1
|
Das A, Charpentier O, Hessin C, Schleinitz J, Pianca D, Le Breton N, Choua S, Grimaud L, Gourlaouen C, Desage-El Murr M. Site-Selective Radical Aromatic C-H Functionalization of Alloxazine and Flavin through Ground-State Single Electron Transfer. Angew Chem Int Ed Engl 2024; 63:e202403417. [PMID: 38627209 DOI: 10.1002/anie.202403417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Indexed: 06/11/2024]
Abstract
Flavins and their alloxazine isomers are key chemical scaffolds for bioinspired electron transfer strategies. Their properties can be fine-tuned by functional groups, which must be introduced at an early stage of the synthesis as their aromatic ring is inert towards post-functionalization. We show that the introduction of a remote metal-binding redox site on alloxazine and flavin activates their aromatic ring towards direct C-H functionalization. Mechanistic studies are consistent with a synthetic sequence involving ground-state single electron transfer (SET) with an electrophilic source followed by radical-radical coupling. This unprecedented reactivity opens new opportunities in molecular editing of flavins by direct aromatic post-functionalization and the utility of the method is demonstrated with the site-selective C6 functionalization of alloxazine and flavin with a CF3 group, Br or Cl, that can be further elaborated into OH and aryl for chemical diversification.
Collapse
Affiliation(s)
- Agnideep Das
- Université de Strasbourg, Institut de Chimie, CNRS UMR7177, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Oscar Charpentier
- Université de Strasbourg, Institut de Chimie, CNRS UMR7177, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Cheriehan Hessin
- Université de Strasbourg, Institut de Chimie, CNRS UMR7177, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Jules Schleinitz
- Laboratoire des biomolécules, LBM, Chemistry department École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - David Pianca
- Université de Strasbourg, Institut de Chimie, CNRS UMR7177, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Nolwenn Le Breton
- Université de Strasbourg, Institut de Chimie, CNRS UMR7177, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Sylvie Choua
- Université de Strasbourg, Institut de Chimie, CNRS UMR7177, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Laurence Grimaud
- Laboratoire des biomolécules, LBM, Chemistry department École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Christophe Gourlaouen
- Université de Strasbourg, Institut de Chimie, CNRS UMR7177, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Marine Desage-El Murr
- Université de Strasbourg, Institut de Chimie, CNRS UMR7177, 4, rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
2
|
Lai D, Bhattacharjee S, Mandal S, Ghosh S, Sahoo P, Sinha S, Hajra A. Iodine(III)-promoted oxidative carbotrifluoromethylation of maleimides with imidazopyridines and Langlois' reagent. Chem Commun (Camb) 2024; 60:2232-2235. [PMID: 38315091 DOI: 10.1039/d3cc05889a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A metal-free protocol for oxidative carbotrifluoromethylation of maleimides with imidazopyridines and Langlois' reagent has been developed using (diacetoxyiodo)benzene (PIDA) as an oxidant. This three-component strategy enables one-step construction of 3,4-disubstituted maleimides in good yields with high functional group tolerance. Both experimental and theoretical studies support the proposed radical reaction mechanism.
Collapse
Affiliation(s)
- Dipti Lai
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Suvam Bhattacharjee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Saurodeep Mandal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Subrata Sinha
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
3
|
Cho H, Jang S, Lee K, Cha D, Min SJ. Visible-Light-Induced DDQ-Catalyzed Fluorocarbamoylation Using CF 3SO 2Na and Oxygen. Org Lett 2023. [PMID: 37987781 DOI: 10.1021/acs.orglett.3c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The synthesis of carbamoyl fluorides via visible-light induced DDQ catalysis of secondary amines is described. This protocol employs sodium trifluorosulfinate and molecular oxygen for the in situ generation of carbonyl difluoride, which is reacted with amines to afford the corresponding carbamoyl fluorides efficiently. Moreover, carbamoyl fluorides are easily transformed to synthetically useful carbonyl compounds under mild reaction conditions.
Collapse
Affiliation(s)
- Huijeong Cho
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Seonga Jang
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Kangjoo Lee
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Dohoon Cha
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Sun-Joon Min
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Department of Chemical & Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
4
|
Gao J, Liu Z, Guo X, Wu L, Chen Z, Yang K. 1,1,1,3,3,3-Hexafluoro-2-Propanol-Promoted Friedel-Crafts Reaction: Metal-Free Synthesis of C3-Difluoromethyl Carbinol-Containing Imidazo[1,2- a]pyridines at Room Temperature. Molecules 2023; 28:7522. [PMID: 38005245 PMCID: PMC10672982 DOI: 10.3390/molecules28227522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
A facile and efficient method has been developed for the synthesis of C3-difluoromethyl carbinol-containing imidazo[1,2-a]pyridines at room temperature via the HFIP-promoted Friedel-Crafts reaction of difluoroacetaldehyde ethyl hemiacetal and imidazo[1,2-a]pyridines. This strategy could be applied to the direct C(sp2)-H hydroxydifluoromethylation of imidazo[1,2-a]pyridines and afford a series of novel difluoromethylated carbinols in good to satisfactory yields with 29 examples. Furthermore, gram-scale and synthetic transformation experiments have also been achieved, demonstrating its potential applicable value in organic synthesis. This green protocol has several advantages, including being transition metal- and oxidant-free, being carried out at room temperature, having high efficiency, and having a wide substrate scope.
