1
|
Gong Y, Yang H, Ding C. NIR-photoactivatable DNA nanomachines for spatiotemporally controllable monitoring of microRNA-21 in living cells based on signal amplification strategy. Biosens Bioelectron 2025; 267:116755. [PMID: 39244838 DOI: 10.1016/j.bios.2024.116755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Precise and spatiotemporally controllable analysis of microRNA-21 in living cells is crucial for accurate diagnosis and effective treatment of related diseases. Herein, a near-infrared (NIR)-photoactivatable DNA nanomachine (PUCNPs-NH2/PEG-ZL-DNA) was constructed for the precise analysis and diagnosis of microRNA-21 in tumor cells. Peanut-shaped upconversion nanoparticles (PUCNPs) were employed as the carriers and activators for the intelligent DNA probe, specifically enabling the cleavage of the photocleavable linker (PC-linker) from the hairpin DNA probe (Hp-Dzy) upon exposure to 808 nm irradiation. In the presence of the target microRNA-21, the locker DNA hybridized with microRNA-21 and the DNAzymes was freed to hybridize with the looped portion of the hairpin DNA (Hp-1). Mg2+ was employed as the cofactor, facilitating the precise cleavage of Hp-1, which triggered the restoration of fluorescence signals. Subsequently, DNAzymes exhibited the competency to selectively recognize and engage with additional Hp-1, and the fluorescence signals were effectively amplified by the recycling process. Consequently, the DNA nanomachine exhibited a linear response to microRNA-21 concentrations ranging from 0.5 nM to 1.0 μM, achieving a remarkable detection limit (LOD) of 1.19 nM under the optimal conditions. This strategy is realized through the integration of photocontrollable upconversion nanotechnology with the signal amplification approach, showing feasible prospects for spatiotemporally precise and highly sensitive monitoring of microRNA in tumor cells.
Collapse
Affiliation(s)
- Yan Gong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China; College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, 245041, PR China
| | - Huiwen Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
2
|
Che R, Tang D, Fu B, Yan F, Yan M, Wu Y, Yan J, Huang KJ, Ya Y, Tan X. Dual-modal improved biosensing platform for sugarcane smut pathogen based on biological enzyme-Mg 2+ DNAzyme coupled with DNA transporter cascading hybridization chain reaction. Int J Biol Macromol 2024; 286:138403. [PMID: 39643174 DOI: 10.1016/j.ijbiomac.2024.138403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Sugarcane smut is a major disease affecting the yield and quality of sugarcane, and its early detection is crucial for the healthy development of sugarcane industry. In this work, a dual-modal biosensing platform is designed based on Au-V-MOF and 3D DNA walker for highly sensitive and precise detection of the sugarcane smut pathogen. This detection system utilizes the catalytic properties of biocatalysts and the precise cleavage of DNAzymes, along with 3D DNA walker nanotechnology and a designed "walking track", to achieve amplified detection signals and accurate target recognition. The detection platform utilizes catalytic hairpin assembly for target recycling. Output strand T1 interacts with DNAzyme via a 3D transporter, cleaving S1 in Mg2+ presence. This triggers cascading hybridization chain reaction to form long double-stranded DNA structures that absorb substantial methylene blue (MB). This amplifies the electrical signal and causes a proportional color change due to the redox reaction of MB, which enables electrochemical and colorimetric detection of the target. The method shows a linear response range from 0.0001 to 10,000 pM with a detection limit of 56.76 aM (S/N = 3). It features high sensitivity, specificity, and accuracy, which offers significant potential for early warning and precise detection of sugarcane smut.
Collapse
Affiliation(s)
- Rongshuai Che
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Danyao Tang
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Bingtao Fu
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Feiyan Yan
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Meixin Yan
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yeyu Wu
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jun Yan
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Yu Ya
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Xuecai Tan
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
3
|
Yin F, Zhou X, Zhang M, Sun Q, Zhao J, Wu G, Zhang Y, Shen Y. Biocompatible WSe 2@BSA Dots with Merged Catalyst and Coreactant for Efficient Electrochemiluminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406374. [PMID: 39285809 DOI: 10.1002/smll.202406374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Indexed: 12/06/2024]
Abstract
Electrochemiluminescence (ECL) is a powerful tool for clinical diagnosis due to its exceptional sensitivity. However, the standard tripropylamine (TPrA) coreactant for Ru(bpy)3Cl2, the most widely studied and used ECL system, is highly toxic. Despite extensive research on alternative coreactants, they often fall short in poor efficiency. From a reaction kinetics perspective, accelerating electrooxidation rate of Ru(bpy)3Cl2 is an essential way to compensate the efficiency limitation of coreactants, but is rarely reported. Here, a hybrid electrocatalyst@coreactant dots for the ECL of Ru(bpy)3Cl2 is reported. The as-prepared WSe2@bovine serum albumin (WSe2@BSA) dots is biocompatible, and demonstrate dual functions, i.e., the BSA shell works as a coreactant, meanwhile, the WSe2 core effectively catalyzes Ru(bpy)3Cl2 oxidation. As a result, WSe2@BSA dots exhibit an exceptionally high efficiency comparable to TPrA for the ECL of Ru(bpy)3Cl2. In addition, the procedure for synthesizing WSe2@BSA dots is facile (room temperature, atmospheric conditions), rapid (5 min), and scalable (for millions of bioassays). A biosensor utilizing WSe2@BSA dots shows promise for highly sensitive detecting glypican-3 in clinical liver cancer serum samples, especially for alpha-fetoprotein-negative patients. This work opens a new avenue for developing a highly efficient ECL system for biosensing and clinical diagnosis.
Collapse
Affiliation(s)
- Fei Yin
- Medical School, Southeast University, Nanjing, 210009, China
| | - Xiaohe Zhou
- Medical School, Southeast University, Nanjing, 210009, China
| | - Mingming Zhang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Qian Sun
- Medical School, Southeast University, Nanjing, 210009, China
| | - Jinjin Zhao
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yanfei Shen
- Medical School, Southeast University, Nanjing, 210009, China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| |
Collapse
|
4
|
Cao L, Chen W, Kang W, Lei C, Nie Z. Engineering stimuli-responsive CRISPR-Cas systems for versatile biosensing. Anal Bioanal Chem 2024:10.1007/s00216-024-05678-y. [PMID: 39601843 DOI: 10.1007/s00216-024-05678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
The precise target recognition and nuclease-mediated effective signal amplification capacities of CRISPR-Cas systems have attracted considerable research interest within the biosensing field. Guided by insights into their structural and biochemical mechanisms, researchers have endeavored to engineer the key biocomponents of CRISPR-Cas systems with stimulus-responsive functionalities. By the incorporation of protein/nucleic acid engineering techniques, a variety of conditional CRISPR-Cas systems whose activities depend on the presence of target triggers have been established for the efficient detection of diverse types of non-nucleic acid analytes. In this review, we summarized recent research progress in engineering Cas proteins, guide RNA, and substrate nucleic acids to possess target analyte-responsive abilities for diverse biosensing applications. Furthermore, we also discussed the challenges and future possibilities of the stimulus-responsive CRISPR-Cas systems in versatile biosensing.
Collapse
Affiliation(s)
- Linxin Cao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Wenhui Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Wenyuan Kang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education & Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China.
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China.
| |
Collapse
|
5
|
Hosseini SA, Elahian F, Mirzaei SA. Innovative genetic scissor strategies and their applications in cancer treatment and prevention: CRISPR modules and challenges. Int J Biol Macromol 2024; 279:135239. [PMID: 39218175 DOI: 10.1016/j.ijbiomac.2024.135239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
There are lots of gene editing tools for targeting genome sequences. Some are almost known, and most are a complete mystery and undiscovered. CRISPR/Cas editing tools have brought about a major revolution in medicine. Researchers have shown that CRISPR can modify DNA much more accurately, economically and easily than previous methods. CRISPR has proven itself effective for the deletion, replacement and insertion of DNA fragments into cell types, tissues and organisms. Recently, combining CRISPR/Cas with factors (transcription factors/repressors, exonucleases, endonucleases, transposons, caspase, fluorescent proteins, oxidoreductive enzymes, DNA/RNA polymerases), and elements (aptamers, barcodes, fluorescent probes, Trigger) have provided genome, transcriptome, proteome and epigenome modification. These modules are being investigated for cancer prevention and therapy and this review focuses on such innovative combinations that hopefully will become a clinical reality in the near future.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
6
|
Zheng W, Tang H, Ye B, Lin J, Wang H, Liu Y, Wang D, Wu Z, Xie W, Dong WF, Zan M. Fast, portable and sensitive detection of group B streptococcus DNA using one-pot MIRA-CRISPR system with suboptimal PAM. Talanta 2024; 279:126574. [PMID: 39029179 DOI: 10.1016/j.talanta.2024.126574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/26/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The group B Streptococcus (GBS) can generate vertical transmission to infants during delivery, has been seriously threatening the health of infants. Rapid and accurate prenatal GBS diagnosis for pregnant women is a deterministic blueprint to avoid infant viruses. Here, we developed an extraction-free nucleic acid isothermal amplification/CRISPR-Cas12a cutting one-pot system for GBS diagnostic assay by using suboptimal protospacer adjacent motifs, effectively avoiding multiple handling steps and uncapping contamination. The GBS diagnosis assay based on a one-pot system was validated by using fluorescent technique and lateral flow assay strips, exhibited fantastic specificity, accuracy and sensitivity with a limit of detection of 32 copies per reaction (0.64 copies/μL). Moreover, a portable device was constructed and integrated with the one-pot system to realize the GBS detection without professional and scene restrictions, it showed excellent performance in clinical sample detection, which achieved optical and portable GBS detection for point-of-care testing or home-self testing.
