1
|
Dutta A, Jeganmohan M. Synthesis of Aryl Naphthoquinones and Maleimides via Pd(II)-Catalyzed Template-Assisted m-C(sp 2)-H Functionalization Reaction. Chemistry 2024; 30:e202402162. [PMID: 39133892 DOI: 10.1002/chem.202402162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024]
Abstract
An efficient approach for the synthesis of substituted aryl naphthoquinones via a Pd(II)-catalyzed template-assisted m-C(sp2)-H bond functionalization reaction of arylmethane sulfonates have been demonstrated. The method involves usage of less expensive and abundant pharmacologically important scaffold naphthoquinone. A wide range of arylmethane sulfonates were examined and found to be compatible with the protocol. The protocol has also been further extended to the synthesis of various substituted aryl maleimide scaffolds. A plausible reaction mechanism has also been proposed to account for the selective distal m-C(sp2)-H bond functionalization reaction.
Collapse
Affiliation(s)
- Ananya Dutta
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
2
|
Mounika K, Satyanarayana G. Aliphatic Nitrile Template Enabled meta-C-H Olefination of Indene Enoate Esters under Microwave Accelerating Conditions. Org Lett 2024; 26:8899-8903. [PMID: 39387653 DOI: 10.1021/acs.orglett.4c03357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Site-selective activation of a particular remote C-H bond in molecules with multiple C-H bonds remains challenging in organic synthesis. In addition, evolving such transformations via the utilization of unconventional techniques is highly desirable. We demonstrated hitherto unexplored double bond geometry-guided and end-on nitrile-template-assisted meta-C-H functionalization of indene enoate esters under microwave-accelerated conditions. Significantly, the strategy exhibited broad compatibility concerning the substrates and olefin coupling partners. Remarkably, drug diversification has also been showcased.
Collapse
Affiliation(s)
- Kurella Mounika
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| |
Collapse
|
3
|
Ali W, Oliver GA, Werz DB, Maiti D. Pd-catalyzed regioselective activation of C(sp 2)-H and C(sp 3)-H bonds. Chem Soc Rev 2024; 53:9904-9953. [PMID: 39212454 DOI: 10.1039/d4cs00408f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Differentiating between two highly similar C-H bonds in a given molecule remains a fundamental challenge in synthetic organic chemistry. Directing group assisted strategies for the functionalisation of proximal C-H bonds has been known for the last few decades. However, distal C-H bond functionalisation is strenuous and requires distinctly specialised techniques. In this review, we summarise the advancement in Pd-catalysed distal C(sp2)-H and C(sp3)-H bond activation through various redox manifolds including Pd(0)/Pd(II), Pd(II)/Pd(IV) and Pd(II)/Pd(0). Distal C-H functionalisation, where a Pd-catalyst is directly involved in the C-H activation step, either through assistance of an external directing group or directed by an inherent functionality or functional group incorporated at the site of the Pd-C bond is covered. The purpose of this review is to portray the current state of art in Pd-catalysed distal C(sp2)-H and C(sp3)-H functionalisation reactions, their mechanism and application in the late-stage functionalisation of medicinal compounds along with highlighting its limitations, thus leaving the field open for further synthetic adjustment.
Collapse
Affiliation(s)
- Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
| | - Gwyndaf A Oliver
- Albert-Ludwigs-Universität Freiburg, Institut für Organische Chemie, Albertstraße 21, D-79104 Freiburg, Germany.
| | - Daniel B Werz
- Albert-Ludwigs-Universität Freiburg, Institut für Organische Chemie, Albertstraße 21, D-79104 Freiburg, Germany.
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Pal T, Ghosh P, Islam M, Guin S, Maji S, Dutta S, Das J, Ge H, Maiti D. Tandem dehydrogenation-olefination-decarboxylation of cycloalkyl carboxylic acids via multifold C-H activation. Nat Commun 2024; 15:5370. [PMID: 38918374 PMCID: PMC11199700 DOI: 10.1038/s41467-024-49359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Dehydrogenation chemistry has long been established as a fundamental aspect of organic synthesis, commonly encountered in carbonyl compounds. Transition metal catalysis revolutionized it, with strategies like transfer-dehydrogenation, single electron transfer and C-H activation. These approaches, extended to multiple dehydrogenations, can lead to aromatization. Dehydrogenative transformations of aliphatic carboxylic acids pose challenges, yet engineered ligands and metal catalysis can initiate dehydrogenation via C-H activation, though outcomes vary based on substrate structures. Herein, we have developed a catalytic system enabling cyclohexane carboxylic acids to undergo multifold C-H activation to furnish olefinated arenes, bypassing lactone formation. This showcases unique reactivity in aliphatic carboxylic acids, involving tandem dehydrogenation-olefination-decarboxylation-aromatization sequences, validated by control experiments and key intermediate isolation. For cyclopentane carboxylic acids, reluctant to aromatization, the catalytic system facilitates controlled dehydrogenation, providing difunctionalized cyclopentenes through tandem dehydrogenation-olefination-decarboxylation-allylic acyloxylation sequences. This transformation expands carboxylic acids into diverse molecular entities with wide applications, underscoring its importance.
Collapse
Affiliation(s)
- Tanay Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Premananda Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
| | - Minhajul Islam
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Suman Maji
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Suparna Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Jayabrata Das
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, USA.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
5
|
Cai X, Ding D, Zhao S, Wen S, Zhang G, Bai P, Zhang W, Song H, Xu C. Zwitterionic Aqua Palladacycles with Noncovalent Interactions for meta-Selective Suzuki Coupling of 3,4-Dichlorophenol and 3,4-Dichlorobenzyl Alcohol in Water. Inorg Chem 2024; 63:2313-2321. [PMID: 38112695 DOI: 10.1021/acs.inorgchem.3c03197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The site-selective reaction of substrates with multiple reactive sites has been a focus of the current synthetic chemistry. The use of attractive noncovalent interactions between the catalyst and substrate is emerging as a versatile approach to address site-selectivity challenges. Herein, we designed and synthesized a series of palladacycles, to control meta-selective Suzuki coupling of 3,4-dichlorophenol and 3,4-dichlorobenzyl alcohol. Noncovalent interactions directed zwitterionic aqua palladacycles catalyzed meta-selective Suzuki couplings of 3,4-dichloroarenes bearing hydroxyl in water have been developed. Experiments and density functional theory (DFT) calculations demonstrated that the electrostatic interactions play a critical role in meta-selective coupling of 3,4-dichlorophenol, while meta-selective coupling of 3,4-dichlorobenzyl alcohol arises due to the hydrogen-bonding interactions.