Collapse
Affiliation(s)
| | | | | | | | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (J.G.); (Z.L.); (X.G.); (L.W.)
| | - Kai Yang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (J.G.); (Z.L.); (X.G.); (L.W.)
| |
Collapse
|
5
|
Sumii Y, Shibata N. Current State of Microflow Trifluoromethylation Reactions. CHEM REC 2023; 23:e202300117. [PMID: 37309300 DOI: 10.1002/tcr.202300117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Indexed: 06/14/2023]
Abstract
The trifluoromethyl group is a powerful structural motif in drugs and polymers; thus, developing trifluoromethylation reactions is an important area of research in organic chemistry. Over the past few decades, significant progress has been made in developing new methods for the trifluoromethylation of organic molecules, ranging from nucleophilic and electrophilic approaches to transition-metal catalysis, photocatalysis, and electrolytic reactions. While these reactions were initially developed in batch systems, more recent microflow versions are highly attractive for industrial applications owing to their scalability, safety, and time efficiency. In this review, we discuss the current state of microflow trifluoromethylation. Approaches for microflow trifluoromethylation based on different trifluoromethylation reagents are described, including continuous flow, flow photochemical, microfluidic electrochemical reactions, and large-scale microflow reactions.
Collapse
Affiliation(s)
- Yuji Sumii
- Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
| | - Norio Shibata
- Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
| |
Collapse
|
6
|
Roy S, Panja S, Sahoo SR, Chatterjee S, Maiti D. Enroute sustainability: metal free C-H bond functionalisation. Chem Soc Rev 2023; 52:2391-2479. [PMID: 36924227 DOI: 10.1039/d0cs01466d] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The term "C-H functionalisation" incorporates C-H activation followed by its transformation. In a single line, this can be defined as the conversion of carbon-hydrogen bonds into carbon-carbon or carbon-heteroatom bonds. The catalytic functionalisation of C-H bonds using transition metals has emerged as an atom-economical technique to engender new bonds without activated precursors which can be considered as a major drawback while attempting large-scale synthesis. Replacing the transition-metal-catalysed approach with a metal-free strategy significantly offers an alternative route that is not only inexpensive but also environmentally benign to functionalize C-H bonds. Recently metal free synthetic approaches have been flourishing to functionalize C-H bonds, motivated by the search for greener, cost-effective, and non-toxic catalysts. In this review, we will highlight the comprehensive and up-to-date discussion on recent examples of ground-breaking research on green and sustainable metal-free C-H bond functionalisation.
Collapse
Affiliation(s)
- Sayan Roy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sumeet Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sagnik Chatterjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
7
|
Li H, Zhang Y, Yang X, Deng Z, Zhu Z, Zhou P, Ouyang X, Yuan Y, Chen X, Yang L, Liu M, Shu C. Synthesis of Multifluoromethylated γ-Sultines by a Photoinduced Radical Addition-Polar Cyclization. Angew Chem Int Ed Engl 2023; 62:e202300159. [PMID: 36762878 DOI: 10.1002/anie.202300159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/11/2023]
Abstract
Despite the significance of sultines in synthesis, medicine, and materials science, the chemistry of sultines has remained unexplored due to their inaccessibility. Herein, we demonstrate the development of a photoredox-catalyzed multifluoromethyl radical addition/SO2 incorporation/polar cyclization cascade approach to multifluoromethylated γ-sultines. The reactions proceed by single electron transfer induced multifluoromethyl radical addition to an alkene followed by SO2 incorporation, and single-electron reduction for polar 5-exo-tet cyclization. Key to the success of the protocol is the use of easily oxidizable multifluoroalkanesulfinates as bifunctional reagents. The reactions proceed with excellent functional-group tolerance to deliver γ-sultines in moderate to excellent yields.
