1
|
Hou X, Ga L, Zhang X, Ai J. Advances in the application of logic gates in nanozymes. Anal Bioanal Chem 2024; 416:5893-5914. [PMID: 38488951 DOI: 10.1007/s00216-024-05240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Nanozymes are a class of nanomaterials with biocatalytic function and enzyme-like activity, whose advantages include high stability, low cost, and mass production. They can catalyze the substrates of natural enzymes based on specific nanostructures and serve as substitutes for natural enzymes. Their applied research involves a wide range of fields such as biomedicine, environmental governance, agriculture, and food. Molecular logic gates are a new cross-disciplinary discipline, which can simulate the function of silicon circuits on a molecular scale, perform single or multiple input logic operations, and generate logic outputs. A molecular logic gate is a binary operation that converts an input signal into an output signal according to the rules of Boolean logic, generating two signals, a high level, and a low level. The high and low levels represent the "true" and "false" values of the logic gates, and their outputs correspond to "l" and "0" of the molecular logic gates, respectively. The combination of nanozymes and logic gates is a novel and attractive research direction, and the cross-application of the two brings new opportunities and ideas for various fields, such as the construction of efficient biocomputers, intelligent drug delivery systems, and the precise diagnosis of diseases. This review describes the application of logic gates based on nanozymes, which is expected to provide a certain theoretical foundation for researchers' subsequent studies.
Collapse
Affiliation(s)
- Xiangru Hou
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot, 010022, China
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot, 010110, China
| | - Xin Zhang
- College of Chemical Engineering, Inner Mongolia University of Technology, 49 Aimin Road, Hohhot, 010051, China.
| | - Jun Ai
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot, 010022, China.
| |
Collapse
|
2
|
Rani A, Shabbir MK, Fatima A, Ali S, Alamzeb M, Nadeem A, Akhtar J, Bejarani AM, Thebo KH. Visible Light-Triggered Catalytic Performance of Reduced Graphene Oxide Decorated With Copper Oxide Nanocomposite for Degradation of Rhodamine B Dye and Kinetics Studies. Microsc Res Tech 2024. [PMID: 39354864 DOI: 10.1002/jemt.24703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024]
Abstract
Herein, novel nanocomposites based on reduced graphene oxide decorated copper oxide nanoparticles (rGO/CuO) were prepared by the in situ co-precipitation method. The structural, morphological, and optical characterization of as-prepared nanocomposites was performed by powdered x-ray diffraction (p-XRD), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR), Raman, and ultraviolet-visible (UV-Vis) spectroscopy, respectively. The as-prepared nanocomposites exhibited better photocatalytic activity of rhodamine B dye with maximum ~94% degradation in 120 min with a rate constant of 0.2353 min-1 under optimized conditions. Furthermore, the effects of solution pH and catalyst loading are studied on the degradation process. Therefore, this state-of-the-art strategy for the decoration of CuO nanoparticles onto the surface of rGO nanosheets could be an ideal platform for fabricating highly efficient photocatalysts.
Collapse
Affiliation(s)
- Alia Rani
- Department of Chemistry, University of Kotli, Kotli, Pakistan
| | - Muhammad Kaleem Shabbir
- Department of Chemistry, University of Kotli, Kotli, Pakistan
- Functional Nanomaterials Lab (FNL), Department of Chemistry, Mirpur University of Science and Technology (MUST)-10250, Mirpur, AJK, Pakistan
| | - Ayesha Fatima
- Functional Nanomaterials Lab (FNL), Department of Chemistry, Mirpur University of Science and Technology (MUST)-10250, Mirpur, AJK, Pakistan
| | - Saqib Ali
- Department of Chemistry, University of Kotli, Kotli, Pakistan
| | | | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Javeed Akhtar
- Functional Nanomaterials Lab (FNL), Department of Chemistry, Mirpur University of Science and Technology (MUST)-10250, Mirpur, AJK, Pakistan
| | | | | |
Collapse
|
3
|
Rajan ST, Senthilnathan J, Arockiarajan A. Innovative enhancement of electron tunneling synergy in carbon-doped Ta 2O 5CuO photocatalyst with nematic liquid crystal for safe drinking water. WATER RESEARCH 2024; 255:121457. [PMID: 38555783 DOI: 10.1016/j.watres.2024.121457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
This study focuses on enhancing the photocatalytic properties of carbon-doped Ta2O5CuO (C-Ta2O5CuO) nanocomposites for drinking water purification. The nanocomposites were fabricated by depositing C-Ta2O5CuO onto Nematic Liquid Crystal Polaroid (NLCP) obtained from a discarded laptop monitor, employing the sputter deposition method. The X-ray diffraction (XRD) and High-resolution transmission electron microscopy (HRTEM) determined the nanocomposite thin films' crystallinity and structural properties. The EDX and XPS analyses confirmed the elemental composition and reality of the Cu-incorporated Ta2O5 nanocomposites, respectively. The combination of electron tunneling enhancement provided by the NLCP and graphitic carbon led to exceptional photocatalytic performance. This was particularly evident in the efficient degradation of P-Rosaniline Hydrochloride (PRH) dye in an aqueous medium. C-Ta2O5CuO catalytic activities were estimated at various dye concentrations, repeatability, reusability with time, and kinetics. Coating's stability and long-term activity in photocatalysis reactions were also tested. Additionally, Cu present in the C-Ta2O5CuO and ˙OH radicals exhibited remarkable bactericidal activity. They displayed significant antibacterial efficacy against both gram-positive Escherichia coli (E. coli) and gram-negative Staphylococcus aureus (S. aureus) bacteria. These findings have significant implications for the development of advanced materials with potent photocatalytic and antibacterial properties, holding promise for improving drinking water quality and addressing environmental and health challenges.
Collapse
Affiliation(s)
- S Thanka Rajan
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - J Senthilnathan
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - A Arockiarajan
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600 036, India; Ceramic Technology Group- Center of Excellence in Materials and Manufacturing Futuristic Mobility, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
4
|
Farooq U, Qureshi AK, Noor H, Farhan M, Khan ME, Hamed OA, Bashiri AH, Zakri W. Plant Extract-Based Fabrication of Silver Nanoparticles and Their Effective Role in Antibacterial, Anticancer, and Water Treatment Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:2337. [PMID: 37375962 DOI: 10.3390/plants12122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Ammi visnaga is a biennial or annual herbaceous plant belonging to the family Apiaceae. For the first time, silver nanoparticles were synthesized using an extract of this plant. Biofilms are a rich source of many pathogenic organisms and, thus, can be the genesis of various disease outbreaks. In addition, the treatment of cancer is still a critical drawback for mankind. The primary purpose of this research work was to comparatively analyze antibiofilms against Staphylococcus aureus, photocatalytic activity against Eosin Y, and in vitro anticancer activity against the HeLa cell line of silver nanoparticles and Ammi visnaga plant extract. The systematic characterization of synthesized nanoparticles was carried out using UV-Visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), dynamic light scattering (DLS), zeta potential, and X-ray diffraction microscopy (XRD). The initial characterization was performed with UV-Vis spectroscopy, where a peak appeared at 435 nm, which indicated the SPR band of the silver nanoparticles. AFM and SEM were performed to determine the morphology and shape of the nanoparticles, while EDX confirmed the presence of Ag in the spectra. The crystalline character of the silver nanoparticles was concluded with XRD. The synthesized nanoparticles were then subjected to biological activities. The antibacterial activity was evaluated by determining the inhibition of the initial biofilm formation with Staphylococcus aureus using a crystal violet assay. The response of the AgNPs against cellular growth and biofilm formation was found to be dose dependent. Green-synthesized nanoparticles showed 99% inhibition against biofilm and bacteria, performed excellent anticancer assay with an IC50 concentration of 17.1 ± 0.6 µg/mL and 100% inhibition, and photodegradation of the toxic organic dye Eosin Y up to 50%. Moreover, the effect of the pH and dosage of the photocatalyst was also measured to optimize the reaction conditions and maximum photocatalytic potential. Therefore, synthesized silver nanoparticles can be used in the treatment of wastewater contaminated with toxic dyes, pathogenic biofilms, and the treatment of cancer cell lines.
