1
|
Han Y, Wang B, Agnolin A, Dugar G, van der Kloet F, Sauer C, Costea PI, Felle MF, Appelbaum M, Hamoen LW. Ribosome pausing in amylase producing Bacillus subtilis during long fermentation. Microb Cell Fact 2025; 24:31. [PMID: 39865260 PMCID: PMC11770953 DOI: 10.1186/s12934-025-02659-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Ribosome pausing slows down translation and can affect protein synthesis. Improving translation efficiency can therefore be of commercial value. In this study, we investigated whether ribosome pausing occurs during production of the α-amylase AmyM by the industrial production organism Bacillus subtilis under repeated batch fermentation conditions. RESULTS We began by assessing our ribosome profiling procedure using the antibiotic mupirocin that blocks translation at isoleucine codons. After achieving single codon resolution for ribosome pausing, we determined the genome wide ribosome pausing sites for B. subtilis at 16 h and 64 h growth under batch fermentation. For the highly expressed α-amylase gene amyM several strong ribosome pausing sites were detected, which remained during the long fermentation despite changes in nutrient availability. These pause sites were neither related to proline or rare codons, nor to secondary protein structures. When surveying the genome, an interesting finding was the presence of strong ribosome pausing sites in several toxins genes. These potential ribosome stall sites may prevent inadvertent activity in the cytosol by means of delayed translation. CONCLUSIONS Expression of the α-amylase gene amyM in B. subtilis is accompanied by several ribosome pausing events. Since these sites can neither be predicted based on codon specificity nor on secondary protein structures, we speculate that secondary mRNA structures are responsible for these translation pausing sites. The detailed information of ribosome pausing sites in amyM provide novel information that can be used in future codon optimization studies aimed at improving the production of this amylase by B. subtilis.
Collapse
Affiliation(s)
- Yaozu Han
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Biwen Wang
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Alberto Agnolin
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Gaurav Dugar
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Frans van der Kloet
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Christopher Sauer
- White Biotechnology Research, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein, 67056, Germany
| | - Paul Igor Costea
- White Biotechnology Research, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein, 67056, Germany
| | - Max Fabian Felle
- White Biotechnology Research, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein, 67056, Germany
| | - Mathis Appelbaum
- White Biotechnology Research, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein, 67056, Germany
| | - Leendert W Hamoen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.
| |
Collapse
|
2
|
Hartmann FSF, Grégoire M, Renzi F, Delvigne F. Single cell technologies for monitoring protein secretion heterogeneity. Trends Biotechnol 2024; 42:1144-1160. [PMID: 38480024 DOI: 10.1016/j.tibtech.2024.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 09/07/2024]
Abstract
Cell-to-cell heterogeneity presents challenges across various fields, from biomedicine to bioproduction, where precise cellular responses are vital. While single cell technologies have significantly enhanced our understanding of population heterogeneity, the predominant focus has been on monitoring intracellular compounds. Recognizing the added complexity introduced by the secretion system, in this review, we first provide a systematic overview of the distinct steps necessary for driving protein secretion. We discuss the various sources of noise acting from the synthesized preprotein to the secretory protein released based on a Gram-positive cellular system as a model. We next explore the applicability of single cell technologies for monitoring protein secretion throughout these functional stages. We also emphasize the importance of applying these single cell technologies for monitoring protein secretion during bioproduction.
Collapse
Affiliation(s)
- Fabian Stefan Franz Hartmann
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Mélanie Grégoire
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Research Unit in Biology of Microorganisms (URBM), Biology Department, Narilis, University of Namur, Namur, Belgium
| | - Francesco Renzi
- Research Unit in Biology of Microorganisms (URBM), Biology Department, Narilis, University of Namur, Namur, Belgium
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
3
|
Kachan AV, Evtushenkov AN. The CssRS two-component system of Bacillus subtilis contributes to teicoplanin and polymyxin B response. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01179-8. [PMID: 38847924 DOI: 10.1007/s12223-024-01179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
CssRS is a two-component system that plays a pivotal role in mediating the secretion stress response in Bacillus subtilis. This system upregulates the synthesis of membrane-bound HtrA family proteases that cope with misfolded proteins that accumulate within the cell envelope as a result of overexpression or heat shock. Recent studies have shown the induction of CssRS-regulated genes in response to cell envelope stress. We investigated the induction of the CssRS-regulated htrA promoter in the presence of different cell wall- and membrane-active substances and observed induction of the CssRS-controlled genes by glycopeptides (vancomycin and teicoplanin), polymyxins B and E, certain β-lactams, and detergents. Teicoplanin was shown to elicit remarkably stronger induction than vancomycin and polymyxin B. Teicoplanin and polymyxin B induced the spxO gene expression in a CssRS-dependent fashion, resulting in increased activity of Spx, a master regulator of disulfide stress in Bacillus subtilis. The CssRS signaling pathway and Spx activity were demonstrated to be involved in Bacillus subtilis resistance to teicoplanin and polymyxin B.
Collapse
Affiliation(s)
- Alexandr V Kachan
- Department of Molecular Biology, Faculty of Biology, Belarusian State University, Nezavisimosty Ave., 4, 220030, Minsk, Belarus.
- Center of Analytical and Genetic Engineering Research, Institute of Microbiology, National Academy of Sciences of Belarus, Kuprevich Str., 2, 220141, Minsk, Belarus.
| | - Anatoly N Evtushenkov
- Department of Molecular Biology, Faculty of Biology, Belarusian State University, Nezavisimosty Ave., 4, 220030, Minsk, Belarus
| |
Collapse
|
4
|
Öktem A, Pranoto DA, van Dijl JM. Post-translational secretion stress regulation in Bacillus subtilis is controlled by intra- and extracellular proteases. N Biotechnol 2024; 79:71-81. [PMID: 38158017 DOI: 10.1016/j.nbt.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The Gram-positive bacterium Bacillus subtilis is a prolific producer of industrial enzymes that are effectively harvested from the fermentation broth. However, the high capacity of B. subtilis for protein secretion has so far not been exploited to the full due to particular bottlenecks, including product degradation by extracellular proteases and counterproductive secretion stress responses. To unlock the Bacillus secretion pathway for difficult-to-produce proteins, various cellular interventions have been explored, including genome engineering. Our previous research has shown a superior performance of genome-reduced B. subtilis strains in the production of staphylococcal antigens compared to the parental strain 168. This was attributed, at least in part, to redirected secretion stress responses, including the presentation of elevated levels of the quality control proteases HtrA and HtrB that also catalyse protein folding. Here we show that this relates to the elimination of two homologous serine proteases, namely the cytosolic protease AprX and the extracellular protease AprE. This unprecedented posttranslational regulation of secretion stress effectors, like HtrA and HtrB, by the concerted action of cytosolic and extracellular proteases has important implications for the biotechnological application of microbial cell factories. In B. subtilis, this conclusion is underscored by extracellular degradation of the staphylococcal antigen IsaA by both AprX and AprE. Extracellular activity of the cytosolic protease AprX is remarkable since it shows that not only extracellular, but also intracellular proteases impact extracellular product levels. We therefore conclude that intracellular proteases represent new targets for improved recombinant protein production in microbial cell factories like B. subtilis.