Collapse
Affiliation(s)
- Helian Li
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Yongxin Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Xiaoxiao Yang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zhenxi Deng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zhimin Zhu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Pan Zhou
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Xinke Ouyang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Yuting Yuan
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Xi Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Lingyue Yang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Meng Liu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Chao Shu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| |
Collapse
|
8
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
9
|
Baguia H, Evano G. Direct Perfluoroalkylation of C−H Bonds in (Hetero)arenes. Chemistry 2022; 28:e202200975. [DOI: 10.1002/chem.202200975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Hajar Baguia
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
10
|
Tran C, Hamze A. Recent Developments in the Photochemical Synthesis of Functionalized Imidazopyridines. Molecules 2022; 27:molecules27113461. [PMID: 35684399 PMCID: PMC9182178 DOI: 10.3390/molecules27113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Imidazopyridines constitute one of the most important scaffolds in medicinal chemistry, as their skeleton could be found in a myriad of biologically active molecules. Although numerous strategies were elaborated for imidazopyridine preparation in the 2010s, novel eco-compatible synthetic approaches have emerged, conscious of climate change concerns. In this framework, photochemical methods have been promoted to conceive this heterocyclic motif over the last decade. This review covers the recently published works on synthesizing highly functionalized imidazopyridines by light induction.
Collapse
|
11
|
Baishya G, Dutta NB. Recent Advances in Direct C−H Trifluoromethylation of N‐Heterocycles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gakul Baishya
- Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Nibedita B. Dutta
- Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Rain Forest Research Institute Jorhat 785001 India
| |
Collapse
|
12
|
Dai P, Li C, Li Y, Zhu Y, Teng P, Gu Y, Zhang W. Direct Difluoromethylation of Heterocycles through Photosensitized Electron Transfer. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Chenxiao Li
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Yuchuan Zhu
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Peng Teng
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Yu‐Cheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell Berkshire RG42 6EY United Kingdom, UK
| | - Wei‐Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| |
Collapse
|
13
|
Patel M, Desai B, Sheth A, Dholakiya BZ, Naveen T. Recent Advances in Mono‐ and Difunctionalization of Unactivated Olefins. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Monak Patel
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bhargav Desai
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Aakash Sheth
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bharatkumar Z. Dholakiya
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Togati Naveen
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| |
Collapse
|
14
|
Li M, Li G, Dai C, Zhou W, Zhan W, Gao M, Rong Y, Tan Z, Deng W. Visible-light-promoted direct C3-trifluoromethylation and perfluoroalkylation of imidazopyridines. Org Biomol Chem 2021; 19:8301-8306. [PMID: 34545902 DOI: 10.1039/d1ob01417j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient method for direct trifluoromethylation and perfluoroalkylation at C3 of imidazopyridines through visible light-promoted C-H bond functionalization was developed. Under the irradiation of a blue LED, a series of C3-perfluoroalkyl-substituted imidazopyridines were synthesized from the corresponding imidazopyridines and perfluoroalkyl iodides in moderate to good yields at room temperature. It should be mentioned that this reaction proceeded in the absence of any transition-metal catalyst, oxidant and photocatalyst.
Collapse
Affiliation(s)
- Meichen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Gaolin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Chenxun Dai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Wenjun Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Wenqiang Zhan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Muyang Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Yuan Rong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Ze Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Wei Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
15
|
Shen J, Xu J, He L, Liang C, Li W. Application of Langlois’ reagent (NaSO2CF3) in C–H functionalisation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Yuan X, Cui Y, Zhang X, Qin L, Sun Q, Duan X, Chen L, Li G, Qiu J, Guo K. Electrochemical Tri‐ and Difluoromethylation‐Triggered Cyclization Accompanied by the Oxidative Cleavage of Indole Derivatives. Chemistry 2021; 27:6522-6528. [DOI: 10.1002/chem.202005368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Indexed: 01/02/2023]
Affiliation(s)
- Xin Yuan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Yu‐Sheng Cui
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Xin‐Peng Zhang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Long‐Zhou Qin
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Qi Sun
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Xiu Duan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Lin Chen
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Guigen Li
- Institute of Chemistry & Biomedical Science Nanjing University No.163, Xianlin Avenue, Qixia District Nanjing 210093 P. R. China
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409-1061 USA
| | - Jiang‐Kai Qiu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| |
Collapse
|
17
|
Dutta NB, Bori J, Gogoi P, Baishya G. Metal‐, Photocatalyst‐, Light‐ and Electrochemical‐Free C‐3 Trifluoromethylation of Quinoxalin‐2(1
H
)‐ones, Imidazo[1,2‐a]pyridines and 2
H
‐Indazoles. ChemistrySelect 2021. [DOI: 10.1002/slct.202004631] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nibedita Baruah Dutta
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
- Rain Forest Research Institute Jorhat 785001 India
| | - Jugal Bori
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
| | - Pinku Gogoi
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
| | - Gakul Baishya
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| |
Collapse
|
18
|
Berg N, Bergwinkl S, Nuernberger P, Horinek D, Gschwind RM. Extended Hydrogen Bond Networks for Effective Proton-Coupled Electron Transfer (PCET) Reactions: The Unexpected Role of Thiophenol and Its Acidic Channel in Photocatalytic Hydroamidations. J Am Chem Soc 2021; 143:724-735. [DOI: 10.1021/jacs.0c08673] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Nele Berg
- Institute of Organic Chemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Sebastian Bergwinkl
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Patrick Nuernberger
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Dominik Horinek
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Ruth M. Gschwind
- Institute of Organic Chemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
19
|
Ma CH, Chen M, Feng ZW, Zhang Y, Wang J, Jiang YQ, Yu B. Functionalization of imidazo[1,2-a]pyridines via radical reactions. NEW J CHEM 2021. [DOI: 10.1039/d1nj00704a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The recent advances in radical reactions for the direct functionalization of imidazo[1,2-a]pyridines are reviewed.