Collapse
Affiliation(s)
- Umar Farooq
- Department of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur 63100, Pakistan
| | | | - Hadia Noor
- Centre of Excellence in Solids State Physics, University of the Punjab, Quaid Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Farhan
- Centre of Excellence in Solids State Physics, University of the Punjab, Quaid Azam Campus, Lahore 54590, Pakistan
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Osama A Hamed
- Department of Mechanical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdullateef H Bashiri
- Department of Mechanical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| | - Waleed Zakri
- Department of Mechanical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
5
|
Singh K, Gupta V. Field emission scanning electron microscopic, X-ray diffraction and ultraviolet spectroscopic analysis of Terminalia bellerica based silver nanoparticles and evaluation of their antioxidant, catalytic and antibacterial activity. Heliyon 2023; 9:e16944. [PMID: 37346338 PMCID: PMC10279823 DOI: 10.1016/j.heliyon.2023.e16944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
In recent years, scientists have come up with ways to make nanoparticles that are inexpensive and good for the environment. Terminalia bellerica-based silver nanoparticles (TBAgNPs) were made in this study using methanol extract from T. bellerica fruits. This method was quick, economical, and good for the environment. The biosynthesized TBAgNPs were used as antioxidants, antibacterial agents, and anti-catalytic agents. Analytical techniques like XRD, FESEM, and UV-Vis were used to find out more about the spherical TBAgNPs that were made. Also, Cefotaxime-resistant bacteria found in hospitals were used to test how well the TBAgNPs killed bacteria. With the Bauer-agar Kirby's gel diffusion and Mueller-Hinton broth methods, the ability of the synthesized TBAgNPs to stop bacterial growth was tested. After the TBAgNPs were studied, it was found that the average size of their crystals was between 10 and 25 nm. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) reducing tests showed that these AgNPs could act as antioxidants, and TBAgNPs (%inhibition = 20.90% to 94.94%) were better antioxidant than ascorbic acid (%inhibition = 13.80% to 86.10%) and extract (%inhibition = 16.90% to 80.50%). The reduction of methylene blue (MB) to leucomethylene blue (LMB) with sodium borohydride (NaBH4) was used as a model to test the catalytic potential of TBAgNPs. On UV spectroscopic analysis at room temperature, TBAgNPs at different concentrations were able to reduce methylene blue effectively. For Escherichia coli and Klebsiella pneumoniae, the minimum inhibitory concentration (MIC) for TBAgNPs was 0.625 μg/mL and 1.25 μg/mL, respectively. Based on these results, silver nanoparticles made with Terminalia bellerica extract may have much biological importance and could be used in making useful therapeutic applications.
Collapse
|
6
|
Malik SB, Gul A, Saggu JI, Abbasi BA, Azad B, Iqbal J, Kazi M, Chalgham W, Firoozabadi SAM. Fabrication and Characterization of Ag-Graphene Nanocomposites and Investigation of Their Cytotoxic, Antifungal and Photocatalytic Potential. Molecules 2023; 28:molecules28104139. [PMID: 37241880 DOI: 10.3390/molecules28104139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
In the present study, we aimed to synthesize (Ag)1-x(GNPs)x nanocomposites in variable ratios (25% GNPs-Ag, 50% GNPs-Ag, and 75% GNPs-Ag) via an ex situ approach to investigate the incremental effects of GNPs (graphene nanoparticles) on AgNPs (silver nanoparticles). The prepared nanocomposites were successfully characterized using different microscopic and spectroscopic techniques, including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet spectroscopy, and Raman spectroscopic analysis. For the evaluation of morphological aspects, shape, and percentage elemental composition, SEM and EDX analyses were employed. The bioactivities of the synthesized nanocomposites were briefly investigated. The antifungal activity of (Ag)1-x(GNPs)x nanocomposites was reported to be 25% for AgNPs and 66.25% using 50% GNPs-Ag against Alternaria alternata. The synthesized nanocomposites were further evaluated for cytotoxic potential against U87 cancer cell lines with improved results (for pure AgNPs IC50: ~150 µg/mL, for 50% GNPs-Ag IC50: ~12.5 µg/mL). The photocatalytic properties of the nanocomposites were determined against the toxic dye Congo red, and the percentage degradation was recorded as 38.35% for AgNPs and 98.7% for 50% GNPs-Ag. Hence, from the results, it is concluded that silver nanoparticles with carbon derivatives (graphene) have strong anticancer and antifungal properties. Dye degradation strongly confirmed the photocatalytic potential of Ag-graphene nanocomposites in the removal of toxicity present in organic water pollutants.
Collapse
Affiliation(s)
- Sidra Batool Malik
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Asma Gul
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Javed Iqbal Saggu
- Department of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi 46300, Pakistan
| | - Beenish Azad
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Javed Iqbal
- 2Department of Botany, Bacha Khan University, Charsadda 24420, Pakistan
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Wadie Chalgham
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
7
|
Alwan DA, Hatem OA. Preparation and characterization of ternary composite
rGO
/
Fe
3
O
4
/
CdS
and evaluating its efficiency in photodegradation of crystal violet dye. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Duhak A. Alwan
- Department of Chemistry, College of Science University of AL‐Qadisiyah Al‐Qadisiyah Governorate Iraq
| | - Oraas A. Hatem
- Department of Chemistry, College of Science University of AL‐Qadisiyah Al‐Qadisiyah Governorate Iraq
| |
Collapse
|
8
|
Synthesis and Characterization of Silver and Graphene Nanocomposites and Their Antimicrobial and Photocatalytic Potentials. Molecules 2022; 27:molecules27165184. [PMID: 36014424 PMCID: PMC9415913 DOI: 10.3390/molecules27165184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
Microbial pathogens and bulk amounts of industrial toxic wastes in water are an alarming situation to humans and a continuous threat to aquatic life. In this study, multifunctional silver and graphene nanocomposites (Ag)1−x(GNPs)x [25% (x = 0.25), 50% (x = 0.50) and 75% (x = 0.75) of GNPs] were synthesized via ex situ approach. Further, the synthesized nanocomposites were explored for their physicochemical characteristics, such as vibrational modes (Raman spectroscopic analysis), optical properties (UV visible spectroscopic analysis), antibacterial and photocatalytic applications. We investigated the antimicrobial activity of silver and graphene nanocomposites (Ag-GNPs), and the results showed that Ag-GNPs nanocomposites exhibit remarkably improved antimicrobial activity (28.78% (E. coli), 31.34% (S. aureus) and 30.31% (P. aeruginosa) growth inhibition, which might be due to increase in surface area of silver nanoparticles (AgNPs)). Furthermore, we investigated the photocatalytic activity of silver (AgNPs) and graphene (GNPs) nanocomposites in varying ratios. Interestingly, the Ag-GNPs nanocomposites show improved photocatalytic activity (78.55% degradation) as compared to AgNPs (54.35%), which can be an effective candidate for removing the toxicity of dyes. Hence, it is emphatically concluded that Ag-GNPs hold very active behavior towards the decolorization of dyes and could be a potential candidate for the treatment of wastewater and possible pathogenic control over microbes. In the future, we also recommend different other in vitro biological and environmental applications of silver and graphene nanocomposites.