Collapse
Affiliation(s)
- Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Danli Ding
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Shangxun Zhao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Shuo Wen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Guihong Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Pengtao Bai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Wenjing Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001 Henan, China
| | - Heng Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Chen Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| |
Collapse
|
6
|
Srinivas D, Satyanarayana G. Distal-C-H Functionalization of Biphenyl Scaffolds Assisted by Easily Removable/Recyclable Aliphatic Nitrile Templates. J Org Chem 2024; 89:433-451. [PMID: 38133564 DOI: 10.1021/acs.joc.3c02196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We present here the distal-C-H activation/functionalization of biphenyl scaffolds using aliphatic nitrile templates. The approach has demonstrated good to exclusive meta selectivities over a wide range of olefination and acetoxylation substrates. In addition, bis-olefination has been accomplished in a one-pot, sequential manner. Notably, this technique highlights the diversification of pharmaceuticals and natural products. Consequently, the temporary directing aliphatic template has been recovered quantitively from the coupled product.
Collapse
Affiliation(s)
- Dasari Srinivas
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 284, Telangana, India
| | - Gedu Satyanarayana
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 284, Telangana, India
| |
Collapse
|
7
|
Panigrahi P, Ghosh S, Khandelia T, Mandal R, Patel BK. Isoxazole as a nitrile synthon: en routes to the ortho-alkenylated isoxazole and benzonitrile with allyl sulfone catalyzed by Ru(II). Chem Commun (Camb) 2023; 59:10536-10539. [PMID: 37565340 DOI: 10.1039/d3cc02996d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A Ru(II) catalyzed regioselective Heck-type C-H olefination of isoxazole with unactivated allyl phenyl sulfone is revealed. The solvent DCM offers dual sp2-sp2 C-H activation via an N-directed strategy, leading to ortho-olefinated isoxazoles with exclusive E-selectivity. On the other hand, in DCE solvent, isoxazole serves as the nitrile synthon and leads to o-olefinated benzonitrile. At a higher temperature (110 °C) in DCE, after the ortho-olefination Ru(II) mediated cleavage of isoxazoles delivered the nitrile functionality.
Collapse
Affiliation(s)
- Pritishree Panigrahi
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Raju Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
8
|
Rakshit A, Dhara HN, Sahoo AK, Patel BK. The Renaissance of Organo Nitriles in Organic Synthesis. Chem Asian J 2022; 17:e202200792. [PMID: 36047749 DOI: 10.1002/asia.202200792] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Indexed: 11/11/2022]
Abstract
In the arena of functional group-oriented organic synthesis, the nitrile or cyano functionality is of immense importance. The presence of nucleophilic N -atom, π-coordinating ability of the triple bond, and electrophilic C-center imparts unique and interesting reactivity. Owing to the ability of the nitrile to transform into various other functional groups or intermediates, the chemistry is very rich and diverse. In particular, the involvement of nitrile in numerous organic reactions such as inter- or intramolecular alkyne insertion, [2 + 2 + 2] cycloaddition with alkynes, [3 + 2] cycloaddition with azides, [4 + 2] cycloaddition with diene allow the synthesis of many important carbocycles and heterocycles. Furthermore, the nitrile serves as a directing group in many C-H bond functionalization reactions to introduce diverse functionality and participate as a radical acceptor in radical cascade strategies to obtain a large variety of functional molecules. This review mainly focuses on the reactivity and diverse synthetic application of the nitrile including C-H bond functionalization, alkyne insertion, cycloaddition, and thermal or photochemical cascade strategy. The objective of the current review aims at bringing out the striking collection of various nitrile-triggered organic transformations.
Collapse
Affiliation(s)
- Amitava Rakshit
- IIT Guwahati: Indian Institute of Technology Guwahati, Chemistry, INDIA
| | | | | | - Bhisma K Patel
- Indian Institute of Technology Guwahati, Chemistry, North Guwahati-781 039, 781 039, Guwahati, INDIA
| |
Collapse
|
9
|
Bang J, Gi S, Lee Y, Tan KL, Lee S. Meta-Selective C-H Functionalization of Arylsilanes Using a Silicon Tethered Directing Group. Org Lett 2022; 24:5181-5185. [PMID: 35822845 DOI: 10.1021/acs.orglett.2c02015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe meta-selective C-H functionalization of arylsilanes using a Si-tethered directing group. The current method enables a selective alkenylation of arenes bearing a variety of functional groups, and several electron-deficient olefins are also applicable as coupling partners. Further functional group transformations of the silicon-tethered directing group provide multisubstituted arenes efficiently.
Collapse
Affiliation(s)
- Jaehan Bang
- Department of Physics and Chemistry, DGIST, 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Seyun Gi
- School of Undergraduate Studies, DGIST, 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yoonjung Lee
- School of Undergraduate Studies, DGIST, 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Kian L Tan
- Global Discovery Chemistry-SynTech Group, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Sunggi Lee
- Department of Physics and Chemistry, DGIST, 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea.,Center for Basic Science, DGIST, 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| |
Collapse
|
10
|
Sun L, Zhao Y, Liu B, Chang J, Li X. Rhodium III-catalyzed remote difunctionalization of arenes assisted by a relay directing group. Chem Sci 2022; 13:7347-7354. [PMID: 35799802 PMCID: PMC9214915 DOI: 10.1039/d2sc02205b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022] Open
Abstract
Rhodium-catalyzed diverse tandem twofold C-H bond activation reactions of para-olefin-tethered arenes have been realized, with unsaturated reagents such as internal alkynes, dioxazolones, and isocyanates being the coupling partner as well as a relay directing group which triggers cyclization of the para-olefin group under oxidative or redox-neutral conditions. The reaction proceeded via initial ortho-C-H activation assisted by a built-in directing group in the arene, and the ortho-incorporation of the unsaturated coupling partner simultaneously generated a relay directing group that allows sequential C-H activation at the meta-position and subsequent cyclization of the para-olefins. The overall reaction represents C-C or N-C difunctionalization of the arene with the generation of diverse 2,3-dihydrobenzofuran platforms. The catalytic system proceeded with good efficiency, simple reaction conditions, and broad substrate scope. The diverse transformations of the products demonstrated the synthetic utility of this tandem reaction.