Collapse
Affiliation(s)
- Weigang Zheng
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China; Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Huamei Tang
- Medical Laboratory of Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Benchen Ye
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Jiasheng Lin
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Huihui Wang
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Ying Liu
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China; Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Dong Wang
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China; Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Zaihui Wu
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China; Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Wei Xie
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
| | - Wen-Fei Dong
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China.
| | - Minghui Zan
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, China; Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China.
| |
Collapse
|
7
|
Li W, Sun Z, Che X, Ma Y, Guo Y, Chen G, Zhu X, Feng C. Liquid-colloid-solid modular assembly for three-dimensional electrochemical biosensing of small molecules. Biosens Bioelectron 2024; 259:116396. [PMID: 38772247 DOI: 10.1016/j.bios.2024.116396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Electrochemical biosensors hold promise for advanced analytical applications in modern life analysis due to their miniaturization and cost-effectiveness. Nevertheless, their implementation in complex biological systems necessitates overcoming challenges related to timeliness, sensitivity, and interference resistance. Here, we developed a novel DNA hydrogel three-dimensional electron transporter through liquid-colloid-solid assembly, integrating electronic mediators and employing porous electrode covers with 3D printing technology. Our approach facilitated the fabrication of a high-performance electrochemical sensor for small molecule detection, leveraging target-specific aptamers and catalytic hairpin assembly (CHA) elements within the DNA hydrogel, which exhibited outstanding selectivity, sensitivity, and universality, achieving detection limits of 0.047 nM for kanamycin and 2.67 pM for ATP. Furthermore, this sensor could detect kanamycin in real samples, demonstrating good accuracy and robust anti-interference capabilities in human serum. Our work not only possesses substantial application value in clinical sample analysis but also represents a breakthrough in traditional strategies, thereby contributing to advancements in the application of electrochemical biosensors for life analysis.
Collapse
Affiliation(s)
- Wenxing Li
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Zijiu Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Xinran Che
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yonggeng Ma
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yi Guo
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
8
|
Awad H, El-Brolossy TA, Abdallah T, Osman A, Negm S, Mansour OI, Girgis SA, Hafez HM, Zaki AM, Talaat H. Accurate and reliable surface-enhanced Raman spectroscopy assay for early detection of SARS-CoV-2 RNA with exceptional sensitivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124184. [PMID: 38608556 DOI: 10.1016/j.saa.2024.124184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
This research proposes a highly sensitive and simple surface-enhanced Raman spectroscopy (SERS) assay for the detection of SARS-CoV-2 RNA using suitably designed probes specific for RdRp and N viral genes attached to a Raman marker. The sensitivity of the assay was optimized through precise adjustments to the conditions of immobilization and hybridization processes of the target RNA, including modifications to factors such as time and temperature. The assay achieved a remarkable sensitivity down to 58.39 copies/mL, comparable to or lower than the sensitivities reported for commercial fluorescent polymerase chain reaction (PCR) based methods. It has good selectivity in discriminating SARS-CoV-2 RNA against other respiratory viruses, respiratory syncytial virus (RSV), and influenza A virus. The reliability of the assay was validated by testing 24 clinical samples, including 12 positive samples with varying cycle threshold (Ct) values and 12 negative samples previously tested using real-time PCR. The assay consistently predicted true results that were in line with the PCR results for all samples. Furthermore, the assay demonstrated a notable limit of detection (LOD) of Ct (38 for RdRp gene and 37.5 for N-gene), indicating its capability to detect low concentrations of the target analyte and potentially facilitating early detection of the pathogen.
Collapse
Affiliation(s)
- Hend Awad
- Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Tamer Abdallah
- Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed Osman
- Institute of Basic and Applied Science - Egpt-Japan University of Science and Technology (E-JUST), Egypt
| | - Sohair Negm
- Department of Physics and Mathematics, Banha University, Banha, Egypt
| | | | | | - Hala M Hafez
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ali M Zaki
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hassan Talaat
- Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
9
|
Feng Y, Gao F, Yi X, La M. Optical Bioassays Based on the Signal Amplification of Redox Cycling. BIOSENSORS 2024; 14:269. [PMID: 38920573 PMCID: PMC11201508 DOI: 10.3390/bios14060269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
Optical bioassays are challenged by the growing requirements of sensitivity and simplicity. Recent developments in the combination of redox cycling with different optical methods for signal amplification have proven to have tremendous potential for improving analytical performances. In this review, we summarized the advances in optical bioassays based on the signal amplification of redox cycling, including colorimetry, fluorescence, surface-enhanced Raman scattering, chemiluminescence, and electrochemiluminescence. Furthermore, this review highlighted the general principles to effectively couple redox cycling with optical bioassays, and particular attention was focused on current challenges and future opportunities.
Collapse
Affiliation(s)
- Yunxiao Feng
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China;
| | - Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ming La
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China;
| |
Collapse
|
10
|
Li Y, Li C, Zhang C, Zhao L, Huang Y. Triplex DNA-based aggregation-induced emission probe: A new platform for hybridization chain reaction-based fluorescence sensing assay. Anal Chim Acta 2024; 1299:342406. [PMID: 38499412 DOI: 10.1016/j.aca.2024.342406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
The hybridization chain reaction (HCR), as one of the nucleic acid amplification technologies, is combined with fluorescence signal output with excellent sensitivity, simplicity, and stability. However, current HCR-based fluorescence sensing methods still have some defects such as the blocking effect of the HCR combination with fluorophores and the aggregation-caused quenching (ACQ) phenomenon of traditional fluorophores. Herein, a triplex DNA-based aggregation-induced emission probe (AIE-P) was designed as the fluorescent signal transduction, which is able to provide a new platform for HCR-based sensing assay. The AIE-P was synthesized by attaching the AIE fluorophores to terminus of the oligonucleotide through amido bond, and captured the products of HCR to form triplex DNA. In this case, the AIE fluorophores were located in close proximity to generate fluorescence. This assay provided turn-on fluorescence efficiency with a high signal-to-noise ratio and excellent amplification capability to solve the shortcoming of HCR-based fluorescence sensing methods. It enabled sensitive detection of Vibrio parahaemolyticus in the range of 102-106 CFU mL-1, and with a low limit of detection down to 39 CFU mL-1. In addition, this assay expressed good specificity and practicability. The triplex DNA-based AIE probe forms a universal molecular tool for developing HCR-based fluorescence sensing methods.
Collapse
Affiliation(s)
- Yubin Li
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China; Research Center for Coastal Environmental Protection and Ecological Resilience, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Ciling Li
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chuangqiang Zhang
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Liting Zhao
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yaoyun Huang
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
11
|
Tian Z, Yan H, Zeng Y. Solid-Phase Extraction and Enhanced Amplification-Free Detection of Pathogens Integrated by Multifunctional CRISPR-Cas12a. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14445-14456. [PMID: 38472096 DOI: 10.1021/acsami.3c17039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Public healthcare demands effective and pragmatic diagnostic tools to address the escalating challenges in infection management in resource-limited areas. Recent advances in clustered regularly interspaced short palindromic repeat (CRISPR)-based biosensing promise the development of next-generation tools for disease diagnostics, including point-of-care (POC) testing for infectious diseases. The currently prevailing strategy of developing CRISPR/Cas-based diagnostics exploits only the target identification and trans-cleavage activity of a CRISPR-Cas12a/Cas13a system to provide diagnostic results, and they need to be combined with an additional preamplification reaction to enhance sensitivity. In contrast to this dual-function strategy, here, we present a new approach that collaboratively integrates the triple functions of CRISPR-Cas12a: target identification, sequence-specific enrichment, and signal generation. With this approach, we develop a nucleic acid assay termed Solid-Phase Extraction and Enhanced Detection Assay integrated by CRISPR-Cas12a (SPEEDi-CRISPR) that negates the need for preamplification but significantly improves the detection of limit (LOD) from the pM to fM level. Specifically, using Cas12a-coated magnetic beads, this assay combines efficient solid-phase extraction and enrichment of DNA targets enabled by the sequence-specific affinity of CRISPR-Cas12a with fluorogenic detection by activated Cas12a on beads. SPEEDi-CRISPR, for the first time, leverages the possibility of employing CRISPR/Cas12a in nucleic acid extraction and integrates the ability of both enrichment and detection of CRISPR/Cas into a single platform. Our proof-of-concept studies revealed that the SPEEDi-CRISPR assay has great specificity to distinguish HPV-18 from HPV-16, and Parvovirus B19, in addition to being able to detect HPV-18 at a concentration as low as 2.3 fM in 100 min and 4.7 fM in 60 min. Furthermore, we proved that this assay can be coupled with two point-of-care testing strategies: the smartphone-based fluorescence detector and the lateral flow assay. Overall, these results suggested that our assay could pave a new way for developing CRISPR diagnostics.
Collapse
Affiliation(s)
- Zimu Tian
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - He Yan
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
- University of Florida Health Cancer Center, Gainesville, Florida 32611, United States
| |
Collapse
|
12
|
Zhang H, Wu S, Xiao HJ, Wang HB, Fang L, Cao JT. Chemical-chemical redox cycling for improving the sensitivity of the fluorescent assay: A proof-of-concept towards DNA methylation detection. Talanta 2024; 268:125363. [PMID: 37906997 DOI: 10.1016/j.talanta.2023.125363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Ultrasensitive analytical methods are still urgent for the discovery of trace level biomarkers and the early clinical diagnosis of disease. In this work, an ultrasensitive universal sensing platform was constructed by integrating fluorescent assay with chemical-chemical redox cycling signal amplification strategy. Using Ru@SiO2 nanoparticles wrapped by MnO2 nanosheets (Ru@SiO2@MnO2) as fluorescent probe, the chemical-chemical redox cycling system was conducted upon ascorbic acid (AA) and tris(2-carboxyethyl)phosphine (TCEP) as reductants and MnO2 nanosheets as oxidant. The MnO2 nanosheets not only could quench the fluorescence of Ru@SiO2 nanoparticles to reduce the background, but also could serve as oxidants to react with AA, generating dehydroascorbic acid (DHA). The DHA was reduced by TCEP in turn to form AA that participated in the next cycling of chemical-chemical redox reaction. Thus, the constantly released AA from the chemical-chemical redox cycling system could massively etch MnO2 nanosheets on Ru@SiO2 surface, making the fluorescence of Ru@SiO2 nanoparticles greatly recovered. It was shown that the sensitivity of the fluorescent assay was improved almost 52 times by utilizing the chemical-chemical redox cycling signal amplification strategy. This strategy was further employed to detect DNA methylation with the aid of AA-encapsulated liposomes that were modified with 5 mC antibodies to bind with the methylated DNA captured in 96-well plate. A detection of limit down to 16.2 fM was achieved for the detection of methylated DNA. It's believed that the incorporation of chemical-chemical redox cycling signal amplification strategy into fluorescent sensing paves a new way for ultrasensitive detection of biomarkers.