Collapse
|
9
|
Ramalingam G, Perumal N, Priya AK, Rajendran S. A review of graphene-based semiconductors for photocatalytic degradation of pollutants in wastewater. CHEMOSPHERE 2022; 300:134391. [PMID: 35367486 DOI: 10.1016/j.chemosphere.2022.134391] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Water is the lifeblood of all living things; we often overlook the fact that the water cycle and the life cycle are inextricably linked. However, it has become contaminated as a result of industrialization, which has impacted the ecosystem by emitting numerous dyes, organic solvents, petroleum products, heavy metals, chemicals, diseases, and solid wastes. The absence of treatment in reusing wastewater is the root of the issues. Hence it is essential to treat the water to preserve the ecosystem and also for human health. In recent years, graphene-based photocatalysts are attracted much in the waste water treatment process due to their outstanding physical, chemical, and mechanical properties. Since in the graphene-based photocatalyst, graphene has exceptional electron conductivity, a broad range of light absorption, a large surface area, and a high adsorption capacity. When it is integrated into metals, metal-containing nanocomposites, semiconductor nanocomposites, polymers, MXene, and other compounds, it can greatly boost the photocatalytic activity towards the photo destruction of contaminants. Hence in this review, water pollution, methods of waste water treatment, fundamental principles of photocatalysis, the photocatalytic activity of other materials in wastewater treatment, and how the photocatalytic efficiency against the removal of organic dyes can be enhanced when coalesced with graphene are detailed.
Collapse
Affiliation(s)
- Gomathi Ramalingam
- Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Nagapandiselvi Perumal
- Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| |
Collapse
|
10
|
Ghanbari A, Beyramabadi SA, Khoshnood RS, Es’haghi Z. Structure and Mechanisms of Trichostatin A Drug Adsorption on Graphene Oxide: Density Functional Theory Approach. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Sreelekshmi PB, Pillai RR, Meera AP. Controlled Synthesis of Novel Graphene Oxide Nanoparticles for the Photodegradation of Organic Dyes. Top Catal 2022. [DOI: 10.1007/s11244-022-01600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Catalysis-Free Growth of III-V Core-Shell Nanowires on p-Si for Efficient Heterojunction Solar Cells with Optimized Window Layer. ENERGIES 2022. [DOI: 10.3390/en15051772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The growth of high-quality compound semiconductor materials on silicon substrates has long been studied to overcome the high price of compound semiconductor substrates. In this study, we successfully fabricated nanowire solar cells by utilizing high-quality hetero p-n junctions formed by growing n-type III-V nanowires on p-silicon substrates. The n-InAs0.75P0.25 nanowire array was grown by the Volmer–Weber mechanism, a three-dimensional island growth mode arising from a lattice mismatch between III-V and silicon. For the surface passivation of n-InAs0.75P0.25 core nanowires, a wide bandgap InP shell was formed. The nanowire solar cell was fabricated by benzocyclobutene (BCB) filling, exposure of nanowire tips by reactive-ion etching, electron-beam deposition of ITO window layer, and finally metal grid electrode process. In particular, the ITO window layer plays a key role in reducing light reflection as well as electrically connecting nanowires that are electrically separated from each other. The deposition angle was adjusted for conformal coating of ITO on the nanowire surface, and as a result, the lowest light reflectance and excellent electrical connectivity between the nanowires were confirmed at an oblique deposition angle of 40°. The solar cell based on the heterojunction between the n-InAs0.75P0.25/InP core-shell nanowire and p-Si exhibited a very high photoelectric conversion efficiency of 9.19% with a current density of 27.10 mA/cm2, an open-circuit voltage of 484 mV, and a fill factor of 70.1%.
Collapse
|
13
|
Shen W, Zhu A. Sub‐micron calcium carbonate isolated carbon nanotubes/polyethylene composites with controllable electrical conductivity. J Appl Polym Sci 2021. [DOI: 10.1002/app.51412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Weixin Shen
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Aiping Zhu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| |
Collapse
|
14
|
Alhammadi S, Mun BG, Gedi S, Minnam Reddy VR, Rabie AM, Sayed MS, Shim JJ, Park H, Kim WK. Effect of silver doping on the properties and photocatalytic performance of In2S3 nanoparticles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Singh J, Soni R. Efficient charge separation in Ag nanoparticles functionalized ZnO nanoflakes/CuO nanoflowers hybrids for improved photocatalytic and SERS activity. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Shan Z, Yang Y, Shi H, Zhu J, Tan X, Luan Y, Jiang Z, Wang P, Qin J. Hollow Dodecahedra Graphene Oxide- Cuprous Oxide Nanocomposites With Effective Photocatalytic and Bactericidal Activity. Front Chem 2021; 9:755836. [PMID: 34568290 PMCID: PMC8458578 DOI: 10.3389/fchem.2021.755836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a kind of graphene oxide-cuprous oxide (GO-Cu2O) nanocomposites was fabricated with different morphologies to serve as a photocatalytic material for the degradation of organic/inorganic dyes under visible light and the bactericidal effect against pathogenic bacteria. The GO-Cu2O was prepared with solid cube and hollow dodecahedra morphologies through in-situ synthesis, and characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Raman, Ultraviolet and visible spectrophotometry (UV/vis), and Fourier transform infrared spectroscopy. In comparison with cubic GO-Cu2O, the absorption and degradation efficiency of the GO-Cu2O dodecahedra (GCD) composite in Methyl orange (MO), Rhodamine B (RhB), and phenol was higher owning to the more active sites for the simultaneous dye and light absorption of hollow structure. The antibacterial effect of the GO-Cu2O dodecahedra was examined by the flat colony counting method with an excellent bactericidal effect against pathogenic bacteria. The possible mechanism for the preparation of GCD possessing the enhancement of the visible-light photocatalytic and antibacterial efficiencies were also investigated.
