1
|
Munteanu C, Galaction AI, Poștaru M, Rotariu M, Turnea M, Blendea CD. Hydrogen Sulfide Modulation of Matrix Metalloproteinases and CD147/EMMPRIN: Mechanistic Pathways and Impact on Atherosclerosis Progression. Biomedicines 2024; 12:1951. [PMID: 39335465 PMCID: PMC11429404 DOI: 10.3390/biomedicines12091951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory condition marked by endothelial dysfunction, lipid accumulation, inflammatory cell infiltration, and extracellular matrix (ECM) remodeling within arterial walls, leading to plaque formation and potential cardiovascular events. Key players in ECM remodeling and inflammation are matrix metalloproteinases (MMPs) and CD147/EMMPRIN, a cell surface glycoprotein expressed on endothelial cells, vascular smooth muscle cells (VSMCs), and immune cells, that regulates MMP activity. Hydrogen sulfide (H₂S), a gaseous signaling molecule, has emerged as a significant modulator of these processes including oxidative stress mitigation, inflammation reduction, and vascular remodeling. This systematic review investigates the mechanistic pathways through which H₂S influences MMPs and CD147/EMMPRIN and assesses its impact on atherosclerosis progression. A comprehensive literature search was conducted across PubMed, Scopus, and Web of Science databases, focusing on studies examining H₂S modulation of MMPs and CD147/EMMPRIN in atherosclerosis contexts. Findings indicate that H₂S modulates MMP expression and activity through transcriptional regulation and post-translational modifications, including S-sulfhydration. By mitigating oxidative stress, H₂S reduces MMP activation, contributing to plaque stability and vascular remodeling. H₂S also downregulates CD147/EMMPRIN expression via transcriptional pathways, diminishing inflammatory responses and vascular cellular proliferation within plaques. The dual regulatory role of H₂S in inhibiting MMP activity and downregulating CD147 suggests its potential as a therapeutic agent in stabilizing atherosclerotic plaques and mitigating inflammation. Further research is warranted to elucidate the precise molecular mechanisms and to explore H₂S-based therapies for clinical application in atherosclerosis.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mădălina Poștaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Corneliu Dan Blendea
- Department of Medical-Clinical Disciplines, General Surgery, Faculty of Medicine, "Titu Maiorescu" University of Bucharest, 0400511 Bucharest, Romania
| |
Collapse
|
2
|
Luongo M, Laurenziello P, Cesta G, Bochicchio AM, Omer LC, Falco G, Milone MR, Cibarelli F, Russi S, Laurino S. The molecular conversations of sarcomas: exosomal non-coding RNAs in tumor's biology and their translational prospects. Mol Cancer 2024; 23:172. [PMID: 39174949 PMCID: PMC11340101 DOI: 10.1186/s12943-024-02083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Exosomes mediate cell-to-cell crosstalk involving a variety of biomolecules through an intricate signaling network. In recent years, the pivotal role of exosomes and their non-coding RNAs cargo in the development and progression of several cancer types clearly emerged. In particular, tumor bulk and its microenvironment co-evolve through cellular communications where these nanosized extracellular vesicles are among the most relevant actors. Knowledge about the cellular, and molecular mechanisms involved in these communications will pave the way for novel exosome-based delivery of therapeutic RNAs as well as innovative prognostic/diagnostic tools. Despite the valuable therapeutic potential and clinical relevance of exosomes, their role on sarcoma has been vaguely reported because the rarity and high heterogeneity of this type of cancer. Here, we dissected the scientific literature to unravel the multifaceted role of exosomal non-coding RNAs as mediator of cell-to-cell communications in the sarcoma subtypes.
Collapse
Affiliation(s)
- Margherita Luongo
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Pasqualina Laurenziello
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Giuseppe Cesta
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Anna Maria Bochicchio
- Experimental Oncology Unit, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Ludmila Carmen Omer
- Experimental Oncology Unit, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | | | | | - Sabino Russi
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy.
| | - Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| |
Collapse
|
3
|
Michaels TM, Essop MF, Joseph DE. Potential Effects of Hyperglycemia on SARS-CoV-2 Entry Mechanisms in Pancreatic Beta Cells. Viruses 2024; 16:1243. [PMID: 39205219 PMCID: PMC11358987 DOI: 10.3390/v16081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
Collapse
Affiliation(s)
- Tara M. Michaels
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Danzil E. Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
4
|
Zwick A, Braun FL, Weber LJ, Linder M, Linxweiler M, Lohse S. Engineering Dimeric EGFR-directed IgA Antibodies Reveals a Central Role of CD147 during Neutrophil-mediated Tumor Cell Killing of Head and Neck Squamous Cancer Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:148-160. [PMID: 38787053 DOI: 10.4049/jimmunol.2300544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Human IgA Abs engage neutrophils for cancer immunotherapy more effectively than IgG Abs. Previous studies demonstrated that engineering approaches improved biochemical and functional properties. In this study, we report a novel, to our knowledge, IgA2 Ab against the epidermal growth factor receptor generated by protein engineering and polymerization. The resulting molecule demonstrated a covalent linkage of L and H chains and an effective polymerization by the joining chain. The engineered dimer outperformed its monomeric variant in functional experiments on Fab-mediated modes of action and binding to the Fc receptor. The capacity to engage neutrophils for Ab-dependent cell-mediated cytotoxicity (ADCC) of adherent growing target cancer cells was cell line dependent. Although the engineered dimer displayed a long-term efficacy against the vulva carcinoma cell line A431, there was a notable in-efficacy against human papillomavirus (HPV)- head and neck squamous cell carcinoma (HNSCC) cell lines. However, the highly engineered IgA Abs triggered a neutrophil-mediated cytotoxicity against HPV+ HNSCC cell lines. Short-term ADCC efficacy correlated with the target cells' epidermal growth factor receptor expression and the ability of cancer cell-conditioned media to enhance the CD147 surface level on neutrophils. Notably, the HPV+ HNSCC cell lines demonstrated a significant increment in releasing soluble CD147 and a reduced induction of membranous CD147 on neutrophils compared with HPV- cells. Although membranous CD147 on neutrophils may impair proper IgA-Fc receptor binding, soluble CD147 enhanced the IgA-neutrophil-mediated ADCC in a dose-dependent manner. Thus, engineering IgA Abs and impedance-based ADCC assays provided valuable information regarding the target-effector cell interaction and identified CD147 as a putative critical parameter for neutrophil-mediated cytotoxicity.
Collapse
Affiliation(s)
- Anabel Zwick
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Felix Leon Braun
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg/Saar, Germany
| | | | - Manuel Linder
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Maximilian Linxweiler
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg/Saar, Germany
| | - Stefan Lohse
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
5
|
Zisman D, Sabtan H, Rahat MM, Simanovich E, Haddad A, Gazitt T, Feld J, Slobodin G, Kibari A, Elias M, Rahat MA. Tofacitinib Regulates Endostatin via Effects on CD147 and Cathepsin S. Int J Mol Sci 2024; 25:7267. [PMID: 39000375 PMCID: PMC11241738 DOI: 10.3390/ijms25137267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Angiogenesis is critical for rheumatoid arthritis (RA) progression. The effects of tofacitinib, a JAK-STAT inhibitor used for RA treatment, on angiogenesis in RA are unclear. We, therefore, evaluated the levels of angiogenic factors in two systems of a human co-culture of fibroblast (HT1080) and monocytic (U937) cell lines treated with tofacitinib and in serum samples from RA patients before and after six months of tofacitinib treatment. Tofacitinib reduced CD147 levels, matrix metalloproteinase-9 (MMP-9) activity, and angiogenic potential but increased endostatin levels and secreted proteasome 20S activity. In vitro, tofacitinib did not change CD147 mRNA but increased miR-146a-5p expression and reduced STAT3 phosphorylation. We recently showed that CD147 regulates the ability of MMP-9 and secreted proteasome 20S to cleave collagen XVIIIA into endostatin. We show here that tofacitinib-enhanced endostatin levels are mediated by CD147, as CD147-siRNA or an anti-CD147 antibody blocked proteasome 20S activity. The correlation between CD147 and different disease severity scores supported this role. Lastly, tofacitinib reduced endostatin' s degradation by inhibiting cathepsin S activity and recombinant cathepsin S reversed this in both systems. Thus, tofacitinib inhibits angiogenesis by reducing pro-angiogenic factors and enhancing the anti-angiogenic factor endostatin in a dual effect mediated partly through CD147 and partly through cathepsin S.
Collapse
Affiliation(s)
- Devy Zisman
- Department of Rheumatology, Carmel Medical Center, Haifa 3436212, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Hala Sabtan
- Department of Rheumatology, Carmel Medical Center, Haifa 3436212, Israel
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel
| | - Maya M Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel
| | - Elina Simanovich
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel
| | - Amir Haddad
- Department of Rheumatology, Carmel Medical Center, Haifa 3436212, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Tal Gazitt
- Department of Rheumatology, Carmel Medical Center, Haifa 3436212, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Joy Feld
- Department of Rheumatology, Carmel Medical Center, Haifa 3436212, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Gleb Slobodin
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
- Rheumatology Unit, Bnai Zion Medical Center, Haifa 3339419, Israel
| | - Adi Kibari
- Department of Rheumatology, Carmel Medical Center, Haifa 3436212, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Muna Elias
- Department of Rheumatology, Carmel Medical Center, Haifa 3436212, Israel
| | - Michal A Rahat
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel
| |
Collapse
|
6
|
Zou S, Parfenova E, Vrdoljak N, Minden MD, Spagnuolo PA. Pseudolaric Acid B Targets CD147 to Selectively Kill Acute Myeloid Leukemia Cells. Int J Mol Sci 2024; 25:6517. [PMID: 38928225 PMCID: PMC11203802 DOI: 10.3390/ijms25126517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer. With low survival rates, new drug targets are needed to improve treatment regimens and patient outcomes. Pseudolaric acid B (PAB) is a plant-derived bioactive compound predicted to interact with cluster of differentiation 147 (CD147/BSG). CD147 is a transmembrane glycoprotein overexpressed in various malignancies with suggested roles in regulating cancer cell survival, proliferation, invasion, and apoptosis. However, the detailed function of PAB in AML remains unknown. In this study, AML cell lines and patient-derived cells were used to show that PAB selectively targeted AML (IC50: 1.59 ± 0.47 µM). Moreover, proliferation assays, flow cytometry, and immunoblotting confirmed that PAB targeting of CD147 resulted in AML cell apoptosis. Indeed, the genetic silencing of CD147 significantly suppressed AML cell growth and attenuated PAB activity. Overall, PAB imparts anti-AML activity through transmembrane glycoprotein CD147.
Collapse
Affiliation(s)
- Sheng Zou
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.Z.); (E.P.)
| | - Ekaterina Parfenova
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.Z.); (E.P.)
| | - Nikolina Vrdoljak
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.Z.); (E.P.)
| | - Mark D. Minden
- Princess Margaret Cancer Center, Ontario Cancer Institute, Toronto, ON M5G 2M9, Canada;
| | - Paul A. Spagnuolo
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.Z.); (E.P.)
| |
Collapse
|
7
|
Mygind KJ, Nikodemus D, Gnosa S, Kweder R, Albrechtsen NJW, Kveiborg M, Erler JT, Albrechtsen R. ADAM12-Generated Basigin Ectodomain Binds β1 Integrin and Enhances the Expression of Cancer-Related Extracellular Matrix Proteins. Int J Mol Sci 2024; 25:5871. [PMID: 38892056 PMCID: PMC11172339 DOI: 10.3390/ijms25115871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Desmoplasia is a common feature of aggressive cancers, driven by a complex interplay of protein production and degradation. Basigin is a type 1 integral membrane receptor secreted in exosomes or released by ectodomain shedding from the cell surface. Given that soluble basigin is increased in the circulation of patients with a poor cancer prognosis, we explored the putative role of the ADAM12-generated basigin ectodomain in cancer progression. We show that recombinant basigin ectodomain binds β1 integrin and stimulates gelatin degradation and the migration of cancer cells in a matrix metalloproteinase (MMP)- and β1-integrin-dependent manner. Subsequent in vitro and in vivo experiments demonstrated the altered expression of extracellular matrix proteins, including fibronectin and collagen type 5. Thus, we found increased deposits of collagen type 5 in the stroma of nude mice tumors of the human tumor cell line MCF7 expressing ADAM12-mimicking the desmoplastic response seen in human cancer. Our findings indicate a feedback loop between ADAM12 expression, basigin shedding, TGFβ signaling, and extracellular matrix (ECM) remodeling, which could be a mechanism by which ADAM12-generated basigin ectodomain contributes to the regulation of desmoplasia, a key feature in human cancer progression.