Collapse
Affiliation(s)
- Hongding Zhang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, PR China.
| | - Sifei Wu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, PR China
| | - Hui-Jin Xiao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, PR China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, PR China
| | - Linxia Fang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, PR China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, PR China.
| |
Collapse
|
13
|
Chen S, Zhao J, Xu C, Shi B, Xu J, Hu S, Zhao S. Lysosomes Initiating and DNAzyme-Assisted Intracellular Signal Amplification Strategy for Quantification of Alpha-Fetoprotein in a Single Cell. Anal Chem 2024; 96:85-91. [PMID: 38128902 DOI: 10.1021/acs.analchem.3c03152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cellular trace proteins are critical for maintaining normal cell functions, with their quantitative analysis in individual cells aiding our understanding of the role of cell proteins in biological processes. This study proposes a strategy for the quantitative analysis of alpha-fetoprotein in single cells, utilizing a lysosome microenvironment initiation and a DNAzyme-assisted intracellular signal amplification technique based on electrophoretic separation. A nanoprobe targeting lysosomes was prepared, facilitating the intracellular signal amplification of alpha-fetoprotein. Following intracellular signal amplification, the levels of alpha-fetoprotein (AFP) in 20 HepG2 hepatoma cells and 20 normal HL-7702 hepatocytes were individually evaluated using microchip electrophoresis with laser-induced fluorescence detection (MCE-LIF). Results demonstrated overexpression of alpha-fetoprotein in hepatocellular carcinoma cells. This strategy represents a novel technique for single-cell protein analysis and holds significant potential as a powerful tool for such analyses.
Collapse
Affiliation(s)
- Shengyu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Key Laboratory of Urban Water Environment, Baise University, Baise 533000, China
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chunhuan Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Bingfang Shi
- Guangxi Key Laboratory of Urban Water Environment, Baise University, Baise 533000, China
| | - Jiayao Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
14
|
Yan X, Yang P, Qiu D, Chen D, Pan J, Zhang X, Ju H, Zhou J. Ligation-Based High-Performance Mimetic Enzyme Sensing Platform for Nucleic Acid Detection. Anal Chem 2024; 96:388-393. [PMID: 38153911 DOI: 10.1021/acs.analchem.3c04417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
G-quadruplex (G4)/hemin DNAzyme is a promising candidate to substitute horseradish peroxidase in biosensing systems, especially for the detection of nucleic acids. However, the relatively suboptimal catalytic capacity limits its potential applications. This makes it imperative to develop an ideal signal for the construction of highly sensitive biosensing platforms. Herein, we integrated a novel chimeric peptide-DNAzyme (CPDzyme) with the ligase chain reaction (LCR) for the cost-efficient and highly sensitive detection of nucleic acids. By employing microRNA (miRNA) and single-nucleotide polymorphism detection as the model, we designed a G4-forming sequence on the LCR probe with a terminally labeled amino group. Subsequently, asymmetric hemin with carboxylic arms allowed assembly with the LCR products and peptide to form CPDzyme, followed by the magnetic separation of the extraneous components and chemiluminescence detection. Compared with the conventional G4/hemin signaling-based method, the LCR-CPDzyme system demonstrated 3 orders of magnitude improved sensitivity, with accurate quantification of as low as 25 aM miRNA and differentiation of 0.1% of mutant DNA from the pool containing a large amount of wild-type DNA. The proposed LCR-CPDzyme strategy is a potentially powerful method for in vitro diagnostics and serves as a reference for the development of other ligation- or hybridization-based nucleic acid amplification assays.
Collapse
Affiliation(s)
- Xinrong Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Peiru Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Jianbin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
15
|
Liu M, Zhong N, Zhang L, Zhang Q, Tian X, Ma F, Zhang CY. Single probe-based catalytic quantum dot FRET nanosensor for human alkyladenine DNA glycosylase detection. Talanta 2024; 266:125089. [PMID: 37604071 DOI: 10.1016/j.talanta.2023.125089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Human alkyladenine DNA glycosylase (hAAG) is essential for repairing alkylated and deaminated bases, and it has become a prospective diagnosis biomarker and a therapeutic target for disease treatment. However, most of hAAG assays suffer from complicated reaction scheme, poor specificity, long assay time, and limited sensitivity. Herein, we report a novel single probe-based catalytic quantum dot (QD) Förster resonance energy transfer (FRET) nanosensor for simple and sensitive detection of hAAG activity. In this assay, hAAG induces the generation of 3' OH terminus via the excision of I base and the cleavage of AP site by APE1, subsequently initiating strand displacement reaction to produce numerous ssDNA signal probes. These probes can self-assemble on the QD surface to induce efficient FRET between QD and Cy5. This assay is very simple with the involvement of only a single probe for the achievement of both specific sensing and efficient signal amplification. Moreover, each signal probe contains multiple Cy5 moieties, and multiple signal probes can assemble on a single QD to greatly enhance the FRET efficiency. This nanosensor exhibits a detection limit of 3.60 × 10-10 U/μL and it is suitable for measuring enzymatic kinetics, screening inhibitor, and quantifying cellular hAAG activity with single-cell sensitivity.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Nan Zhong
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Lingfei Zhang
- Center for Disease Control and Prevention of Weihai City, Weihai, 264200, China
| | - Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Xiaorui Tian
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
16
|
Nie L, Zeng X, Li H, Wang S, Yu R. Enzyme-assisted amplification of target cycle triggers the unlocking of locked hairpin probes for let-7a detection. Talanta 2024; 266:125023. [PMID: 37549569 DOI: 10.1016/j.talanta.2023.125023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
The detection of miRNA in cells is difficult owing to its substantially low cellular content. Therefore, developing a highly sensitive sensor to detect cellular miRNA remains a significant challenge. Herein, we report an enzyme-assisted biosensor with target cycle amplification that can trigger the unlocking of locked hairpin probes for sensitive and robust let-7a gene detection. In the research, three kinds of hairpin probes were skillfully designed. The hairpin probe comprises a complementary sequence of a target, primer, and recognition site of Nt. BbvCI restriction endonucleases. In addition, the alternating synergistic impact of polymerase and the nicking enzyme generates considerable triggers to unlock the locked hairpin probe LH1, consequently triggering a subsequent circulating strand displacement reaction to form a stable H1-H2 double strand to ensure sufficient distance between a fluorophore on H1 and a quenching group on bolt DNA (bDNA), and resulting in the recovery of fluorescence. Furthermore, this process does not require complicated operation procedures and instruments, and the target gene let-7a can be sensitively detected. Specifically, the detection limit of the biosensor is as low as 160 fM, and its linear range is 0.5 pM-250 nM. Moreover, this biosensor can be employed to detect let-7a in human serum with good selectivity.
Collapse
Affiliation(s)
- Lanxin Nie
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Xiaogang Zeng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Hongbo Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Key Laboratory of Energy Catalysis and Conversion of Nanchang, Nanchang, 330022, PR China; State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
| | - Suqin Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
17
|
Qiu G, Zhang X, deMello AJ, Yao M, Cao J, Wang J. On-site airborne pathogen detection for infection risk mitigation. Chem Soc Rev 2023; 52:8531-8579. [PMID: 37882143 PMCID: PMC10712221 DOI: 10.1039/d3cs00417a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 10/27/2023]
Abstract
Human-infecting pathogens that transmit through the air pose a significant threat to public health. As a prominent instance, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused the COVID-19 pandemic has affected the world in an unprecedented manner over the past few years. Despite the dissipating pandemic gloom, the lessons we have learned in dealing with pathogen-laden aerosols should be thoroughly reviewed because the airborne transmission risk may have been grossly underestimated. From a bioanalytical chemistry perspective, on-site airborne pathogen detection can be an effective non-pharmaceutic intervention (NPI) strategy, with on-site airborne pathogen detection and early-stage infection risk evaluation reducing the spread of disease and enabling life-saving decisions to be made. In light of this, we summarize the recent advances in highly efficient pathogen-laden aerosol sampling approaches, bioanalytical sensing technologies, and the prospects for airborne pathogen exposure measurement and evidence-based transmission interventions. We also discuss open challenges facing general bioaerosols detection, such as handling complex aerosol samples, improving sensitivity for airborne pathogen quantification, and establishing a risk assessment system with high spatiotemporal resolution for mitigating airborne transmission risks. This review provides a multidisciplinary outlook for future opportunities to improve the on-site airborne pathogen detection techniques, thereby enhancing the preparedness for more on-site bioaerosols measurement scenarios, such as monitoring high-risk pathogens on airplanes, weaponized pathogen aerosols, influenza variants at the workplace, and pollutant correlated with sick building syndromes.