Collapse
Affiliation(s)
- Chun-Hua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Ming Chen
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Zhi-Wen Feng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Yan Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Jin Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Yu-Qin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Bing Yu
- Green Catalysis Centre
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
20
|
Yao R, Chen W, Shen Q. Photosensitizer-Free Visible-Light-Promoted Trifluoromethylation of Imidazo[1,2-a]pyridines. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Barata‐Vallejo S, Postigo A. New Visible‐Light‐Triggered Photocatalytic Trifluoromethylation Reactions of Carbon–Carbon Multiple Bonds and (Hetero)Aromatic Compounds. Chemistry 2020; 26:11065-11084. [DOI: 10.1002/chem.202000856] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Sebastian Barata‐Vallejo
- Department of Organic ChemistryUniversidad de Buenos Aires, Facultad de Farmacia y Bioquímica Junin 954 CP 1113 Buenos Aires Argentina
- ISOFConsiglio Nazionale delle Ricerche Via P. Gobetti 101 40129 Bologna Italy
| | - Al Postigo
- Department of Organic ChemistryUniversidad de Buenos Aires, Facultad de Farmacia y Bioquímica Junin 954 CP 1113 Buenos Aires Argentina
| |
Collapse
|
22
|
Li Y, Neumann H, Beller M. Ruthenium-Catalyzed Site-Selective Trifluoromethylations and (Per)Fluoroalkylations of Anilines and Indoles. Chemistry 2020; 26:6784-6788. [PMID: 32216068 PMCID: PMC7317475 DOI: 10.1002/chem.202001439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 01/05/2023]
Abstract
Introducing (per)fluoroalkyl groups into arenes continues to be an interesting, but challenging area in organofluorine chemistry. We herein report an ortho-selective C-H perfluoroalkylation including trifluoromethylations of anilines and indoles without the need of protecting groups using Rf I and Rf Br as commercially available reagents. The availability and price of the starting materials and the inherent selectivity make this novel methodology attractive for the synthesis of diverse (per)fluoroalkylated building blocks, for example, for bioactive compounds and materials.
Collapse
Affiliation(s)
- Yang Li
- Leibniz-Institut für Katalyse e.V., RostockAlbert-Einstein-Straße 29a18059RostockGermany
- School of Environmental and Chemical EngineeringXi'an Polytechnic UniversityNo.19 Jinhua South Road710048Xi'anChina
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e.V., RostockAlbert-Einstein-Straße 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., RostockAlbert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
23
|
Tanaka S, Nakayama Y, Konishi Y, Koike T, Akita M. Fluoroalkanesulfinate Salts as Dual Fluoroalkyl and SO2 Sources: Atom-Economical Fluoroalkyl-Sulfonylation of Alkenes and Alkynes by Photoredox Catalysis. Org Lett 2020; 22:2801-2805. [PMID: 32207628 DOI: 10.1021/acs.orglett.0c00789] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Koike T. Frontiers in Radical Fluoromethylation by Visible‐Light Organic Photocatalysis. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Takashi Koike
- Laboratory for Chemistry and Life Science Institute of Innovative ResearchTokyo Institute of Technology R1-27, 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
25
|
Qiu Y, Scheremetjew A, Finger LH, Ackermann L. Electrophotocatalytic Undirected C-H Trifluoromethylations of (Het)Arenes. Chemistry 2020; 26:3241-3246. [PMID: 31875327 PMCID: PMC7155051 DOI: 10.1002/chem.201905774] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/31/2022]
Abstract
Electrophotochemistry has enabled arene C-H trifluoromethylation with the Langlois reagent CF3 SO2 Na under mild reaction conditions. The merger of electrosynthesis and photoredox catalysis provided a chemical oxidant-free approach for the generation of the CF3 radical. The electrophotochemistry was carried out in an operationally simple manner, setting the stage for challenging C-H trifluoromethylations of unactivated arenes and heteroarenes. The robust nature of the electrophotochemical manifold was reflected by a wide scope, including electron-rich and electron-deficient benzenes, as well as naturally occurring heteroarenes. Electrophotochemical C-H trifluoromethylation was further achieved in flow with a modular electro-flow-cell equipped with an in-operando monitoring unit for on-line flow-NMR spectroscopy, providing support for the single electron transfer processes.