Collapse
Affiliation(s)
- Ayşegül Öktem
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Dicky A Pranoto
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
5
|
Öktem A, Núñez-Nepomuceno D, Ferrero-Bordera B, Walgraeve J, Seefried M, Gesell Salazar M, Steil L, Michalik S, Maaß S, Becher D, Mäder U, Völker U, van Dijl JM. Enhancing bacterial fitness and recombinant enzyme yield by engineering the quality control protease HtrA of Bacillus subtilis. Microbiol Spectr 2023; 11:e0177823. [PMID: 37819116 PMCID: PMC10715036 DOI: 10.1128/spectrum.01778-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/25/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE In the expanding market of recombinant proteins, microbial cell factories such as Bacillus subtilis are key players. Microbial cell factories experience secretion stress during high-level production of secreted proteins, which can negatively impact product yield and cell viability. The CssRS two-component system and CssRS-regulated quality control proteases HtrA and HtrB play critical roles in the secretion stress response. HtrA has a presumptive dual function in protein quality control by exerting both chaperone-like and protease activities. However, its potential role as a chaperone has not been explored in B. subtilis. Here, we describe for the first time the beneficial effects of proteolytically inactive HtrA on α-amylase yields and overall bacterial fitness.
Collapse
Affiliation(s)
- Ayşegül Öktem
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - David Núñez-Nepomuceno
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Borja Ferrero-Bordera
- Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | | | | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Bhatt P, Bhatt K, Huang Y, Li J, Wu S, Chen S. Biofilm formation in xenobiotic-degrading microorganisms. Crit Rev Biotechnol 2023; 43:1129-1149. [PMID: 36170978 DOI: 10.1080/07388551.2022.2106417] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/26/2022] [Indexed: 11/03/2022]
Abstract
The increased presence of xenobiotics affects living organisms and the environment at large on a global scale. Microbial degradation is effective for the removal of xenobiotics from the ecosystem. In natural habitats, biofilms are formed by single or multiple populations attached to biotic/abiotic surfaces and interfaces. The attachment of microbial cells to these surfaces is possible via the matrix of extracellular polymeric substances (EPSs). However, the molecular machinery underlying the development of biofilms differs depending on the microbial species. Biofilms act as biocatalysts and degrade xenobiotic compounds, thereby removing them from the environment. Quorum sensing (QS) helps with biofilm formation and is linked to the development of biofilms in natural contaminated sites. To date, scant information is available about the biofilm-mediated degradation of toxic chemicals from the environment. Therefore, we review novel insights into the impact of microbial biofilms in xenobiotic contamination remediation, the regulation of biofilms in contaminated sites, and the implications for large-scale xenobiotic compound treatment.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| | - Siyi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| |
Collapse
|
7
|
Lenz P, Bakkes PJ, Müller C, Malek M, Freudl R, Oldiges M, Drepper T, Jaeger KE, Knapp A. Analysis of protein secretion in Bacillus subtilis by combining a secretion stress biosensor strain with an in vivo split GFP assay. Microb Cell Fact 2023; 22:203. [PMID: 37805580 PMCID: PMC10559633 DOI: 10.1186/s12934-023-02199-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Bacillus subtilis is one of the workhorses in industrial biotechnology and well known for its secretion potential. Efficient secretion of recombinant proteins still requires extensive optimization campaigns and screening with activity-based methods. However, not every protein can be detected by activity-based screening. We therefore developed a combined online monitoring system, consisting of an in vivo split GFP assay for activity-independent target detection and an mCherry-based secretion stress biosensor. The split GFP assay is based on the fusion of a target protein to the eleventh β-sheet of sfGFP, which can complement a truncated sfGFP that lacks this β-sheet named GFP1-10. The secretion stress biosensor makes use of the CssRS two component quality control system, which upregulates expression of mCherry in the htrA locus thereby allowing a fluorescence readout of secretion stress. RESULTS The biosensor strain B. subtilis PAL5 was successfully constructed by exchanging the protease encoding gene htrA with mCherry via CRISPR/Cas9. The Fusarium solani pisi cutinase Cut fused to the GFP11 tag (Cut11) was used as a model enzyme to determine the stress response upon secretion mediated by signal peptides SPPel, SPEpr and SPBsn obtained from naturally secreted proteins of B. subtilis. An in vivo split GFP assay was developed, where purified GFP1-10 is added to the culture broth. By combining both methods, an activity-independent high-throughput method was created, that allowed optimization of Cut11 secretion. Using the split GFP-based detection assay, we demonstrated a good correlation between the amount of secreted cutinase and the enzymatic activity. Additionally, we screened a signal peptide library and identified new signal peptide variants that led to improved secretion while maintaining low stress levels. CONCLUSION Our results demonstrate that the combination of a split GFP-based detection assay for secreted proteins with a secretion stress biosensor strain enables both, online detection of extracellular target proteins and identification of bottlenecks during protein secretion in B. subtilis. In general, the system described here will also enable to monitor the secretion stress response provoked by using inducible promoters governing the expression of different enzymes.
Collapse
Affiliation(s)
- Patrick Lenz
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Patrick J Bakkes
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
- Institute of Bio- and Geoscience IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Carolin Müller
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
- Institute of Bio- and Geoscience IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Marzena Malek
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Roland Freudl
- Institute of Bio- and Geoscience IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Marco Oldiges
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
- Institute of Bio- and Geoscience IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany.
- Castrol Germany GmbH, 41179, Mönchengladbach, Germany.
| |
Collapse
|
8
|
Zautner AE, Tersteegen A, Schiffner CJ, Ðilas M, Marquardt P, Riediger M, Delker AM, Mäde D, Kaasch AJ. Human Erysipelothrix rhusiopathiae infection via bath water – case report and genome announcement. Front Cell Infect Microbiol 2022; 12:981477. [PMID: 36353709 PMCID: PMC9637936 DOI: 10.3389/fcimb.2022.981477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Erysipelothrix rhusiopathiae is a facultative anaerobic, environmentally stable, Gram-positive rod that causes swine and avian erysipelas as a zoonotic pathogen. In humans, the main manifestations described are circumscribed erysipeloid, generalized erysipeloid, and endocarditis. Here, we report a 46-year-old female patient who presented to the physician because of redness and marked functio laesa of the hand, in terms of a pain-related restricted range of motion, and was treated surgically. E. rhusopathiae was detected in tissue biopsy. The source of infection was considered to be a pond in which both swine and, later, her dog bathed. The genome of the isolate was completely sequenced and especially the presumptive virulence associated factors as well as the presumptive antimicrobial resistance genes, in particular a predicted homologue to the multiple sugar metabolism regulator (MsmR), several predicted two-component signal transduction systems, three predicted hemolysins, two predicted neuraminidases, three predicted hyaluronate lyases, the surface protective antigen SpaA, a subset of predicted enzymes that potentially confer resistance to reactive oxygen species (ROS), several predicted phospholipases that could play a role in the escape from phagolysosomes into host cell cytoplasm as well as a predicted vancomycin resistance locus (vex23-vncRS) and three predicted MATE efflux transporters were investigated in more detail.