Collapse
Affiliation(s)
- Zezhi Shan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanrong Yang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haoran Shi
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Jiali Zhu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Luan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenqi Jiang
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jieling Qin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
17
|
Son BT, Long NV, Nhat Hang NT. Fly ash-, foundry sand-, clay-, and pumice-based metal oxide nanocomposites as green photocatalysts. RSC Adv 2021; 11:30805-30826. [PMID: 35498918 PMCID: PMC9041310 DOI: 10.1039/d1ra05647f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Metal oxides possess exceptional physicochemical properties which make them ideal materials for critical photocatalytic applications. However, of major interest, their photocatalytic applications are hampered by several drawbacks, consisting of prompt charge recombination of charge carriers, low surface area, inactive under visible light, and inefficient as well as expensive post-treatment recovery. The immobilization of metal oxide semiconductors on materials possessing high binding strength eliminates the impractical and costly recovery of spent catalysts in large-scale operations. Notably, the synthesis of green material (ash, clay, foundry sand, and pumice)-based metal oxides could provide a synergistic effect of the superior adsorption capacity of supporting materials and the photocatalytic activity of metal oxides. This phenomenon significantly improves the overall degradation efficiency of emerging pollutants. Inspired by the novel concept of "treating waste with waste", this contribution highlights recent advances in the utilization of natural material (clay mineral and pumice)- and waste material (ash and foundry sand)-based metal oxide nanocomposites for photodegradation of various pollutants. First, principles, mechanism, challenges towards using metal oxide as photocatalysts, and immobilization techniques are systematically summarized. Then, sources, classifications, properties, and chemical composition of green materials are briefly described. Recent advances in the utilization of green materials-based metal oxide composites for the photodegradation of various pollutants are highlighted. Finally, in the further development of green materials-derived photocatalysts, we underlined the current gaps that are worthy of deeper research in the future.
Collapse
Affiliation(s)
- Bui Thanh Son
- Nanotechnology, Thu Dau Mot University Binh Duong Province Vietnam
| | - Nguyen Viet Long
- Nanotechnology, Thu Dau Mot University Binh Duong Province Vietnam
| | | |
Collapse
|
18
|
Mohammad A, Khan ME, Cho MH, Yoon T. Graphitic‑carbon nitride based mixed-phase bismuth nanostructures: Tuned optical and structural properties with boosted photocatalytic performance for wastewater decontamination under visible-light irradiation. NANOIMPACT 2021; 23:100345. [PMID: 35559846 DOI: 10.1016/j.impact.2021.100345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 06/15/2023]
Abstract
To enhance the activities of advanced semiconductor photocatalysts, the charge carriers must be separated effectively. One strategy for achieving this is the use of heterogeneous structures, which can be prepared by hydrothermal synthesis and post-synthetic thermal and ultrasonic treatment. Herein, we report a mixed-phase composite of basic bismuth nitrate/pentabismuth heptaoxide nitrate (PC) prepared by hydrothermal synthesis under basic conditions and post-synthetic thermal treatment. In addition, sulfur-doped-graphitic carbon nitride (S-g-C3N4) was prepared and combined with PC in different ratios, denoted as PC-1, PC-2, and PC-3, using sonication-assisted treatment. The characterization of these catalysts confirmed the formation of mixed basic bismuth nitrate/pentabismuth heptaoxide nitrate phases and the composite nanostructure. The developed nanostructure showed interesting morphological features, for example, layered sheets of S-g-C3N4. The prepared PCs were tested for their visible light responsiveness for the photocatalytic degradation of a representative organic dye (Rhodamine B). We found that the modified photocatalysts showed superior activity to that of pristine PC. The optimal photocatalyst (PC-3) was also used to degrade methylene blue and Congo red, achieving 99% degradation. Thus, we present not only an efficient photocatalyst but also insights into the post-synthetic modification of basic bismuth nitrate/pentabismuth heptaoxide nitrate with stable carbon-based nanostructures.
Collapse
Affiliation(s)
- Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea.
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Jazan 45971, Kingdom of Saudi Arabia
| | - Moo Hwan Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea.
| |
Collapse
|
19
|
Khan ME. State-of-the-art developments in carbon-based metal nanocomposites as a catalyst: photocatalysis. NANOSCALE ADVANCES 2021; 3:1887-1900. [PMID: 36133084 PMCID: PMC9418201 DOI: 10.1039/d1na00041a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/09/2021] [Indexed: 05/29/2023]
Abstract
The rapid progress of state-of-the-art carbon-based metals as a catalyst is playing a central role in the research area of chemical and materials engineering for effective visible-light-induced catalytic applications. Numerous admirable catalysts have been fabricated, but significant challenges persist to lower the cost and increase the action of catalysts. The development of carbon-based nanostructured materials (i.e., activated carbon, carbon nitride, graphite, fullerenes, carbon nanotubes, diamond, graphene, etc.) represents an admirable substitute to out-of-date catalysts. Significant efforts have been made by researchers toward the improvement of various carbon-based metal nanostructures as catalysts. Moreover, incredible development has been achieved in several fields of catalysis, such as visible-light-induced catalysis, electrochemical performance, energy storage, and conversion, etc. This review gives an overview of the up-to-date developments in the strategy of design and fabrication of carbon-based metal nanostructures as photo-catalysts by means of several methods within the green approach, including chemical synthesis, in situ growth, solution mixing, and hydrothermal approaches. Moreover, the photocatalytic effects of the resulting carbon-based nanostructure classifications are similarly deliberated relative to their eco-friendly applications, such as photocatalytic degradation of organic dye pollutants.
Collapse
Affiliation(s)
- Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University Jazan 45971 Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Rahman A, Harunsani MH, Tan AL, Khan MM. Zinc oxide and zinc oxide-based nanostructures: biogenic and phytogenic synthesis, properties and applications. Bioprocess Biosyst Eng 2021; 44:1333-1372. [PMID: 33661388 DOI: 10.1007/s00449-021-02530-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/04/2021] [Indexed: 11/25/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are considered as very significant and essential material due to its multifunctional properties, stability, low cost and wide usage. Many green and biogenic approaches for ZnO NPs synthesis have been reported using various sources such as plants and microorganisms. Plants contain biomolecules that can act as capping, oxidizing and reducing agents that increase the rate of reaction and stabilizes the NPs. This review emphasizes and compiles different types of plants and parts of plant used for the synthesis of ZnO and its potential applications at one place. The influence of biogenic and phytogenic synthesized ZnO on its properties and possible mechanisms for its fabrication has been discussed. This review also highlights the potential applications and future prospects of phytogenic synthesized ZnO in the field of energy production and storage, sun light harvesting, environmental remediation, and biological applications.