Collapse
Affiliation(s)
- Youai Qiu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Alexej Scheremetjew
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lars H. Finger
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
26
|
Li Z, Jiao L, Sun Y, He Z, Wei Z, Liao W. CF
3
SO
2
Na as a Bifunctional Reagent: Electrochemical Trifluoromethylation of Alkenes Accompanied by SO
2
Insertion to Access Trifluoromethylated Cyclic N‐Sulfonylimines. Angew Chem Int Ed Engl 2020; 59:7266-7270. [DOI: 10.1002/anie.202001262] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Zheng Li
- Department of Organic Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Lingcong Jiao
- Department of Organic Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yunhai Sun
- Department of Organic Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Zeying He
- Department of Organic Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Zhonglin Wei
- Department of Organic Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Wei‐Wei Liao
- Department of Organic Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| |
Collapse
|
27
|
Li Z, Jiao L, Sun Y, He Z, Wei Z, Liao W. CF
3
SO
2
Na as a Bifunctional Reagent: Electrochemical Trifluoromethylation of Alkenes Accompanied by SO
2
Insertion to Access Trifluoromethylated Cyclic N‐Sulfonylimines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001262] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zheng Li
- Department of Organic Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Lingcong Jiao
- Department of Organic Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yunhai Sun
- Department of Organic Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Zeying He
- Department of Organic Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Zhonglin Wei
- Department of Organic Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Wei‐Wei Liao
- Department of Organic Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| |
Collapse
|
28
|
Govaerts S, Nyuchev A, Noel T. Pushing the boundaries of C–H bond functionalization chemistry using flow technology. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00077-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractC–H functionalization chemistry is one of the most vibrant research areas within synthetic organic chemistry. While most researchers focus on the development of small-scale batch-type transformations, more recently such transformations have been carried out in flow reactors to explore new chemical space, to boost reactivity or to enable scalability of this important reaction class. Herein, an up-to-date overview of C–H bond functionalization reactions carried out in continuous-flow microreactors is presented. A comprehensive overview of reactions which establish the formal conversion of a C–H bond into carbon–carbon or carbon–heteroatom bonds is provided; this includes metal-assisted C–H bond cleavages, hydrogen atom transfer reactions and C–H bond functionalizations which involve an SE-type process to aromatic or olefinic systems. Particular focus is devoted to showcase the advantages of flow processing to enhance C–H bond functionalization chemistry. Consequently, it is our hope that this review will serve as a guide to inspire researchers to push the boundaries of C–H functionalization chemistry using flow technology.
Collapse
|
29
|
Mi X, Kong Y, Yang H, Zhang J, Pi C, Cui X. Visible-Light-Promoted Metal-Free C-H Trifluoromethylation of Imidazopyridines. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901860] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xia Mi
- College of Pharmacy; Henan University of Chinese Medicine; 450046 Zhengzhou P. R. China
| | - Yuanfang Kong
- College of Pharmacy; Henan University of Chinese Medicine; 450046 Zhengzhou P. R. China
| | - Huaixia Yang
- College of Pharmacy; Henan University of Chinese Medicine; 450046 Zhengzhou P. R. China
| | - Jingyu Zhang
- College of Pharmacy; Henan University of Chinese Medicine; 450046 Zhengzhou P. R. China
| | - Chao Pi
- College of Chemistry; Henan Key Laboratory of Chemical Biology and Organic Chemistry; Zhengzhou University; 450052 Zhengzhou P. R. China
| | - Xiuling Cui
- College of Chemistry; Henan Key Laboratory of Chemical Biology and Organic Chemistry; Zhengzhou University; 450052 Zhengzhou P. R. China
| |
Collapse
|
30
|
Lefebvre Q, Porta R, Millet A, Jia J, Rueping M. One Amine-3 Tasks: Reductive Coupling of Imines with Olefins in Batch and Flow. Chemistry 2020; 26:1363-1367. [PMID: 31777987 PMCID: PMC7027816 DOI: 10.1002/chem.201904483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 11/05/2022]
Abstract
Owing to their wide range of biological properties, γ-aminobutyric acid derivatives (GABA) have been extensively studied and found noteworthy industrial applications. However, atom-economical and efficient processes for their production are scarce and would greatly benefit from further investigations. Herein, we demonstrate that an iridium-based photocatalyst promotes the direct reductive cross-coupling of imines with olefins upon irradiation with visible light to give GABA derivatives in good yields and selectivities. We also stress the enabling triple role of tributylamine additive in this process, discuss the advantages of strategies based on proton-coupled electron transfer (PCET) and demonstrate the scale-up of this reaction in continuous flow.