Collapse
Affiliation(s)
- Kasper J. Mygind
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.J.M.); (D.N.); (S.G.); (R.K.); (M.K.); (J.T.E.)
| | - Denise Nikodemus
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.J.M.); (D.N.); (S.G.); (R.K.); (M.K.); (J.T.E.)
| | - Sebastian Gnosa
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.J.M.); (D.N.); (S.G.); (R.K.); (M.K.); (J.T.E.)
| | - Ramya Kweder
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.J.M.); (D.N.); (S.G.); (R.K.); (M.K.); (J.T.E.)
| | | | - Marie Kveiborg
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.J.M.); (D.N.); (S.G.); (R.K.); (M.K.); (J.T.E.)
| | - Janine T. Erler
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.J.M.); (D.N.); (S.G.); (R.K.); (M.K.); (J.T.E.)
| | - Reidar Albrechtsen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.J.M.); (D.N.); (S.G.); (R.K.); (M.K.); (J.T.E.)
| |
Collapse
|
8
|
Feigelman G, Simanovich E, Brockmeyer P, Rahat MA. EMMPRIN promotes spheroid organization and metastatic formation: comparison between monolayers and spheroids of CT26 colon carcinoma cells. Front Immunol 2024; 15:1374088. [PMID: 38725999 PMCID: PMC11079191 DOI: 10.3389/fimmu.2024.1374088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Background In vitro studies often use two-dimensional (2D) monolayers, but 3D cell organization, such as in spheroids, better mimics the complexity of solid tumors. To metastasize, cancer cells undergo the process of epithelial-to-mesenchymal transition (EMT) to become more invasive and pro-angiogenic, with expression of both epithelial and mesenchymal markers. Aims We asked whether EMMPRIN/CD147 contributes to the formation of the 3D spheroid structure, and whether spheroids, which are often used to study proliferation and drug resistance, could better model the EMT process and the metastatic properties of cells, and improve our understanding of the role of EMMPRIN in them. Methods We used the parental mouse CT26 colon carcinoma (CT26-WT) cells, and infected them with a lentivirus vector to knock down EMMPRIN expression (CT26-KD cells), or with an empty lentivirus vector (CT26-NC) that served as a negative control. In some cases, we repeated the experiments with the 4T1 or LLC cell lines. We compared the magnitude of change between CT26-KD and CT26-WT/NC cells in different metastatic properties in cells seeded as monolayers or as spheroids formed by the scaffold-free liquid overlay method. Results We show that reduced EMMPRIN expression changed the morphology of cells and their spatial organization in both 2D and 3D models. The 3D models more clearly demonstrated how reduced EMMPRIN expression inhibited proliferation and the angiogenic potential, while it enhanced drug resistance, invasiveness, and EMT status, and moreover it enhanced cell dormancy and prevented CT26-KD cells from forming metastatic-like lesions when seeded on basement membrane extract (BME). Most interestingly, this approach enabled us to identify that EMMPRIN and miR-146a-5p form a negative feedback loop, thus identifying a key mechanism for EMMPRIN activities. These results underline EMMPRIN role as a gatekeeper that prevents dormancy, and suggest that EMMPRIN links EMT characteristics to the process of spheroid formation. Conclusions Thus, 3D models can help identify mechanisms by which EMMPRIN facilitates tumor and metastasis progression, which might render EMMPRIN as a promising target for anti-metastatic tumor therapy.
Collapse
Affiliation(s)
- Gabriele Feigelman
- Immunotherapy Laboratory, Research Laboratories, Carmel Medical Center, Haifa, Israel
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elina Simanovich
- Immunotherapy Laboratory, Research Laboratories, Carmel Medical Center, Haifa, Israel
| | - Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Michal A. Rahat
- Immunotherapy Laboratory, Research Laboratories, Carmel Medical Center, Haifa, Israel
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
9
|
Meng S, Sørensen EE, Ponniah M, Thorlacius-Ussing J, Crouigneau R, Larsen T, Borre MT, Willumsen N, Flinck M, Pedersen SF. MCT4 and CD147 colocalize with MMP14 in invadopodia and support matrix degradation and invasion by breast cancer cells. J Cell Sci 2024; 137:jcs261608. [PMID: 38661040 PMCID: PMC11112124 DOI: 10.1242/jcs.261608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/23/2024] [Indexed: 04/26/2024] Open
Abstract
Expression levels of the lactate-H+ cotransporter MCT4 (also known as SLC16A3) and its chaperone CD147 (also known as basigin) are upregulated in breast cancers, correlating with decreased patient survival. Here, we test the hypothesis that MCT4 and CD147 favor breast cancer invasion through interdependent effects on extracellular matrix (ECM) degradation. MCT4 and CD147 expression and membrane localization were found to be strongly reciprocally interdependent in MDA-MB-231 breast cancer cells. Overexpression of MCT4 and/or CD147 increased, and their knockdown decreased, migration, invasion and the degradation of fluorescently labeled gelatin. Overexpression of both proteins led to increases in gelatin degradation and appearance of the matrix metalloproteinase (MMP)-generated collagen-I cleavage product reC1M, and these increases were greater than those observed upon overexpression of each protein alone, suggesting a concerted role in ECM degradation. MCT4 and CD147 colocalized with invadopodia markers at the plasma membrane. They also colocalized with MMP14 and the lysosomal marker LAMP1, as well as partially with the autophagosome marker LC3, in F-actin-decorated intracellular vesicles. We conclude that MCT4 and CD147 reciprocally regulate each other and interdependently support migration and invasiveness of MDA-MB-231 breast cancer cells. Mechanistically, this involves MCT4-CD147-dependent stimulation of ECM degradation and specifically of MMP-mediated collagen-I degradation. We suggest that the MCT4-CD147 complex is co-delivered to invadopodia with MMP14.
Collapse
Affiliation(s)
- Signe Meng
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ester E. Sørensen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Muthulakshmi Ponniah
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Roxane Crouigneau
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Tanja Larsen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Magnus T. Borre
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Mette Flinck
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Stine F. Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Liu P, Xie L, Wu Q, Huang L, Liu X, Li W, Cai J, Wang Z, Yang P, Cai L. TIE1 promotes cervical cancer progression via Basigin-matrix metalloproteinase axis. Int J Biol Sci 2024; 20:2297-2309. [PMID: 38617545 PMCID: PMC11008262 DOI: 10.7150/ijbs.93667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/23/2024] [Indexed: 04/16/2024] Open
Abstract
Background: Tyrosine kinase with immunoglobulin and EGF-like domains 1 (TIE1) is known as an orphan receptor prominently expressed in endothelial cells and participates in angiogenesis by regulating TIE2 activity. Our previous study demonstrated elevated TIE1 expression in cervical cancer cells. However, the role of TIE1 in cervical cancer progression, metastasis and treatment remains elusive. Methods: Immunohistochemistry staining for TIE1 and Basigin was performed in 135 human cervical cancer tissues. Overexpressing vectors and siRNAs were used to manipulate gene expression in tumor cells. Colony formation, wound healing, and transwell assays were used to assess cervical cancer cell proliferation and migration in vitro. Subcutaneous xenograft tumor and lung metastasis mouse models were established to examine tumor growth and metastasis. Co-Immunoprecipitation and Mass Spectrometry were applied to explore the proteins binding to TIE1. Immunoprecipitation and immunofluorescence staining were used to verify the interaction between TIE1 and Basigin. Cycloheximide chase assay and MG132 treatment were conducted to analyze protein stability. Results: High TIE1 expression was associated with poor survival in cervical cancer patients. TIE1 overexpression promoted the proliferation, migration and invasion of cervical cancer cells in vitro, as well as tumor growth and metastasis in vivo. In addition, Basigin, a transmembrane glycoprotein, was identified as a TIE1 binding protein, suggesting a pivotal role in matrix metalloproteinase regulation, angiogenesis, cell adhesion, and immune responses. Knockdown of Basigin or treatment with the Basigin inhibitor AC-73 reversed the tumor-promoting effect of TIE1 in vitro and in vivo. Furthermore, we found that TIE1 was able to interact with and stabilize the Basigin protein and stimulate the Basigin-matrix metalloproteinase axis. Conclusion: TIE1 expression in cervical cells exerts a tumor-promoting effect, which is at least in part dependent on its interaction with Basigin. These findings have revealed a TIE2-independent mechanism of TIE1, which may provide a new biomarker for cervical cancer progression, and a potential therapeutic target for the treatment of cervical cancer patients.
Collapse
Affiliation(s)
- Pan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lisha Xie
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiulei Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenhan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832003, China
| | - Liqiong Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
11
|
Li Y, Chen J, Quan X, Chen Y, Han Y, Chen J, Yang L, Xu Y, Shen X, Wang R, Zhao Y. Extracellular Vesicles Maintain Blood-Brain Barrier Integrity by the Suppression of Caveolin-1/CD147/VEGFR2/MMP Pathway After Ischemic Stroke. Int J Nanomedicine 2024; 19:1451-1467. [PMID: 38371456 PMCID: PMC10874237 DOI: 10.2147/ijn.s444009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024] Open
Abstract
Background Ischemic stroke (IS) causes tragic death and disability worldwide. However, effective therapeutic interventions are finite. After IS, blood-brain barrier (BBB) integrity is disrupted, resulting in deteriorating neurological function. As a novel therapeutic, extracellular vesicles (EVs) have shown ideal restorative effects on BBB integrity post-stroke; however, the definite mechanisms remain ambiguous. In the present study, we investigated the curative effects and the mechanisms of EVs derived from bone marrow mesenchymal stem cells and brain endothelial cells (BMSC-EVs and BEC-EVs) on BBB integrity after acute IS. Methods EVs were isolated from BMSCs and BECs, and we investigated the therapeutic effect in vitro oxygen-glucose deprivation (OGD) insulted BECs model and in vivo rat middle cerebral artery occlusion (MCAo) model. The cell monolayer leakage, tight junction expression, and metalloproteinase (MMP) activity were evaluated, and rat brain infarct volume and neurological function were also analyzed. Results The administration of two kinds of EVs not only enhanced ZO-1 and Occludin expressions but also reduced the permeability and the activity of MMP-2/9 in OGD-insulted BECs. The amelioration of the cerebral infarction, BBB leakage, neurological function deficits, and the increasing ZO-1 and Occludin levels, as well as MMP activity inhibition was observed in MCAo rats. Additionally, the increased levels of Caveolin-1, CD147, vascular endothelial growth factor receptor 2 (VEGFR2), and vascular endothelial growth factor A (VEGFA) in isolated brain microvessels were downregulated after EVs treatment. In vitro, the employment of Caveolin-1 and CD147 siRNA partly suppressed the expressions of VEGFR2, VEGFA and MMP-2/9 activity and reduced the leakage of OGD insulted BECs and enhanced ZO-1 and Occludin expressions. Conclusion Our study firstly demonstrates that BEC and BMSC-EVs administrations maintain BBB integrity via the suppression of Caveolin-1/CD147/VEGFR2/MMP pathway after IS, and the efficacy of BMSC-EVs is superior to that of BEC-EVs.