Collapse
Affiliation(s)
- Guangyu Qiu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Xiaole Zhang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg1, Zürich, Switzerland
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Science, China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
18
|
He S, Lian H, Cao X, Liu B, Wei X. Light-Driven Photocatalytic-Photothermal Synergetic System for Portable and Sensitive Nucleic Acid Quantification. Anal Chem 2023; 95:17613-17621. [PMID: 37978913 DOI: 10.1021/acs.analchem.3c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Photosensitizers and photothermal agents have attracted increasing attention for in vitro diagnosis, but the combination remains challenging. Herein, a light-driven photocatalytic-photothermal synergetic system integrated microfluidic distance-based analytical device (PCPT-μDAD) for visual, portable, sensitive, and quantitative detection of targets was developed. Target DNA was recognized and initiated the hybridization chain reaction to form a double-stranded DNA/SYBR Green I (dsDNA/SG-I) complex. By applying the photosensitization of the dsDNA/SG-I complex and the photothermal effect of oxidized 3,3',5,5'-tetramethylbenzidine, the target concentration can effectively translate into a visual distance signal readout. Importantly, the light-driven PCPT-μDAD greatly improves the controllability of catalytic reactions and signal amplification efficiency. The light-driven PCPT-μDAD shows a low limit of detection (fM level), good stability, and high reproducibility for nucleic acid detection.
Collapse
Affiliation(s)
- Shan He
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Huiting Lian
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Key Laboratory of Molecular Designing and Green Conversions, Huaqiao University, Xiamen 361021, China
| | - Xuegong Cao
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Key Laboratory of Molecular Designing and Green Conversions, Huaqiao University, Xiamen 361021, China
| | - Bin Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Key Laboratory of Molecular Designing and Green Conversions, Huaqiao University, Xiamen 361021, China
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen 361021, China
| | - Xiaofeng Wei
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Key Laboratory of Molecular Designing and Green Conversions, Huaqiao University, Xiamen 361021, China
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
19
|
Tian Z, Yan H, Zeng Y. Solid-Phase Extraction and Enhanced Amplification-Free Detection of Pathogens Integrated by Dual-Functional CRISPR-Cas12a. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.28.23289279. [PMID: 37162995 PMCID: PMC10168481 DOI: 10.1101/2023.04.28.23289279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Public healthcare demands effective and pragmatic diagnostic tools to address the escalating challenges in infection management in resource-limited areas. Recent advance in CRISPR-based biosensing promises the development of next-generation tools for disease diagnostics, including point-of-care (POC) testing for infectious diseases. Currently prevailing strategy of developing CRISPR assays exploits only the non-specific trans-cleavage function of a CRISPR-Cas12a/Cas13a system for detection and combines it with an additional pre-amplification reaction to enhance the sensitivity. In contrast to this single-function strategy, here we present a new approach that collaboratively integrates the dual functions of CRISPR-Cas12a: sequence-specific binding and trans-cleavage activity. With this approach, we developed a POC nucleic acid assay termed Solid-Phase Extraction and Enhanced Detection assay Integrated by CRISPR-Cas12a (SPEEDi-CRISPR) that negates the need for preamplification but significantly improves the detection of limit (LOD) from the pM to fM level. Specifically, using Cas12a-coated magnetic beads, this assay combines efficient solid-phase extraction and enrichment of DNA targets enabled by the sequence-specific affinity of CRISPR-Cas12a with the fluorogenic detection by the activated Cas12a on beads. Our proof-of-concept study demonstrated that the SPEEDi-CRISPR assay affords an improved detection sensitivity for human papillomavirus (HPV)-18 with a LOD of 2.3 fM and excellent specificity to discriminate HPV-18 from HPV-16, Parvovirus B19, and scramble HPV-18. Furthermore, this robust assay was readily coupled with a portable smartphone-based fluorescence detector and a lateral flow assay for quantitative detection and visualized readout, respectively. Overall, these results should suggest that our dual-function strategy could pave a new way for developing the next-generation CRISPR diagnostics and that the SPEEDi-CRISPR assay provides a potentially useful tool for point-of-care testing.
Collapse
|
20
|
Lu W, Xie X, Lan X, Wu P, Peng H, He J, Zhong L, Liu X, Deng Z, Tan Z, Wu A, Shi L, Huang Y. An electrochemical immunosensor for the detection of Glypican-3 based on enzymatic ferrocene-tyramine deposition reaction. Biosens Bioelectron 2023; 225:115081. [PMID: 36680969 DOI: 10.1016/j.bios.2023.115081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/16/2023]
Abstract
An ultrasensitive electrochemical immunosensor based on signal amplification of the deposition of the electroactive ferrocene-tyramine (Fc-Tyr) molecule, catalyzed by horseradish peroxidase (HRP), was constructed for the detection of the liver cancer marker Glypican-3 (GPC3). Functional electroactive molecule Fc-Tyr is reported to exhibit both the enzymatic cascade catalytic activity of tyramine signal amplification (TSA) and the excellent redox properties of ferrocene. In terms of design, the low matrix effects inherent in using the magnetic bead platforms, a quasi-homogeneous system, allowed capturing the target protein GPC3 without sample pretreatment, and loading HRP to trigger the TSA, which induced a large amount of Fc-Tyr deposited on the electrode surface layer by layer as a signal probe for the detection of GPC3. The concept of Fc-Tyr as an electroactive label was validated, GPC3 biosensor exhibited high selectivity and sensitivity to GPC3 in the range of 0.1 ng mL-1-1 μg mL-1. Finally, the sensor was used simultaneously with ELISA to assess GPC3 levels in the serum of clinical liver cancer patients, and the results showed consistency, with a recovery of 98.33-105.35% and a relative standard deviation (RSD) of 4.38-8.18%, providing a theoretical basis for achieving portable, rapid and point of care testing (POCT) of tumor markers.
Collapse
Affiliation(s)
- Wenxi Lu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xixiang Xie
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xianli Lan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Hongmei Peng
- The First People's Hospital of Changde City, Changde, 415000, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhiming Deng
- The First People's Hospital of Changde City, Changde, 415000, China
| | - Zhenkai Tan
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
| | - Aiqun Wu
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China.
| | - Liang Shi
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; School of Pharmacy, Guangxi Medical University, Nanning, 530021, China; The First People's Hospital of Changde City, Changde, 415000, China.
| |
Collapse
|
21
|
Cao Y, Zhou L, Fang Z, Zou Z, Zhao J, Zuo X, Li G. Application of functional peptides in the electrochemical and optical biosensing of cancer biomarkers. Chem Commun (Camb) 2023; 59:3383-3398. [PMID: 36808189 DOI: 10.1039/d2cc06824a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Early screening and diagnosis are the most effective ways to prevent the occurrence and progression of cancers, thus many biosensing strategies have been developed to achieve economic, rapid, and effective detection of various cancer biomarkers. Recently, functional peptides have been gaining increasing attention in cancer-related biosensing due to their advantageous features of a simple structure, ease of synthesis and modification, high stability, and good biorecognition, self-assembly and antifouling capabilities. Functional peptides can not only act as recognition ligands or enzyme substrates for the selective identification of different cancer biomarkers but also function as interfacial materials or self-assembly units to improve the biosensing performances. In this review, we summarize the recent advances in functional peptide-based biosensing of cancer biomarkers according to the used techniques and the roles of peptides. Particular attention is focused on the use of electrochemical and optical techniques, both of which are the most commonly used techniques in the field of biosensing. The challenges and promising prospects of functional peptide-based biosensors in clinical diagnosis are also discussed.
Collapse
Affiliation(s)
- Yue Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Liang Zhou
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Zhikai Fang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Zihan Zou
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Genxi Li
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
22
|
Zhang X, Deng Y, Qiu H, Yi S, Huang S, Chen L, Hu S. Target-cycling synchronized rolling circle amplification strategy for biosensing Helicobacter pylori DNA. LUMINESCENCE 2023; 38:334-340. [PMID: 36754596 DOI: 10.1002/bio.4457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Helicobacter pylori is closely linked to many gastric diseases such as gastric ulcers and duodenal ulcers. Therefore, biosensing H. pylori has attracted wide attention from both scientists and clinicians. Here, we proposed an electrochemiluminescence (ECL)-based platform that could sensitively detect H. pylori DNA. In this platform, a novel target-cycling synchronized rolling circle amplification was used for signal amplification. Silver nanoclusters (Ag NCs) were synthesized on the circle DNA products, embedding them with the ability to catalyze the electrochemical reduction of K2 S2 O8 , in turn resulting in rapid consumption of the ECL co-reactant near the working electrode, and leading to a decrease in the ECL emission intensity. In addition to its excellent stability and selectivity, the proposed strategy had a low detection limit of 10 pM, an indication that it can be beneficially applied to test biosamples. Furthermore, a biosensing chip was designed to improve the throughput and shed new light on large-scale clinical biosensing applications.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuan Deng
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Hongzhao Qiu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Sirui Yi
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Sijia Huang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Lanlan Chen
- College of Chemistry, Key Laboratory of Analysis and Detecting Technology, Food Safety MOE, Fuzhou University, Fuzhou, Fujian, China
| | - Shanwen Hu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
23
|
Dong P, Li R, He S, Zhang Q, Shang J, Jiang Y, Liu X, Wang F. The compact integration of a cascaded HCR circuit for highly reliable cancer cell discrimination. Chem Sci 2023; 14:2159-2167. [PMID: 36845932 PMCID: PMC9945511 DOI: 10.1039/d2sc05568f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
The accurate identification of multiple biomarkers involved in disease plays a vital role in effectively distinguishing cancer cells from normal cells, facilitating reliable cancer diagnosis. Motivated by this knowledge, we have engineered a compact and clamped cascaded DNA circuit for specifically discriminating cancer cells from normal cells via the amplified multi-microRNA imaging strategy. The proposed DNA circuit combines the traditional cascaded DNA circuit with multiply localized responsive character through the elaboration of two super-hairpin reactants, thus concurrently streamlining the circuit components and realizing localization-intensified cascaded signal amplification. In parallel, the multiple microRNA-stimulated sequential activations of the compact circuit, combined with a handy logic operation, significantly elevated the cell-discriminating reliability. Applications of the present DNA circuit in vitro and in cellular imaging experiments were executed with expected results, therefore illustrating that our DNA circuit is useful for precise cell discrimination and further clinical diagnosis.