Collapse
Affiliation(s)
- Quentin Lefebvre
- Institut of Organic ChemistryRWTH AachenLandoltweg 152074AachenGermany
| | - Riccardo Porta
- Institut of Organic ChemistryRWTH AachenLandoltweg 152074AachenGermany
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi 1920133MilanoItaly
| | - Anthony Millet
- Institut of Organic ChemistryRWTH AachenLandoltweg 152074AachenGermany
| | - Jiaqi Jia
- Institut of Organic ChemistryRWTH AachenLandoltweg 152074AachenGermany
| | - Magnus Rueping
- Institut of Organic ChemistryRWTH AachenLandoltweg 152074AachenGermany
- King Abdullah University of Science and Technology (KAUST)KAUST Catalysis Center (KCC)Thuwal23955-6900Saudi Arabia
| |
Collapse
|
31
|
Zhang S, Weniger F, Kreyenschulte CR, Lund H, Bartling S, Neumann H, Ellinger S, Taeschler C, Beller M. Towards a practical perfluoroalkylation of (hetero)arenes with perfluoroalkyl bromides using cobalt nanocatalysts. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02460c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper report a convenient methodology for perfluoroalkylation including trifluoromethylation of (hetero)arenes with perfluoroalkyl bromides using a specific cobalt-based nanocatalyst.
Collapse
Affiliation(s)
- Shaoke Zhang
- Leibniz-Institut für Katalyse an der Universität Rostock e.V
- 18059 Rostock
- Germany
| | - Florian Weniger
- Leibniz-Institut für Katalyse an der Universität Rostock e.V
- 18059 Rostock
- Germany
| | | | - Henrik Lund
- Leibniz-Institut für Katalyse an der Universität Rostock e.V
- 18059 Rostock
- Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse an der Universität Rostock e.V
- 18059 Rostock
- Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse an der Universität Rostock e.V
- 18059 Rostock
- Germany
| | | | | | - Matthias Beller
- Leibniz-Institut für Katalyse an der Universität Rostock e.V
- 18059 Rostock
- Germany
| |
Collapse
|
32
|
Jia J, Lefebvre Q, Rueping M. Reductive coupling of imines with redox-active esters by visible light photoredox organocatalysis. Org Chem Front 2020. [DOI: 10.1039/c9qo01428d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The direct alkylation of imines with redox-active esters by visible light photoorganocatalysis provides a direct way for accessing α-branched secondary amines which are found in numerous bioactive molecules.
Collapse
Affiliation(s)
- Jiaqi Jia
- Institute of Organic Chemistry
- RWTH Aachen
- Aachen
- Germany
| | | | - Magnus Rueping
- Institute of Organic Chemistry
- RWTH Aachen
- Aachen
- Germany
- King Abdullah University of Science and Technology (KAUST)
| |
Collapse
|
33
|
Koike T, Akita M. Recent progress in photochemical radical di- and mono-fluoromethylation. Org Biomol Chem 2019; 17:5413-5419. [PMID: 31086872 DOI: 10.1039/c9ob00734b] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, photoinduced radical difluoromethylation has emerged as a step-economical synthetic method of CHF2-containing compounds. In this article, difluoromethylation of alkenes, isonitriles and aryl bromides promoted by photoredox catalysis is described together with a non-catalytic photoinduced system. Representative reactions will be discussed for each highlighted difluoromethylating reagent. In addition, related monofluoromethylation with their corresponding monofluoromethylating reagents is also discussed.
Collapse
Affiliation(s)
- Takashi Koike
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | | |
Collapse
|
34
|
The Photoinduced Metal-Free Hydrotrifluoromethylation of Vinyl Phosphonates or Phosphine Oxides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Barthelemy AL, Dagousset G, Magnier E. Metal-Free Visible-Light-Mediated Hydrotrifluoromethylation of Unactivated Alkenes and Alkynes in Continuous Flow. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anne-Laure Barthelemy
- Institut Lavoisier de Versailles, UMR 8180; Université de Versailles-Saint-Quentin; 78035 Versailles Cedex France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles, UMR 8180; Université de Versailles-Saint-Quentin; 78035 Versailles Cedex France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles, UMR 8180; Université de Versailles-Saint-Quentin; 78035 Versailles Cedex France
| |
Collapse
|
36
|
Gan Z, Yan Q, Li G, Li Q, Dou X, Li G, Yang D. Copper‐Catalyzed Domino Synthesis of Sulfur‐Containing Heterocycles Using Carbon Disulfide as a Building Block. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900643] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ziyu Gan
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 People's Republic of China
| | - Qiuli Yan
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 People's Republic of China
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 People's Republic of China
| | - Guoqing Li
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 People's Republic of China
| | - Qin Li
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 People's Republic of China