Collapse
Affiliation(s)
- Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Jiali Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Ying Chen
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Li Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, People’s Republic of China
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People’s Republic of China
| |
Collapse
|
12
|
Qu B, Sun L, Xiao P, Shen H, Ren Y, Zhang J. CircCDK17 promotes the proliferation and metastasis of ovarian cancer cells by sponging miR-22-3p to regulate CD147 expression. Carcinogenesis 2024; 45:83-94. [PMID: 37952105 DOI: 10.1093/carcin/bgad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/22/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Ovarian cancer (OC) is a common malignancy in women of reproductive age. Circular RNAs (circRNAs) are emerging players in OC progression. We investigated the function and mechanism of circular RNA hsa_circ_0027803 (circCDK17) in OC pathogenesis. Real‑time PCR (RT-qPCR) and western blot were utilized for gene and protein expression analysis, respectively. Cell counting kit‑8 (CCK-8), EdU and Transwell assays investigated OC cell proliferation, migration and invasion. The associations between circCDK17, miR-22-3p and CD147 were examined by dual-luciferase reporter and RNA-protein immunoprecipitation (RIP) assays. The in vivo model of OC nude mice was constructed to explore the role of circCDK17. CircCDK17 was increased in OC tissue and cells, and patients with higher expression of circCDK17 had a shorter survival. CircCDK17 downregulation inhibited OC cell proliferation, migration and invasion, and reduced epithelial-mesenchymal transition (EMT)-related markers. In vivo experiments showed that circCDK17 silencing inhibited OC tumor growth and metastasis. CircCDK17 depletion reduced CD147 level via sponging miR-22-3p. MiR-22-3p knockdown overturned effect of circCDK17 depletion on OC cell proliferation, migration and invasion. Meanwhile, overexpressed CD147 restored functions of circCDK17 downregulation on OC development. CircCDK17 is an important molecule that regulates OC pathogenic process through miR-22-3p/CD147.
Collapse
Affiliation(s)
- Bin Qu
- Department of Clinical Examination, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| | - Lisha Sun
- Department of Blood Transfusion, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| | - Ping Xiao
- Department of Clinical Examination, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| | - Haoming Shen
- Department of Clinical Examination, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| | - Yuxi Ren
- Department of Clinical Examination, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| | - Jing Zhang
- Department of Clinical Examination, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| |
Collapse
|
13
|
Currie D, Wong N, Zane I, Rix T, Vardakastanis M, Claxton A, Ong KKV, Macmorland W, Poivet A, Brooks A, Niola P, Huntley D, Montano X. A Potential Prognostic Gene Signature Associated with p53-Dependent NTRK1 Activation and Increased Survival of Neuroblastoma Patients. Cancers (Basel) 2024; 16:722. [PMID: 38398114 PMCID: PMC10886603 DOI: 10.3390/cancers16040722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Neuroblastoma is the most common extracranial solid tumour in children, comprising close to 10% of childhood cancer-related deaths. We have demonstrated that activation of NTRK1 by TP53 repression of PTPN6 expression is significantly associated with favourable survival in neuroblastoma. The molecular mechanisms by which this activation elicits cell molecular changes need to be determined. This is critical to identify dependable biomarkers for the early detection and prognosis of tumours, and for the development of personalised treatment. In this investigation we have identified and validated a gene signature for the prognosis of neuroblastoma using genes differentially expressed upon activation of the NTRK1-PTPN6-TP53 module. A random survival forest model was used to construct a gene signature, which was then assessed across validation datasets using Kaplan-Meier analysis and ROC curves. The analysis demonstrated that high BASP1, CD9, DLG2, FNBP1, FRMD3, IL11RA, ISGF10, IQCE, KCNQ3, and TOX2, and low BSG/CD147, CCDC125, GABRB3, GNB2L1/RACK1 HAPLN4, HEBP2, and HSD17B12 expression was significantly associated with favourable patient event-free survival (EFS). The gene signature was associated with favourable tumour histology and NTRK1-PTPN6-TP53 module activation. Importantly, all genes were significantly associated with favourable EFS in an independent manner. Six of the signature genes, BSG/CD147, GNB2L1/RACK1, TXNDC5, FNPB1, B3GAT1, and IGSF10, play a role in cell differentiation. Our findings strongly suggest that the identified gene signature is a potential prognostic biomarker and therapeutic target for neuroblastoma patients and that it is associated with neuroblastoma cell differentiation through the activation of the NTRK1-PTPN6-TP53 module.
Collapse
Affiliation(s)
- David Currie
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Nicole Wong
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Isabelle Zane
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Tom Rix
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Marios Vardakastanis
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Amelia Claxton
- Innovation Hub, Comprehensive Cancer Centre, King’s College London, Great Maze Pond, London SE1 9RT, UK; (A.C.); (K.K.V.O.)
| | - Karine K. V. Ong
- Innovation Hub, Comprehensive Cancer Centre, King’s College London, Great Maze Pond, London SE1 9RT, UK; (A.C.); (K.K.V.O.)
| | - William Macmorland
- Tumour Immunology Group, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK;
| | - Arthur Poivet
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Anthony Brooks
- Zayed Centre for Research into Rare Disease in Children, UCL Genomics, London WC1N 1DZ, UK;
| | | | - Derek Huntley
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Ximena Montano
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
- Innovation Hub, Comprehensive Cancer Centre, King’s College London, Great Maze Pond, London SE1 9RT, UK; (A.C.); (K.K.V.O.)
- School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
14
|
Rahat MM, Sabtan H, Simanovich E, Haddad A, Gazitt T, Feld J, Slobodin G, Kibari A, Elias M, Zisman D, Rahat MA. Soluble CD147 regulates endostatin via its effects on the activities of MMP-9 and secreted proteasome 20S. Front Immunol 2024; 15:1319939. [PMID: 38318187 PMCID: PMC10840997 DOI: 10.3389/fimmu.2024.1319939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
During progression of rheumatoid arthritis (RA), angiogenesis provides oxygen and nutrients for the cells' increased metabolic demands and number. To turn on angiogenesis, pro-angiogenic factors must outweigh anti-angiogenic factors. We have previously shown that CD147/extracellular matrix metalloproteinase inducer (EMMPRIN) can induce the expression of the pro-angiogenic factors vascular endothelial growth factor (VEGF) and matrix metallopeptidase 9 (MMP-9) in a co-culture of the human HT1080 fibrosarcoma and U937 monocytic-like cell lines. However, whether CD147 influences anti-angiogenic factors was not known. We now show that relative to single cultures, the co-culture of these cells not only enhanced pro-angiogenic factors but also decreased the anti-angiogenic factors endostatin and thrombospondin-1 (Tsp-1), generally increasing the angiogenic potential as measured by a wound assay. Using anti-CD147 antibody, CD147 small interfering RNA (siRNA), and recombinant CD147, we demonstrate that CD147 hormetically regulates the generation of endostatin but has no effect on Tsp-1. Since endostatin is cleaved from collagen XVIII (Col18A), we applied different protease inhibitors and established that MMP-9 and proteasome 20S, but not cathepsins, are responsible for endostatin generation. MMP-9 and proteasome 20S collaborate to synergistically enhance endostatin generation, and in a non-cellular system, CD147 enhanced MMP-9 activity and hormetically regulated proteasome 20S activity. Serum samples obtained from RA patients and healthy controls mostly corroborated these findings, indicating clinical relevance. Cumulatively, these findings suggest that secreted CD147 mediates a possibly allosteric effect on MMP-9 and proteasome 20S activities and can serve as a switch that turns angiogenesis on or off, depending on its ambient concentrations in the microenvironment.
Collapse
Affiliation(s)
- Maya M. Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Hala Sabtan
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | | | - Amir Haddad
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tal Gazitt
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Joy Feld
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gleb Slobodin
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Rheumatology, Bnai Zion Medical Center, Haifa, Israel
| | - Adi Kibari
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Muna Elias
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Devy Zisman
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michal A. Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Keyvani V, Ghale-Noie ZN, Mollazadeh S, Mahmoudian RA, Ghorbani E, Naderi H, Khazaei M, Hassanian SM, Ferns GA, Avan A, Anvari K. Recent Progress in the Application of Exosome Analysis in Ovarian Cancer Management. Curr Cancer Drug Targets 2024; 24:920-929. [PMID: 38284712 DOI: 10.2174/0115680096281906231213055422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 01/30/2024]
Abstract
Exosomes are very small (nano-sized) vesicles participating in tumor development by involvement in intercellular communication mediated by transferring biocomponents. Exosomes appear to play vital roles in various cancer development, such as ovarian cancer, a common malignancy in women. Several hallmarks of ovarian cancer are reported to be affected by the exosomemediated cellular cross-talk, including modulating peritoneal dissemination and chemoresistance. Since the expression of some biomolecules, such as miRNAs and mRNA, is changed in ovarian cancer, these exo-biomolecules can be applied as prognostic, diagnostic, and therapeutic biomarkers. Also, the selective loading of specific chemotherapeutic agents into exosomes highlights these biocarries as potential delivery devices. Exosomes could be artificially provided and engineered to better target the site of interest in ovarian cancer. In the present review, we summarize the notable achievement of exosome application in ovarian cancer management to gain applicable transitional insight against this cancer.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Hamid Naderi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, 4059, Australia
- College of Medicine and Health Sciences, National University of Science and Technology, Sultanate of Oman
| | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Khromov T, Fischer L, Leha A, Bremmer F, Fischer A, Schliephake H, Rahat MA, Brockmeyer P. Combined Biomarker System Predicts Prognosis in Patients with Metastatic Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:4924. [PMID: 37894290 PMCID: PMC10605069 DOI: 10.3390/cancers15204924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Metastatic oral squamous cell carcinoma (OSCC) is associated with poor patient prognosis. Metastasis is a complex process involving various proteins, tumor cell alterations, including changes attributable to the epithelial-to-mesenchymal transition (EMT) process, and interactions with the tumor microenvironment (TME). In this study, we investigate a combined protein marker system consisting of connexin 43 (Cx43), EMMPRIN (CD147), E-cadherin, and vimentin, with a focus on their roles in the invasive metastatic progression of OSCC and their potential utility in predicting prognosis. METHODS We conducted an immunohistochemical analysis to assess the protein expression profiles of Cx43, EMMPRIN, E-cadherin, and vimentin using tissue samples obtained from 24 OSCC patients. The metastatic process was mapped through different regions of interest (ROIs), including adjacent healthy oral mucosa (OM), center of primary OSCC, invasive front (IF), and local cervical lymph node metastases (LNM). The primary clinical endpoints were disease-free survival (DFS) and overall survival (OS). RESULTS Substantial changes in the expression profiles of the different marker proteins were observed among the different ROIs, with all p-values < 0.05, signifying statistical significance. Multivariable Cox regression analysis results showed a significant effect of increased EMMPRIN expression toward the IF on DFS (p = 0.019) and OS (p = 0.023). Furthermore, the combined predictive analysis showed a significant predictive value of the marker system for DFS (p = 0.0017) and OS (p = 0.00044). CONCLUSIONS The combined marker system exhibited a significant ability to predict patient prognosis. An increase in EMMPRIN expression toward the IF showed the strongest effect and could be an interesting new antimetastatic therapy approach.
Collapse
Affiliation(s)
- Tatjana Khromov
- Department of Clinical Chemistry, University Medical Center Goettingen, 37075 Goettingen, Germany; (T.K.); (A.F.)
| | - Lucas Fischer
- Department of Urology, University Medical Center Goettingen, 37075 Goettingen, Germany;
| | - Andreas Leha
- Department of Medical Statistics, University Medical Center Goettingen, 37075 Goettingen, Germany;
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Goettingen, 37075 Goettingen, Germany;
| | - Andreas Fischer
- Department of Clinical Chemistry, University Medical Center Goettingen, 37075 Goettingen, Germany; (T.K.); (A.F.)
| | - Henning Schliephake
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany;
| | - Michal Amit Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel;
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany;
| |
Collapse
|
17
|
Lee YJ, Chae S, Choi D. Monitoring of single extracellular vesicle heterogeneity in cancer progression and therapy. Front Oncol 2023; 13:1256585. [PMID: 37823055 PMCID: PMC10562638 DOI: 10.3389/fonc.2023.1256585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Cancer cells actively release lipid bilayer extracellular vesicles (EVs) that affect their microenvironment, favoring their progression and response to extracellular stress. These EVs contain dynamically regulating molecular cargos (proteins and nucleic acids) selected from their parental cells, representing the active biological functionality for cancer progression. These EVs are heterogeneous according to their size and molecular composition and are usually defined based on their biogenetic mechanisms, such as exosomes and ectosomes. Recent single EV detection technologies, such as nano-flow cytometry, have revealed the dynamically regulated molecular diversity within bulk EVs, indicating complex EV heterogeneity beyond classical biogenetic-based EV subtypes. EVs can be changed by internal oncogenic transformation or external stress such as chemotherapy. Among the altered combinations of EV subtypes, only a specific set of EVs represents functional molecular cargo, enabling cancer progression and immune modulation in the tumor microenvironment through their altered targeting efficiency and specificity. This review covers the heterogeneity of EVs discovered by emerging single EV analysis technologies, which reveal the complex distribution of EVs affected by oncogenic transformation and chemotherapy. Encouragingly, these unique molecular signatures in individual EVs indicate the status of their parental cancer cells. Thus, precise molecular profiling of circulating single EVs would open new areas for in-depth monitoring of the cancer microenvironment and shed new light on non-invasive diagnostic approaches using liquid biopsy.