Collapse
Affiliation(s)
- Pei Dong
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Ruomeng Li
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Shizhen He
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Qingqing Zhang
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Yuqian Jiang
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
- Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University 430072 Wuhan P. R. China
- Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| |
Collapse
|
24
|
Chen H, Zhou X, Wang M, Ren L. Towards Point of Care CRISPR-Based Diagnostics: From Method to Device. J Funct Biomater 2023; 14:jfb14020097. [PMID: 36826896 PMCID: PMC9967495 DOI: 10.3390/jfb14020097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Rapid, accurate, and portable on-site detection is critical in the face of public health emergencies. Infectious disease control and public health emergency policymaking can both be aided by effective and trustworthy point of care tests (POCT). A very promising POCT method appears to be the clustered regularly interspaced short palindromic repeats and associated protein (CRISPR/Cas)-based molecular diagnosis. For on-site detection, CRISPR/Cas-based detection can be combined with multiple signal sensing methods and integrated into smart devices. In this review, sensing methods for CRISPR/Cas-based diagnostics are introduced and the advanced strategies and recent advances in CRISPR/Cas-based POCT are reviewed. Finally, the future perspectives of CRISPR and POCT are summarized and prospected.
Collapse
Affiliation(s)
- Haoxiang Chen
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xi Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Miao Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Lei Ren
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
- State Key Lab of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
- Correspondence:
| |
Collapse
|
25
|
Yang Y, Li H, Jones L, Murray J, Haverstick J, Naikare HK, Mosley YYC, Tripp RA, Ai B, Zhao Y. Rapid Detection of SARS-CoV-2 RNA in Human Nasopharyngeal Specimens Using Surface-Enhanced Raman Spectroscopy and Deep Learning Algorithms. ACS Sens 2023; 8:297-307. [PMID: 36563081 PMCID: PMC9797020 DOI: 10.1021/acssensors.2c02194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
A rapid and cost-effective method to detect the infection of SARS-CoV-2 is fundamental to mitigating the current COVID-19 pandemic. Herein, a surface-enhanced Raman spectroscopy (SERS) sensor with a deep learning algorithm has been developed for the rapid detection of SARS-CoV-2 RNA in human nasopharyngeal swab (HNS) specimens. The SERS sensor was prepared using a silver nanorod array (AgNR) substrate by assembling DNA probes to capture SARS-CoV-2 RNA. The SERS spectra of HNS specimens were collected after RNA hybridization, and the corresponding SERS peaks were identified. The RNA detection range was determined to be 103-109 copies/mL in saline sodium citrate buffer. A recurrent neural network (RNN)-based deep learning model was developed to classify 40 positive and 120 negative specimens with an overall accuracy of 98.9%. For the blind test of 72 specimens, the RNN model gave a 97.2% accuracy prediction for positive specimens and a 100% accuracy for negative specimens. All the detections were performed in 25 min. These results suggest that the DNA-functionalized AgNR array SERS sensor combined with a deep learning algorithm could serve as a potential rapid point-of-care COVID-19 diagnostic platform.
Collapse
Affiliation(s)
- Yanjun Yang
- School of Electrical and Computer Engineering, College
of Engineering, The University of Georgia, Athens,
Georgia30602, United States
| | - Hao Li
- School of Microelectronics and Communication
Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information
Processing, Chongqing University, Chongqing400044, P.
R. China
| | - Les Jones
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
| | - James Haverstick
- Department of Physics and Astronomy, The
University of Georgia, Athens, Georgia30602, United
States
| | - Hemant K. Naikare
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
- Tifton Veterinary Diagnostic and Investigational
Laboratory, The University of Georgia, Athens, Georgia30602,
United States
| | - Yung-Yi C. Mosley
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
- Tifton Veterinary Diagnostic and Investigational
Laboratory, The University of Georgia, Athens, Georgia30602,
United States
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
| | - Bin Ai
- School of Microelectronics and Communication
Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information
Processing, Chongqing University, Chongqing400044, P.
R. China
| | - Yiping Zhao
- Department of Physics and Astronomy, The
University of Georgia, Athens, Georgia30602, United
States
| |
Collapse
|
26
|
Zhang Y, Li JH, Zhang XL, Wang HJ, Yuan R, Chai YQ. Aluminum(III)-Based Organic Nanofibrous Gels as an Aggregation-Induced Electrochemiluminescence Emitter Combined with a Rigid Triplex DNA Walker as a Signal Magnifier for Ultrasensitive DNA Assay. Anal Chem 2023; 95:1686-1693. [PMID: 36541619 DOI: 10.1021/acs.analchem.2c04824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Due to effective tackling of the problems of aggregation-caused quenching of traditional ECL emitters, aggregation-induced electrochemiluminescence (AIECL) has emerged as a research hotspot in aqueous detection and sensing. However, the existing AIECL emitters still encounter the bottlenecks of low ECL efficiency, poor biocompatibility, and high cost. Herein, aluminum(III)-based organic nanofibrous gels (AOGs) are used as a novel AIECL emitter to construct a rapid and ultrasensitive sensing platform for the detection of Flu A virus biomarker DNA (fDNA) with the assistance of a high-speed and hyper-efficient signal magnifier, a rigid triplex DNA walker (T-DNA walker). The proposed AOGs with three-dimensional (3D) nanofiber morphology are assembled in one step within about 15 s by the ligand 2,2':6',2″-terpyridine-4'-carboxylic acid (TPY-COOH) and cheap metal ion Al3+, which demonstrates an efficient ECL response and outstanding biocompatibility. Impressively, on the basis of loop-mediated isothermal amplification-generated hydrogen ions (LAMP-H+), the target-induced pH-responsive rigid T-DNA walker overcomes the limitations of conventional single or duplex DNA walkers in walking trajectory and efficiency due to the entanglement and lodging of leg DNA, exhibiting high stability, controllability, and walking efficiency. Therefore, AOGs with excellent AIECL performance were combined with a CG-C+ T-DNA nanomachine with high walking efficiency and stability, and the proposed "on-off" ECL biosensor displayed a low detection limit down to 23 ag·μL-1 for target fDNA. Also, the strategy provided a useful platform for rapid and sensitive monitoring of biomolecules, considerably broadening its potential applications in luminescent molecular devices, clinical diagnosis, and sensing analysis.
Collapse
Affiliation(s)
- Yue Zhang
- Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Southwest University, Chongqing, Sichuan 400715, PR China
| | - Jia-Hang Li
- Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Southwest University, Chongqing, Sichuan 400715, PR China
| | - Xiao-Long Zhang
- Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Southwest University, Chongqing, Sichuan 400715, PR China
| | - Hai-Jun Wang
- Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Southwest University, Chongqing, Sichuan 400715, PR China
| | - Ruo Yuan
- Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Southwest University, Chongqing, Sichuan 400715, PR China
| | - Ya-Qin Chai
- Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Southwest University, Chongqing, Sichuan 400715, PR China
| |
Collapse
|
27
|
Zhang J, Song C, Zhu Y, Gan H, Fang X, Peng Q, Xiong J, Dong C, Han C, Wang L. A novel cascade signal amplification strategy integrating CRISPR/Cas13a and branched hybridization chain reaction for ultra-sensitive and specific SERS detection of disease-related nucleic acids. Biosens Bioelectron 2023; 219:114836. [PMID: 36327567 DOI: 10.1016/j.bios.2022.114836] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
The molecular diagnosis of disease by high-sensitively and specifically detecting extremely trace amounts of nucleic acid biomarkers in biological samples is still a great challenge, and the powerful sensing strategy has become an urgent need for basic researches and clinical applications. Herein, a novel one-pot cascade signal amplification strategy (Cas13a-bHCR) integrating CRISPR/Cas13a system (Cas13a) and branched hybridization chain reaction (bHCR) was proposed for ultra-highly sensitive and specific SERS assay of disease-related nucleic acids on SERS-active silver nanorods sensing chips. The Cas13a-bHCR based SERS assay of gastric cancer-related miRNA-106a (miR-106a) can be achieved within 60 min and output significantly enhanced SERS signal due to the multiple signal amplification, which possesses a good linear calibration curve from 10 aM to 1 nM with the limit of detection (LOD) low to 8.55 aM for detecting gastric cancer-related miR-106a in human serum. The Cas13a-bHCR based SERS sensing also shows good specificity, uniformity, repeatability and reliability, and has good practicability for detection of miR-106a in clinical samples, which can provide a potential powerful tool for SERS detection of disease-related nucleic acids and promise brighter prospects in the field of clinical diagnosis of early disease.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| | - Yunfeng Zhu
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hongyu Gan
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xinyue Fang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Qian Peng
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingrong Xiong
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chen Dong
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Caiqin Han
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 22116, China.
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
28
|
Shao L, Ma J, Prelesnik JL, Zhou Y, Nguyen M, Zhao M, Jenekhe SA, Kalinin SV, Ferguson AL, Pfaendtner J, Mundy CJ, De Yoreo JJ, Baneyx F, Chen CL. Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chem Rev 2022; 122:17397-17478. [PMID: 36260695 DOI: 10.1021/acs.chemrev.2c00220] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.
