation of three model compounds and their evaluation as enzyme substrates and demonstration of their applicability as fluorogenic probes for screening lipase, esterase and protease activities. These probes represent a new class of fluorogenic compounds, are stable under aqueous conditions and not susceptible to nonspecific degradation. The utilization of the carbamate cleavable linkage in a probe structure allows moving away of the bulky fluorophore from the enzyme recognition unit and targets different classes of enzymes with the same substrate.
Collapse
Affiliation(s)
- Anna Żądło-Dobrowolska
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Martyna Szczygieł
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Dominik Koszelewski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Daniel Paprocki
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
45
|
Park CS, Ha TH, Kim M, Raja N, Yun HS, Sung MJ, Kwon OS, Yoon H, Lee CS. Fast and sensitive near-infrared fluorescent probes for ALP detection and 3d printed calcium phosphate scaffold imaging in vivo. Biosens Bioelectron 2018; 105:151-158. [PMID: 29412939 DOI: 10.1016/j.bios.2018.01.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/21/2017] [Accepted: 01/09/2018] [Indexed: 11/27/2022]
Abstract
Alkaline phosphatase (ALP) is a critical biological marker for osteoblast activity during early osteoblast differentiation, but few biologically compatible methods are available for its detection. Here, we describe the discovery of highly sensitive and rapidly responsive novel near-infrared (NIR) fluorescent probes (NIR-Phos-1, NIR-Phos-2) for the fluorescent detection of ALP. ALP cleaves the phosphate group from the NIR skeleton and substantially alters its photophysical properties, therefore generating a large "turn-on" fluorescent signal resulted from the catalytic hydrolysis on fluorogenic moiety. Our assay quantified ALP activity from 0 to 1.0UmL-1 with a 10-5-10-3UmL-1 limit of detection (LOD), showing a response rate completed within 1.5min. A potentially powerful approach to probe ALP activity in biological systems demonstrated real-time monitoring using both concentration- and time-dependent variations of endogenous ALP in live cells and animals. Based on high binding affinity to bone tissue of phosphate moiety, bone-like scaffold-based ALP detection in vivo was accessed using NIR probe-labeled three-dimensional (3D) calcium deficient hydroxyapatite (CDHA) scaffolds. They were subcutaneously implanted into mice and monitored ALP signal changes using a confocal imaging system. Our results suggest the possibility of early-stage ALP detection during neo-bone formation inside a bone defect, by in vivo fluorescent evaluation using 3D CDHA scaffolds.
Collapse
Affiliation(s)
- Chul Soon Park
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Tai Hwan Ha
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Moonil Kim
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Naren Raja
- University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea; Powder and Ceramics Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon 51508, South Korea
| | - Hui-Suk Yun
- University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea; Powder and Ceramics Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon 51508, South Korea
| | - Mi Jeong Sung
- University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea; Metabolism and Nutrition Research Group, Korea Food Research Institute (KFRI), 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, South Korea
| | - Oh Seok Kwon
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea.
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea; School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea.
| | - Chang-Soo Lee
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea.
| |
Collapse
|
46
|
He H, Wang H, Zhou N, Yang D, Xu B. Branched peptides for enzymatic supramolecular hydrogelation. Chem Commun (Camb) 2018; 54:86-89. [DOI: 10.1039/c7cc08421h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of protease (e.g., enterokinase) to cut branched peptides generates supramolecular hydrogels, opening a new way to explore soft materials for biomedicine.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry
- Brandeis University
- Waltham
- USA
| | - Huaimin Wang
- Department of Chemistry
- Brandeis University
- Waltham
- USA
| | - Ning Zhou
- Department of Chemistry
- Brandeis University
- Waltham
- USA
| | - Dongsik Yang
- Department of Chemistry
- Brandeis University
- Waltham
- USA
| | - Bing Xu
- Department of Chemistry
- Brandeis University
- Waltham
- USA
| |
Collapse
|
47
|
Ma F, Liu WJ, Liang L, Tang B, Zhang CY. Sensitive detection of alkaline phosphatase by dephosphorylation-initiated transcription reaction-mediated dual signal amplification. Chem Commun (Camb) 2018; 54:2413-2416. [DOI: 10.1039/c8cc00540k] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We develop a new fluorescence method for the sensitive detection of alkaline phosphatase based on dephosphorylation-initiated transcription reaction-mediated dual signal amplification.
Collapse
Affiliation(s)
- Fei Ma
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes, Ministry of Education
- Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals
| | - Wen-jing Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes, Ministry of Education
- Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals
| | - Li Liang
- Department of Tumor Chemotherapy and Radiation Sickness
- Peking University Third Hospital
- Beijing 100191
- China
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes, Ministry of Education
- Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals
| | - Chun-Yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes, Ministry of Education
- Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals
| |
Collapse
|
48
|
Zhang W, Yang H, Li N, Zhao N. A sensitive fluorescent probe for alkaline phosphatase and an activity assay based on the aggregation-induced emission effect. RSC Adv 2018; 8:14995-15000. [PMID: 35541307 PMCID: PMC9080023 DOI: 10.1039/c8ra01786g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/10/2018] [Indexed: 01/02/2023] Open
Abstract
A sensitive fluorescent probe (TPEQN-P) was designed and synthesized for detecting alkaline phosphatase and monitoring its enzymatic activity based on the specific aggregation-induced emission effect.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi’an
| | - Hanxiao Yang
- Key Laboratory of Macromolecular Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi’an
| | - Nan Li
- Key Laboratory of Macromolecular Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi’an
| | - Na Zhao
- Key Laboratory of Macromolecular Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi’an
| |
Collapse
|
49
|
Liu HW, Chen L, Xu C, Li Z, Zhang H, Zhang XB, Tan W. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev 2018; 47:7140-7180. [DOI: 10.1039/c7cs00862g] [Citation(s) in RCA: 515] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of recent advances in small-molecule enzymatic fluorescent probes for cancer imaging, including design strategies and cancer imaging applications.
Collapse
Affiliation(s)
- Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Lanlan Chen
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Chengyan Xu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Zhe Li
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Haiyang Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| |
Collapse
|
50
|
Li H, Liu W, Zhang F, Zhu X, Huang L, Zhang H. Highly Selective Fluorescent Probe Based on Hydroxylation of Phenylboronic Acid Pinacol Ester for Detection of Tyrosinase in Cells. Anal Chem 2017; 90:855-858. [DOI: 10.1021/acs.analchem.7b03681] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Huihui Li
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wei Liu
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fengyuan Zhang
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xinyue Zhu
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Liqiu Huang
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haixia Zhang
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|