Collapse
Affiliation(s)
| | | | - Dongsic Choi
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam, Republic of Korea
| |
Collapse
|
18
|
Arai K, Kubota A, Iwasaki T, Sonoda A, Sakane J. S100A8 and S100A9 are associated with endometrial shedding during menstruation. Med Mol Morphol 2023; 56:194-205. [PMID: 37085626 DOI: 10.1007/s00795-023-00355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Matrix metalloproteinases (MMPs) and their major source, endometrial stromal cells (ESCs), play important roles in menstruation. However, other mechanisms in endometrial shedding may be unexplored. This study focused on four proteins: S100A8 and S100A9 (alarmins) are binding partners and induce MMPs, MMP-3 cycle-dependently plays a key role in the proteolytic cascade, and CD147, which has S100A9 as its ligand, induces MMPs. Immunostaining for these proteins was performed on 118 resected specimens. The percentage and location of each positive reaction in ESCs were measured and compared using Image J. The influence of leukocytes on S100A8 or S100A9 immunopositivity was also examined. From the premenstrual phase, S100A8 and MMP-3 began to have overlapping expressions in ESCs of the superficial layer, and ESC detachment was found within these sites. S100A9 was expressed from the late secretory phase and CD147 already from earlier. Later, the expression sites of S100A9 and CD147 included those of S100A8. Before menstruation, S100A8 or S100A9 expression was not affected by leukocytes. These results suggest that the local formation of S100A8/S100A9 complex, which occurs specifically in ESCs upon progesterone withdrawal, induces the local expression of MMP-3 and serves as a switch to the lysis phase.
Collapse
Affiliation(s)
- Kazumori Arai
- Department of Pathology, Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan.
| | - Aki Kubota
- Department of Pathology, Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
| | - Tomohiro Iwasaki
- Department of Pathology, Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
| | - Akihiro Sonoda
- Department of Clinical Research, Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
| | - Junichi Sakane
- Department of Pathology, Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
| |
Collapse
|
19
|
Barthe M, Hertereau L, Lamghari N, Osman-Ponchet H, Braud VM. Receptors and Cofactors That Contribute to SARS-CoV-2 Entry: Can Skin Be an Alternative Route of Entry? Int J Mol Sci 2023; 24:ijms24076253. [PMID: 37047226 PMCID: PMC10094153 DOI: 10.3390/ijms24076253] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
To prevent the spread of SARS-CoV-2, all routes of entry of the virus into the host must be mapped. The skin is in contact with the external environment and thus may be an alternative route of entry to transmission via the upper respiratory tract. SARS-CoV-2 cell entry is primarily dependent on ACE2 and the proteases TMPRSS2 or cathepsin L but other cofactors and attachment receptors have been identified that may play a more important role in specific tissues such as the skin. The continued emergence of new variants may also alter the tropism of the virus. In this review, we summarize current knowledge on these receptors and cofactors, their expression profile, factors modulating their expression and their role in facilitating SARS-CoV-2 infection. We discuss their expression in the skin and their possible involvement in percutaneous infection since the presence of the virus has been detected in the skin.
Collapse
Affiliation(s)
- Manon Barthe
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
| | - Leslie Hertereau
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
| | - Noura Lamghari
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
| | - Hanan Osman-Ponchet
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
- Correspondence: (H.O.-P.); (V.M.B.)
| | - Véronique M. Braud
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- Correspondence: (H.O.-P.); (V.M.B.)
| |
Collapse
|
20
|
Feigelman G, Simanovich E, Brockmeyer P, Rahat MA. Knocking-Down CD147/EMMPRIN Expression in CT26 Colon Carcinoma Forces the Cells into Cellular and Angiogenic Dormancy That Can Be Reversed by Interactions with Macrophages. Biomedicines 2023; 11:biomedicines11030768. [PMID: 36979746 PMCID: PMC10044868 DOI: 10.3390/biomedicines11030768] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Metastasis in colorectal cancer is responsible for most of the cancer-related deaths. For metastasis to occur, tumor cells must first undergo the epithelial-to-mesenchymal transition (EMT), which is driven by the transcription factors (EMT-TFs) Snail, Slug twist1, or Zeb1, to promote their migration. In the distant organs, tumor cells may become dormant for years, until signals from their microenvironment trigger and promote their outgrowth. Here we asked whether CD147/EMMPRIN controls entry and exit from dormancy in the aggressive and proliferative (i.e., non-dormant) CT26 mouse colon carcinoma cells, in its wild-type form (CT26-WT cells). To this end, we knocked down EMMPRIN expression in CT26 cells (CT26-KD), and compared their EMT and cellular dormancy status (e.g., proliferation, pERK/pP38 ratio, vimentin expression, expression of EMT-TFs and dormancy markers), and angiogenic dormancy (e.g., VEGF and MMP-9 secretion, healing of the wounded bEND3 mouse endothelial cells), to the parental cells (CT26-WT). We show that knocking-down EMMPRIN expression reduced the pERK/pP38 ratio, enhanced the expression of vimentin, the EMT-TFs and the dormancy markers, and reduced the proliferation and angiogenic potential, cumulatively indicating that cells were pushed towards dormancy. When macrophages were co-cultured with both types of CT26 cells, the CT26-WT cells increased their angiogenic potential, but did not change their proliferation, state of EMT, or dormancy, whereas the CT26-KD cells exhibited values mostly similar to those of the co-cultured CT26-WT cells. Addition of recombinant TGFβ or EMMPRIN that simulated the presence of macrophages yielded similar results. Combinations of low concentrations of TGFβ and EMMPRIN had a minimal additive effect only in the CT26-KD cells, suggesting that they work along the same signaling pathway. We conclude that EMMPRIN is important as a gatekeeper that prevents cells from entering a dormant state, and that macrophages can promote an exit from dormancy.
Collapse
Affiliation(s)
- Gabriele Feigelman
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Elina Simanovich
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel
| | - Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Michal A. Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
- Correspondence:
| |
Collapse
|
21
|
Bontempo A, Chirino A, Heidari A, Boparai S, Arora S, Ruiz S, Antonson SA, Kawai T, Cayabyab MJ. Assessment of SARS-CoV-2 entry in gingival epithelial cells expressing CD147. Eur J Oral Sci 2023; 131:e12906. [PMID: 36412995 DOI: 10.1111/eos.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
SARS-CoV-2, the causative agent of the debilitating COVID-19, is mainly transmitted by first infecting nose and lung epithelial cells. The mouth is also believed to be a viral portal site since certain types of oral epithelial cells were shown to express ACE2 receptor. However, it is unclear whether oral epithelial cells are directly infected by SARS-CoV-2. In this study, we addressed whether epithelial cells of the oral gingiva were susceptible to infection. Interestingly, we found that KRT5+ and KRT18+ gingival epithelial cells do not express ACE2 but highly express TMPRSS2 and Furin as well as CD147, which was proposed to be an alternative receptor for SARS-CoV-2. However, using SARS-CoV-2 pseudoviruses containing the spike protein, we observed that gingival epithelial cells were not susceptible to infection due to the lack of ACE2 expression and the inability of CD147 to mediate viral entry. These results strongly suggest that epithelial cells from the gingiva are not susceptible to SARS-CoV-2 and CD147 is not a receptor for the SARS-CoV-2 virus. The susceptibility of oral cells from other oral structures under healthy and pathological conditions still needs to be confirmed to better understand the role of the oral cavity in COVID-19 infection and transmission.
Collapse
Affiliation(s)
- Alexander Bontempo
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA
| | - Alexandra Chirino
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA
| | - Alireza Heidari
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA
| | - Saurav Boparai
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA.,Dr. Kiran C. Patel College of Osteopathic Medicine, NOVA Southeastern University, Fort Lauderdale, Florida, USA
| | - Saher Arora
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA.,Halmos College of Arts and Sciences, NOVA Southeastern University, Fort Lauderdale, Florida, USA
| | - Sunniva Ruiz
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA
| | - Sibel A Antonson
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA
| | - Mark J Cayabyab
- Department of Oral Science and Translational Research, Health Professions Division, College of Dental Medicine, Fort Lauderdale, Florida, USA
| |
Collapse
|
22
|
Gong X, Chi H, Strohmer DF, Teichmann AT, Xia Z, Wang Q. Exosomes: A potential tool for immunotherapy of ovarian cancer. Front Immunol 2023; 13:1089410. [PMID: 36741380 PMCID: PMC9889675 DOI: 10.3389/fimmu.2022.1089410] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Ovarian cancer is a malignant tumor of the female reproductive system, with a very poor prognosis and high mortality rates. Chemotherapy and radiotherapy are the most common treatments for ovarian cancer, with unsatisfactory results. Exosomes are a subpopulation of extracellular vesicles, which have a diameter of approximately 30-100 nm and are secreted by many different types of cells in various body fluids. Exosomes are highly stable and are effective carriers of immunotherapeutic drugs. Recent studies have shown that exosomes are involved in various cellular responses in the tumor microenvironment, influencing the development and therapeutic efficacy of ovarian cancer, and exhibiting dual roles in inhibiting and promoting tumor development. Exosomes also contain a variety of genes related to ovarian cancer immunotherapy that could be potential biomarkers for ovarian cancer diagnosis and prognosis. Undoubtedly, exosomes have great therapeutic potential in the field of ovarian cancer immunotherapy. However, translation of this idea to the clinic has not occurred. Therefore, it is important to understand how exosomes could be used in ovarian cancer immunotherapy to regulate tumor progression. In this review, we summarize the biomarkers of exosomes in different body fluids related to immunotherapy in ovarian cancer and the potential mechanisms by which exosomes influence immunotherapeutic response. We also discuss the prospects for clinical application of exosome-based immunotherapy in ovarian cancer.
Collapse
Affiliation(s)
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Dorothee Franziska Strohmer
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany,*Correspondence: Zhijia Xia, ; Qin Wang,
| | - Qin Wang
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China,*Correspondence: Zhijia Xia, ; Qin Wang,
| |
Collapse
|
23
|
Li Q, Tie Y, Alu A, Ma X, Shi H. Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:31. [PMID: 36646686 PMCID: PMC9842704 DOI: 10.1038/s41392-022-01297-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Head and neck cancer (HNC) is malignant, genetically complex and difficult to treat and is the sixth most frequent cancer, with tobacco, alcohol and human papillomavirus being major risk factors. Based on epigenetic data, HNC is remarkably heterogeneous, and treatment remains challenging. There is a lack of significant improvement in survival and quality of life in patients with HNC. Over half of HNC patients experience locoregional recurrence or distal metastasis despite the current multiple traditional therapeutic strategies and immunotherapy. In addition, resistance to chemotherapy, radiotherapy and some targeted therapies is common. Therefore, it is urgent to explore more effective and tolerable targeted therapies to improve the clinical outcomes of HNC patients. Recent targeted therapy studies have focused on identifying promising biomarkers and developing more effective targeted therapies. A well understanding of the pathogenesis of HNC contributes to learning more about its inner association, which provides novel insight into the development of small molecule inhibitors. In this review, we summarized the vital signaling pathways and discussed the current potential therapeutic targets against critical molecules in HNC, as well as presenting preclinical animal models and ongoing or completed clinical studies about targeted therapy, which may contribute to a more favorable prognosis of HNC. Targeted therapy in combination with other therapies and its limitations were also discussed.