Collapse
Affiliation(s)
- Andreas E. Zautner
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
- *Correspondence: Andreas E. Zautner,
| | - Aljoscha Tersteegen
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Conrad-Jakob Schiffner
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Milica Ðilas
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Pauline Marquardt
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Matthias Riediger
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Anna Maria Delker
- Universitätsklinik für Plastische, Ästhetische und Handchirurgie Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Dietrich Mäde
- Landesamt für Verbraucherschutz Sachsen-Anhalt, Halle (Saale), Germany
| | - Achim J. Kaasch
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| |
Collapse
|
9
|
Redirected Stress Responses in a Genome-Minimized 'midi Bacillus' Strain with Enhanced Capacity for Protein Secretion. mSystems 2021; 6:e0065521. [PMID: 34904864 PMCID: PMC8670375 DOI: 10.1128/msystems.00655-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genome engineering offers the possibility to create completely novel cell factories with enhanced properties for biotechnological applications. In recent years, genome minimization was extensively explored in the Gram-positive bacterial cell factory Bacillus subtilis, where up to 42% of the genome encoding dispensable functions was removed. Such studies showed that some strains with minimized genomes gained beneficial features, especially for secretory protein production. However, strains with the most minimal genomes displayed growth defects. This focused our attention on strains with less extensive genomic deletions that display close-to-wild-type growth properties while retaining the acquired beneficial traits in secretory protein production. A strain of this category is B. subtilis IIG-Bs27-47-24, here referred to as midiBacillus, which lacks 30.95% of the parental genome. To date, it was unknown how the altered genomic configuration of midiBacillus impacts cell physiology in general, and protein secretion in particular. The present study bridges this knowledge gap through comparative quantitative proteome analyses with focus on protein secretion. Interestingly, the results show that the secretion stress responses of midiBacillus, as elicited by high-level expression of the immunodominant staphylococcal antigen A, are completely different from secretion stress responses that occur in the parental strain 168. We further show that midiBacillus has an increased capacity for translation and that a variety of critical Sec secretion machinery components is present at elevated levels. Altogether, our observations demonstrate that high-level protein secretion has different consequences for wild-type and genome-engineered Bacillus strains, dictated by the altered genomic and proteomic configurations. IMPORTANCE Our present study showcases a genome-minimized nonpathogenic bacterium, the so-called midiBacillus, as a chassis for the development of future industrial strains that serve in the production of high-value difficult-to-produce proteins. In particular, we explain how midiBacillus, which lacks about one-third of the original genome, effectively secretes a protein of the major human pathogen Staphylococcus aureus that cannot be produced by the parental Bacillus subtilis strain. This is important, because the secreted S. aureus protein is exemplary for a range of targets that can be implemented in future antistaphylococcal immunotherapies. Accordingly, we anticipate that midiBacillus chassis will contribute to the development of vaccines that protect both humans and livestock against diseases caused by S. aureus, a bacterial pathogen that is increasingly difficult to fight with antibiotics, because it has accumulated resistances to essentially all antibiotics that are currently in clinical practice.
Collapse
|
10
|
Harwood CR, Kikuchi Y. The ins and outs of Bacillus proteases: activities, functions and commercial significance. FEMS Microbiol Rev 2021; 46:6354784. [PMID: 34410368 PMCID: PMC8767453 DOI: 10.1093/femsre/fuab046] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Because the majority of bacterial species divide by binary fission, and do not have distinguishable somatic and germline cells, they could be considered to be immortal. However, bacteria ‘age’ due to damage to vital cell components such as DNA and proteins. DNA damage can often be repaired using efficient DNA repair mechanisms. However, many proteins have a functional ‘shelf life’; some are short lived, while others are relatively stable. Specific degradation processes are built into the life span of proteins whose activities are required to fulfil a specific function during a prescribed period of time (e.g. cell cycle, differentiation process, stress response). In addition, proteins that are irreparably damaged or that have come to the end of their functional life span need to be removed by quality control proteases. Other proteases are involved in performing a variety of specific functions that can be broadly divided into three categories: processing, regulation and feeding. This review presents a systematic account of the proteases of Bacillus subtilis and their activities. It reviews the proteases found in, or associated with, the cytoplasm, the cell membrane, the cell wall and the external milieu. Where known, the impacts of the deletion of particular proteases are discussed, particularly in relation to industrial applications.
Collapse
Affiliation(s)
- Colin R Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University NE2 4AX, Newcastle upon Tyne, UK
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, JAPAN
| |
Collapse
|
11
|
Bobrovsky PA, Moroz VD, Lavrenova VN, Manuvera VA, Lazarev VN. Inhibition of Chlamydial Infection by CRISPR/Cas9-SAM Mediated Enhancement of Human Peptidoglycan Recognition Proteins Gene Expression in HeLa Cells. BIOCHEMISTRY (MOSCOW) 2021; 85:1310-1318. [PMID: 33280575 DOI: 10.1134/s0006297920110036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The global problem of emerging resistance of microorganisms to antibiotics makes the search for new natural substances with antibacterial properties relevant. Such substances include peptidoglycan recognition proteins (PGLYRP), which are the components of the innate immunity of many organisms, including humans. These proteins have a unique mechanism of action that allows them to evade the resistance of bacteria to them, as well as to be active against both Gram-positive and Gram-negative bacteria. However, the use of antimicrobial recombinant proteins is not always advisable due to the complexity of local delivery of the proteins and their stability; in this regard it seems appropriate to activate the components of the innate immunity. The aim of this study was to increase the expression level of native peptidoglycan recognition protein genes in HeLa cells using genome-editing technology with synergistic activation mediators (CRISPR/Cas9-SAM) and evaluate antichlamydial effect of PGLYRP. We demonstrated activation of the chlamydial two-component gene system (ctcB-ctcC), which played a key role in the mechanism of action of the peptidoglycan recognition proteins. We generated the HeLa cell line transduced with lentiviruses encoding CRISPR/Cas9-SAM activation system with increased PGLYRP gene expression. It was shown that activation of the own peptidoglycan recognition proteins gene expression in the cell line caused inhibition of the chlamydial infection development. The proposed approach makes it possible to use the capabilities of innate immunity to combat infectious diseases caused by Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- P A Bobrovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia.