Collapse
Affiliation(s)
- Ashmalina Rahman
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Mohammad Hilni Harunsani
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Ai Ling Tan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| |
Collapse
|
21
|
Gaidi M, Daoudi K, Columbus S, Hajjaji A, Khakani MAE, Bessais B. Enhanced photocatalytic activities of silicon nanowires/graphene oxide nanocomposite: Effect of etching parameters. J Environ Sci (China) 2021; 101:123-134. [PMID: 33334508 DOI: 10.1016/j.jes.2020.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 05/08/2023]
Abstract
Homogeneous and vertically aligned silicon nanowires (SiNWs) were successfully fabricated using silver assisted chemical etching technique. The prepared samples were characterized using scanning electron microscopy, transmission electron microscopy and atomic force microscopy. Photocatalytic degradation properties of graphene oxide (GO) modified SiNWs have been investigated. We found that the SiNWs morphology depends on etching time and etchant composition. The SiNWs length could be tuned from 1 to 42 µm, respectively when varying the etching time from 5 to 30 min. The etchant concentration was found to accelerate the etching process; doubling the concentrations increases the length of the SiNWs by a factor of two for fixed etching time. Changes in bundle morphology were also studied as function of etching parameters. The SiNWs diameter was found to be independent of etching time or etchant composition while the size of the SiNWs bundle increases with increasing etching time and etchant concentration. The addition of GO was found to improve significantly the photocatalytic activity of SiNWs. A strong correlation between etching parameters and photocatalysis efficiency has been observed, mainly for SiNWs prepared at optimum etching time and etchant concentrations of 10 min and 4:1:8. A degradation of 92% was obtained which further improved to 96% by addition of hydrogen peroxide. Only degradation efficiency of 16% and 31% has been observed for bare Si and GO/bare Si samples respectively. The obtained results demonstrate that the developed SiNWs/GO composite exhibits excellent photocatalytic performance and could be used as potential platform for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Mounir Gaidi
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates Sharjah; Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates Sharjah; Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l'Energie, Technopole de Borj-Cédria, Hammam-Lif 2050, Tunisia.
| | - Kais Daoudi
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah 27272, United Arab Emirates Sharjah; Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates Sharjah
| | - Soumya Columbus
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates Sharjah; Sharjah Research Academy, University City, Sharjah 60999, United Arab Emirates Sharjah
| | - Anouar Hajjaji
- Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l'Energie, Technopole de Borj-Cédria, Hammam-Lif 2050, Tunisia
| | - My Ali El Khakani
- Institut National de la Recherche Scientifique (INRS), INRS-Énergie, Matériaux et Télécommunications, 1650, Blvd. Lionel-Boulet, Varennes, QC J3X-1S2, Canada
| | - Brahim Bessais
- Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l'Energie, Technopole de Borj-Cédria, Hammam-Lif 2050, Tunisia
| |
Collapse
|
22
|
Stier SP, Uhl D, Löbmann P, Böse H. Dynamic electro‐mechanical analysis of highly conductive particle‐elastomer composites. J Appl Polym Sci 2020. [DOI: 10.1002/app.50377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Simon P. Stier
- Center Smart Materials and Adaptive Systems Fraunhofer Institute for Silicate Research ISC Würzburg Germany
| | - Detlev Uhl
- Center Smart Materials and Adaptive Systems Fraunhofer Institute for Silicate Research ISC Würzburg Germany
| | - Peer Löbmann
- Center Smart Materials and Adaptive Systems Fraunhofer Institute for Silicate Research ISC Würzburg Germany
| | - Holger Böse
- Center Smart Materials and Adaptive Systems Fraunhofer Institute for Silicate Research ISC Würzburg Germany
| |
Collapse
|
23
|
Patil SP, Kumbhar ST. Vitex negundo assisted green synthesis of metallic nanoparticles with different applications: a mini review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00111-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Several attempts have been made for green synthesis of nanoparticles of different metals and metal oxides, revealing the significance of plant extracts in reducing metal source to nanoparticles and applications in various scientific domains.
Main body
The present article focus on applications of Vitex negundo leaves extract in fabrication of nanoparticles of various metals like silver, gold, zinc oxide, and copper oxide. Vitex negundo is evergreen, perennial shrub, belonging to family Verbenaceae. Its leaves are reported to contain several phytochemicals like iridoids, flavonoids, and their glycosides, terpenoids. In respective research attempts, these metallic nanoparticles were evaluated for one or more applications like anti-microbial activity and/or photocatalytic activity.
Conclusions
Use of V. negundo polar extract indicated involvement of its polar phytocompounds in reducing the metal source and stabilizing the nanoparticles. In conclusion, it could be noted that metal nanoparticles have better antimicrobial activity and photocatalytic potential over aqueous leaves extract.
Collapse
|
24
|
Umar MF, Abbas SZ, Mohamad Ibrahim MN, Ismail N, Rafatullah M. Insights into Advancements and Electrons Transfer Mechanisms of Electrogens in Benthic Microbial Fuel Cells. MEMBRANES 2020; 10:E205. [PMID: 32872260 PMCID: PMC7558326 DOI: 10.3390/membranes10090205] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022]
Abstract
Benthic microbial fuel cells (BMFCs) are a kind of microbial fuel cell (MFC), distinguished by the absence of a membrane. BMFCs are an ecofriendly technology with a prominent role in renewable energy harvesting and the bioremediation of organic pollutants through electrogens. Electrogens act as catalysts to increase the rate of reaction in the anodic chamber, acting in electrons transfer to the cathode. This electron transfer towards the anode can either be direct or indirect using exoelectrogens by oxidizing organic matter. The performance of a BMFC also varies with the types of substrates used, which may be sugar molasses, sucrose, rice paddy, etc. This review presents insights into the use of BMFCs for the bioremediation of pollutants and for renewable energy production via different electron pathways.
Collapse
Affiliation(s)
- Mohammad Faisal Umar
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.F.U.); (N.I.)
| | - Syed Zaghum Abbas
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang 212013, China
| | | | - Norli Ismail
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.F.U.); (N.I.)
| | - Mohd Rafatullah
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.F.U.); (N.I.)
| |
Collapse
|
25
|
Lozovskis P, Jankauskaitė V, Guobienė A, Kareivienė V, Vitkauskienė A. Effect of Graphene Oxide and Silver Nanoparticles Hybrid Composite on P. aeruginosa Strains with Acquired Resistance Genes. Int J Nanomedicine 2020; 15:5147-5163. [PMID: 32764942 PMCID: PMC7381769 DOI: 10.2147/ijn.s235748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In the last decades, nosocomial infections caused by drug-resistant Pseudomonas aeruginosa became a common problem in healthcare facilities. Antibiotics are becoming less effective as new resistant strains appear. Therefore, the development of novel enhanced activity antibacterial agents becomes very significant. A combination of nanomaterials with different physical and chemical properties enables us to generate novel multi-functional derivatives. In this study, graphene oxide and polyvinylpyrrolidone-stabilized silver nanoparticles hybrid nanocomposite (GO-Ag HN) were synthesized. The relation between antibiotic resistance and GO-Ag HN potential toxicity to clinical P. aeruginosa strains, their antibiotic resistance, and molecular mechanisms were assessed. METHODS Chemical state, particle size distribution, and morphology of synthesized GO-Ag NH were investigated using spectroscopy and microscopy techniques (UV-Vis, FTIR, XPS, TEM, SEM, AFM). Broad-spectrum antibiotic resistance of P. aeruginosa strains was determined using E-test. Antibiotic resistance genes were identified using polymerase chain reaction (PCR). RESULTS In this study, the toxicity of the GO-Ag NH to the isolated clinical P. aeruginosa strains has been investigated. A high antibiotic resistance level (92%) was found among P. aeruginosa strains. The most prevalent antibiotic resistance gene among tested strains was the AMPC beta-lactamase gene (65.6%). UV-vis, FTIR, and XPS studies confirmed the formation of the silver nanoparticles on the GO nanosheets. The functionalization process occurred through the interaction between Ag nanoparticles, GO, and polyvinylpyrrolidone used for nanoparticle stabilization. SEM analysis revealed that GO nanosheets undergo partial fragmentation during hybrid nanocomposite preparation, which remarkably increases the number of sharp edges and their mediated cutting effect. TEM analysis showed that GO-Ag HN spherical Ag nanoparticles mainly 9-12 nm in size were irregularly precipitated on the GO nanosheet surface. A higher density of Ag NPs was observed in the sheets' wrinkles, corrugations, and sharp edges. This hybrid nanocomposite poses enhanced antibacterial activity against carbapenem-resistant P. aeruginosa strains through a possible synergy between toxicity mechanisms of GO nanosheets and Ag nanoparticles. With incubation time increasing up to 10 minutes, the survival of P. aeruginosa decreased significantly. CONCLUSION A graphene oxide and silver nanoparticles hybrid composite has been shown to be a promising material to control nosocomial infections caused by bacteria strains resistant to most antibiotics.