Collapse
Affiliation(s)
- Qingfang Li
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Rupar K, Isidor MS, Argemi-Muntadas L, Agueda-Oyarzabal M, Plucińska K, Brown EL, Mattanovich M, Bossi S, Tozzi M, Tandio D, Petersen PSS, Henriksen TI, Trošt K, Hansen JB, Gerhart-Hines Z, Nielsen S, Moritz T, Emanuelli B. Full activation of thermogenesis in brown adipocytes requires Basigin action. FEBS J 2023; 290:2673-2691. [PMID: 36595342 DOI: 10.1111/febs.16716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/18/2022] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Exploring mechanisms responsible for brown adipose tissue's (BAT) high metabolic activity is crucial to exploit its energy-dissipating ability for therapeutic purposes. Basigin (Bsg), a multifunctional highly glycosylated transmembrane protein, was recently proposed as one of the 98 critical markers allowing to distinguish 'white' and 'brown' adipocytes, yet its function in thermogenic brown adipocytes is unknown. Here, we report that Bsg is negatively associated with obesity in mice. By contrast, Bsg expression increased in the mature adipocyte fraction of BAT upon cold acclimation. Additionally, Bsg levels were highly induced during brown adipocyte maturation in vitro and were further increased upon β-adrenergic stimulation in a HIF-1α-dependent manner. siRNA-mediated Bsg gene silencing in cultured brown adipocytes did not impact adipogenesis nor mitochondrial function. However, a significant decrease in mitochondrial respiration, lipolysis and Ucp1 transcription was observed in adipocytes lacking Bsg, when activated by norepinephrine. Furthermore, using gas chromatography/mass spectrometry-time-of-flight analysis to assess the composition of cellular metabolites, we demonstrate that brown adipocytes lacking Bsg have lower levels of intracellular lactate and acetoacetate. Bsg was additionally required to regulate intracellular AcAc and tricarboxylic acid cycle intermediate levels in NE-stimulated adipocytes. Our study highlights the critical role of Bsg in active brown adipocytes, possibly by controlling cellular metabolism.
Collapse
Affiliation(s)
- Kaja Rupar
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Marie S Isidor
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lidia Argemi-Muntadas
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Marina Agueda-Oyarzabal
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kaja Plucińska
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Erin L Brown
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Matthias Mattanovich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Simone Bossi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Marco Tozzi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - David Tandio
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Patricia S S Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Tora I Henriksen
- Center for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kajetan Trošt
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jacob B Hansen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Søren Nielsen
- Center for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
25
|
Khani S, Tafaroji J, Yaghoubi M, Emami Kazemabad MJ, Hejazi SA. Prevalence of COVID-19 outcomes in patients referred to opioid agonist treatment centers. Front Pharmacol 2023; 14:1105176. [PMID: 37033605 PMCID: PMC10076798 DOI: 10.3389/fphar.2023.1105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Background: Coronavirus disease (COVID-19) is a mild to severe infectious respiratory illness caused by the SARS-CoV-2 virus. Based on the numerous pieces of evidence regarding the role of opioids in immune function, viral replication, and virus-mediated pathology, we decided to assess the incidence and severity of COVID-19 outcomes in people undergoing opioid maintenance treatment. Methods: This is a prospective, descriptive, multi-center study that included 452 patients undergoing maintenance treatment in opioid agonist treatment (OAT) clinics in different cities of Iran. Demographic information, underlying disease, history of maintenance treatment, type of drug used, history of addiction, smoking, and the kind of substance abused, were recorded. A physician evaluated the COVID-19 symptoms, and the severity of the disease was defined based on the number of observed symptoms. Results: The results have not shown any significant difference in the severity of COVID-19 symptoms in different nationalities, gender, and treatment groups. Furthermore, the history of drug abuse, including time and type of abuse and smoking, has not indicated any significant association with the occurrence of symptoms. Only the severity of COVID-19 in the mentioned cities (first and second follow-up: p < 0.001) and individuals with a history of underlying disease (first follow-up: p = 0.020; second follow-up: p = 0.043) were significantly different. Conclusion: Our results have demonstrated that the severity of symptoms in people with the underlying disease was significantly higher than in others. But there is no association between sex, race, treatment groups, and abuse history with the severity of COVID-19 symptoms in methadone maintenance treatment (MMT) patients.
Collapse
Affiliation(s)
- Samira Khani
- Neuroscience Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Javad Tafaroji
- Pediatric Medicine Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mehdi Yaghoubi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Seyed Amir Hejazi
- Neuroscience Research Center, Qom University of Medical Sciences, Qom, Iran
- *Correspondence: Seyed Amir Hejazi,
| |
Collapse
|
26
|
The protective effect of low-dose minocycline on brain microvascular ultrastructure in a rodent model of subarachnoid hemorrhage. Histochem Cell Biol 2023; 159:91-114. [PMID: 36153470 PMCID: PMC9899762 DOI: 10.1007/s00418-022-02150-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 02/07/2023]
Abstract
The multifaceted nature of subarachnoid hemorrhage (SAH) pathogenesis is poorly understood. To date, no pharmacological agent has been found to be efficacious for the prevention of brain injury when used for acute SAH intervention. This study was undertaken to evaluate the beneficial effects of low-dose neuroprotective agent minocycline on brain microvascular ultrastructures that have not been studied in detail. We studied SAH brain injury using an in vivo prechiasmatic subarachnoid hemorrhage rodent model. We analyzed the qualitative and quantitative ultrastructural morphology of capillaries and surrounding neuropil in the rodent brains with SAH and/or minocycline administration. Here, we report that low-dose minocycline (1 mg/kg) displayed protective effects on capillaries and surrounding cells from significant SAH-induced changes. Ultrastructural morphology analysis revealed also that minocycline stopped endothelial cells from abnormal production of vacuoles and vesicles that compromise blood-brain barrier (BBB) transcellular transport. The reported ultrastructural abnormalities as well as neuroprotective effects of minocycline during SAH were not directly mediated by inhibition of MMP-2, MMP-9, or EMMPRIN. However, SAH brain tissue treated with minocycline was protected from development of other morphological features associated with oxidative stress and the presence of immune cells in the perivascular space. These data advance the knowledge on the effect of SAH on brain tissue ultrastructure in an SAH rodent model and the neuroprotective effect of minocycline when administered in low doses.
Collapse
|
27
|
Huang D, Rao D, Jin Q, Lai M, Zhang J, Lai Z, Shen H, Zhong T. Role of CD147 in the development and diagnosis of hepatocellular carcinoma. Front Immunol 2023; 14:1149931. [PMID: 37090718 PMCID: PMC10115957 DOI: 10.3389/fimmu.2023.1149931] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and the third leading cause of cancer-related deaths worldwide. HCC is characterized by insidious onset, and most patients are diagnosed at an advanced stage with a poor prognosis. Identification of biomarkers for HCC onset and progression is imperative to development of effective diagnostic and therapeutic strategies. CD147 is a glycoprotein that is involved in tumor cell invasion, metastasis and angiogenesis through multiple mechanisms. In this review, we describe the molecular structure of CD147 and its role in regulating HCC invasion, metastasis and angiogenesis. We highlight its potential as a diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dingyu Rao
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qing Jin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mi Lai
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiali Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Zhonghong Lai
- Department of traumatology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Haibin Shen
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Haibin Shen, ; Tianyu Zhong,
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Haibin Shen, ; Tianyu Zhong,
| |
Collapse
|
28
|
ACE2-Independent Alternative Receptors for SARS-CoV-2. Viruses 2022; 14:v14112535. [PMID: 36423144 PMCID: PMC9692829 DOI: 10.3390/v14112535] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is highly contagious and remains a major public health challenge despite the availability of effective vaccines. SARS-CoV-2 enters cells through the binding of its spike receptor-binding domain (RBD) to the human angiotensin-converting enzyme 2 (ACE2) receptor in concert with accessory receptors/molecules that facilitate viral attachment, internalization, and fusion. Although ACE2 plays a critical role in SARS-CoV-2 replication, its expression profiles are not completely associated with infection patterns, immune responses, and clinical manifestations. Additionally, SARS-CoV-2 infects cells that lack ACE2, and the infection is resistant to monoclonal antibodies against spike RBD in vitro, indicating that some human cells possess ACE2-independent alternative receptors, which can mediate SARS-CoV-2 entry. Here, we discuss these alternative receptors and their interactions with SARS-CoV-2 components for ACE2-independent viral entry. These receptors include CD147, AXL, CD209L/L-SIGN/CLEC4M, CD209/DC-SIGN/CLEC4L, CLEC4G/LSECtin, ASGR1/CLEC4H1, LDLRAD3, TMEM30A, and KREMEN1. Most of these receptors are known to be involved in the entry of other viruses and to modulate cellular functions and immune responses. The SARS-CoV-2 omicron variant exhibits altered cell tropism and an associated change in the cell entry pathway, indicating that emerging variants may use alternative receptors to escape the immune pressure against ACE2-dependent viral entry provided by vaccination against RBD. Understanding the role of ACE2-independent alternative receptors in SARS-CoV-2 viral entry and pathogenesis may provide avenues for the prevention of infection by SARS-CoV-2 variants and for the treatment of COVID-19.
Collapse
|
29
|
Cheng Z, Zhang X, Zhang Y, Li L, Chen P. Role of MMP-2 and CD147 in kidney fibrosis. Open Life Sci 2022; 17:1182-1190. [PMID: 36185410 PMCID: PMC9482425 DOI: 10.1515/biol-2022-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Matrix metalloproteinase-2 (MMP-2) and cluster of differentiation 147 (CD147) both play important roles in the development of kidney fibrosis, and CD147 can induce the production and activation of MMP-2. In the early stage of kidney fibrosis, MMP-2 promotes extracellular matrix (ECM) production and accelerates the development of kidney fibrosis, while in the advanced stage, MMP-2 activity decreases, leading to reduced ECM degradation and making it difficult to alleviate kidney fibrosis. The reason for the decrease in MMP-2 activity in the advanced stage is still unclear. On the one hand, it may be related to hypoxia and endocytosis, which lead to changes in the expression of MMP-2-related active regulatory molecules; on the other hand, it may be related to insufficient CD147 function. At present, the specific process by which CD147 is involved in the regulation of MMP-2 activity is not completely clear, and further in-depth studies are needed to clarify the roles of both factors in the pathophysiology of kidney fibrosis.
Collapse
Affiliation(s)
- Zhengyuan Cheng
- Department of Internal Medicine, Ma'anshan People's Hospital Affiliated to Medical School of Southeast University, Hubei Road 45, Huashan District, Ma'anshan 243099, Anhui Province, China
| | - Xiaojuan Zhang
- Department of Nephrology, Jinling Hospital Affiliated to Nanjing University, Zhongshan East Road 305, Xuanwu District, Nanjing 210008, Jiangsu Province, China
| | - Yu Zhang
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing 210009, Jiangsu Province, China
| | - Li Li
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing 210009, Jiangsu Province, China
| | - Pingsheng Chen
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
30
|
Ubiquitin-specific protease TRE17/USP6 promotes tumor cell invasion through the regulation of glycoprotein CD147 intracellular trafficking. J Biol Chem 2022; 298:102335. [PMID: 35926707 PMCID: PMC9440431 DOI: 10.1016/j.jbc.2022.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
Abstract
Disordered expression and distribution of plasma membrane proteins at the cell surface leads to diverse malignant phenotypes in tumors, including cell invasion. The ubiquitin-specific protease TRE17/USP6, an oncogene identified in Ewing sarcoma, is highly expressed in several cancers and locally aggressive tumor-like lesions. We have previously demonstrated that TRE17 regulates the trafficking of plasma membrane proteins that enter cells via clathrin-independent endocytosis (CIE); TRE17 prevents CIE cargo proteins from being targeted to lysosomes for degradation by deubiquitylating them. However, functional insights into the effects of TRE17-mediated CIE cargo trafficking on cell invasion remain unknown. Here, we show that increased expression of TRE17 enhances invasiveness of the human sarcoma cell line HT-1080 by elevating the cell surface levels of the membrane glycoprotein CD147, which plays a central role in tumor progression. We demonstrate overexpression of TRE17 decreases ubiquitylated CD147, which is accompanied by suppression of CD147 transport to lysosomes, resulting in the stabilization and increase of cell surface-localized CD147. On the other hand, we show knockdown of TRE17 decreases cell surface CD147, which is coupled with reduced production of matrix metalloproteinases (MMPs), the enzymes responsible for extracellular matrix degradation. Furthermore, we demonstrate that inhibition of CD147 by a specific inhibitor alleviated the TRE17-promoted tumor cell invasion. We therefore propose a model for the pathogenesis of TRE17-driven tumors in which TRE17 increases CD147 at the cell surface by preventing its lysosomal degradation, which in turn enhances MMP synthesis and matrix degradation, thereby promoting tumor cell invasion.