| | - Xiaomeng Dou
- School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 People's Republic of China
| | - Guang‐Yao Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and TransportationChangsha University of Science and Technology Changsha 410114 People's Republic of China
| | - Daoshan Yang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 People's Republic of China
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 People's Republic of China
| |
Collapse
|
37
|
Ghosh KG, Chandu P, Mondal S, Sureshkumar D. Visible-light mediated trifluoromethylation of p-quinone methides by 1,6-conjugate addition using pyrylium salt as organic photocatalyst. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Levitre G, Dagousset G, Anselmi E, Tuccio B, Magnier E, Masson G. Four-Component Photoredox-Mediated Azidoalkoxy-trifluoromethylation of Alkenes. Org Lett 2019; 21:6005-6010. [DOI: 10.1021/acs.orglett.9b02152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guillaume Levitre
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles-Saint-Quentin, Versailles 78035 Cedex, France
| | - Elsa Anselmi
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles-Saint-Quentin, Versailles 78035 Cedex, France
| | - Béatrice Tuccio
- Aix-Marseille Université-CNRS, Institut de Chimie Radicalaire (UMR 7273), Marseille F-13397 Cedex 20, France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles, UMR 8180, Université de Versailles-Saint-Quentin, Versailles 78035 Cedex, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| |
Collapse
|
39
|
Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts. Chem Rev 2019; 119:8701-8780. [PMID: 31243998 PMCID: PMC6661881 DOI: 10.1021/acs.chemrev.9b00111] [Citation(s) in RCA: 470] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/13/2022]
Abstract
Organosulfur compounds have long played a vital role in organic chemistry and in the development of novel chemical structures and architectures. Prominent among these organosulfur compounds are those involving a sulfur(IV) center, which have been the subject of countless investigations over more than a hundred years. In addition to a long list of textbook sulfur-based reactions, there has been a sustained interest in the chemistry of organosulfur(IV) compounds in recent years. Of particular interest within organosulfur chemistry is the ease with which the synthetic chemist can effect a wide range of transformations through either bond formation or bond cleavage at sulfur. This review aims to cover the developments of the past decade in the chemistry of organic sulfur(IV) molecules and provide insight into both the wide range of reactions which critically rely on this versatile element and the diverse scaffolds that can thereby be synthesized.
Collapse
Affiliation(s)
- Daniel Kaiser
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Immo Klose
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Rik Oost
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - James Neuhaus
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
40
|
Kawamura S, Sodeoka M. Fluoroalkylation Methods for Synthesizing Versatile Building Blocks. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shintaro Kawamura
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
41
|
Wang Q, Qu Y, Tian H, Liu Y, Song H, Wang Q. Trifluoromethylation and Monofluoroalkenylation of Alkenes through Radical-Radical Cross-Coupling. Chemistry 2019; 25:8686-8690. [PMID: 31025767 DOI: 10.1002/chem.201901349] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Indexed: 11/07/2022]
Abstract
The first visible-light-induced trifluoromethylation and monofluoroalkenylation of simple alkenes via a challenging radical-radical cross-coupling step was achieved. This method provided a mild, step-economical and redox-neutral route to privileged two different fluorinated difunctionalized allyl compounds. The utility of this method is illustrated by late-stage modification of medically important molecules.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yi Qu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Hao Tian
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| |
Collapse
|
42
|
Murugan A, Babu VN, Polu A, Sabarinathan N, Bakthadoss M, Sharada DS. Regioselective C3-H Trifluoromethylation of 2 H-Indazole under Transition-Metal-Free Photoredox Catalysis. J Org Chem 2019; 84:7796-7803. [PMID: 31117559 DOI: 10.1021/acs.joc.9b00676] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trifluoromethyl-substituted heteroarenes are biologically active compounds and useful building blocks. In this sequence, we have developed a visible-light-promoted regioselective C3-H trifluoromethylation of 2 H-indazole under metal-free conditions, which proceeds via a radical mechanism. The combination of photocatalysis and hypervalent iodine reagent provides a practical approach to a library of trifluoromethylated indazoles in 35-83% yields.