| | - V D Moroz
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - V N Lavrenova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - V A Manuvera
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - V N Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| |
Collapse
|
12
|
Shah A, Nazari M, Antar M, Msimbira LA, Naamala J, Lyu D, Rabileh M, Zajonc J, Smith DL. PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.667546] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Growing environmental concerns are potentially narrowing global yield capacity of agricultural systems. Climate change is the most significant problem the world is currently facing. To meet global food demand, food production must be doubled by 2050; over exploitation of arable lands using unsustainable techniques might resolve food demand issues, but they have negative environmental effects. Current crop production systems are a major reason for changing global climate through diminishing biodiversity, physical and chemical soil degradation, and water pollution. The over application of fertilizers and pesticides contribute to climate change through greenhouse gas emissions (GHG) and toxic soil depositions. At this crucial time, there is a pressing need to transition to more sustainable crop production practices, ones that concentrate more on promoting sustainable mechanisms, which enable crops to grow well in resource limited and environmentally challenging environments, and also develop crops with greater resource use efficiency that have optimum sustainable yields across a wider array of environmental conditions. The phytomicrobiome is considered as one of the best strategies; a better alternative for sustainable agriculture, and a viable solution to meet the twin challenges of global food security and environmental stability. Use of the phytomicrobiome, due to its sustainable and environmentally friendly mechanisms of plant growth promotion, is becoming more widespread in the agricultural industry. Therefore, in this review, we emphasize the contribution of beneficial phytomicrobiome members, particularly plant growth promoting rhizobacteria (PGPR), as a strategy to sustainable improvement of plant growth and production in the face of climate change. Also, the roles of soil dwelling microbes in stress amelioration, nutrient supply (nitrogen fixation, phosphorus solubilization), and phytohormone production along with the factors that could potentially affect their efficiency have been discussed extensively. Lastly, limitations to expansion and use of biobased techniques, for instance, the perspective of crop producers, indigenous microbial competition and regulatory approval are discussed. This review largely focusses on the importance and need of sustainable and environmentally friendly approaches such as biobased/PGPR-based techniques in our agricultural systems, especially in the context of current climate change conditions, which are almost certain to worsen in near future.
Collapse
|
13
|
Kachan AV, Evtushenkov AN. Acidification of the Culture Medium by Products of Glucose Metabolism Inhibits the Synthesis of Heterologous Extracellular α-amylase by Bacillus subtilis 168. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821040062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Dahal P, Kim DY, Kwon E. Crystal structure of the DNA-binding domain of Bacillus subtilis CssR. Biochem Biophys Res Commun 2021; 555:26-31. [PMID: 33812055 DOI: 10.1016/j.bbrc.2021.03.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/01/2022]
Abstract
Bacteria utilize two-component systems to regulate gene expression in response to changes in environmental stimuli. CssS/CssR, a two-component system in Bacillus subtilis, is responsible for overcoming envelope stresses caused by heat shock and secretion overload. During stress, the sensor component CssS is auto-phosphorylated and transfers the phosphoryl group to the response regulator CssR. Phosphorylated CssR then directly regulates the transcription of genes required to counteract the stress. Here, the crystal structure of the DNA-binding domain of CssR, determined at 1.07 Å resolution, is reported. The structure shows that the DNA-binding domain of CssR harbors a winged helix-turn-helix motif that is conserved in the OmpR/PhoB subfamily of response regulators. Based on the crystal structure, the dimeric architecture of the full-length CssR and its DNA-binding mode were suggested.
Collapse
Affiliation(s)
- Pawan Dahal
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Eunju Kwon
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
15
|
Engineering Bacillus subtilis Cells as Factories: Enzyme Secretion and Value-added Chemical Production. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0104-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Emerging Roles of Functional Bacterial Amyloids in Gene Regulation, Toxicity, and Immunomodulation. Microbiol Mol Biol Rev 2020; 85:85/1/e00062-20. [PMID: 33239434 DOI: 10.1128/mmbr.00062-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria often reside in multicellular communities, called biofilms, held together by an extracellular matrix. In many bacteria, the major proteinaceous component of the biofilm are amyloid fibers. Amyloids are highly stable and structured protein aggregates which were known mostly to be associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases. In recent years, microbial amyloids were identified also in other species and shown to play major roles in microbial physiology and virulence. For example, amyloid fibers assemble on the bacterial cell surface as a part of the extracellular matrix and are extremely important to the scaffolding and structural integrity of biofilms, which contribute to microbial resilience and resistance. Furthermore, microbial amyloids play fundamental nonscaffold roles that contribute to the development of biofilms underlying numerous persistent infections. Here, we review several nonscaffold roles of bacterial amyloid proteins, including bridging cells during collective migration, acting as regulators of cell fate, as toxins against other bacteria or against host immune cells, and as modulators of the hosts' immune system. These overall points on the complexity of the amyloid fold in encoding numerous activities, which offer approaches for the development of a novel repertoire of antivirulence therapeutics.
Collapse
|
17
|
SppI Forms a Membrane Protein Complex with SppA and Inhibits Its Protease Activity in Bacillus subtilis. mSphere 2020; 5:5/5/e00724-20. [PMID: 33028682 PMCID: PMC7568657 DOI: 10.1128/msphere.00724-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Our study presents new insights into the molecular mechanism that regulates the activity of SppA, a widely conserved bacterial membrane protease. We show that the membrane proteins SppA and SppI form a complex in the Gram-positive model bacterium B. subtilis and that SppI inhibits SppA protease activity in vitro and in vivo. Furthermore, we demonstrate that the C-terminal domain of SppI is involved in SppA inhibition. Since SppA, through its protease activity, contributes directly to resistance to lantibiotic peptides and cationic antibacterial peptides, we propose that the conserved SppA-SppI complex could play a major role in the evasion of bactericidal peptides, including those produced as part of human innate immune defenses. The membrane protease SppA of Bacillus subtilis was first described as a signal peptide peptidase and later shown to confer resistance to lantibiotics. Here, we report that SppA forms octameric complexes with YteJ, a membrane protein of thus-far-unknown function. Interestingly, sppA and yteJ deletion mutants exhibited no protein secretion defects. However, these mutant strains differed significantly in their resistance to antimicrobial peptides. In particular, sppA mutant cells displayed increased sensitivity to the lantibiotics nisin and subtilin and the human lysozyme-derived cationic antimicrobial peptide LP9. Importantly, YteJ was shown to antagonize SppA activity both in vivo and in vitro, and this SppA-inhibitory activity involved the C-terminal domain of YteJ, which was therefore renamed SppI. Most likely, SppI-mediated control is needed to protect B. subtilis against the potentially detrimental protease activity of SppA since a mutant overexpressing sppA by itself displayed defects in cell division. Altogether, we conclude that the SppA-SppI complex of B. subtilis has a major role in protection against antimicrobial peptides. IMPORTANCE Our study presents new insights into the molecular mechanism that regulates the activity of SppA, a widely conserved bacterial membrane protease. We show that the membrane proteins SppA and SppI form a complex in the Gram-positive model bacterium B. subtilis and that SppI inhibits SppA protease activity in vitro and in vivo. Furthermore, we demonstrate that the C-terminal domain of SppI is involved in SppA inhibition. Since SppA, through its protease activity, contributes directly to resistance to lantibiotic peptides and cationic antibacterial peptides, we propose that the conserved SppA-SppI complex could play a major role in the evasion of bactericidal peptides, including those produced as part of human innate immune defenses.