Collapse
|
31
|
Fahs A, Hussein N, Zalzali H, Ramadan F, Ghamloush F, Tamim H, El Homsi M, Badran B, Boulos F, Tawil A, Ghayad SE, Saab R. CD147 Promotes Tumorigenesis via Exosome-Mediated Signaling in Rhabdomyosarcoma. Cells 2022; 11:cells11152267. [PMID: 35892564 PMCID: PMC9331498 DOI: 10.3390/cells11152267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood soft-tissue tumor, with propensity for local invasion and distant metastasis. Exosomes are secreted vesicles that mediate paracrine signaling by delivering functional proteins and miRNA to recipient cells. The transmembrane protein CD147, also known as Basigin or EMMPRIN, is enriched in various tumor cells, as well as in tumor-derived exosomes, and has been correlated with poor prognosis in several types of cancer, but has not been previously investigated in RMS. We investigated the effects of CD147 on RMS cell biology and paracrine signaling, specifically its contribution to invasion and metastatic phenotype. CD147 downregulation diminishes RMS cell invasion and inhibits anchorage-independent growth in vitro. While treatment of normal fibroblasts with RMS-derived exosomes results in a significant increase in proliferation, migration, and invasion, these effects are reversed when using exosomes from CD147-downregulated RMS cells. In human RMS tissue, CD147 was expressed exclusively in metastatic tumors. Altogether, our results demonstrate that CD147 contributes to RMS tumor cell aggressiveness, and is involved in modulating the microenvironment through RMS-secreted exosomes. Targeted inhibition of CD147 reduces its expression levels within the isolated exosomes and reduces the capacity of these exosomes to enhance cellular invasive properties.
Collapse
Affiliation(s)
- Assil Fahs
- Department of Biology, Faculty of Science II, Lebanese University, Fanar P.O. Box 90656, Lebanon; (A.F.); (F.R.)
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat 1003, Lebanon; (N.H.); (M.E.H.); (B.B.)
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nader Hussein
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat 1003, Lebanon; (N.H.); (M.E.H.); (B.B.)
| | - Hasan Zalzali
- Department of Pediatrics & Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (H.Z.); (F.G.)
| | - Farah Ramadan
- Department of Biology, Faculty of Science II, Lebanese University, Fanar P.O. Box 90656, Lebanon; (A.F.); (F.R.)
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat 1003, Lebanon; (N.H.); (M.E.H.); (B.B.)
| | - Farah Ghamloush
- Department of Pediatrics & Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (H.Z.); (F.G.)
| | - Hani Tamim
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
- College of Medicine, Alfaisal University, Riyadh 11564, Saudi Arabia
| | - Mahmoud El Homsi
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat 1003, Lebanon; (N.H.); (M.E.H.); (B.B.)
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat 1003, Lebanon; (N.H.); (M.E.H.); (B.B.)
| | - Fouad Boulos
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (F.B.); (A.T.)
| | - Ayman Tawil
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (F.B.); (A.T.)
| | - Sandra E. Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Fanar P.O. Box 90656, Lebanon; (A.F.); (F.R.)
- C2VN, INSERM 1263, INRAE 1260, Aix-Marseille University, CEDEX 5, 13385 Marseille, France
- Correspondence: (S.E.G.); (R.S.); Tel.: +33-491835601 (S.E.G.); +961-1-350000 (ext. 4780) (R.S.); Fax: +33-491835602 (S.E.G.); +961-1-377384 (R.S.)
| | - Raya Saab
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Pediatrics & Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (H.Z.); (F.G.)
- Correspondence: (S.E.G.); (R.S.); Tel.: +33-491835601 (S.E.G.); +961-1-350000 (ext. 4780) (R.S.); Fax: +33-491835602 (S.E.G.); +961-1-377384 (R.S.)
| |
Collapse
|
32
|
Transcription factor p53-mediated activation of miR-519d-3p and downregulation of E2F1 attenuates prostate cancer growth and metastasis. Cancer Gene Ther 2022; 29:1001-1011. [PMID: 34799723 DOI: 10.1038/s41417-021-00405-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023]
Abstract
Prostate cancer (PCa) is a commonly diagnosed malignancy in men. The transcription factor p53, a well-known cancer suppressor, has been extensively analyzed in the progression of many tumor types, but its involvement in PCa remains not fully understood. Hence, this study aims to explore the possible molecular mechanism underlying p53 in the growth and metastasis of PCa. Based on bioinformatics analysis findings of GEPIA and starBase databases, p53 was demonstrated to be involved in the development of PCa by transcriptionally activating microRNA-519d-3p (miR-519d-3p) expression to suppress the expression of E2F transcription factor 1 (E2F1) and CD147. In order to verify this finding, clinically-obtained PCa tumor tissues were enrolled and commercially-purchased PCa cell lines were used to detect the cell viability, cycle, and apoptosis, as well as invasion and migration by CCK-8, flow cytometry, and Transwell assays respectively. The results of clinical tissue experiments and in vitro cell experiments showed that miR-519d-3p and p53 were poorly-expressed in PCa tissues and cell lines, while E2F1 was highly-expressed. Overexpression of miR-519d-3p led to inhibited PCa cell proliferation, invasion and migration, and p53 overexpression was found to promote miR-519d-3p expression to suppress the malignant characteristics of PCa cells, while the additional E2F1 overexpression restored the malignant traits. Moreover, ChIP analysis and dual-luciferase reporter assay confirmed the interactions among p53, miR-519d-3p, and E2F1. Mechanistically, it was found that p53 transcriptionally activated miR-519d-3p to suppress E2F1 expression. Finally, the in vitro results were further validated by in vivo experiments, which showed that miR-519d-3p prevents tumorigenesis and lymph node metastasis of PCa in nude mice via negatively regulation of E2F1 and CD147. Taken together, the findings uncover that the transcription factor p53 could upregulate miR-519d-3p expression to directly suppress the expression of E2F1, thus inhibiting PCa growth and metastasis. It highlights a novel therapeutic strategy against PCa based on the p53/miR-519d-3p/E2F1 regulatory pathway.
Collapse
|
33
|
Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. Int J Mol Sci 2022; 23:ijms23136894. [PMID: 35805895 PMCID: PMC9267107 DOI: 10.3390/ijms23136894] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.
Collapse
Affiliation(s)
- Lourdes Chuliá-Peris
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Cristina Carreres-Rey
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Julián Carretero
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Javier Pereda
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
- Correspondence:
| |
Collapse
|
34
|
Li R, Zhu X, Zhou P, Qiao Y, Li Y, Xu Y, Shi X. Generation of a High-Affinity Nanobody Against CD147 for Tumor Targeting and Therapeutic Efficacy Through Conjugating Doxorubicin. Front Immunol 2022; 13:852700. [PMID: 35603157 PMCID: PMC9114487 DOI: 10.3389/fimmu.2022.852700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
CD147, a glycosylated transmembrane protein in the immunoglobulin superfamily, is overexpressed on the surfaces of various tumor cells and promotes cancer cell proliferation, invasion, and metastasis. Nanobodies, characterized by small sizes, high affinities and specificities, and low immunogenicities, are promising diagnostic and therapeutic tools. However, there are few reports on nanobodies that specifically target CD147. In this work, a specific anti-CD147 nanobody has been successfully identified using phage display technology. The tumor target and antitumor effects have also been detected in different CD147-positive tumors in in vitro and in vivo assays, respectively. Meanwhile, it has a synergistic effect for inhibiting 4T1-bearing mice through conjugating doxorubicin. It may afford new strategies for cancer therapies.
Collapse
Affiliation(s)
- Rifei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xinjie Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.,Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Peng Zhou
- Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuehua Qiao
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, China
| | - Yinqian Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yice Xu
- Department of Otolaryngology-Head and Neck Surgery, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China
| | - Xi Shi
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
35
|
Immunometabolic Markers in a Small Patient Cohort Undergoing Immunotherapy. Biomolecules 2022; 12:biom12050716. [PMID: 35625643 PMCID: PMC9139165 DOI: 10.3390/biom12050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Although the discovery of immune checkpoints was hailed as a major breakthrough in cancer therapy, generating a sufficient response to immunotherapy is still limited. Thus, the objective of this exploratory, hypothesis-generating study was to identify potentially novel peripheral biomarkers and discuss the possible predictive relevance of combining scarcely investigated metabolic and hormonal markers with immune subsets. Sixteen markers that differed significantly between responders and non-responders were identified. In a further step, the correlation with progression-free survival (PFS) and false discovery correction (Benjamini and Hochberg) revealed potential predictive roles for the immune subset absolute lymphocyte count (rs = 0.51; p = 0.0224 *), absolute basophil count (rs = 0.43; p = 0.04 *), PD-1+ monocytes (rs = −0.49; p = 0.04 *), hemoglobin (rs = 0.44; p = 0.04 *), metabolic markers LDL (rs = 0.53; p = 0.0224 *), free androgen index (rs = 0.57; p = 0.0224 *) and CRP (rs = −0.46; p = 0.0352 *). The absolute lymphocyte count, LDL and free androgen index were the most significant individual markers, and combining the immune subsets with the metabolic markers into a biomarker ratio enhanced correlation with PFS (rs = −0.74; p ≤ 0.0001 ****). In summary, in addition to well-established markers, we identified PD-1+ monocytes and the free androgen index as potentially novel peripheral markers in the context of immunotherapy. Furthermore, the combination of immune subsets with metabolic and hormonal markers may have the potential to enhance the power of future predictive scores and should, therefore, be investigated further in larger trials.
Collapse
|
36
|
Naigaonkar A, Patil K, Joseph S, Hinduja I, Mukherjee S. Ovarian granulosa cells from women with PCOS express low levels of SARS-CoV-2 receptors and co-factors. Arch Gynecol Obstet 2022; 306:547-555. [PMID: 35477803 PMCID: PMC9045021 DOI: 10.1007/s00404-022-06567-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/06/2022] [Indexed: 11/24/2022]
Abstract
Purpose Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is global pandemic with more than 5 million deaths so far. Female reproductive tract organs express coronavirus-associated receptors and factors (SCARFs), suggesting they may be susceptible to SARS-CoV-2 infection; however, the susceptibility of ovary/follicle/oocyte to the same is still elusive. Co-morbidities like obesity, type-2 diabetes mellitus, cardiovascular disease, etc. increase the risk of SARS-CoV-2 infection. These features are common in women with polycystic ovary syndrome (PCOS), warranting further scope to study SCARFs expression in ovary of these women. Materials and methods SCARFs expression in ovary and ovarian tissues of women with PCOS and healthy women was explored by analyzing publically available microarray datasets. Transcript expressions of SCARFs were investigated in mural and cumulus granulosa cells (MGCs and CGCs) from control and PCOS women undergoing in vitro fertilization (IVF). Results Microarray data revealed that ovary expresses all genes necessary for SARS-CoV-2 infection. PCOS women mostly showed down-regulated/unchanged levels of SCARFs. MGCs and CGCs from PCOS women showed lower expression of receptors ACE2, BSG and DPP4 and protease CTSB than in controls. MGCs showed lower expression of protease CTSL in PCOS than in controls. Expression of TMPRSS2 was not detected in both cell types. Conclusion Human ovarian follicle may be susceptible to SARS-CoV-2 infection. Lower expression of SCARFs in PCOS indicates that the risk of SARS-CoV-2 infection to the ovary may be lesser in these women than controls. This knowledge may help in safe practices at IVF settings in the current pandemic. Supplementary Information The online version contains supplementary material available at 10.1007/s00404-022-06567-4.