Collapse
Affiliation(s)
- Lincong Sun
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Yuyao Zhao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Xingwei Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 250100 China
| |
Collapse
|
11
|
Ramesh P, Sreenivasulu C, Kishore DR, Srinivas D, Gorantla KR, Mallik BS, Satyanarayana G. Recyclable Aliphatic Nitrile-Template Enabled Remote meta-C-H Functionalization at Room Temperature. J Org Chem 2022; 87:2204-2221. [PMID: 35143206 DOI: 10.1021/acs.joc.1c02865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article describes the development of a new aliphatic nitrile-template-directed remote meta-selective C-H olefin functionalization reaction of arenes. Remarkably, unlike the previous reports, this process is feasible at room temperature and enabled the formation of products with excellent regioselectivity. The present protocol encompasses a broad spectrum of substituted dihydrocinnamic acids and olefins, producing meta-C-H olefinated products (up to 96% yield). In addition, the efficacy of the present method has been showcased by the synthesis of various drug analogues (e.g., cholesterol, estrone, ibuprofen, and naproxen). Significantly, the robustness of meta-olefination was also demonstrated by gram-scale synthesis. The new nitrile-based meta-directing template, in particular, could be easily synthesized in two steps and recycled under mild conditions.
Collapse
Affiliation(s)
- Perla Ramesh
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Sangareddy, Kandi, Telangana 502 285, India
| | | | - Dakoju Ravi Kishore
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Sangareddy, Kandi, Telangana 502 285, India
| | - Dasari Srinivas
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Sangareddy, Kandi, Telangana 502 285, India
| | - Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Sangareddy, Kandi, Telangana 502 285, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Sangareddy, Kandi, Telangana 502 285, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Sangareddy, Kandi, Telangana 502 285, India
| |
Collapse
|
12
|
Dutta U, Maiti D. Emergence of Pyrimidine-Based meta-Directing Group: Journey from Weak to Strong Coordination in Diversifying meta-C-H Functionalization. Acc Chem Res 2022; 55:354-372. [PMID: 35021007 DOI: 10.1021/acs.accounts.1c00629] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
C-H activation has emerged as a powerful transformative synthetic tool to construct complex molecular frameworks, which are ubiquitous in natural products, medicines, dyes, polymers, and many more. However, reactivity and selectivity, arising from the inertness of C-H bonds and their overabundance in organic molecules, are the two major fundamental challenges in developing various carbon-carbon (C-C) and carbon-heteroatom (C-X) bond formation reactions via C-H activation technique. Functional groups with coordinating capacity to the transition metal catalysts, profoundly known as directing groups (DGs), have shown great promise in exerting selective C-H activation, often called site-selective or regioselective transformation of a target molecule. Advent of directing group (DG)-assisted strategies not only has resolved the selectivity issues but also offers a unique solution to the rapid synthesis of complex molecules in a convenient and predictable manner. Our laboratory, in this regard, is fascinated by the prospect of DG-assisted distal C-H functionalization of arenes, in which the target C-H bond is remotely located from the existing directing group. Notably, in opposition to proximal ortho-C-H activation, which proceeded via an energetically favorable five- to seven-membered metallacycle, distal C-H activation remained a formidable challenge as it required formation of a large macrocyclic metallacycle. Therefore, designing a suitable directing template that would maintain the required distance and geometric relationship between the target C-H bond and the appended directing auxiliary in order to ensure the prolific delivery of the metal catalyst to the closest proximity of targeted distal C-H bond was the key to success. In this regard, the Yu group devised an elegant "U-shaped" template for the first time to execute distal meta-C-H activation recruiting a cyano-based directing group. Our initial effort to diversify the scope of meta-C-H functionalization using a cyano-based template led us to realize that the "cyano-based DGs" are intrinsically limited with weak coordinating ability, competitive binding mode (end-on vs side-on), and incompatibility with acidic and basic reaction conditions. In search of a robust directing auxiliary, we were intrigued by the possibility of using the strongly coordinating ability of pyrimidine and quinoline-based DGs.In this Account, we describe our journey from the weakly coordinating cyano-based DG to the strongly coordinating pyrimidine-based DG to achieve diverse meta-C-H functionalization of electronically and sterically unbiased arenes. While some of the functionalizations were achieved by finding suitable reaction conditions, others were led by mechanistic understanding. Notably, initial development in this realm was constrained with short linkers, in which the DG was attached to the arene of interest through 2-4 atoms. In later studies, we demonstrated that the selective meta-C-H activation can be attained even though the DG is 10-atoms away from the targeted arene. More importantly, a transient DG was successfully utilized to deliver meta-C-H olefination of arenes via in situ imine formation, which provided a step-economic route to meta-C-H activation.We hope that this Account will stimulate further template design and will provide a guiding platform for the future development of distal meta-C-H functionalization.
Collapse
Affiliation(s)
- Uttam Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Tokyo Tech World Research Hub Initiative (WRHI) Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Tokyo 152-8550 Japan
| |
Collapse
|
13
|
Gupta MK, Jena CK, Sharma NK. Pd-Catalyzed C(sp 2)-H olefination: synthesis of N-alkylated isoindolinone scaffolds from aryl amides of amino acid esters. Org Biomol Chem 2021; 19:10097-10104. [PMID: 34791004 DOI: 10.1039/d1ob01997j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isoindolinone is a constituent of various natural products and synthetic biologically active compounds. The classical multi-step synthetic methods used to prepare various indolinone derivatives are tedious and challenging. One-pot synthetic methods are attractive and economical. Transition-metal-catalyzed C-H activation is an emerging tool for synthesizing natural products and small organic molecules via reducing the number of synthetic steps necessary. This paper describes the synthesis of N-alkyl-3-methenyl chiral isoindolinone derivatives from aryl amides of L-amino acids and non-activated alkene via Pd-catalyzed C(sp2)-H olefination. Herein, the amino acid residue acts as a directing group for olefination at the aryl ring, and then cyclization occurs at the amide NH. Hence, this methodology could be helpful to transform standard amino acids into respective chiral isoindolinone derivatives.
Collapse
Affiliation(s)
- Manish K Gupta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni campus, Bhubaneswar-752050, Odisha, India. .,HBNI-Mumbai, Mumbai, India
| | - Chinmay K Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni campus, Bhubaneswar-752050, Odisha, India. .,HBNI-Mumbai, Mumbai, India
| | - Nagendra K Sharma
- School of Chemical Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni campus, Bhubaneswar-752050, Odisha, India. .,HBNI-Mumbai, Mumbai, India
| |
Collapse
|
14
|
Bai C, Chao B, Muschin T, Bao A, Baiyin M, Liu D, Bao YS. Regiodivergent CDC reactions of aromatic aldehydes with unactivated arenes controlled by transient directing strategy. Chem Commun (Camb) 2021; 57:11229-11232. [PMID: 34633012 DOI: 10.1039/d1cc04121e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The regiodivergent catalytic dehydrogenative cross-coupling reactions at both sp2 and sp3 hybridized carbons of aromatic compounds are particularly challenging. Herein, we report the finding of transient directing group controlled regiodivergent C(sp3)-C(sp2) and C(sp2)-C(sp2) cross-coupling in the o-methyl benzaldehyde frameworks. Catalyzed by palladium, using K2S2O8 or [F+] reagents as by-standing oxidants and unactivated arenes as substrates/solvents, various benzyl benzaldehydes or phenyl benzaldehydes were prepared. A mechanism study indicated that the regiospecificity is dominated by the [5,6]-fused palladacycle or [6,5]-fused palladacycle intermediates, which are generated from Pd-chelation with specified transient directing groups and further C-H activations.