Collapse
Affiliation(s)
- Povilas Lozovskis
- Faculty of Medicine, Lithuanian University of Health Science, Kaunas, Lithuania
| | - Virginija Jankauskaitė
- Department of Production Engineering, Kaunas University of Technology, Kaunas, Lithuania
| | - Asta Guobienė
- Institute of Materials Science, Kaunas University of Technology, Kaunas, Lithuania
| | - Violeta Kareivienė
- Faculty of Medicine, Lithuanian University of Health Science, Kaunas, Lithuania
| | - Astra Vitkauskienė
- Faculty of Medicine, Lithuanian University of Health Science, Kaunas, Lithuania
| |
Collapse
|
26
|
Kasturi S, Torati SR, Eom YJ, Ahmad S, Lee BJ, Yu JS, Kim C. Real-time monitored photocatalytic activity and electrochemical performance of an rGO/Pt nanocomposite synthesized via a green approach. RSC Adv 2020; 10:13722-13731. [PMID: 35492974 PMCID: PMC9051565 DOI: 10.1039/d0ra00541j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/06/2020] [Indexed: 01/14/2023] Open
Abstract
Herein, we have reported the real-time photodegradation of methylene blue (MB), an organic pollutant, in the presence of sunlight at an ambient temperature using a platinum-decorated reduced graphene oxide (rGO/Pt) nanocomposite. The photocatalyst was prepared via a simple, one-pot and green approach with the simultaneous reduction of GO and Pt using aqueous honey as a reducing agent. Moreover, the honey not only simultaneously reduced Pt ions and GO but also played a key role in the growth and dispersion of Pt nanoparticles on the surface of rGO. Various rGO/Pt nanocomposites with different percentages of Pt nanoparticles loaded on rGO were obtained by tuning the concentration of the Pt source. The high percentage of Pt nanoparticles with an average size of 2.5 nm dispersed on rGO has shown excellent electrochemical performance. The photocatalytic activity of the rGO/Pt composite was enhanced by increasing the weight percent of the Pt particles on rGO, which led to the formation of a highly efficient photocatalyst. The optimized photocatalyst exhibited remarkable photocatalytic activity and degraded 98% MB in 180 minutes; thus, it can be used for industrial and environmental applications.
Collapse
Affiliation(s)
- Satish Kasturi
- Department of Emerging Materials Science, DGIST Daegu-42988 Republic of Korea +82-53-785-6509 +82-53-785-6516
| | - Sri Ramulu Torati
- Department of Emerging Materials Science, DGIST Daegu-42988 Republic of Korea +82-53-785-6509 +82-53-785-6516
| | - Yun Ji Eom
- Department of Emerging Materials Science, DGIST Daegu-42988 Republic of Korea +82-53-785-6509 +82-53-785-6516
| | - Syafiq Ahmad
- Department of Emerging Materials Science, DGIST Daegu-42988 Republic of Korea +82-53-785-6509 +82-53-785-6516
| | - Byong-June Lee
- Department of Energy Science and Engineering, DGIST Daegu-42988 Republic of Korea
| | - Jong-Sung Yu
- Department of Energy Science and Engineering, DGIST Daegu-42988 Republic of Korea
| | - CheolGi Kim
- Department of Emerging Materials Science, DGIST Daegu-42988 Republic of Korea +82-53-785-6509 +82-53-785-6516
| |
Collapse
|
27
|
Shah AP, Jain S, Shimpi NG. Enhanced Photocatalytic Activity of Electrospun PAN/Ag‐G NFs Under Solar Irradiation for Effective Degradation of Hazardous Organic Dyes. ChemistrySelect 2020. [DOI: 10.1002/slct.202000128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Akshara P. Shah
- Laboratory for Material SciencesDepartment of ChemistryUniversity of Mumbai, Santacruz (E) Mumbai 400098 India
| | - Shilpa Jain
- Laboratory for Material SciencesDepartment of ChemistryUniversity of Mumbai, Santacruz (E) Mumbai 400098 India
| | - Navinchandra G Shimpi
- Laboratory for Material SciencesDepartment of ChemistryUniversity of Mumbai, Santacruz (E) Mumbai 400098 India
| |
Collapse
|
28
|
Li S, Zhang Z, Gu X, Lin X. Complete genome sequence of Paracoccus sp. Arc7-R13, a silver nanoparticles synthesizing bacterium isolated from Arctic Ocean sediments. Mar Genomics 2020. [DOI: 10.1016/j.margen.2019.100694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
An enzymatic performance for a new swift magnetically detachable bio-conjugate of Candida rugosa lipase with modified Fe3O4–graphene oxide nanocomposite. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-019-01773-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Assessment of Antioxidant Activity of Pure Graphene Oxide (GO) and ZnO-Decorated Reduced Graphene Oxide (rGO) Using DPPH Radical and H2O2 Scavenging Assays. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5040075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, zinc oxide-decorated graphene oxide (ZnO–rGO) was successfully synthesized with a fast reflux chemical procedure at 100 °C. An equal mass ratio of graphene oxide (GO) and zinc acetate was used as starting materials dissolved, respectively, in ultrapure distilled water and dimethylformamide (DMF). Particularly, pure GO was synthesized using Hummers modified protocol by varying the mass ratio of (graphite:potassium permanganate) as follows: 1:2, 1:3, and 1:4, which allow us to obtain six types of pure and decorated samples, named, respectively, GO1:2, GO1:3, GO1:4, ZnO–rGO1:2, ZnO–rGO1:3, and ZnO–rGO1:4 using reflux at 100 °C. X-ray diffraction, FTIR, and Raman spectroscopy spectra confirm the formation of wurzite ZnO in all ZnO-decorated samples with better reduction of GO in ZnO–rGO1:4, confirming that a higher degree of graphene oxidation allows better reduction during the decoration process with ZnO metal oxide. Antioxidant activity of pure and zinc oxide-decorated graphene oxide samples were compared using two different in vitro assays (DPPH radical and H2O2 scavenging activities). Considerable in vitro antioxidant activities in a concentration-dependent manner were recorded. Interestingly, pristine GO showed more elevated scavenging efficiency in DPPH tests while ZnO-decorated GO was relatively more efficient in H2O2 antioxidant assays.