Collapse
|
18
|
Deletion of a Peptidylprolyl Isomerase Gene Results in the Inability of Caldicellulosiruptor bescii To Grow on Crystalline Cellulose without Affecting Protein Glycosylation or Growth on Soluble Substrates. Appl Environ Microbiol 2020; 86:AEM.00909-20. [PMID: 32769195 DOI: 10.1128/aem.00909-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/30/2020] [Indexed: 11/20/2022] Open
Abstract
Caldicellulosiruptor bescii secretes a large number of complementary multifunctional enzymes with unique activities for biomass deconstruction. The most abundant enzymes in the C. bescii secretome are found in a unique gene cluster containing a glycosyl transferase (GT39) and a putative peptidyl prolyl cis-trans isomerase. Deletion of the glycosyl transferase in this cluster resulted in loss of detectable protein glycosylation in C. bescii, and its activity has been shown to be responsible for the glycosylation of the proline-threonine rich linkers found in many of the multifunctional cellulases. The presence of a putative peptidyl prolyl cis-trans isomerase within this gene cluster suggested that it might also play a role in cellulase modification. Here, we identify this gene as a putative prsA prolyl cis-trans isomerase. Deletion of prsA2 leads to the inability of C. bescii to grow on insoluble substrates such as Avicel, the model cellulose substrate, while exhibiting no differences in phenotype with the wild-type strain on soluble substrates. Finally, we provide evidence that the prsA2 gene is likely needed to increase solubility of multifunctional cellulases and that this unique gene cluster was likely acquired by members of the Caldicellulosiruptor genus with a group of genes to optimize the production and activity of multifunctional cellulases.IMPORTANCE Caldicellulosiruptor has the ability to digest complex plant biomass without pretreatment and have been engineered to convert biomass, a sustainable, carbon neutral substrate, to fuels. Their strategy for deconstructing plant cell walls relies on an interesting class of cellulases consisting of multiple catalytic modules connected by linker regions and carbohydrate binding modules. The best studied of these enzymes, CelA, has a unique deconstruction mechanism. CelA is located in a cluster of genes that likely allows for optimal expression, secretion, and activity. One of the genes in this cluster is a putative isomerase that modifies the CelA protein. In higher eukaryotes, these isomerases are essential for the proper folding of glycoproteins in the endoplasmic reticulum, but little is known about the role of isomerization in cellulase activity. We show that the stability and activity of CelA is dependent on the activity of this isomerase.
Collapse
|
19
|
Bernal-Cabas M, Miethke M, Antelo-Varela M, Aguilar Suárez R, Neef J, Schön L, Gabarrini G, Otto A, Becher D, Wolf D, van Dijl JM. Functional association of the stress-responsive LiaH protein and the minimal TatAyCy protein translocase in Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118719. [DOI: 10.1016/j.bbamcr.2020.118719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/07/2023]
|
20
|
Shin JH, Choi J, Jeon J, Kumar M, Lee J, Jeong WJ, Kim SR. The establishment of new protein expression system using N starvation inducible promoters in Chlorella. Sci Rep 2020; 10:12713. [PMID: 32728100 PMCID: PMC7391781 DOI: 10.1038/s41598-020-69620-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/22/2020] [Indexed: 11/09/2022] Open
Abstract
Chlorella is a unicellular green microalga that has been used in fields such as bioenergy production and food supplementation. In this study, two promoters of N (nitrogen) deficiency-inducible Chlorella vulgaris N Deficiency Inducible (CvNDI) genes were isolated from Chlorella vulgaris UTEX 395. These promoters were used for the production of a recombinant protein, human granulocyte-colony stimulating factor (hG-CSF) in Chlorella vulgaris UTEX 395 and Chlorella sp. ArM0029B. To efficiently secrete the hG-CSF, the protein expression vectors incorporated novel signal peptides obtained from a secretomics analysis of Chlorella spp. After a stable transformation of those vectors with a codon-optimized hG-CSF sequence, hG-CSF polypeptides were successfully produced in the spent media of the transgenic Chlorella. To our knowledge, this is the first report of recombinant protein expression using endogenous gene components of Chlorella.
Collapse
Affiliation(s)
- Jun-Hye Shin
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Juyoung Choi
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Jeongmin Jeon
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Manu Kumar
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Juhyeon Lee
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Won-Joong Jeong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seong-Ryong Kim
- Department of Life Science, Sogang University, Seoul, South Korea.
| |
Collapse
|
21
|
Msimbira LA, Smith DL. The Roles of Plant Growth Promoting Microbes in Enhancing Plant Tolerance to Acidity and Alkalinity Stresses. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00106] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
22
|
Steinberg N, Keren-Paz A, Hou Q, Doron S, Yanuka-Golub K, Olender T, Hadar R, Rosenberg G, Jain R, Cámara-Almirón J, Romero D, van Teeffelen S, Kolodkin-Gal I. The extracellular matrix protein TasA is a developmental cue that maintains a motile subpopulation within Bacillus subtilis biofilms. Sci Signal 2020; 13:13/632/eaaw8905. [PMID: 32430292 DOI: 10.1126/scisignal.aaw8905] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In nature, bacteria form biofilms-differentiated multicellular communities attached to surfaces. Within these generally sessile biofilms, a subset of cells continues to express motility genes. We found that this subpopulation enabled Bacillus subtilis biofilms to expand on high-friction surfaces. The extracellular matrix (ECM) protein TasA was required for the expression of flagellar genes. In addition to its structural role as an adhesive fiber for cell attachment, TasA acted as a developmental signal stimulating a subset of biofilm cells to revert to a motile phenotype. Transcriptomic analysis revealed that TasA stimulated the expression of a specific subset of genes whose products promote motility and repress ECM production. Spontaneous suppressor mutations that restored motility in the absence of TasA revealed that activation of the biofilm-motility switch by the two-component system CssR/CssS antagonized the TasA-mediated reversion to motility in biofilm cells. Our results suggest that although mostly sessile, biofilms retain a degree of motility by actively maintaining a motile subpopulation.