Collapse
Affiliation(s)
- Chaolumen Bai
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Bao Chao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Tegshi Muschin
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Agula Bao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Menghe Baiyin
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Dan Liu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Yong-Sheng Bao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| |
Collapse
|
15
|
Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Toolbox for Distal C-H Bond Functionalizations in Organic Molecules. Chem Rev 2021; 122:5682-5841. [PMID: 34662117 DOI: 10.1021/acs.chemrev.1c00220] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition metal catalyzed C-H activation has developed a contemporary approach to the omnipresent area of retrosynthetic disconnection. Scientific researchers have been tempted to take the help of this methodology to plan their synthetic discourses. This paradigm shift has helped in the development of industrial units as well, making the synthesis of natural products and pharmaceutical drugs step-economical. In the vast zone of C-H bond activation, the functionalization of proximal C-H bonds has gained utmost popularity. Unlike the activation of proximal C-H bonds, the distal C-H functionalization is more strenuous and requires distinctly specialized techniques. In this review, we have compiled various methods adopted to functionalize distal C-H bonds, mechanistic insights within each of these procedures, and the scope of the methodology. With this review, we give a complete overview of the expeditious progress the distal C-H activation has made in the field of synthetic organic chemistry while also highlighting its pitfalls, thus leaving the field open for further synthetic modifications.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
16
|
Srinivas D, Satyanarayana G. Palladium-Catalyzed Distal m-C-H Functionalization of Arylacetic Acid Derivatives. Org Lett 2021; 23:7353-7358. [PMID: 34519504 DOI: 10.1021/acs.orglett.1c02460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we present m-C-H olefination on derivatives of phenylacetic acids by tethering with a simple nitrile-based template through palladium catalysis. Notably, the versatility of the method is evaluated with a wide range of phenylacetic acid derivatives for obtaining the meta-olefination products in fair to excellent yields with outstanding selectivities under mild conditions. Significantly, the present strategy is successfully exemplified for the synthesis of drugs/natural product analogues (naproxen, ibuprofen, paracetamol, and cholesterol).
Collapse
Affiliation(s)
- Dasari Srinivas
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| |
Collapse
|
17
|
Desai B, Patel M, Dholakiya BZ, Rana S, Naveen T. Recent advances in directed sp 2 C-H functionalization towards the synthesis of N-heterocycles and O-heterocycles. Chem Commun (Camb) 2021; 57:8699-8725. [PMID: 34397068 DOI: 10.1039/d1cc02176a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterocyclic compounds are widely present in the core structures of several natural products, pharmaceuticals and agrochemicals, and thus great efforts have been devoted to their synthesis in a mild and simpler way. In the past decade, remarkable progress has been made in the field of heterocycle synthesis by employing C-H functionalization as an emerging synthetic strategy. As a complement to previous protocols, transition metal catalyzed C-H functionalization of arenes using various directing groups has recently emerged as a powerful tool to create different classes of heterocycles. This review is mainly focussed on the recent key progress made in the field of the synthesis of N,O-heterocycles from olefins and allenes by using nitrogen based and oxidizing directing groups.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | | | | | | | | |
Collapse
|
18
|
Murali K, Machado LA, Carvalho RL, Pedrosa LF, Mukherjee R, Da Silva Júnior EN, Maiti D. Decoding Directing Groups and Their Pivotal Role in C-H Activation. Chemistry 2021; 27:12453-12508. [PMID: 34038596 DOI: 10.1002/chem.202101004] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Synthetic organic chemistry has witnessed a plethora of functionalization and defunctionalization strategies. In this regard, C-H functionalization has been at the forefront due to the multifarious applications in the development of simple to complex molecular architectures and holds a brilliant prospect in drug development and discovery. Despite been explored tremendously by chemists, this functionalization strategy still enjoys the employment of novel metal catalysts as well metal-free organic ligands. Moreover, the switch to photo- and electrochemistry has widened our understanding of the alternative pathways via which a reaction can proceed and these strategies have garnered prominence when applied to C-H activation. Synthetic chemists have been foraging for new directing groups and templates for the selective activation of C-H bonds from a myriad of carbon-hydrogen bonds in aromatic as well as aliphatic systems. As a matter of fact, by varying the templates and directing groups, scientists found the answer to the challenge of distal C-H bond activation which remained an obstacle for a very long time. These templates have been frequently harnessed for selectively activating C-H bonds of natural products, drugs, and macromolecules decorated with multiple C-H bonds. This itself was a challenge before the commencement of this field as functionalization of a site other than the targeted site could modify and hamper the biological activity of the pharmacophore. Total synthesis and pharmacophore development often faces the difficulty of superfluous reaction steps towards selective functionalization. This obstacle has been solved by late-stage functionalization simply by harnessing C-H bond activation. Moreover, green chemistry and metal-free reaction conditions have seen light in the past few decades due to the rising concern about environmental issues. Therefore, metal-free catalysts or the usage of non-toxic metals have been recently showcased in a number of elegant works. Also, research groups across the world are developing rational strategies for directing group free or non-directed protocols that are just guided by ligands. This review encapsulates the research works pertinent to C-H bond activation and discusses the science devoted to it at the fundamental level. This review gives the readers a broad understanding of how these strategies work, the execution of various metal catalysts, and directing groups. This not only helps a budding scientist towards the commencement of his/her research but also helps a matured mind searching out for selective functionalization. A detailed picture of this field and its progress with time has been portrayed in lucid scientific language with a motive to inculcate and educate scientific minds about this beautiful strategy with an overview of the most relevant and significant works of this era. The unique trait of this review is the detailed description and classification of various directing groups and their utility over a wide substrate scope. This allows an experimental chemist to understand the applicability of this domain and employ it over any targeted substrate.