Collapse
|
31
|
Bhattacharjee S, Joshi R, Chughtai AA, Macintyre CR. Graphene Modified Multifunctional Personal Protective Clothing. ADVANCED MATERIALS INTERFACES 2019; 6:1900622. [PMID: 32313805 PMCID: PMC7161773 DOI: 10.1002/admi.201900622] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/22/2019] [Indexed: 05/18/2023]
Abstract
Personal protective clothing is intended to protect the wearer from various hazards (mechanical, biological, chemical, thermal, radiological, etc.) and inhospitable environmental conditions that may cause harm or even death. There are various types of personal protective clothing, manufactured with different materials based on hazards and end user requirements. Conventional protective clothing has impediments such as high weight, bulky nature, lack of mobility, heat stress, low heat dissipation, high physical stress, diminishing dexterity, diminishing scope of vision, lack of breathability, and reduced protection against pathogens and hazards. By virtue of the superlative properties of graphene, fabrics modified with this material can be an effective means to overcome these limitations and to improve properties such as mechanical strength, antibacterial activity, flame resistance, conductivity, and UV resistance. The limitations of conventional personal protective equipment are discussed, followed by necessary measures which might be taken to improve personal protective equipment (PPE), the unique properties of graphene, methods of graphene incorporation in fabrics, and the current research status and potential of graphene-modified performance textiles relevant to PPE.
Collapse
Affiliation(s)
- Shovon Bhattacharjee
- Biosecurity ProgramThe Kirby InstituteUniversity of New South WalesKensingtonSydneyNSW2052Australia
- Department of Applied Chemistry and Chemical EngineeringNoakhali Science and Technology UniversityNoakhali3814Bangladesh
| | - Rakesh Joshi
- School of Materials Science and EngineeringUniversity of New South WalesKensingtonSydneyNSW2052Australia
| | - Abrar Ahmad Chughtai
- School of Public Health and Community MedicineUniversity of New South WalesKensingtonSydneyNSW2052Australia
| | - Chandini Raina Macintyre
- College of Public Service and Community Solutions and College of Health SolutionsArizona State UniversityTempeAZ85287USA
| |
Collapse
|
32
|
A screen printed carbon electrode modified with a lamellar nanocomposite containing dendritic silver nanostructures, reduced graphene oxide, and β-cyclodextrin for voltammetric sensing of nitrite. Mikrochim Acta 2019; 186:319. [PMID: 31049713 DOI: 10.1007/s00604-019-3414-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/05/2019] [Indexed: 10/26/2022]
Abstract
A disposable sensor is described for the determination of nitrite. A screen printed carbon electrode (SPCE) was modified with a 3D lamellar nanocomposite prepared by one-step electrodeposition from dendritic silver nanostructures, reduced graphene oxide, and β-cyclodextrin. The modified SPCE exhibits high electrocatalytic activity toward nitrite oxidation, typically at a working potential at around 0.76 V (vs. Ag/AgCl). Sensitive and selective voltammetric detection of nitrite is demonstrated. The linear range extends from 1 to 2000 μM, the detection limit is 0.24 μM, and the sensitivity is 585.7 μA mM-1 cm-2. The method was applied to the determination of nitrite in (spiked) pickles. Graphical abstract Schematic presentation of fabrication of a screen printed carbon electrode modified with a lamellar nanocomposite containing dendritic silver nanostructures, reduced graphene oxide, and β-cyclodextrin. Graphical abstract contains poor quality of text inside the artwork. Please do not re-use the file that we have rejected or attempt to increase its resolution and re-save. It is originally poor, therefore, increasing the resolution will not solve the quality problem. We suggest that you provide us the original format. We prefer replacement figures containing vector/editable objects rather than embedded images. Preferred file formats are eps, ai, tiff and pdf.We have provided the original format of graphical abstract in the attachment.
Collapse
|
33
|
Decoration of carbon dots over hydrogen peroxide treated graphitic carbon nitride: Exceptional photocatalytic performance in removal of different contaminants under visible light. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.02.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Influence of carbon content of nano-TaC powders on the electrocatalytic and photocatalytic properties. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.07.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
A direct “touch” approach for gold nanoflowers decoration on graphene/ionic liquid composite modified electrode with good properties for sensing bisphenol A. Talanta 2019; 191:400-408. [DOI: 10.1016/j.talanta.2018.08.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022]
|
36
|
Ahmed E, Kalathil S, Shi L, Alharbi O, Wang P. Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2018.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
He K, Zeng Z, Chen A, Zeng G, Xiao R, Xu P, Huang Z, Shi J, Hu L, Chen G. Advancement of Ag-Graphene Based Nanocomposites: An Overview of Synthesis and Its Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800871. [PMID: 29952105 DOI: 10.1002/smll.201800871] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Graphene has been employed as an excellent support for metal nanomaterials because of its unique structural and physicochemical properties. Silver nanoparticles (AgNPs) with exceptional properties have received considerable attention in various fields; however, particle aggregation limits its application. Therefore, the combination of AgNPs and graphene based nanocomposites (Ag-graphene based nanocomposites) has been widely explored to improve their properties and applications. Excitingly, enhanced antimicrobial, catalytic, and surface enhanced Raman scattering properties are obtained after their combination. In order to have a comprehensive knowledge of these nanocomposites, this Review highlights the chemical and biological synthesis of Ag-graphene nanocomposites. In particular, their applications as antimicrobial agents, catalysts, and sensors in biomedicine, agricultural protection, and environmental remediation and detection are covered. Meanwhile, the factors that influence the synthesis and applications are also briefly discussed. Furthermore, several important issues on the challenges and new directions are also provided for further development of these nanocomposites.
Collapse
Affiliation(s)
- Kai He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, P. R. China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, P. R. China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Zhenzhen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Jiangbo Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Liang Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| | - Guiqiu Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
38
|
Khan ME, Khan MM, Cho MH. Recent progress of metal-graphene nanostructures in photocatalysis. NANOSCALE 2018; 10:9427-9440. [PMID: 29762624 DOI: 10.1039/c8nr03500h] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Metal-graphene nanostructures (NSs) as photocatalysts, prepared using simple and scalable synthesis methods, are gaining heightened attention as novel materials for water treatment and environmental remediation applications. Graphene, the unique few layers sheet-like arrangement of sp2 hybridized carbon atoms, has an inimitable two-dimensional (2D) structure. The material is highly conductive, has high electron mobility and an extremely high surface area, and can be produced on a large scale at low cost. Accordingly, it has been considered as an essential base component for producing various metal-based NSs. In particular, metal-graphene NSs as photocatalysts have attracted considerable attention because of their special surface plasmon resonance (SPR) effect that can improve their performance for the removal of toxic dyes and other pollutants. This review summarizes the recent and advanced progress for the easy fabrication and design of graphene-based NSs as photocatalysts, as a novel tool, using a range of approaches, including green and biogenic approaches.