Collapse
Affiliation(s)
- Nitai Steinberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,Department of Microbiology, Institute Pasteur, Paris, France
| | - Alona Keren-Paz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Qihui Hou
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shany Doron
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Yanuka-Golub
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Hadar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Rosenberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rakeshkumar Jain
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jesus Cámara-Almirón
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | | | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
23
|
Zhang K, Su L, Wu J. Recent Advances in Recombinant Protein Production byBacillus subtilis. Annu Rev Food Sci Technol 2020; 11:295-318. [DOI: 10.1146/annurev-food-032519-051750] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacillus subtilis has become a widely used microbial cell factory for the production of recombinant proteins, especially those associated with foods and food processing. Recent advances in genetic manipulation and proteomic analysis have been used to greatly improve protein production in B. subtilis. This review begins with a discussion of genome-editing technologies and application of the CRISPR–Cas9 system to B. subtilis. A summary of the characteristics of crucial legacy strains is followed by suggestions regarding the choice of origin strain for genetic manipulation. Finally, the review analyzes the genes and operons of B. subtilis that are important for the production of secretory proteins and provides suggestions and examples of how they can be altered to improve protein production. This review is intended to promote the engineering of this valuable microbial cell factory for better recombinant protein production.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
24
|
Relative contributions of non-essential Sec pathway components and cell envelope-associated proteases to high-level enzyme secretion by Bacillus subtilis. Microb Cell Fact 2020; 19:52. [PMID: 32111210 PMCID: PMC7048088 DOI: 10.1186/s12934-020-01315-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background Bacillus subtilis is an important industrial workhorse applied in the production of many different commercially relevant proteins, especially enzymes. Virtually all of these proteins are secreted via the general secretion (Sec) pathway. Studies from different laboratories have demonstrated essential or non-essential contributions of various Sec machinery components to protein secretion in B. subtilis. However, a systematic comparison of the impact of each individual Sec machinery component under conditions of high-level protein secretion was so far missing. Results In the present study, we have compared the contributions of non-essential Sec pathway components and cell envelope-associated proteases on the secretion efficiency of three proteins expressed at high level. This concerned the α-amylases AmyE from B. subtilis and AmyL from Bacillus licheniformis, and the serine protease BPN’ from Bacillus amyloliquefaciens. We compared the secretion capacity of mutant strains in shake flask cultures, and the respective secretion kinetics by pulse-chase labeling experiments. The results show that secDF, secG or rasP mutations severely affect AmyE, AmyL and BPN’ secretion, but the actual effect size depends on the investigated protein. Additionally, the chaperone DnaK is important for BPN’ secretion, while AmyE or AmyL secretion are not affected by a dnaK deletion. Further, we assessed the induction of secretion stress responses in mutant strains by examining AmyE- and AmyL-dependent induction of the quality control proteases HtrA and HtrB. Interestingly, the deletion of certain sip genes revealed a strong differential impact of particular signal peptidases on the magnitude of the secretion stress response. Conclusions The results of the present study highlight the importance of SecDF, SecG and RasP for protein secretion and reveal unexpected differences in the induction of the secretion stress response in different mutant strains.
Collapse
|
25
|
Antelo-Varela M, Aguilar Suárez R, Bartel J, Bernal-Cabas M, Stobernack T, Sura T, van Dijl JM, Maaß S, Becher D. Membrane Modulation of Super-Secreting "midi Bacillus" Expressing the Major Staphylococcus aureus Antigen - A Mass-Spectrometry-Based Absolute Quantification Approach. Front Bioeng Biotechnol 2020; 8:143. [PMID: 32185169 PMCID: PMC7059095 DOI: 10.3389/fbioe.2020.00143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/12/2020] [Indexed: 01/18/2023] Open
Abstract
Bacillus subtilis has been extensively used as a microbial cell factory for industrial enzymes due to its excellent capacities for protein secretion and large-scale fermentation. This bacterium is also an attractive host for biopharmaceutical production. However, the secretion potential of this organism is not fully utilized yet, mostly due to a limited understanding of critical rearrangements in the membrane proteome upon high-level protein secretion. Recently, it was shown that bottlenecks in heterologous protein secretion can be resolved by genome minimization. Here, we present for the first time absolute membrane protein concentrations of a genome-reduced B. subtilis strain ("midiBacillus") expressing the immunodominant Staphylococcus aureus antigen A (IsaA). We quantitatively characterize the membrane proteome adaptation of midiBacillus during production stress on the level of molecules per cell for more than 400 membrane proteins, including determination of protein concentrations for ∼61% of the predicted transporters. We demonstrate that ∼30% of proteins with unknown functions display a significant increase in abundance, confirming the crucial role of membrane proteins in vital biological processes. In addition, our results show an increase of proteins dedicated to translational processes in response to IsaA induction. For the first time reported, we provide accumulation rates of a heterologous protein, demonstrating that midiBacillus secretes 2.41 molecules of IsaA per minute. Despite the successful secretion of this protein, it was found that there is still some IsaA accumulation occurring in the cytosol and membrane fraction, leading to a severe secretion stress response, and a clear adjustment of the cell's array of transporters. This quantitative dataset offers unprecedented insights into bioproduction stress responses in a synthetic microbial cell.
Collapse
Affiliation(s)
- Minia Antelo-Varela
- Centre of Functional Genomics of Microbes, Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Rocío Aguilar Suárez
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jürgen Bartel
- Centre of Functional Genomics of Microbes, Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Margarita Bernal-Cabas
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tim Stobernack
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Thomas Sura
- Centre of Functional Genomics of Microbes, Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sandra Maaß
- Centre of Functional Genomics of Microbes, Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Centre of Functional Genomics of Microbes, Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
26
|
Jurischka S, Bida A, Dohmen-Olma D, Kleine B, Potzkei J, Binder S, Schaumann G, Bakkes PJ, Freudl R. A secretion biosensor for monitoring Sec-dependent protein export in Corynebacterium glutamicum. Microb Cell Fact 2020; 19:11. [PMID: 31964372 PMCID: PMC6975037 DOI: 10.1186/s12934-019-1273-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, the industrial workhorse Corynebacterium glutamicum has gained increasing interest as a host organism for the secretory production of heterologous proteins. Generally, the yield of a target protein in the culture supernatant depends on a multitude of interdependent biological and bioprocess parameters which have to be optimized. So far, the monitoring of such optimization processes depends on the availability of a direct assay for the respective target protein that can be handled also in high throughput approaches. Since simple assays, such as standard enzymatic activity assays, are not always at hand, the availability of a general protein secretion biosensor is highly desirable. RESULTS High level secretion of proteins via the Sec protein export pathway leads to secretion stress, a phenomenon that is thought to be caused by the accumulation of incompletely or misfolded proteins at the membrane-cell envelope interface. We have analyzed the transcriptional responses of C. glutamicum to the secretory production of two different heterologous proteins and found that, in both cases, the expression of the gene encoding a homologue of the extracytosolic HtrA protease was highly upregulated. Based on this finding, a C. glutamicum Sec secretion biosensor strain was constructed in which the htrA gene on the chromosome was replaced by the eyfp gene. The fluorescence of the resulting reporter strain responded to the secretion of different heterologous proteins (cutinase from Fusarium solani pisi and alkaline phosphatase PhoA from Escherichia coli) in a dose-dependent manner. In addition, three differently efficient signal peptides for the secretory production of the cutinase could be differentiated by the biosensor signal. Furthermore, we have shown that an efficient signal peptide can be separated from a poor signal peptide by using the biosensor signal of the respective cells in fluorescence activated cell sorting experiments. CONCLUSIONS We have succeeded in the construction of a C. glutamicum biosensor strain that allows for the monitoring of Sec-dependent secretion of heterologous proteins in a dose-dependent manner, independent of a direct assay for the desired target protein.