Collapse
Affiliation(s)
- Karunanidhi Murali
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Luana A Machado
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.,Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Renato L Carvalho
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Leandro F Pedrosa
- Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Rishav Mukherjee
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| | | | - Debabrata Maiti
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
19
|
Dutta U, Maiti S, Bhattacharya T, Maiti D. Arene diversification through distal C(sp
2
)−H functionalization. Science 2021; 372:372/6543/eabd5992. [DOI: 10.1126/science.abd5992] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/07/2021] [Indexed: 01/01/2023]
Affiliation(s)
- Uttam Dutta
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Debabrata Maiti
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
20
|
Strategic evolution in transition metal-catalyzed directed C–H bond activation and future directions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213683] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
|
22
|
Affiliation(s)
- Rashid Ali
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| | - Rafia Siddiqui
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| |
Collapse
|
23
|
Ali W, Prakash G, Maiti D. Recent development in transition metal-catalysed C-H olefination. Chem Sci 2021; 12:2735-2759. [PMID: 34164039 PMCID: PMC8179420 DOI: 10.1039/d0sc05555g] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023] Open
Abstract
Transition metal-catalysed functionalizations of inert C-H bonds to construct C-C bonds represent an ideal route in the synthesis of valuable organic molecules. Fine tuning of directing groups, catalysts and ligands has played a crucial role in selective C-H bond (sp2 or sp3) activation. Recent developments in these areas have assured a high level of regioselectivity in C-H olefination reactions. In this review, we have summarized the recent progress in the oxidative olefination of sp2 and sp3 C-H bonds with special emphasis on distal, atroposelective, non-directed sp2 and directed sp3 C-H olefination. The scope, limitation, and mechanism of various transition metal-catalysed olefination reactions have been described briefly.
Collapse
Affiliation(s)
- Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
| | - Gaurav Prakash
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
- Tokyo Tech World Research Hub Initiative (WRHI), Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Tokyo 152-8550 Japan
| |
Collapse
|
24
|
Ramesh P, Sreenivasulu C, Gorantla KR, Mallik BS, Satyanarayana G. A simple removable aliphatic nitrile template 2-cyano-2,2-di-isobutyl acetic acid for remote meta-selective C–H functionalization. Org Chem Front 2021. [DOI: 10.1039/d1qo00140j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The remote meta-selective C–H functionalization of arenes using first aliphatic nitrile template 2-cyano-2,2-di-isobutyl acetic acid under mild conditions is presented.
Collapse
Affiliation(s)
- Perla Ramesh
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Sangareddy 502285
- India
| | | | | | - Bhabani S. Mallik
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Sangareddy 502285
- India
| | - Gedu Satyanarayana
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Sangareddy 502285
- India
| |
Collapse
|
25
|
Carvalho RL, Almeida RG, Murali K, Machado LA, Pedrosa LF, Dolui P, Maiti D, da Silva Júnior EN. Removal and modification of directing groups used in metal-catalyzed C–H functionalization: the magical step of conversion into ‘conventional’ functional groups. Org Biomol Chem 2021; 19:525-547. [DOI: 10.1039/d0ob02232b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature review is focused on recent approaches for removing versatile directing groups.
Collapse
Affiliation(s)
- Renato L. Carvalho
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Renata G. Almeida
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Karunanidhi Murali
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Luana A. Machado
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | | | - Pravas Dolui
- Department of Chemistry
- IIT Bombay
- Mumbai 400076
- India
| | | | | |
Collapse
|
26
|
Rani G, Luxami V, Paul K. Traceless directing groups: a novel strategy in regiodivergent C-H functionalization. Chem Commun (Camb) 2020; 56:12479-12521. [PMID: 32985634 DOI: 10.1039/d0cc04863a] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The use of functional groups as internal ligands for assisting C-H functionalization, termed the chelation assisted strategy, is emerging as one of the most powerful tools for construction of C-C and C-X bonds from inert C-H bonds. However, there are various directing groups which cannot be either removed after functionalization or require some additional steps or reagents for their removal, thereby limiting the scope of structural diversity of the products, and the step and atom economy of the system. These limitations are overcome by the use of the traceless directing group (TDG) strategy wherein functionalization of the substrate and removal of the directing group can be carried out in a one pot fashion. Traceless directing groups serve as the most ideal chelation assisted strategy with a high degree of reactivity and selectivity without any requirement for additional steps for their removal. The present review overviews the use of various functional groups such as carboxylic acids, aldehydes, N-oxides, nitrones, N-nitroso amines, amides, sulfoxonium ylides and silicon tethered directing groups for assisting transition metal catalyzed C-H functionalization reactions in the last decade.
Collapse
Affiliation(s)
- Geetika Rani
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, India.
| | | | | |
Collapse
|
27
|
Meng G, Lam NYS, Lucas EL, Saint-Denis TG, Verma P, Chekshin N, Yu JQ. Achieving Site-Selectivity for C-H Activation Processes Based on Distance and Geometry: A Carpenter's Approach. J Am Chem Soc 2020; 142:10571-10591. [PMID: 32437604 PMCID: PMC7485751 DOI: 10.1021/jacs.0c04074] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ability to differentiate between highly similar C-H bonds in a given molecule remains a fundamental challenge in organic chemistry. In particular, the lack of sufficient steric and electronic differences between C-H bonds located distal to functional groups has prevented the development of site-selective catalysts with broad scope. An emerging approach to circumvent this obstacle is to utilize the distance between a target C-H bond and a coordinating functional group, along with the geometry of the cyclic transition state in directed C-H activation, as core molecular recognition parameters to differentiate between multiple C-H bonds. In this Perspective, we discuss the advent and recent advances of this concept. We cover a wide range of transition-metal-catalyzed, template-directed remote C-H activation reactions of alcohols, carboxylic acids, sulfonates, phosphonates, and amines. Additionally, we review eminent examples which take advantage of non-covalent interactions to achieve regiocontrol. Continued advancement of this distance- and geometry-based differentiation approach for regioselective remote C-H functionalization reactions may lead to the ultimate realization of molecular editing: the freedom to modify organic molecules at any site, in any order.
Collapse
Affiliation(s)
- Guangrong Meng
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Nelson Y. S. Lam
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Erika L. Lucas
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Tyler G. Saint-Denis
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Pritha Verma
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Nikita Chekshin
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
28
|
Yin B, Fu M, Wang L, Liu J, Zhu Q. Dual ligand-promoted palladium-catalyzed nondirected C-H alkenylation of aryl ethers. Chem Commun (Camb) 2020; 56:3293-3296. [PMID: 32073080 DOI: 10.1039/d0cc00940g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Direct C-H functionalization of aryl ethers remains challenging owing to their low reactivity and selectivity. Herein, a novel strategy for nondirected C-H alkenylation of aryl ethers promoted by a dual ligand catalyst was demonstrated. This catalytic system readily achieved the highly efficient alkenylation of alkyl aryl ethers (anisole, phenetole, n-propyl phenyl ether, n-butyl phenyl ether and benzyl phenyl ether), cyclic aryl ethers (1,4-benzodioxan, 2,3-dihydrobenzofuran, dibenzofuran), and diphenyl oxides. Moreover, the proposed methodology was successfully employed for the late-stage modification of complex drugs containing the aryl ether motif. Interestingly, the compounds developed herein displayed fluorescent properties, which would facilitate their biological applications.