Collapse
Affiliation(s)
- Mohammad Ehtisham Khan
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea.
| | | | | |
Collapse
|
39
|
Khan ME, Khan MM, Cho MH. Environmentally sustainable biogenic fabrication of AuNP decorated-graphitic g-C 3N 4 nanostructures towards improved photoelectrochemical performances. RSC Adv 2018; 8:13898-13909. [PMID: 35539338 PMCID: PMC9079820 DOI: 10.1039/c8ra00690c] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/08/2018] [Indexed: 11/21/2022] Open
Abstract
Noble-metal gold (Au) nanoparticles (NPs) anchored/decorated on polymeric graphitic carbon nitride (g-C3N4), as a nanostructure, was fabricated by a simple, single step, and an environmentally friendly synthesis approach using single-strain-developed biofilm as a reducing tool. The well deposited/anchored AuNPs on the sheet-like structure of g-C3N4 exhibited high photoelectrochemical performance under visible-light irradiation. The Au-g-C3N4 nanostructures behaved as a plasmonic material. The nanostructures were analyzed using standard characterization techniques. The effect of AuNPs deposition on the photoelectrochemical performance of the Au-g-C3N4 nanostructures was examined by linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), incident photon-to-current efficiency (IPCE) and cyclic voltammetry (CV) in the dark and under visible-light irradiation. The optimal charge transfer resistance for Au-g-C3N4 nanostructures (6 mM) recorded at 18.21 ± 1.00 Ω cm-2 and high electron transfer efficiency, as determined by EIS. The improved photoelectrochemical performance of the Au-g-C3N4 nanostructures was attributed to the synergistic effects between the conduction band minimum of g-C3N4 and the plasmonic band of AuNPs, including high optical absorption, uniform distribution, and nanoscale particle size. This simple, biogenic approach opens up new ways of producing photoactive Au-g-C3N4 nanostructures for potential practical applications, such as visible light-induced photonic materials for real device development.
Collapse
Affiliation(s)
- Mohammad Ehtisham Khan
- School of Chemical Engineering, Yeungnam University Gyeongsan Gyeongbuk 38541 South Korea +82-53-810-4631 +82-53-810-2517
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE1410 Brunei Darussalam
| | - Moo Hwan Cho
- School of Chemical Engineering, Yeungnam University Gyeongsan Gyeongbuk 38541 South Korea +82-53-810-4631 +82-53-810-2517
| |
Collapse
|
40
|
Jafarian F, Bordbar AK, Zare A, Khosropour A. The performance of immobilized Candida rugosa lipase on various surface modified graphene oxide nanosheets. Int J Biol Macromol 2018; 111:1166-1174. [PMID: 29371152 DOI: 10.1016/j.ijbiomac.2018.01.133] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/13/2018] [Accepted: 01/19/2018] [Indexed: 02/05/2023]
Abstract
In this study, we have reported the synthesis of graphene oxide nanosheets (GON) and its functionalization with 2, 4, 6-trichloro-1, 3, 5-triazine (TCT) through two routes, (a) directly reaction of GON with TCT (GON-1), and (b) reaction of GON with pre-functionalized TCT with 3-aminopropyltriethoxysilane (APTS) (GON-2). Subsequently, GON, GON-1 and GON-2 have been used as supports for immobilization of Candida rugosa lipase (CRL). Several techniques such as XRD, SEM, EDS, UV-Vis, CHNS, FTIR and AFM were applied to characterize the nano-structures and success of synthesis, functionalization and CRL immobilization processes. The results corresponding to optimization of immobilization process revealed the following order for values of loading capacity, immobilization yield and leaching of CRL: GON > GON-1 > GON-2, while this order is reversed for, specific activity and recovery activity. The assessment of operational parameters represents the high storage stability and reasonable reusability for all the immobilized CRL while the pH and thermal stability of CRL@GON-2 are higher than two others. It seems the longer linker of GON-2 could more effectively prevent the unfavorable interaction between enzyme-enzyme and enzyme-product that consequently resulted the best catalytic performance, pH and thermal stability. The advantages of these supports make them suitable candidates for practical applications.
Collapse
Affiliation(s)
- Faranak Jafarian
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Atefeh Zare
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | |
Collapse
|
41
|
Leishangthem D, Yumkhaibam MAK, Henam PS, Nagarajan S. An insight into the effect of composition for enhance catalytic performance of biogenic Au/Ag bimetallic nanoparticles. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Javaid A, Oloketuyi SF, Khan MM, Khan F. Diversity of Bacterial Synthesis of Silver Nanoparticles. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0496-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Inorganic semiconductors-graphene composites in photo(electro)catalysis: Synthetic strategies, interaction mechanisms and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.06.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Menon S, S. R, S. VK. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. RESOURCE-EFFICIENT TECHNOLOGIES 2017. [DOI: 10.1016/j.reffit.2017.08.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Khan MS, Talib A, Pandey S, Bhaisare ML, Gedda G, Wu HF. Folic Acid navigated Silver Selenide nanoparticles for photo-thermal ablation of cancer cells. Colloids Surf B Biointerfaces 2017; 159:564-570. [DOI: 10.1016/j.colsurfb.2017.07.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 12/17/2022]
|
46
|
Visible light photocatalytic performance and mechanism of highly efficient SnS/BiOI heterojunction. J Colloid Interface Sci 2017. [DOI: 10.1016/j.jcis.2017.06.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Ce 3+-ion, Surface Oxygen Vacancy, and Visible Light-induced Photocatalytic Dye Degradation and Photocapacitive Performance of CeO 2-Graphene Nanostructures. Sci Rep 2017; 7:5928. [PMID: 28724968 PMCID: PMC5517655 DOI: 10.1038/s41598-017-06139-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/14/2017] [Indexed: 11/20/2022] Open
Abstract
Cerium oxide nanoparticles (CeO2 NPs) were fabricated and grown on graphene sheets using a facile, low cost hydrothermal approach and subsequently characterized using different standard characterization techniques. X-ray photoelectron spectroscopy and electron paramagnetic resonance revealed the changes in surface states, composition, changes in Ce4+ to Ce3+ ratio, and other defects. Transmission electron microscopy (TEM) and high resolution TEM revealed that the fabricated CeO2 NPs to be spherical with particle size of ~10–12 nm. Combination of defects in CeO2 NPs with optimal amount of two-dimensional graphene sheets had a significant effect on the properties of the resulting hybrid CeO2-Graphene nanostructures, such as improved optical, photocatalytic, and photocapacitive performance. The excellent photocatalytic degradation performances were examined by monitoring their ability to degrade Congo red ~94.5% and methylene blue dye ~98% under visible light irradiation. The photoelectrode performance had a maximum photocapacitance of 177.54 Fg−1 and exhibited regular capacitive behavior. Therefore, the Ce3+-ion, surface-oxygen-vacancies, and defects-induced behavior can be attributed to the suppression of the recombination of photo-generated electron–hole pairs due to the rapid charge transfer between the CeO2 NPs and graphene sheets. These findings will have a profound effect on the use of CeO2-Graphene nanostructures for future energy and environment-related applications.
Collapse
|
48
|
Chen H, Cao S, Yao J, Jiang F. Fabrication of Ag nanowires–CdS–Au photocatalyst and its excellent visible light photocatalytic activity: The role of synergetic electron transfer. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Abdel Messih M, Ahmed M, Soltan A, Anis SS. Facile approach for homogeneous dispersion of metallic silver nanoparticles on the surface of mesoporous titania for photocatalytic degradation of methylene blue and indigo carmine dyes. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Saravanan R, Gracia F, Stephen A. Basic Principles, Mechanism, and Challenges of Photocatalysis. NANOCOMPOSITES FOR VISIBLE LIGHT-INDUCED PHOTOCATALYSIS 2017. [DOI: 10.1007/978-3-319-62446-4_2] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|