Collapse
Affiliation(s)
- Sarah Jurischka
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany
| | - Astrid Bida
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Doris Dohmen-Olma
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Britta Kleine
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Janko Potzkei
- SenseUp GmbH, c/o Campus Forschungszentrum, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Stephan Binder
- SenseUp GmbH, c/o Campus Forschungszentrum, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Georg Schaumann
- SenseUp GmbH, c/o Campus Forschungszentrum, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Patrick J Bakkes
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Roland Freudl
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany.
| |
Collapse
|
27
|
Zhao H, Sachla AJ, Helmann JD. Mutations of the Bacillus subtilis YidC1 (SpoIIIJ) insertase alleviate stress associated with σM-dependent membrane protein overproduction. PLoS Genet 2019; 15:e1008263. [PMID: 31626625 PMCID: PMC6827917 DOI: 10.1371/journal.pgen.1008263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/04/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023] Open
Abstract
In Bacillus subtilis, the extracytoplasmic function σ factor σM regulates cell wall synthesis and is critical for intrinsic resistance to cell wall targeting antibiotics. The anti-σ factors YhdL and YhdK form a complex that restricts the basal activity of σM, and the absence of YhdL leads to runaway expression of the σM regulon and cell death. Here, we report that this lethality can be suppressed by gain-of-function mutations in yidC1 (spoIIIJ), which encodes the major YidC membrane protein insertase in B. subtilis. B. subtilis PY79 YidC1 (SpoIIIJ) contains a single amino acid substitution in a functionally important hydrophilic groove (Q140K), and this allele suppresses the lethality of high σM. Analysis of a library of YidC1 variants reveals that increased charge (+2 or +3) in the hydrophilic groove can compensate for high expression of the σM regulon. Derepression of the σM regulon induces secretion stress, oxidative stress and DNA damage responses, all of which can be alleviated by the YidC1Q140K substitution. We further show that the fitness defect caused by high σM activity is exacerbated in the absence of the SecDF protein translocase or σM-dependent induction of the Spx oxidative stress regulon. Conversely, cell growth is improved by mutation of specific σM-dependent promoters controlling operons encoding integral membrane proteins. Collectively, these results reveal how the σM regulon has evolved to up-regulate membrane-localized complexes involved in cell wall synthesis, and to simultaneously counter the resulting stresses imposed by regulon induction. Bacteria frequently produce antibiotics that inhibit the growth of competitors, and many naturally occurring antibiotics target cell wall synthesis. In Bacillus subtilis, the alternative σ factor σM is induced by cell wall antibiotics, and upregulates genes for peptidoglycan and cell envelope synthesis. However, dysregulation of the σM regulon, resulting from loss of the YhdL anti-σM protein, is lethal. We here identify charge variants of the YidC1 (SpoIIIJ) membrane protein insertase that suppress the lethal effects of high σM activity. Further analyses reveal that induction of the σM regulon leads to high level expression of membrane proteins that trigger envelope stress, and this stress is countered by specific genes in the σM regulon.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
| | - Ankita J. Sachla
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
28
|
Quesada-Ganuza A, Antelo-Varela M, Mouritzen JC, Bartel J, Becher D, Gjermansen M, Hallin PF, Appel KF, Kilstrup M, Rasmussen MD, Nielsen AK. Identification and optimization of PrsA in Bacillus subtilis for improved yield of amylase. Microb Cell Fact 2019; 18:158. [PMID: 31530286 PMCID: PMC6749698 DOI: 10.1186/s12934-019-1203-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022] Open
Abstract
Background PrsA is an extracytoplasmic folding catalyst essential in Bacillus subtilis. Overexpression of the native PrsA from B. subtilis has repeatedly lead to increased amylase yields. Nevertheless, little is known about how the overexpression of heterologous PrsAs can affect amylase secretion. Results In this study, the final yield of five extracellular alpha-amylases was increased by heterologous PrsA co-expression up to 2.5 fold. The effect of the overexpression of heterologous PrsAs on alpha-amylase secretion is specific to the co-expressed alpha-amylase. Co-expression of a heterologous PrsA can significantly reduce the secretion stress response. Engineering of the B. licheniformis PrsA lead to a further increase in amylase secretion and reduced secretion stress. Conclusions In this work we show how heterologous PrsA overexpression can give a better result on heterologous amylase secretion than the native PrsA, and that PrsA homologs show a variety of specificity towards different alpha-amylases. We also demonstrate that on top of increasing amylase yield, a good PrsA–amylase pairing can lower the secretion stress response of B. subtilis. Finally, we present a new recombinant PrsA variant with increased performance in both supporting amylase secretion and lowering secretion stress.
Collapse
Affiliation(s)
- Ane Quesada-Ganuza
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Minia Antelo-Varela
- Institute for Microbiology, Department of Microbial Proteomics, Ernst-Moritz-Arndt-University Greifswald, F.- Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Jeppe C Mouritzen
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Jürgen Bartel
- Institute for Microbiology, Department of Microbial Proteomics, Ernst-Moritz-Arndt-University Greifswald, F.- Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, Department of Microbial Proteomics, Ernst-Moritz-Arndt-University Greifswald, F.- Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Morten Gjermansen
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Peter F Hallin
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Karen F Appel
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Mogens Kilstrup
- Technical University of Denmark, Søltofts Plads, Building 221, Room 204, 2800, Lyngby, Denmark
| | - Michael D Rasmussen
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark
| | - Allan K Nielsen
- Research and Technology, Novozymes A/S, Krogshoejvej 36, 2880, Basgvaerd, Denmark.
| |
Collapse
|
29
|
Secretory Expression Fine-Tuning and Directed Evolution of Diacetylchitobiose Deacetylase by Bacillus subtilis. Appl Environ Microbiol 2019; 85:AEM.01076-19. [PMID: 31253675 DOI: 10.1128/aem.01076-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
Abstract
Diacetylchitobiose deacetylase has great application potential in the production of chitosan oligosaccharides and monosaccharides. This work aimed to achieve high-level secretory production of diacetylchitobiose deacetylase by Bacillus subtilis and perform molecular engineering to improve catalytic performance. First, we screened 12 signal peptides for diacetylchitobiose deacetylase secretion in B. subtilis, and the signal peptide YncM achieved the highest extracellular diacetylchitobiose deacetylase activity of 13.5 U/ml. Second, by replacing the HpaII promoter with a strong promoter, the P43 promoter, the activity was increased to 18.9 U/ml. An unexpected mutation occurred at the 5' untranslated region of plasmid, and the extracellular activity reached 1,548.1 U/ml, which is 82 times higher than that of the original strain. Finally, site-directed saturation mutagenesis was performed for the molecular engineering of diacetylchitobiose deacetylase to further improve the catalytic efficiency. The extracellular activity of mutant diacetylchitobiose deacetylase R157T reached 2,042.8 U/ml in shake flasks. Mutant R157T exhibited much higher specific activity (3,112.2 U/mg) than the wild type (2,047.3 U/mg). The Km decreased from 7.04 mM in the wild type to 5.19 mM in the mutant R157T, and the V max increased from 5.11 μM s-1 in the wild type to 7.56 μM s-1 in the mutant R157T.IMPORTANCE We successfully achieved efficient secretory production and improved the catalytic efficiency of diacetylchitobiose deacetylase in Bacillus subtilis, and this provides a good foundation for the application of diacetylchitobiose deacetylase in the production of chitosan oligosaccharides and monosaccharides.