Collapse
Affiliation(s)
- Biao Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Manlin Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Lei Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jiang Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Qing Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
29
|
Williams AF, White AJP, Spivey AC, Cordier CJ. meta-Selective C-H functionalisation of aryl boronic acids directed by a MIDA-derived boronate ester. Chem Sci 2020; 11:3301-3306. [PMID: 34122837 PMCID: PMC8152520 DOI: 10.1039/d0sc00230e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
N-Methyliminodiacetic acid (MIDA) boronates are boronic acid derivatives which are stable to reduction, oxidation and transmetalation. This has led to their widespread use as boronic acid protecting groups (PGs) and in iterative cross-couplings. We describe herein the development of a novel MIDA derivative that acts in a dual manner, as a protecting group and a directing group (DG) for meta C(sp2)–H functionalisation of arylboronic acids. Palladium catalysed C–H alkenylations, acetoxylations and arylations are possible, at room temperature and under aerobic conditions. Deprotection to reveal the functionalised boronic acids is rapid and allows for full recovery of the DG. The technique allows the facile diversification of aryl boronic acids and their subsequent use in a range of reactions or in iterative processes. An N-methyliminodiacetic acid derivative allows the meta-C–H functionalisation of boronic acids, acting simultaneously as a directing and protecting group.![]()
Collapse
Affiliation(s)
- Alexander F Williams
- Department of Chemistry, Imperial College London White City Campus, Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Andrew J P White
- Department of Chemistry, Imperial College London White City Campus, Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Alan C Spivey
- Department of Chemistry, Imperial College London White City Campus, Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| | - Christopher J Cordier
- Department of Chemistry, Imperial College London White City Campus, Molecular Sciences Research Hub 80 Wood Lane London W12 0BZ UK
| |
Collapse
|
30
|
Du K, Yao T. The C-H activated controlled mono- and di-olefination of arenes in ionic liquids at room temperature. RSC Adv 2020; 10:3203-3211. [PMID: 35497718 PMCID: PMC9048982 DOI: 10.1039/c9ra09736h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/29/2019] [Indexed: 01/08/2023] Open
Abstract
In this study, controlled mono and di-olefination of arenes was first realized at room temperature via the C-H bond activation in ionic liquids, probably due to the positive effects of ionic liquids. It is an energy-saving routes in industrial production without the need for heating equipment. Different catalysts were screened, and it was found that [Ru(p-cymene)Cl2]2 generated mono-olefinated products predominantly while [Cp*RhCl2]2 selectively gave di-olefinated products. These catalysts ([BMIM]NTf2 and [BMIM]PF6) as green and recyclable reaction media are highly efficient under mild conditions. This reaction process can avoid any volatile and environmentally toxic organic solvents, and is much safer without the need for pressure-tight equipment. A wide substrate scope with good yields and satisfactory selectivity was achieved. The reactions can be scaled up to gram-scale. Furthermore, an expensive rhodium/ruthenium catalytic system was recycled for at least 6 times with consistently high catalytic activity, which was economical and environmental friendly from an industrial point of view. According to the mechanistic study, the C-H bond cleavage was probably achieved via the concerted metalation-deprotonation. This technique can be applied in the synthesis of various valuable unsaturated aromatic compounds and shows a great potential for industrial production.
Collapse
Affiliation(s)
- Kaifeng Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Tian Yao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
31
|
Wen C, Jiang X, Wu K, Luo R, Li Q. Palladium-catalyzed cross-coupling reaction of alkenyl aluminums with 2-bromobenzo[b]furans. RSC Adv 2020; 10:19610-19614. [PMID: 35515440 PMCID: PMC9054126 DOI: 10.1039/d0ra02984j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022] Open
Abstract
Highly efficient and simple cross-coupling reactions of 2-bromobenzo[b]furans with alkenylaluminum reagents for the synthesis of 2-alkenylbenzo[b]furan derivatives using PdCl2 (3 mol%)/XantPhos (6 mol%) as catalyst are reported. Excellent yields (up to 97%) were obtained for a wide range of substrates at 80 °C for 4 h in DCE. PdCl2 (3 mol%)/XantPhos (6 mol%) complexes was found to be a highly efficient catalyst for the synthesis of 2-alkenylbenzo[b]furans from 2-bromobenzo[b]furans and alkenylaluminums. The reaction was also found to be effective in gram-scale synthesis.![]()
Collapse
Affiliation(s)
- Chang Wen
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu
- China
| | - Xin Jiang
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu
- China
| | - Kun Wu
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu
- China
| | - Ruiqiang Luo
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu
- China
| | - Qinghan Li
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu
- China
| |
Collapse
|
32
|
Murai M, Yamamoto M, Takai K. Mechanistic Insights into Rhenium-Catalyzed Regioselective C-Alkenylation of Phenols with Internal Alkynes. Chemistry 2019; 25:15189-15197. [PMID: 31532028 DOI: 10.1002/chem.201903910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/17/2019] [Indexed: 11/12/2022]
Abstract
A (μ-aryloxo)rhenium complex was isolated and confirmed as a key precatalyst for rhenium-catalyzed ortho-alkenylation (C-alkenylation) of unprotected phenols with alkynes. The reaction exclusively provided ortho-alkenylphenols; the formation of para or multiply alkenylated phenols and hydrophenoxylation (O-alkenylation) products was not observed. Several mechanistic experiments excluded a classical Friedel-Crafts-type mechanism, leading to the proposed phenolic hydroxyl group assisted electrophilic alkenylation as the most plausible reaction mechanism. For this purpose, the use of rhenium, a metal between the early and late transition metals in the periodic table, was key for the activation of both the soft carbon-carbon triple bond of the alkyne and the hard oxygen atom of the phenol, at the same time. ortho-Selective alkenylation with allenes also provided the corresponding adducts with a substitution pattern different from that obtained by the addition reaction with alkynes.