Collapse
Affiliation(s)
- Li Shao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jesse L Prelesnik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mary Nguyen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Samson A Jenekhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
29
|
Pang L, Pi X, Yang X, Song D, Qin X, Wang L, Man C, Zhang Y, Jiang Y. Nucleic acid amplification-based strategy to detect foodborne pathogens in milk: a review. Crit Rev Food Sci Nutr 2022; 64:5398-5413. [PMID: 36476145 DOI: 10.1080/10408398.2022.2154073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Milk contaminated with trace amounts of foodborne pathogens can considerably threaten food safety and public health. Therefore, rapid and accurate detection techniques for foodborne pathogens in milk are essential. Nucleic acid amplification (NAA)-based strategies are widely used to detect foodborne pathogens in milk. This review article covers the mechanisms of the NAA-based detection of foodborne pathogens in milk, including polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), rolling circle amplification (RCA), and enzyme-free amplification, among others. Key factors affecting detection efficiency and the advantages and disadvantages of the above techniques are analyzed. Potential on-site detection tools based on NAA are outlined. We found that NAA-based strategies were effective in detecting foodborne pathogens in milk. Among them, PCR was the most reliable. LAMP showed high specificity, whereas RPA and RCA were most suitable for on-site and in-situ detection, respectively, and enzyme-free amplification was more economical. However, factors such as sample separation, nucleic acid target conversion, and signal transduction affected efficiency of NAA-based strategies. The lack of simple and effective sample separation methods to reduce the effect of milk matrices on detection efficiency was noteworthy. Further research should focus on simplifying, integrating, and miniaturizing microfluidic on-site detection platforms.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaowen Pi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Danliangmin Song
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xue Qin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
30
|
A NIR light gated targeting nanoprobe based on DNA-modified upconversion nanoparticles with antifouling properties for ratiometric detection and imaging of microRNA-21. Anal Chim Acta 2022; 1235:340554. [DOI: 10.1016/j.aca.2022.340554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/17/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
|
31
|
Li D, Xia H, Sun Y, Liu W, Liu W, Yu J, Jing G, Zhang J, Li W. Colorimetric aptasensor for the sensitive detection of ochratoxin A based on a triple cascade amplification strategy. Anal Chim Acta 2022; 1237:340616. [DOI: 10.1016/j.aca.2022.340616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
|
32
|
Guimarães CF, Cruz-Moreira D, Caballero D, Pirraco RP, Gasperini L, Kundu SC, Reis RL. Shining a Light on Cancer - Photonics in Microfluidic Tumor Modelling and Biosensing. Adv Healthc Mater 2022:e2201442. [PMID: 35998112 DOI: 10.1002/adhm.202201442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Indexed: 11/08/2022]
Abstract
Microfluidic platforms represent a powerful approach to miniaturizing important characteristics of cancers, improving in vitro testing by increasing physiological relevance. Different tools can manipulate cells and materials at the microscale, but few offer the efficiency and versatility of light and optical technologies. Moreover, light-driven technologies englobe a broad toolbox for quantifying critical biological phenomena. Herein, we review the role of photonics in microfluidic 3D cancer modeling and biosensing from three major perspectives. First, we look at optical-driven technologies that allow biomaterials and living cells to be manipulated with micro-sized precision and the opportunities to advance 3D microfluidic models by engineering cancer microenvironments' hallmarks, such as their architecture, cellular complexity, and vascularization. Second, we delve into the growing field of optofluidics, exploring how optical tools can directly interface microfluidic chips, enabling the extraction of relevant biological data, from single fluorescent signals to the complete 3D imaging of diseased cells within microchannels. Third, we review advances in optical cancer biosensing, focusing on how light-matter interactions can detect biomarkers, rare circulating tumor cells, and cell-derived structures such as exosomes. We overview photonic technologies' current challenges and caveats in microfluidic 3D cancer models, outlining future research avenues that may catapult the field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Daniela Cruz-Moreira
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - David Caballero
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Luca Gasperini
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| |
Collapse
|
33
|
Zhao J, Di Z, Li L. Spatiotemporally Selective Molecular Imaging via Upconversion Luminescence‐Controlled, DNA‐Based Biosensor Technology. Angew Chem Int Ed Engl 2022; 61:e202204277. [DOI: 10.1002/anie.202204277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhenghan Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
34
|
Yu L, Zhu L, Peng Y, Sheng M, Huang J, Yang X. Versatile Electrochemiluminescence Biosensing Platform Based on DNA Nanostructures and Catalytic Hairpin Assembly Signal Amplification. Anal Chem 2022; 94:11368-11374. [PMID: 35925773 DOI: 10.1021/acs.analchem.2c02239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Achieving rapid and highly sensitive detection of biomarkers is crucial for disease diagnosis and treatment. Here, a highly sensitive and versatile dual-amplification electrochemiluminescence (ECL) biosensing platform was constructed for target detection based on DNA nanostructures and catalyzed hairpin assembly (CHA). Specifically, when the target DNA was present, it would hybridize with the auxiliary strands (D1 and D2) to form an I-shaped nanostructure, which in turn triggered the subsequent catalytic hairpin assembly reaction to generate plenty of double-stranded DNA complexes (H1-H2). The resulting double-stranded complex could be trapped on the electrode surface and adsorbed the ECL signal probe Ru(phen)32+.We found that the I-shaped nanostructure-triggered CHA reaction had higher amplification efficiency compared with traditional CHA amplification. Thus, a sensitive "signal-on" ECL biosensor was constructed for target DNA detection with a detection limit of 1.09 fM. Additionally, by combining the binding properties of C-Ag+-C with an elaborately designed "Ag+-helper" probe, the proposed strategy could be immediately utilized for the highly sensitive and selective detection of silver ions, demonstrating the versatility of the developed biosensing platform. This strategy provided a new approach with potential applications in disease diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Linying Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liping Zhu
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Peng
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mengting Sheng
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
35
|
Liu J, Wang R, Zhou H, Mathesh M, Dubey M, Zhang W, Wang B, Yang W. Nucleic acid isothermal amplification-based soft nanoarchitectonics as an emerging electrochemical biosensing platform. NANOSCALE 2022; 14:10286-10298. [PMID: 35791765 DOI: 10.1039/d2nr02031a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The emergence of nucleic acid isothermal amplification strategies based on soft nanoarchitectonics offers a new dimension to the traditional electrochemical technique, particularly because of its flexibility, high efficiency, and increased sensitivity for analytical applications. Various DNA/RNA isothermal amplification strategies have been developed for the design and fabrication of new electrochemical biosensors for efficient and important biomolecular detection. Herein, we provide an overview of recent efforts in this research field and the strategies for signal-amplified sensing systems, with their biological applications, current challenges and prospects in this promising new area.
Collapse
Affiliation(s)
- Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Ruke Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Motilal Mathesh
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia.
| | - Mukul Dubey
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, Gwal Pahari, Gurugram, Haryana, India
| | - Wengan Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia.
| |
Collapse
|
36
|
Liu G, Guan X, Li B, Zhou H, Kong N, Wang H. Hemin-graphene oxide-gold nanoflower-assisted enhanced electrochemiluminescence immunosensor for determination of prostate-specific antigen. Mikrochim Acta 2022; 189:297. [PMID: 35900602 DOI: 10.1007/s00604-022-05387-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/19/2022] [Indexed: 11/27/2022]
Abstract
An ultrasensitive luminol electrochemiluminescence (ECL) immunosensor was constructed for the detection of prostate specific antigen (PSA) using glucose oxidase-decorated hemin-graphene oxide-gold nanoflowers ternary nanocomposites as probes. Graphene oxide was first modified with hemin and then with gold nanoflowers through an in situ growth method, which has significantly boosted the catalytic activity of this graphene oxide-based peroxidase mimetics. The biocatalytical activity of this ECL immunosensor was thoroughly investigated to achieve selective recognition of the analyte molecules (PSA) by specific binding between antigens and antibodies. The limit of detection was calculated to be 0.32 pg mL-1 with a signal-to-noise ratio of 3. A broad linear range from 7.5 × 10-4 to 2.5 ng mL-1 was obtained. Such step-by-step assembled biosensor showed controlled nanostructure and exhibited promising application in analysis of human serum samples with a recovery range of 90.6-111.8% and a RSD range of 3.9-5.5%.
Collapse
Affiliation(s)
- Gengjun Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, 266042, People's Republic of China
| | - Xiaohan Guan
- Clinical Medicine Department, Medical College, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular, Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hong Zhou
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, 266042, People's Republic of China.
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| | - Na Kong
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, People's Republic of China.
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
37
|
Chen Q, Tian R, Liu G, Wen Y, Bian X, Luan D, Wang H, Lai K, Yan J. Fishing unfunctionalized SERS tags with DNA hydrogel network generated by ligation-rolling circle amplification for simple and ultrasensitive detection of kanamycin. Biosens Bioelectron 2022; 207:114187. [PMID: 35325717 DOI: 10.1016/j.bios.2022.114187] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
Abstract
Simple assay format-based SERS methods for sensitive target substance analysis is of great significance for the development of on-site monitoring biosensors. Herein, taking the typical antibacterial kanamycin (KANA) as a subject, a simple, highly sensitive and specific SERS aptasensor was developed by manipulating DNA hydrogel network to fish plasmonic core-shell nanoparticles. A competitive binding mode of aptamer, ligation-rolling circle amplification (L-RCA), gap-containing Au@Au nanoparticles (GCNPs) with embedded Raman reporters were integrated into the sensor. In the presence of KANA, the double stranded DNA (dsDNA) structure of the aptamer was disrupted, and the released primers were used to construct two kinds of circularized padlock probes (CPPs) which were partially complementary. DNA hydrogel network was formed through the intertwining and self-assembly of two RCA-generated single stranded DNA (ssDNA) chains, during which GCNPs and magnetic beads (MBs) were entangled and incorporated. Finally, KANA quantification was successfully achieved through the quantification of the DNA hydrogel. Overall, this novel SERS aptasensor realized a simple and ultrasensitive quantification of KANA down to 2.3 fM, plus excellent selectivity, and precision even for real food samples. In view of innovative fusion across L-RCA-based DNA hydrogel and SERS technique, the proposed method has promising potential for application in on-site detection and quantification of trace food contaminants.