Collapse
Affiliation(s)
- Aalaap Naigaonkar
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J.M. Street, Parel, Mumbai, 400012, India
| | - Krutika Patil
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J.M. Street, Parel, Mumbai, 400012, India
| | - Shaini Joseph
- Genetic Research Centre, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J.M. Street, Parel, Mumbai, 400012, India
| | - Indira Hinduja
- P. D. Hinduja National Hospital and Medical Research Centre, Mahim, Mumbai, 400016, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J.M. Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
37
|
Rahat MA. Mini-Review: Can the Metastatic Cascade Be Inhibited by Targeting CD147/EMMPRIN to Prevent Tumor Recurrence? Front Immunol 2022; 13:855978. [PMID: 35418981 PMCID: PMC8995701 DOI: 10.3389/fimmu.2022.855978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/07/2022] [Indexed: 12/05/2022] Open
Abstract
Solid tumors metastasize very early in their development, and once the metastatic cell is lodged in a remote organ, it can proliferate to generate a metastatic lesion or remain dormant for long periods. Dormant cells represent a real risk for future tumor recurrence, but because they are typically undetectable and insensitive to current modalities of treatment, it is difficult to treat them in time. We describe the metastatic cascade, which is the process that allows tumor cells to detach from the primary tumor, migrate in the tissue, intravasate and extravasate the lymphatics or a blood vessel, adhere to a remote tissue and eventually outgrow. We focus on the critical enabling role of the interactions between tumor cells and immune cells, especially macrophages, in driving the metastatic cascade, and on those stages that can potentially be targeted. In order to prevent the metastatic cascade and tumor recurrence, we would need to target a molecule that is involved in all of the steps of the process, and evidence is brought to suggest that CD147/EMMPRIN is such a protein and that targeting it blocks metastasis and prevents tumor recurrence.
Collapse
Affiliation(s)
- Michal A Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
38
|
Helal MA, Shouman S, Abdelwaly A, Elmehrath AO, Essawy M, Sayed SM, Saleh AH, El-Badri N. Molecular basis of the potential interaction of SARS-CoV-2 spike protein to CD147 in COVID-19 associated-lymphopenia. J Biomol Struct Dyn 2022; 40:1109-1119. [PMID: 32936048 PMCID: PMC7544927 DOI: 10.1080/07391102.2020.1822208] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Lymphopenia is considered one of the most characteristic clinical features of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 infects host cells via the interaction of its spike protein with the human angiotensin-converting enzyme 2 (hACE2) receptor. Since T lymphocytes display a very low expression level of hACE2, a novel receptor might be involved in the entry of SARS-CoV-2 into T cells. The transmembrane glycoprotein CD147 is highly expressed by activated T lymphocytes, and was recently proposed as a probable route for SARS-CoV-2 invasion. To understand the molecular basis of the potential interaction of SARS-CoV-2 to CD147, we have investigated the binding of the viral spike protein to this receptor in-silico. The results showed that this binding is dominated by electrostatic interactions involving residues Arg403, Asn481, and the backbone of Gly502. The overall binding arrangement shows the CD147 C-terminal domain interacting with the spike external subdomain in the grove between the short antiparallel β strands, β1' and β2', and the small helix α1'. This proposed interaction was further confirmed using MD simulation and binding free energy calculation. These data contribute to a better understanding of the mechanism of infection of SARS-CoV-2 to T lymphocytes and could provide valuable insights for the rational design of adjuvant treatment for COVID-19. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed A. Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmed O. Elmehrath
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Essawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Shireen M. Sayed
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Amr H. Saleh
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
39
|
The Effects of EMMPRIN/CD147 on Late Function and Histopathological Lesions of the Renal Graft. BIOLOGY 2022; 11:biology11020232. [PMID: 35205098 PMCID: PMC8869741 DOI: 10.3390/biology11020232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary This study provided innovatory data regarding the role of EMMPRIN in long-term renal graft function and renal biopsy specimens in the form of interstitial fibrosis/tubular atrophy. The main cause of renal fibrosis is identified to be the activation and accumulation of fibroblasts and myofibroblasts in the interstitium, surrounded by increased amounts of extracellular matrix, and EMMPRIN has been proposed as a contributor factor. The study has evidenced that EMMPRIN displays adverse effects on renal graft survival in terms of the frequent occurrence of DGF, poorer short-term and long-term renal graft function, more profound fibrotic lesions in biopsy specimens, and the degree of proteinuria. This represents an opportunity for more accurate prediction of the post-transplant period and early, non-invasive detection of kidney graft dysfunction. Future studies need to further investigate the clinical significance of the presented results. Abstract Chronic kidney disease (CKD) is associated with renal fibrosis, and develops with the participation of fibroblasts and myofibroblasts from epithelial-to-mesenchymal transition (EMT). In cancer research, the key role of the glycoprotein CD147/EMMPRIN (extracellular matrix metalloproteinase inducer) in EMT has been proven. In this study, we evaluate how serum CD147/EMMPRIN affects long-term renal graft function and renal biopsy specimen lesions. In total, 49 renal graft recipients who had a renal biopsy within the last 18 months were retrospectively reviewed. At their most recent appointments, their serum concentrations of CD147/EMMPRIN and renal function were assessed. The occurrence of delayed graft function (DGF), estimated glomerular filtration rate (eGFR) at 1-year post-kidney transplantation (Tx) and the subsequent years of the follow-up period, and renal biopsy specimen lesions, mainly those related to renal fibrosis and tubular atrophy, were also evaluated. Results: CD147/EMMPRIN serum concentration correlated negatively with eGFR at the most recent appointment (ME 69 months) and with eGFR at 1 and 2 years after Tx (p < 0.05, R = −0.69, R = −0.39, and R = −0.40, respectively). CD147/EMMPRIN serum levels correlated positively with urine protein concentrations (p < 0.05, R = 0.73). A positive correlation was further found with the severity of renal biopsy specimen lesions such as interstitial fibrosis (CI), tubular atrophy (CT), double contours of the GBM (CG), mesangial matrix expansion (MM), and arteriolar hyalinosis (AH) (p < 0.05, R = 0.39, R = 0.29, R = 0.41, R = 0.32 and R = 0.40, respectively). Patients with a history of DGF had higher CD147/EMMPRIN serum concentrations (<0.05). Conclusions: CD147/EMMPRIN is linked to poorer long-term renal graft function. Additionally, a high serum concentration of CD147/EMMPRIN affects interstitial fibrosis tubular atrophy (IF/TA) lesions and proteinuria.
Collapse
|
40
|
Pourkarim F, Pourtaghi‐Anvarian S, Rezaee H. Molnupiravir: A new candidate for COVID-19 treatment. Pharmacol Res Perspect 2022; 10:e00909. [PMID: 34968008 PMCID: PMC8929331 DOI: 10.1002/prp2.909] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/05/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) emerged in late December 2019 in china and has rapidly spread to many countries around the world. The effective pharmacotherapy can reduce the mortality of COVID-19. Antiviral medications are the candidate therapies for the management of COVID-19. Molnupiravir is an antiviral drug with anti-RNA polymerase activity and currently is under investigation for the treatment of patients with COVID-19. This review focuses on summarizing published literature for the mechanism of action, safety, efficacy, and clinical trials of molnupiravir in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Fariba Pourkarim
- Student Research CommitteeFaculty of PharmacyTabriz University of Medical SciencesTabrizIran
- Department of Clinical PharmacyFaculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Samira Pourtaghi‐Anvarian
- Student Research CommitteeFaculty of PharmacyTabriz University of Medical SciencesTabrizIran
- Department of Clinical PharmacyFaculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Haleh Rezaee
- Department of Clinical PharmacyFaculty of PharmacyTabriz University of Medical SciencesTabrizIran
- Infectious Diseases and Tropical Medicine Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
41
|
Oxidative Stress Modulation by Carnosine in Scaffold Free Human Dermis Spheroids Model: A Proteomic Study. Int J Mol Sci 2022; 23:ijms23031468. [PMID: 35163388 PMCID: PMC8836079 DOI: 10.3390/ijms23031468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Carnosine is an endogenous β-alanyl-L-histidine dipeptide endowed with antioxidant and carbonyl scavenger properties, which is able to significantly prevent the visible signs of aging and photoaging. To investigate the mechanism of action of carnosine on human skin proteome, a 3D scaffold-free spheroid model of primary dermal fibroblasts from a 50-year-old donor was adopted in combination with quantitative proteomics for the first time. The label free proteomics approach based on high-resolution mass spectrometry, integrated with network analyses, provided a highly sensitive and selective method to describe the human dermis spheroid model during long-term culture and upon carnosine treatment. Overall, 2171 quantified proteins allowed the in-depth characterization of the 3D dermis phenotype during growth and differentiation, at 14 versus 7 days of culture. A total of 485 proteins were differentially regulated by carnosine at 7 days, an intermediate time of culture. Of the several modulated pathways, most are involved in mitochondrial functionality, such as oxidative phosphorylation, TCA cycle, extracellular matrix reorganization and apoptosis. In long-term culture, functional modules related to oxidative stress were upregulated, inducing the aging process of dermis spheroids, while carnosine treatment prevented this by the downregulation of the same functional modules. The application of quantitative proteomics, coupled to advanced and relevant in vitro scaffold free spheroids, represents a new concrete application for personalized therapies and a novel care approach.
Collapse
|
42
|
Łacina P, Butrym A, Frontkiewicz D, Mazur G, Bogunia-Kubik K. Soluble CD147 (BSG) as a Prognostic Marker in Multiple Myeloma. Curr Issues Mol Biol 2022; 44:350-359. [PMID: 35723405 PMCID: PMC8929000 DOI: 10.3390/cimb44010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
CD147 (basigin, BSG) is a membrane-bound glycoprotein involved in energy metabolism that plays a role in cancer cell survival. Its soluble form is a promising marker of some diseases, but it is otherwise poorly studied. CD147 is overexpressed in multiple myeloma (MM) and is known to affect MM progression, while its genetic variants are associated with MM survival. In the present study, we aimed to assess serum soluble CD147 (sCD147) expression as a potential marker in MM. We found that sCD147 level was higher in MM patients compared to healthy individuals. It was also higher in patients with more advanced disease (ISS III) compared to both patients with less advanced MM and healthy individuals, while its level was observed to drop after positive response to treatment. Patients with high sCD147 were characterized by worse overall survival. sCD147 level did not directly correlate with bone marrow CD147 mRNA expression. In conclusion, this study suggests that serum sCD147 may be a prognostic marker in MM.
Collapse
Affiliation(s)
- Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
- Correspondence: ; Tel.: +48-713-709-960 (ext. 236)
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-556 Wrocław, Poland;
| | - Diana Frontkiewicz
- Department of Haematology, Sokołowski Specialist Hospital, 58-309 Wałbrzych, Poland;
| | - Grzegorz Mazur
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wrocław, Poland;
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
| |
Collapse
|
43
|
Łacina P, Butrym A, Turlej E, Stachowicz-Suhs M, Wietrzyk J, Mazur G, Bogunia-Kubik K. BSG (CD147) Serum Level and Genetic Variants Are Associated with Overall Survival in Acute Myeloid Leukaemia. J Clin Med 2022; 11:jcm11020332. [PMID: 35054026 PMCID: PMC8779396 DOI: 10.3390/jcm11020332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Basigin (BSG, CD147) is a multifunctional protein involved in cancer cell survival, mostly by controlling lactate transport through its interaction with monocarboxylate transporters (MCTs) such as MCT1. Previous studies have found that single nucleotide polymorphisms (SNPs) in the gene coding for BSG and MCT1, as well as levels of the soluble form of BSG (sBSG), are potential biomarkers in various diseases. The goal of this study was to confirm BSG and MCT1 RNA overexpression in AML cell lines, as well as to analyse soluble BSG levels and selected BSG/MCT1 genetic variants as potential biomarkers in AML patients. We found that BSG and MCT1 were overexpressed in most AML cell lines. Soluble BSG was increased in AML patients compared to healthy controls, and correlated with various clinical parameters. High soluble BSG was associated with worse overall survival, higher bone marrow blast percentage, and higher white blood cell count. BSG SNPs rs4919859 and rs4682, as well as MCT1 SNP rs1049434, were also associated with overall survival of AML patients. In conclusion, this study confirms the importance of BSG/MCT1 in AML, and suggests that soluble BSG and BSG/MCT1 genetic variants may act as potential AML biomarkers.
Collapse
Affiliation(s)
- Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-713-709-960-236
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.T.); (M.S.-S.); (J.W.)
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Martyna Stachowicz-Suhs
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.T.); (M.S.-S.); (J.W.)