Collapse
Affiliation(s)
- Masahito Murai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Masaki Yamamoto
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
33
|
Zhang D, Gao D, Cai J, Wu X, Qin H, Qiao K, Liu C, Fang Z, Guo K. The ruthenium-catalyzed meta-selective C-H nitration of various azole ring-substituted arenes. Org Biomol Chem 2019; 17:9065-9069. [PMID: 31584058 DOI: 10.1039/c9ob01930h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The efficient ruthenium-catalyzed meta-selective CAr-H nitration of azole ring substituted arenes has been developed. In this work, Ru3(CO)12 was used as the catalyst, AgNO2 as the nitro source, HPcy3+·BF4- as the ligand, pivalic acid as the additive, and DCE as the solvent, and a wide spectrum of arenes bearing thiazole, pyrazolyl or removable oxazoline directing groups were tolerated in this meta-selective CAr-H nitration, affording the nitrated products in moderate to good yields. Moreover, this study reveals a gentler and environmentally friendly way to access meta-nitration arenes compared to the traditional process.
Collapse
Affiliation(s)
- Dong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Di Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Jinlin Cai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Xiaoyu Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Hong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Kai Qiao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China. and State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| |
Collapse
|
34
|
Liu D, Luo P, Ge J, Jiang Z, Peng Y, Ding Q. Synthesis of 2-Arylbenzothiazole and 2-Arylthiazole Derivatives via a Ru-Catalyzed meta-Selective C–H Nitration Reaction. J Org Chem 2019; 84:12784-12791. [DOI: 10.1021/acs.joc.9b01194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Deming Liu
- Key Laboratory of Small Functional Organic Molecules, Ministry of Education and Jiangxi’s Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Puying Luo
- Department of Obstetrics and Gynecology, Jiangxi Provincial people’s Hospital, Nanchang, Jiangxi 330006, P. R. China
| | - Junying Ge
- Key Laboratory of Small Functional Organic Molecules, Ministry of Education and Jiangxi’s Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Zilin Jiang
- Key Laboratory of Small Functional Organic Molecules, Ministry of Education and Jiangxi’s Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Yiyuan Peng
- Key Laboratory of Small Functional Organic Molecules, Ministry of Education and Jiangxi’s Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Qiuping Ding
- Key Laboratory of Small Functional Organic Molecules, Ministry of Education and Jiangxi’s Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
35
|
Zugang zu
meta
‐ und
para
‐C(sp
2
)‐H‐Bindungen mithilfe kovalent gebundener dirigierender Gruppen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812116] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Dey A, Sinha SK, Achar TK, Maiti D. Accessing Remote meta- and para-C(sp 2 )-H Bonds with Covalently Attached Directing Groups. Angew Chem Int Ed Engl 2019; 58:10820-10843. [PMID: 30496638 DOI: 10.1002/anie.201812116] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/20/2018] [Indexed: 01/06/2023]
Abstract
Directing group assisted ortho-C-H activation has been known for the last few decades. In contrast, extending the same approach to achieve activation of the distal meta- and para-C-H bonds in aromatic molecules remained elusive for a long time. The main challenge is the conception of a macrocyclic transition state, which is needed to anchor the metal catalyst close to the target bond. Judicious modification of the chain length, the tether linkage, and the nature of the catalyst-coordinating donor atom has led to a number of successful studies in the last few years. This Review compiles the significant achievements made in this field of both meta- and para-selectivity using covalently attached directing groups, which are systematically classified on the basis of their mode of covalent attachment to the substrate as well as their chemical nature. This Review aims to create a more heuristic approach for recognizing the suitability of the directing groups for use in future organic transformations.
Collapse
Affiliation(s)
- Aniruddha Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Tapas Kumar Achar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
37
|
Yao T, Du K. Temperature-Controlled Mono- and Diolefination of Arene Using Rh(III)/RTIL as an Efficient and Recyclable Catalytic System. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2019; 7:6068-6077. [DOI: 10.1021/acssuschemeng.8b06262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Affiliation(s)
- Tian Yao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Kaifeng Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, People’s Republic of China
| |
Collapse
|
38
|
Wu M, Huang X, Zhang H, Li P. Advances on Directing-Group Assisted meta-C-H Functionalization Catalyzed by Transition Metal. CHINESE J ORG CHEM 2019. [DOI: 10.6023/cjoc201903029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Chang CH, Chou CM. Palladium-Catalyzed Decarboxylative γ-Olefination of 2,5-Cyclohexadiene-1-carboxylic Acid Derivatives with Vinyl Halides. Org Lett 2018. [PMID: 29537274 DOI: 10.1021/acs.orglett.8b00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study explores a Pd-catalyzed decarboxylative Heck-type Csp3-Csp2 coupling reaction of 2,5-cyclohexadiene-1-carboxylic acid derivatives with vinyl halides to provide γ-olefination products. The olefinated 1,3-cyclohexadienes can be further oxidized to produce meta-alkylated stilbene derivatives. Additionally, the conjugated diene products can also undergo a Diels-Alder reaction to produce a bicyclo[2.2.2]octadiene framework.
Collapse
Affiliation(s)
- Chi-Hao Chang
- Department of Applied Chemistry , National University of Kaohsiung , 700 Kaohsiung University Road , Nanzih District, Kaohsiung 81148 , Taiwan
| | - Chih-Ming Chou
- Department of Applied Chemistry , National University of Kaohsiung , 700 Kaohsiung University Road , Nanzih District, Kaohsiung 81148 , Taiwan
| |
Collapse
|
40
|
Dey A, Maity S, Maiti D. Reaching the south: metal-catalyzed transformation of the aromatic para-position. Chem Commun (Camb) 2018; 52:12398-12414. [PMID: 27559937 DOI: 10.1039/c6cc05235e] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regioselective functionalization of aromatic arenes has created a rapid insurgence in the modern era of organic chemistry. While the last few years have witnessed significant developments on site-selective ortho- and meta-C-H transformations, there existed very few reports on para-C-H functionalization. Recent advancements on template assisted protocols in para-C-H activation has emerged as a popular and convenient feat in this area. This review highlights the various protocols developed over the years for selective installation of suitable functional groups at the para-position of arenes thereby transforming them into value-added organic cores.
Collapse
Affiliation(s)
- Aniruddha Dey
- Department of Chemistry, Indian Institute of Technology Bombay, India.
| | - Soham Maity
- Department of Chemistry, Indian Institute of Technology Bombay, India.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, India.
| |
Collapse
|
41
|
Zhang H, Yang Z, Ma Q, Liu J, Zheng Y, Guan M, Wu Y. Controlled mono-olefination versus diolefination of arenes via C–H activation in water: a key role of catalysts. GREEN CHEMISTRY 2018. [DOI: 10.1039/c8gc00790j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Catalyst-controlled mono- and diolefinations of arenes via C–H activation in water with reaction times of tens of minutes.