Collapse
Affiliation(s)
- Qian Chen
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Run Tian
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Lihu Road 1800, 214122, Wuxi, China
| | - Gang Liu
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203, China
| | - Yanli Wen
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203, China
| | - Xiaojun Bian
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Donglei Luan
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Huiyuan Wang
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Keqiang Lai
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| | - Juan Yan
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
38
|
Wang X, Yang J, Xie Y, Lai G. Dual DNAzyme-catalytic assembly of G-quadruplexes for inducing the aggregation of gold nanoparticles and developing a novel antibiotic assay method. Mikrochim Acta 2022; 189:262. [PMID: 35727378 DOI: 10.1007/s00604-022-05362-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
By utilizing a target biorecognition reaction to induce the self-assembly of G-quadruplexes and the aggregation of gold nanoparticles (Au NPs), this work develops a novel colorimetric biosensing method for kanamycin (Kana) antibiotic detection. The compact G-quadruplex structure was assembled from its two half-split sequences which were designed in two hairpin substrates of the Mg2+-dependent DNAzyme (MNAzyme). Besides hybridizing with the aptamer strand, the MNAzyme sequence was also split into two half fragments to be designed in the two substrates. Upon the aptamer-recognition reaction toward Kana, the MNAzyme strand could be quantitatively released to cause the exposure of the split G-quadruplex-sequences on two hairpin substrate-modified Au NPs and simultaneous release of two half fragments of the MNAzyme-sequence. Thus, the K+-assisted self-folding of G-quadruplexes causes the cross-linking of the two Au NPs to realize the Au NP aggregation-based colorimetric signal output (measured at the largest absorption peak near 520 nm). Meanwhile, the self-assembled formation of the second MNAzyme drastically amplified the signal response. Under the optimal conditions, a wide linear range from 0.1 pg mL-1 to 10 ng mL-1 and an ultrahigh sensitivity with the detection limit of 76 fg mL-1 were obtained. The dose-recovery experiments in real samples showed satisfactory results with recoveries from 98.4 to 105.4% and relative errors compared with the ELISA method less than 4.1%. Due to the high selectivity, excellent repeatability and stability, and simple manipulation, this method indicates a promising potential for practical applications. A novel homogeneous biosensing method was developed for the convenient detection of the kanamycin antibiotic. The target biorecognition-induced and dual DNAzyme-catalytic assembly of G-quadruplexes enabled the amplified aggregation of gold nanoparticles for the simple, cheap, stable, and ultrasensitive colorimetric signal transduction of the method.
Collapse
Affiliation(s)
- Xiaojun Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Jingru Yang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
39
|
Kim W, Bang A, Kim S, Lee GJ, Kim YH, Choi S. Adiponectin-targeted SERS immunoassay biosensing platform for early detection of gestational diabetes mellitus. Biosens Bioelectron 2022; 213:114488. [PMID: 35738214 DOI: 10.1016/j.bios.2022.114488] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
The anisotropic gold nanotriangles (AuNTs) were synthesized by a fast seedless growth process. The high-yield monodispersed AuNT colloids were obtained through a purification process based on depletion-induced interactions. AuNTs were modulated with a localized surface plasmon resonance (LSPR) peak of 638 nm wavelength coherent with the Raman excitation light. However, from finite element computation results, the AuNT clusters showed better performance for the 785 nm laser source due to a red shift in their LSPR properties, hence it was selected for the surface-enhanced Raman scattering (SERS) immunoassay. A self-assembly strategy using a thiol group and ON-OFF strategy in the heat map was performed to ensure the stability of SERS immunoassay platform. The sandwich SERS immunoassay biosensor platform for adiponectin detection demonstrated a wide assay range (10-15-10-6 g/mL), good reliability (R2 = 0.994, clinically relevant range), femto-scale limit of detection (3.0 × 10-16 g/mL), and excellent selectivity without interference from other biomarkers. This showed the possibility of effectively detecting adiponectin levels in the biofluids of pregnant women. Therefore, our technology is the first to quantitatively detect adiponectin based on SERS technology for early detection of gestational diabetes mellitus and has the potential to be used as a clinical biosensor capable of diagnosing various obstetric diseases during early pregnancy.
Collapse
Affiliation(s)
- Wansun Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ayoung Bang
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soogeun Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Gi-Ja Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yeon-Hee Kim
- Department of Obstetrics & Gynecology, Uijeongbu St Mary's Hospital, College of Medicine, The Catholic University of Korea, Gyeonggi-do, 11765, Republic of Korea.
| | - Samjin Choi
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
40
|
Zhong Q, Huang X, Zhang R, Zhang K, Liu B. Optical Sensing Strategies for Probing Single-Cell Secretion. ACS Sens 2022; 7:1779-1790. [PMID: 35709496 DOI: 10.1021/acssensors.2c00474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Measuring cell secretion events is crucial to understand the fundamental cell biology that underlies cell-cell communication, migration, proliferation, and differentiation. Although strategies targeting cell populations have provided significant information about live cell secretion, they yield ensemble profiles that obscure intrinsic cell-to-cell variations. Innovation in single-cell analysis has made breakthroughs allowing accurate sensing of a wide variety of secretions and their release dynamics with high spatiotemporal resolution. This perspective focuses on the power of single-cell protocols to revolutionize cell-secretion analysis by allowing real-time and real-space measurements on single live cell resolution. We begin by discussing recent progress on single-cell bioanalytical techniques, specifically optical sensing strategies such as fluorescence-, surface plasmon resonance-, and surface-enhanced Raman scattering-based strategies, capable of in situ real-time monitoring of single-cell released ions, metabolites, proteins, and vesicles. Single-cell sensing platforms which allow for high-throughput high-resolution analysis with enough accuracy are highlighted. Furthermore, we discuss remaining challenges that should be addressed to get a more comprehensive understanding of secretion biology. Finally, future opportunities and potential breakthroughs in secretome analysis that will arise as a result of further development of single-cell sensing approaches are discussed.
Collapse
Affiliation(s)
- Qingmei Zhong
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Rongrong Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Kun Zhang
- Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
41
|
Zhao J, Di Z, Li L. Spatiotemporally Selective Molecular Imaging via Upconversion Luminescence‐Controlled, DNA‐Based Biosensor Technology. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jian Zhao
- NCNST: National Center for Nanoscience and Technology CAS key Lab CHINA
| | - Zhenghan Di
- NCNST: National Center for Nanoscience and Technology CAS key Lab CHINA
| | - Lele Li
- National Center for Nanoscience and Technology CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety 11 ZhongGuanCun BeiYiTiao, Haidian District 100190 Beijing CHINA
| |
Collapse
|
42
|
Li S, Dong Q, Yu Y, Lin B, Zhang L, Guo M, Cao Y, Wang Y. Redox-Responsive Breakup of a Nucleic Acids@CoOOH Nanocomplex Triggering Cascade Recycling Amplification for Sensitive Sensing of Alkaline Phosphatase. Anal Chem 2022; 94:6711-6718. [PMID: 35486137 DOI: 10.1021/acs.analchem.1c05463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alkaline phosphatase (ALP), an essential hydrolase with crucial roles in living organisms, has widely been regarded as a biomarker for various human diseases in clinical diagnoses. Herein, taking advantage of cobalt oxyhydroxide (CoOOH) nanoflakes and nonenzymatic cascade recycling amplification (CRA), a highly sensitive and label-free fluorescence biosensing strategy for the determination of ALP activity is introduced. In our design, ALP can promote the dephosphorylation of l-ascorbic acid 2-phosphate (AAP) to reduce ascorbic acid (AA), which is then able to decompose CoOOH in a nucleic acids@CoOOH nanocomplex into Co2+ cofactors. Further, enzyme-free CRA was rapidly initiated by integrating DNAzyme recycling amplification and catalytic hairpin assembly, resulting in the generation of an abundance of G-quadruplex structure-contained DNA duplexes. In the presence of thioflavin T (ThT), analytical target ALP was converted in an amplified and activatable fluorescence signal. The experimental results show that this method can be applied for the quantitative analysis of ALP activity with a low detection limit of 0.027 mU/mL. Moreover, this developed biosensing approach exhibits excellent specificity, and the evaluation of ALP activity in the complex human serum samples was successfully realized, indicating that it can afford a reliable, robust, and cost-effective nanoplatform for an ALP-based clinical diagnosis and for biomedical research.
Collapse
Affiliation(s)
- Shuo Li
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Qian Dong
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Ying Yu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Bixia Lin
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Li Zhang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Manli Guo
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yujuan Cao
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yumin Wang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| |
Collapse
|
43
|
Luo T, Li J, He Y, Liu H, Deng Z, Long X, Wan Q, Ding J, Gong Z, Yang Y, Zhong S. Designing a CRISPR/Cas12a- and Au-Nanobeacon-Based Diagnostic Biosensor Enabling Direct, Rapid, and Sensitive miRNA Detection. Anal Chem 2022; 94:6566-6573. [PMID: 35451838 DOI: 10.1021/acs.analchem.2c00401] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Direct, rapid, sensitive, and selective detection of nucleic acids in complex biological fluids is crucial for medical early diagnosis. We herein combine the trans-cleavage ability of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a with Au-nanobeacon to establish a CRISPR-based biosensor, providing rapid miRNA detection with high speed and attomolar sensitivity. In this strategy, we first report that the trans-cleavage activity of CRISPR/cas12a, which was previously reported to be triggered only by target ssDNA or dsDNA, can be activated by the target miRNA directly. Therefore, this method is direct, i.e., does not need the conversion of miRNA into its complementary DNA (cDNA). Meanwhile, as compared to the traditional ssDNA reporters and molecular beacon (MB) reporters, the Au-nanobeacon reporters exhibit improved reaction kinetics and sensitivity. In this assay, the miRNA-21 could be detected with very high sensitivity in only 5 min. Finally, the proposed strategy enables rapid, sensitive, and selective miRNA determination in complex biological samples, providing a potential tool for medical early diagnosis.