Collapse
Affiliation(s)
- Arumugavel Murugan
- Catalysis & Chemical Biology Laboratory, Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, 502285 Sangareddy , Telangana , India
| | - Venkata Nagarjuna Babu
- Catalysis & Chemical Biology Laboratory, Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, 502285 Sangareddy , Telangana , India
| | - Ashok Polu
- Catalysis & Chemical Biology Laboratory, Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, 502285 Sangareddy , Telangana , India
| | - Nagaraj Sabarinathan
- Catalysis & Chemical Biology Laboratory, Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, 502285 Sangareddy , Telangana , India
| | - Manickam Bakthadoss
- Department of Chemistry , Pondicherry University , Pondicherry 605014 , India
| | - Duddu S Sharada
- Catalysis & Chemical Biology Laboratory, Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, 502285 Sangareddy , Telangana , India
| |
Collapse
|
43
|
Dantas JA, Correia JTM, Paixão MW, Corrêa AG. Photochemistry of Carbonyl Compounds: Application in Metal‐Free Reactions. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900044] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Juliana A. Dantas
- Centre of Excellence for Research in Sustainable Chemistry Department of ChemistryFederal University of São Carlos 13565-905 São Carlos, SP Brazil
| | - José Tiago M. Correia
- Centre of Excellence for Research in Sustainable Chemistry Department of ChemistryFederal University of São Carlos 13565-905 São Carlos, SP Brazil
| | - Marcio W. Paixão
- Centre of Excellence for Research in Sustainable Chemistry Department of ChemistryFederal University of São Carlos 13565-905 São Carlos, SP Brazil
| | - Arlene G. Corrêa
- Centre of Excellence for Research in Sustainable Chemistry Department of ChemistryFederal University of São Carlos 13565-905 São Carlos, SP Brazil
| |
Collapse
|
44
|
Transition-metal-free, visible-light-mediated regioselective C–H trifluoromethylation of imidazo[1,2-a]pyridines. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Han S, Gao X, Wu Q, Li J, Zou D, Wu Y, Wu Y. Transition‐Metal‐Free Direct Trifluoromethylation and Perfluoroalkylation of Imidazopyridines under Mild Conditions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801541] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shuaijun Han
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic ChemistryZhengzhou University Zhengzhou People's Republic of China
| | - Xianying Gao
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic ChemistryZhengzhou University Zhengzhou People's Republic of China
| | - Qingsong Wu
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic ChemistryZhengzhou University Zhengzhou People's Republic of China
| | - Jingya Li
- Tetranov Biopharm, LLC.Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou 450052 People's Republic of China
| | - Dapeng Zou
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic ChemistryZhengzhou University Zhengzhou People's Republic of China
| | - Yangjie Wu
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic ChemistryZhengzhou University Zhengzhou People's Republic of China
| | - Yusheng Wu
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic ChemistryZhengzhou University Zhengzhou People's Republic of China
- Tetranov Biopharm, LLC.Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou 450052 People's Republic of China
- Tetranov International, Inc. 100 Jersey Avenue, Suite A340 New Brunswick NJ 08901 USA
| |
Collapse
|
46
|
Wang R, Wang J, Tang Q, Zhao X, Wang J, Leng Y, Wu Y, Chang J, Wu Y, Zhang Z, Wang S. Copper(I)-catalyzed direct C-H trifluoromethylation of imidazoheterocycles with Togni’s reagent. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Borodkin GI, Shubin VG. Progress and prospects in the use of photocatalysis for the synthesis of organofluorine compounds. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Data on the synthesis of fluorinated organic compounds by photocatalysis are systematically considered and analyzed. The attention is focused on the mechanisms of photocatalytic reactions and the selectivity problem.
The bibliography includes 173 references.
Collapse
|
48
|
Huang Y, Hong H, Zou Z, Liao C, Lu J, Qin Y, Li Y, Chen L. Electrochemical vicinal aminotrifluoromethylation of alkenes: high regioselective acquisition of β-trifluoromethylamines. Org Biomol Chem 2019; 17:5014-5020. [DOI: 10.1039/c9ob00717b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A high-regioselective electrochemical aminotrifluoromethylation of alkenes leading to β-trifluoromethylamines using CF3SO2Na as a trifluoromethyl precursor and acetonitrile as an N-nucleophile was achieved.
Collapse
Affiliation(s)
- Yubing Huang
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- China
| | - Huanliang Hong
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- China
| | - Zirong Zou
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- China
| | - Chunshu Liao
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- China
| | - Jingjun Lu
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- China
| | - Yongwei Qin
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- China
| | - Yibiao Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- China
| | - Lu Chen
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- China
| |
Collapse
|
49
|
Zhu DL, Li HX, Xu ZM, Li HY, Young DJ, Lang JP. Visible light driven, nickel-catalyzed aryl esterification using a triplet photosensitiser thioxanthen-9-one. Org Chem Front 2019. [DOI: 10.1039/c9qo00536f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The nickel-catalyzed esterification of carboxylic acids with aryl bromides using thioxanthen-9-one as a photosensitizer provided aryl esters with excellent yields.
Collapse
Affiliation(s)
- Da-Liang Zhu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Hong-Xi Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Ze-Ming Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Hai-Yan Li
- Analysis and Testing Centre
- Soochow University
- Suzhou 215123
- China
| | - David J. Young
- College of Engineering
- Information Technology and Environment
- Charles Darwin University
- Northern Territory 0909
- Australia
| | - Jian-Ping Lang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
50
|
Yang Z, Cheng Y, Long J, Feng X, Tang R, Wei J. Transition metal-free synthesis of fluoroalkylated oxindoles via base-mediated fluoroalkylation of N-arylacrylamides with RFI. NEW J CHEM 2019. [DOI: 10.1039/c9nj04458b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel method for synthesizing fluoroalkylated oxindoles by the cyclization of N-arylacrylamides with fluoroalkyl iodide initiated with K2CO3 is reported.
Collapse
Affiliation(s)
- Zhiyong Yang
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| | - Yuanyuan Cheng
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| | - Jikun Long
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| | - Xiaoying Feng
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| | - Rong Tang
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| | - Jinmei Wei
- School of Chemical Engineering
- Guizhou Institute of Technology
- Guiyang 550003
- P. R. China
| |
Collapse
|