Collapse
Affiliation(s)
- Hailong Zhang
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University Chengdu
- P.R. China
| | - Zhongzhen Yang
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University Chengdu
- P.R. China
| | - Qiang Ma
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University Chengdu
- P.R. China
| | - Jinxin Liu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University Chengdu
- P.R. China
| | - Yang Zheng
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University Chengdu
- P.R. China
| | - Mei Guan
- West China Hospital
- Sichuan University
- Chengdu 610041
- P.R. China
| | - Yong Wu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University Chengdu
- P.R. China
| |
Collapse
|
42
|
Ping Y, Wang L, Ding Q, Peng Y. Nitrile as a Versatile Directing Group for C(sp
2
)-H Functionalizations. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700684] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yuanyuan Ping
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| | - Liping Wang
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| | - Qiuping Ding
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| | - Yiyuan Peng
- Key Laboratory of Small Functional Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry; Jiangxi Normal University; Nanchang, Jiangxi 330022 People's Republic of China
| |
Collapse
|
43
|
Li Q, Ferreira EM. Meta-Selective C-H Arylation of Aromatic Alcohols with a Readily Attachable and Cleavable Molecular Scaffold. Chemistry 2017; 23:11519-11523. [PMID: 28675786 PMCID: PMC5984653 DOI: 10.1002/chem.201703054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 01/11/2023]
Abstract
The first example of meta-selective C-H arylations of arene alcohol-based substrates is described. The strategy involves the combination of the transient norbornene strategy with the quinoline-based acetal scaffold to achieve the formation of biaryl compounds. Both a two-step meta-arylation/scaffold cleavage process and a total telescoping procedure are described, highlighting the convenient attributes of attachment, removal, and recovery of the acetal scaffold. Moreover, the meta-arylated compounds can be further derivatized via ortho-selective functionalizations. These processes establish a foundation for catalytic polyfunctionalization of alcohol-based compounds.
Collapse
Affiliation(s)
- Qiankun Li
- Department of Chemistry, University of Georgia, Athens, GA 30602 (USA)
| | - Eric M. Ferreira
- Department of Chemistry, University of Georgia, Athens, GA 30602 (USA)
| |
Collapse
|
44
|
Zhang L, Zhao C, Liu Y, Xu J, Xu X, Jin Z. Activation of Remote meta-C-H Bonds in Arenes with Tethered Alcohols: A Salicylonitrile Template. Angew Chem Int Ed Engl 2017; 56:12245-12249. [PMID: 28699216 DOI: 10.1002/anie.201705495] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/27/2017] [Indexed: 01/04/2023]
Abstract
Palladium-catalyzed activation of remote meta-C-H bonds in arenes containing tethered alcohols was achieved with high regioselectivity by using a nitrile template. Computational studies on the macrocyclic transition state of the regioselectivity-determining C-H activation steps revealed that both the C-N-Ag angles and gauche comformations of phenyl ether play an extremely important role in the meta selectivity.
Collapse
Affiliation(s)
- Lanlan Zhang
- State Key Laboratory of Elementoorganic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chaoyue Zhao
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai Univeristy, Tianjin, 300071, P. R. China
| | - Yang Liu
- State Key Laboratory of Elementoorganic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jiancong Xu
- State Key Laboratory of Elementoorganic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai Univeristy, Tianjin, 300071, P. R. China
| | - Zhong Jin
- State Key Laboratory of Elementoorganic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
45
|
Zhang L, Zhao C, Liu Y, Xu J, Xu X, Jin Z. Activation of Remote meta
-C−H Bonds in Arenes with Tethered Alcohols: A Salicylonitrile Template. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lanlan Zhang
- State Key Laboratory of Elementoorganic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Chaoyue Zhao
- College of Chemistry; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education); Nankai Univeristy; Tianjin 300071 P. R. China
| | - Yang Liu
- State Key Laboratory of Elementoorganic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Jiancong Xu
- State Key Laboratory of Elementoorganic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Xiufang Xu
- College of Chemistry; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education); Nankai Univeristy; Tianjin 300071 P. R. China
| | - Zhong Jin
- State Key Laboratory of Elementoorganic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 P. R. China
| |
Collapse
|
46
|
Modak A, Patra T, Chowdhury R, Raul S, Maiti D. Palladium-Catalyzed Remote meta-Selective C–H Bond Silylation and Germanylation. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00309] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Atanu Modak
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tuhin Patra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rajdip Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suman Raul
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
47
|
Bera M, Agasti S, Chowdhury R, Mondal R, Pal D, Maiti D. Rhodium-Catalyzed meta-C-H Functionalization of Arenes. Angew Chem Int Ed Engl 2017; 56:5272-5276. [PMID: 28393438 DOI: 10.1002/anie.201701579] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 01/14/2023]
Abstract
Rhodium-catalyzed ortho-C-H functionalization is well known in the literature. Described herein is the Xphos-supported rhodium catalysis of meta-C-H olefination of benzylsulfonic acid and phenyl acetic acid frameworks with the assistance of a para-methoxy-substituted cyano phenol as the directing group. Complete mono-selectivity is observed for both scaffolds. A wide range of olefins and functional groups attached to arene are tolerated in this protocol.
Collapse
Affiliation(s)
- Milan Bera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Soumitra Agasti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Rajdip Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Rahul Mondal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Debasis Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| |
Collapse
|
48
|
Bera M, Agasti S, Chowdhury R, Mondal R, Pal D, Maiti D. Rhodium-Catalyzed meta
-C−H Functionalization of Arenes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701579] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Milan Bera
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai- 400076 India
| | - Soumitra Agasti
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai- 400076 India
| | - Rajdip Chowdhury
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai- 400076 India
| | - Rahul Mondal
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai- 400076 India
| | - Debasis Pal
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai- 400076 India
| | - Debabrata Maiti
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai- 400076 India
| |
Collapse
|
49
|
Dutta U, Modak A, Bhaskararao B, Bera M, Bag S, Mondal A, Lupton DW, Sunoj RB, Maiti D. Catalytic Arene meta-C–H Functionalization Exploiting a Quinoline-Based Template. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00247] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Uttam Dutta
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | - David W. Lupton
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
50
|
Bag S, Jayarajan R, Mondal R, Maiti D. Template-Assistedmeta-C−H Alkylation and Alkenylation of Arenes. Angew Chem Int Ed Engl 2017; 56:3182-3186. [DOI: 10.1002/anie.201611360] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/04/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Sukdev Bag
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai- 400 076 India
| | - Ramasamy Jayarajan
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai- 400 076 India
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; India
| | - Rahul Mondal
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai- 400 076 India
| | - Debabrata Maiti
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai- 400 076 India
| |
Collapse
|