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.T.); (M.S.-S.); (J.W.)
| | - Grzegorz Mazur
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| |
Collapse
|
44
|
Muscolino A, Di Maria A, Rapicavoli RV, Alaimo S, Bellomo L, Billeci F, Borzì S, Ferragina P, Ferro A, Pulvirenti A. NETME: on-the-fly knowledge network construction from biomedical literature. APPLIED NETWORK SCIENCE 2022; 7:1. [PMID: 35013714 PMCID: PMC8733431 DOI: 10.1007/s41109-021-00435-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/21/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The rapidly increasing biological literature is a key resource to automatically extract and gain knowledge concerning biological elements and their relations. Knowledge Networks are helpful tools in the context of biological knowledge discovery and modeling. RESULTS We introduce a novel system called NETME, which, starting from a set of full-texts obtained from PubMed, through an easy-to-use web interface, interactively extracts biological elements from ontological databases and then synthesizes a network inferring relations among such elements. The results clearly show that our tool is capable of inferring comprehensive and reliable biological networks. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s41109-021-00435-x.
Collapse
Affiliation(s)
| | - Antonio Di Maria
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Salvatore Alaimo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lorenzo Bellomo
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Fabrizio Billeci
- Department of Maths and Computer Science, University of Catania, Catania, Italy
| | - Stefano Borzì
- Department of Maths and Computer Science, University of Catania, Catania, Italy
| | - Paolo Ferragina
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Alfredo Ferro
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alfredo Pulvirenti
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
45
|
CD147 Levels in Blood and Adipose Tissues Correlate with Vascular Dysfunction in Obese Diabetic Adults. J Cardiovasc Dev Dis 2021; 9:jcdd9010007. [PMID: 35050217 PMCID: PMC8781676 DOI: 10.3390/jcdd9010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 02/07/2023] Open
Abstract
CD147 is a glycoprotein that stimulates the production of matrix metalloproteinases (MMPs), known contributors to cardiovascular risk. The activity of CD147 protein depends on its glycosylation. However, it is unclear whether CD147 protein expression or glycosylation are influenced by the diabetic milieu characterized by hyperglycemia and abundant glycation-end-products (AGEs). We examined the circulating and visceral adipose tissue (VAT) levels of CD147 and their correlation with vascular function in obese, obese diabetic, and non-obese controls (n = 40, each). The circulating levels of CD147 and the glycosylated CD147 protein in VAT were considerably higher in obese, particularly obese diabetic subjects compared to controls. Obese diabetics had the lowest brachial and arteriolar vasoreactivity and the highest carotid pulse-wave velocity (PWV, a measure of arterial stiffness) among the three groups. CD147 correlated positively with body mass index (BMI), total and visceral fat mass, PWV, and plasma levels of glucose, insulin, MMPs, and AGEs and negatively with brachial artery and VAT-arteriolar vasoreactivity and nitric oxide production. Multivariate regression revealed that BMI, body fat mass, insulin, and glucose levels significantly predicted CD147. Our data suggest that higher levels of CD147 in obese subjects, particularly those with diabetes, are linked to vascular dysfunction and several cardiometabolic risk factors.
Collapse
|
46
|
Zisman D, Safieh M, Simanovich E, Feld J, Kinarty A, Zisman L, Gazitt T, Haddad A, Elias M, Rosner I, Kaly L, Rahat MA. Tocilizumab (TCZ) Decreases Angiogenesis in Rheumatoid Arthritis Through Its Regulatory Effect on miR-146a-5p and EMMPRIN/CD147. Front Immunol 2021; 12:739592. [PMID: 34975837 PMCID: PMC8714881 DOI: 10.3389/fimmu.2021.739592] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/29/2021] [Indexed: 01/25/2023] Open
Abstract
Background Angiogenesis is a major contributor to the development of inflammation during Rheumatoid arthritis (RA), as the vascularization of the pannus provides nutrients and oxygen for the infiltrating immune cells and proliferating synoviocytes. Tocilizumab (TCZ) is an anti-IL-6 receptor antibody that is used in the treatment of RA patients, and has been shown to exert anti-inflammatory effects. However, its effects on angiogenesis are not fully elucidated, and the molecular mechanisms regulating this effect are unknown. Methods We evaluated the concentrations of several pro- and anti-angiogenic factors and the expression levels of several microRNA molecules that are associated with RA and angiogenesis in serum samples obtained from 40 RA patients, before and 4 months after the initiation of TCZ treatment. Additionally, we used an in vitro co-culture system of fibroblasts (the HT1080 cell line) and monocytes (the U937 cell line) to explore the mechanisms of TCZ action. Results Serum samples from RA patients treated with TCZ exhibited reduced circulating levels of EMMPRIN/CD147, enhanced expression of circulating miR-146a-5p and miR-150-5p, and reduced the angiogenic potential as was manifested by the lower number of tube-like structures that were formed by EaHy926 endothelial cell line. In vitro, the accumulation in the supernatants of the pro-angiogenic factors EMMPRIN, VEGF and MMP-9 was increased by co-culturing the HT1080 fibroblasts and the U937 monocytes, while the accumulation of the anti-angiogenic factor thrombospondin-1 (Tsp-1) and the expression levels of miR-146a-5p were reduced. Transfection of HT1080 cells with the miR-146a-5p mimic, decreased the accumulation of EMMPRIN, VEGF and MMP-9. When we neutralized EMMPRIN with a blocking antibody, the supernatants derived from these co-cultures displayed reduced migration, proliferation and tube formation in the functional assays. Conclusions Our findings implicate miR-146a-5p in the regulation of EMMPRIN and propose that TCZ affects angiogenesis through its effects on EMMPRIN and miR-146a-5p.
Collapse
Affiliation(s)
- Devy Zisman
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Mirna Safieh
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | | | - Joy Feld
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Amalia Kinarty
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Liron Zisman
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Tal Gazitt
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Amir Haddad
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Muna Elias
- Department of Rheumatology, Carmel Medical Center, Haifa, Israel
| | - Itzhak Rosner
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Rheumatology Unit, Bnei Zion Medical Center, Haifa, Israel
| | - Lisa Kaly
- Rheumatology Unit, Bnei Zion Medical Center, Haifa, Israel
| | - Michal A. Rahat
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| |
Collapse
|
47
|
Host Manipulation Mechanisms of SARS-CoV-2. Acta Biotheor 2021; 70:4. [PMID: 34902063 PMCID: PMC8667538 DOI: 10.1007/s10441-021-09425-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/16/2021] [Indexed: 10/28/2022]
Abstract
Viruses are the simplest of pathogens, but possess sophisticated molecular mechanisms to manipulate host behavior, frequently utilizing molecular mimicry. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to bind to the host receptor neuropilin-1 in order to gain entry into the cell. To do this, the virus utilizes its spike protein polybasic cleavage site (PCS), which mimics the CendR motif of neuropilin-1's endogenous ligands. In addition to facilitating cell entry, binding to neuropilin-1 has analgesic effects. We discuss the potential impact of neuropilin-1 binding by SARS-CoV-2 in ameliorating sickness behavior of the host, and identify a convergent evolutionary strategy of PCS cleavage and subsequent neuropilin binding in other human viruses. In addition, we discuss the evolutionary leap of the ancestor of SARS-COV-2, which involved acquisition of the PCS thus faciliting binding to the neuropilin-1 receptor. Acquisition of the PCS by the ancestor of SARS-CoV-2 appears to have led to pleiotropic beneficial effects including enhancement of cell entry via binding to ACE2, facilitation of cell entry via binding to neuropilin-1, promotion of analgesia, and potentially the formation of decoy epitopes via enhanced shedding of the S1 subunit. Lastly, other potential neuromanipulation strategies employed by SARS-CoV-2 are discussed, including interferon suppression and the resulting reduction in sickness behavior, enhanced transmission through neurally mediated cough induction, and reduction in sense of smell.
Collapse
|
48
|
Molecular Profile Study of Extracellular Vesicles for the Identification of Useful Small “Hit” in Cancer Diagnosis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor-secreted extracellular vesicles (EVs) are the main mediators of cell-cell communication, permitting cells to exchange proteins, lipids, and metabolites in varying physiological and pathological conditions. They contain signature tumor-derived molecules that reflect the intracellular status of their cell of origin. Recent studies have shown that tumor cell-derived EVs can aid in cancer metastasis through the modulation of the tumor microenvironment, suppression of the immune system, pre-metastatic niche formation, and subsequent metastasis. EVs can easily be isolated from a variety of biological fluids, and their content makes them useful biomarkers for the diagnosis, prognosis, monitorization of cancer progression, and response to treatment. This review aims to explore the biomarkers of cancer cell-derived EVs obtained from liquid biopsies, in order to understand cancer progression and metastatic evolution for early diagnosis and precision therapy.
Collapse
|
49
|
Groppa SA, Ciolac D, Duarte C, Garcia C, Gasnaș D, Leahu P, Efremova D, Gasnaș A, Bălănuță T, Mîrzac D, Movila A. Molecular Mechanisms of SARS-CoV-2/COVID-19 Pathogenicity on the Central Nervous System: Bridging Experimental Probes to Clinical Evidence and Therapeutic Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:1-27. [PMID: 34735712 DOI: 10.1007/5584_2021_675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has dramatically impacted the global healthcare systems, constantly challenging both research and clinical practice. Although it was initially believed that the SARS-CoV-2 infection is limited merely to the respiratory system, emerging evidence indicates that COVID-19 affects multiple other systems including the central nervous system (CNS). Furthermore, most of the published clinical studies indicate that the confirmed CNS inflammatory manifestations in COVID-19 patients are meningitis, encephalitis, acute necrotizing encephalopathy, acute transverse myelitis, and acute disseminated encephalomyelitis. In addition, the neuroinflammation along with accelerated neurosenescence and susceptible genetic signatures in COVID-19 patients might prime the CNS to neurodegeneration and precipitate the occurrence of neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. Thus, this review provides a critical evaluation and interpretive analysis of existing published preclinical as well as clinical studies on the key molecular mechanisms modulating neuroinflammation and neurodegeneration induced by the SARS-CoV-2. In addition, the essential age- and gender-dependent impacts of SARS-CoV-2 on the CNS of COVID-19 patients are also discussed.
Collapse
Affiliation(s)
- Stanislav A Groppa
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Dumitru Ciolac
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Carolina Duarte
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Christopher Garcia
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Daniela Gasnaș
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Pavel Leahu
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Daniela Efremova
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Alexandru Gasnaș
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Tatiana Bălănuță
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Daniela Mîrzac
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Alexandru Movila
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Institute of Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
50
|
Woodward AM, Feeley MN, Rinaldi J, Argüeso P. CRISPR/Cas9 genome editing reveals an essential role for basigin in maintaining a nonkeratinized squamous epithelium in cornea. FASEB Bioadv 2021; 3:897-908. [PMID: 34761172 PMCID: PMC8565198 DOI: 10.1096/fba.2021-00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
One of the primary functions of nonkeratinized stratified squamous epithelia is to protect underlying tissues against chemical, microbial, and mechanical insult. Basigin is a transmembrane matrix metalloproteinase inducer commonly overexpressed during epithelial wound repair and cancer but whose physiological significance in normal epithelial tissue has not been fully explored. Here we used a CRISPR/Cas9 system to study the effect of basigin loss in a human cornea model of squamous epithelial differentiation. We find that epithelial cell cultures lacking basigin change shape and fail to produce a flattened squamous layer on the apical surface. This process is associated with the abnormal expression of the transcription factor SPDEF and the decreased biosynthesis of MUC16 and involucrin necessary for maintaining apical barrier function and structural integrity, respectively. Expression analysis of genes encoding tight junction proteins identified a role for basigin in promoting physiological expression of occludin and members of the claudin family. Functionally, disruption of basigin expression led to increased epithelial cell permeability as evidenced by the decrease in transepithelial electrical resistance and increase in rose bengal flux. Overall, these results suggest that basigin plays a distinct role in maintaining the normal differentiation of stratified squamous human corneal epithelium and could have potential implications to therapies targeting basigin function.
Collapse
Affiliation(s)
- Ashley M. Woodward
- Schepens Eye Research Institute of Massachusetts Eye and EarDepartment of OphthalmologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Marissa N. Feeley
- Schepens Eye Research Institute of Massachusetts Eye and EarDepartment of OphthalmologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Jamie Rinaldi
- Schepens Eye Research Institute of Massachusetts Eye and EarDepartment of OphthalmologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and EarDepartment of OphthalmologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|