Collapse
Affiliation(s)
- Tong Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xi Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Qingqing Wan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jiacheng Ding
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
44
|
Hybridization chain reaction for regulating surface capacitance of organic photoelectrochemical transistor toward sensitive miRNA detection. Biosens Bioelectron 2022; 209:114224. [PMID: 35395586 DOI: 10.1016/j.bios.2022.114224] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
Abstract
Photon-enabled bioelectronics has long been pursued in modern electronics due to their non-contact, remote-control, and even self-powered function interfacing the biological world with semiconductor devices. The debuting organic photoelectrochemical transistor (OPECT) relies on the photovoltage generated by the semiconductors to modulate the channel conductance, which enables light-fueled operation at zero gate bias. Inspired by the insulating nature of macrobiomolecules and surface capacitance mechanism, herein we demonstrate the biological regulation of the surface capacitance towards new OPECT biodetection, which was exemplified by a CdS quantum dots/TiO2 nanotubes photoanode accommodating hybridization chain reaction (HCR) amplification with the target of biomarker miRNA-17. Formation of the non-conducting DNA layer from the miRNA-17-oriented HCR could decrease the surface capacitance and increase the corresponding fractional potential drop, shifting the transfer curve horizontally to higher gate voltage and thus producing different drain currents. The OPECT biosensor exhibited a linear relationship with the miRNA-17 concentration on the logarithmic axis in the range from 1 pm. to 10 μm with a detection limit of 1 pm. This work not only represented a generic methodology of miRNA detection, but also provided a universal mechanism for the operation of advanced OPECT bioanalytics.
Collapse
|
45
|
Fapohunda FO, Qiao S, Pan Y, Wang H, Liu Y, Lü P. CRISPR Cas System: a Strategic Approach in Detection of Nucleic Acids. Microbiol Res 2022; 259:127000. [DOI: 10.1016/j.micres.2022.127000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/20/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022]
|
46
|
Self-assembled multiprotein nanostructures with enhanced stability and signal amplification capability for sensitive fluorogenic immunoassays. Biosens Bioelectron 2022; 206:114132. [PMID: 35245869 DOI: 10.1016/j.bios.2022.114132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
Fundamentally improving the sensing sensitivity of immunoassay remains a huge challenge, which limited further critical applications. Herein we designed a new immunoprobe by integrating biometric unit (antibody) and signal amplification element (enzyme) to form urease-antibody-CaHPO4 hybrid nanoflower (UAhNF) via the biomineralization process. The dual-functional UAhNF enhances the stability of urease in NaCl (10 mmol L-1) and high temperature (60 °C), and also maintains the ability of antibody recognition, fitting greatly well with the need for immunosensor. Using imidacloprid as a model target, the fixed coating antigens are competed with imidacloprid to capture primary antibodies, and the secondary antibody of UAhNF was linked to construct the competitive-type fluorogenic immunoassays. An in-situ etching process of copper nanoparticles initiated by urease is integrated with UAhNF-based immune response for further improving the detection sensitivity. The proposed immunosensor possessed a 50% inhibition concentration value of 0.72 ng mL-1, which is 30-fold lower than conventional enzyme-linked immunosorbent assay. This presented approach provided a versatile sensing tool by varying building blocks, making it practically functional for a variety of bioassay applications.
Collapse
|
47
|
Malini S, Roy A, Raj K, Raju KSA, Ali IH, Mahesh B, Yadav KK, Islam S, Jeon BH, Lee SS. Sensing beyond Senses: An Overview of Outstanding Strides in Architecting Nanopolymer-Enabled Sensors for Biomedical Applications. Polymers (Basel) 2022; 14:601. [PMID: 35160590 PMCID: PMC8840134 DOI: 10.3390/polym14030601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
Nano-enabled sensing is an expanding interdisciplinary field of emerging science with dynamic multifunctional detecting capabilities, equipped with a wide range of multi-faceted nanomaterial having diverse dimensions and composition. They have proven to be highly robust, sensitive, and useful diagnostic tools ranging from advanced industrial processes to ordinary consumer products. As no single nanomaterial has proved to be unparalleled, recent years has witnessed a large number of nanomaterial-based sensing strategies for rapid detection and quantification of processes and substances with a high degree of reliability. Nano-furnished platforms, because of easy fabrication methods and chemical versatility, can serve as ideal sensing means through different transduction mechanisms. This article, through a unified experimental-theoretical approach, uses literature of recent years to introduce, evaluate, and analyze significant developments in the area of nanotechnology-aided sensors incorporating the various classes of nanomaterial. Addressing the broad interests, the work also summarizes the sensing mechanisms using schematic illustrations, attempts to integrate the performance of different categories of nanomaterials in the design of sensors, knowledge gaps, regulatory aspects, future research directions, and challenges of implementing such techniques in standalone devices. In view of a dependency of analysis and testing on sustained growth of sensor-supported platforms, this article inspires the scientific community for more attention in this field.
Collapse
Affiliation(s)
- S. Malini
- Department of Chemistry, B.M.S. College of Engineering, Bangalore 560019, India;
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India;
| | - Kalyan Raj
- Department of Chemistry, B.M.S. College of Engineering, Bangalore 560019, India;
| | - K. S. Anantha Raju
- Department of Chemistry, Dayananda Sagar College of Engineering, Bangalore 560078, India;
| | - Ismat H. Ali
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - B. Mahesh
- Department of Chemistry, JSS Academy of Technical Education, Bangalore 560060, India;
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India;
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
| | - Sean Seungwon Lee
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
| |
Collapse
|
48
|
Lv H, Gao J, Lu Y, Sun X, Zheng K, Zhang P, Ding C. Simultaneous Targeted Analysis of GGT and Its H-Type mRNA in HepG2 Cells Based on Degradable Silicon Nanomaterials. Anal Chem 2021; 93:16581-16589. [PMID: 34854293 DOI: 10.1021/acs.analchem.1c03911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most important physiological processes in live cells are usually maintained by the interaction of multiple related biomolecules; the multi-target simultaneous analysis of these related molecules can better reflect the dynamic changes of their biological regulatory processes, providing more comprehensive information for diseases diagnosis and research. Herein, we have constructed the degradable multifunctional silica nanomaterials from the prepared degradable organic silicon source and further established degradable composite nanoprobes (DCNPs). The low toxicity of DCNPs could reduce the impact on normal physiological processes in cells and achieve the needs of living cell analysis applications; by the loading of the gamma-glutamyltransferase (GGT) activity-identification probe (Cy-GGT) and surface nucleic acid-recognizing molecular beacon (hairpin) modification, the DCNP realized the simultaneous image analysis of GGT and its related H-type mutated GGT mRNA (H-mRNA) in HepG2 cells and their quantitative detection in vitro. Compared with the traditional multi-target analysis strategy, the lack of targets' physiological mechanism connection was improved, and the combined application of small molecular probes and nucleic acid analysis structures was realized under the control of the cross-influence. This strategy is expected to provide a new direction for the design of multi-target analysis in live cells and provide more accurate analytical tools for clinical research and cancer therapy.
Collapse
Affiliation(s)
- Haoyuan Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao City, Shandong Province 266042, P. R. China
| | - Jian Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao City, Shandong Province 266042, P. R. China
| | - Yibin Lu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao City, Shandong Province 266042, P. R. China
| | - Xinxin Sun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao City, Shandong Province 266042, P. R. China
| | - Ke Zheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao City, Shandong Province 266042, P. R. China
| | - Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao City, Shandong Province 266042, P. R. China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao City, Shandong Province 266042, P. R. China
| |
Collapse
|
49
|
|
50
|
Zhou H, Ding K, Li B, Wang H, Zhang N, Liu J. Proximity binding induced nucleic acid cascade amplification strategy for ultrasensitive homogeneous detection of PSA. Anal Chim Acta 2021; 1186:339123. [PMID: 34756258 DOI: 10.1016/j.aca.2021.339123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022]
Abstract
In this work, based on the powerful cycle amplification cascades of proximity hybridization-induced hybridization chain reaction and catalyzed hairpin assembly, we engineered a nonenzymatic and ultrasensitive method which combined the Mg2+-DNAzyme recycling signal amplification for the analysis of the human prostate specific antigen. Herein, we adopted PSA-conjugates as triggers in the self-assembly process of two hairpin DNAs (H1, H2) into the products of the CHA which could activate the HCR to induce repeated hybridization. And both ends of each adjacent sequence of the HCR products could form a unit of Mg2+-DNAzyme which in presence of cofactor Mg2+ could recognize and cyclically cleave the hairpin probes in the solution and thus generate observably enhanced fluorescent signal. Benefit from the nucleic acid circuit amplification strategy, PSA of concentration low to 0.73 pg mL-1 was detected in this system. This homogeneous sensing method in solution avoid the use of the sophisticated equipment and complex operation, as well as addition of artificial enzyme, thus greatly reducing the constraints and complexity of experimental conditions. Moreover, considering most protein biomarkers in serum don't have their corresponding aptamers, this sensing method provide a general sensing approach for homogeneous sensitive detection of these important protein biomarkers which transfer rough antigen-antibody interactivity to smart signal amplification sensing strategies, thus exhibiting a remarkable prospect in clinical application.
Collapse
Affiliation(s)
- Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Kexin Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Ningbo Zhang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, PR China.
| | - Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, PR China.
| |
Collapse
|