Collapse
|
30
|
Ho TD, Ellermeier CD. Activation of the extracytoplasmic function σ factor σ V by lysozyme. Mol Microbiol 2019; 112:410-419. [PMID: 31286585 DOI: 10.1111/mmi.14348] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
σV is an extracytoplasmic function (ECF) σ factor that is found exclusively in Firmicutes including Bacillus subtilis and the opportunistic pathogens Clostridioides difficile and Enterococcus faecalis. σV is activated by lysozyme and is required for lysozyme resistance. The activity of σV is normally inhibited by the anti-σ factor RsiV, a transmembrane protein. RsiV acts as a receptor for lysozyme. The binding of lysozyme to RsiV triggers a signal transduction cascade which results in degradation of RsiV and activation of σV . Like the anti-σ factors for several other ECF σ factors, RsiV is degraded by a multistep proteolytic cascade that is regulated at the step of site-1 cleavage. Unlike other anti-σ factors, site-1 cleavage of RsiV is not dependent upon a site-1 protease whose activity is regulated. Instead constitutively active signal peptidase cleaves RsiV at site-1 in a lysozyme-dependent manner. The activation of σV leads to the transcription of genes, which encode proteins required for lysozyme resistance.
Collapse
Affiliation(s)
- Theresa D Ho
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 431 Newton Rd, Iowa City, IA, 52242, USA
| | - Craig D Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 431 Newton Rd, Iowa City, IA, 52242, USA.,Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
31
|
Rojas-Tapias DF, Helmann JD. Roles and regulation of Spx family transcription factors in Bacillus subtilis and related species. Adv Microb Physiol 2019; 75:279-323. [PMID: 31655740 DOI: 10.1016/bs.ampbs.2019.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacillus subtilis Spx is the prototype for a large family of redox-responsive transcription factors found in many bacteria, most notably those from the phylum Firmicutes. Unusually for a transcription factor, B. subtilis Spx protein modulates gene expression by binding as a monomer to the αCTD domain of RNA polymerase (RNAP), and only interacts with DNA during subsequent promoter engagement. B. subtilis Spx drives the expression of a large regulon in response to proteotoxic conditions, such as heat and disulfide stress, as well as cell wall stress. Here, we review the detailed mechanisms that control the expression, stability, and activity of Spx in response to a variety of stress conditions. We also summarize current knowledge regarding Spx homologs in other Firmicutes, the environmental conditions in which those homologs are activated, and their biological role.
Collapse
Affiliation(s)
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
32
|
Yan S, Wu G. Proteases HtrA and HtrB for α-amylase secreted from Bacillus subtilis in secretion stress. Cell Stress Chaperones 2019; 24:493-502. [PMID: 31001739 PMCID: PMC6527527 DOI: 10.1007/s12192-019-00985-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/16/2023] Open
Abstract
HtrA and HtrB are two important proteases across species. In biotechnological industries, they are related to degradation of secreted heterologous proteins from bacteria, especially in the case of overproduction of α-amylases in Bacillus subtilis. Induction of HtrA and HtrB synthesis follows the overproduction of α-amylases in B. subtilis. This is different from the order usually observed in B. subtilis, i.e., the production of proteases is prior to the secretion of proteins. This discrepancy suggests three possibilities: (i) HtrA and HtrB are constantly synthesized from the end of the exponential phase, and then are synthesized more abundantly due to secretion stress; (ii) There is a hysteresis mechanism that holds HtrA and HtrB back from their large amount of secretion before the overproduction of α-amylases; (iii) Heterologous amylases could be a stress to B. subtilis leading to a general response to stress. In this review, we analyze the literature to explore these three possibilities. The first possibility is attributed to the regulatory pathway of CssR-CssS. The second possibility is because sigma factor σD plays a role in the overproduction of α-amylases and is subpopulation dependent with the switch between "ON" and "OFF" states that is fundamental for a bistable system and a hysteresis mechanism. Thus, sigma factor σD helps to hold HtrA and HtrB back from massive secretion before the overproduction of α-amylases. The third possibility is that several sigma factors promote the secretion of proteases at the end of the exponential phase of growth under the condition that heterologous amylases are considered as a stress.
Collapse
Affiliation(s)
- Shaomin Yan
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, Guangxi, China
| | - Guang Wu
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, Guangxi, China.
| |
Collapse
|
33
|
Israeli M, Elia U, Rotem S, Cohen H, Tidhar A, Bercovich-Kinori A, Cohen O, Chitlaru T. Distinct Contribution of the HtrA Protease and PDZ Domains to Its Function in Stress Resilience and Virulence of Bacillus anthracis. Front Microbiol 2019; 10:255. [PMID: 30833938 PMCID: PMC6387919 DOI: 10.3389/fmicb.2019.00255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Anthrax is a lethal disease caused by the Gram-positive spore-producing bacterium Bacillus anthracis. We previously demonstrated that disruption of htrA gene, encoding the chaperone/protease HtrABA (High Temperature Requirement A of B. anthracis) results in significant virulence attenuation, despite unaffected ability of ΔhtrA strains (in which the htrA gene was deleted) to synthesize the key anthrax virulence factors: the exotoxins and capsule. B. anthracis ΔhtrA strains exhibited increased sensitivity to stress regimens as well as silencing of the secreted starvation-associated Neutral Protease A (NprA) and down-modulation of the bacterial S-layer. The virulence attenuation associated with disruption of the htrA gene was suggested to reflect the susceptibility of ΔhtrA mutated strains to stress insults encountered in the host indicating that HtrABA represents an important B. anthracis pathogenesis determinant. As all HtrA serine proteases, HtrABA exhibits a protease catalytic domain and a PDZ domain. In the present study we interrogated the relative impact of the proteolytic activity (mediated by the protease domain) and the PDZ domain (presumably necessary for the chaperone activity and/or interaction with substrates) on manifestation of phenotypic characteristics mediated by HtrABA. By inspecting the phenotype exhibited by ΔhtrA strains trans-complemented with either a wild-type, truncated (ΔPDZ), or non-proteolytic form (mutated in the catalytic serine residue) of HtrABA, as well as strains exhibiting modified chromosomal alleles, it is shown that (i) the proteolytic activity of HtrABA is essential for its N-terminal autolysis and subsequent release into the extracellular milieu, while the PDZ domain was dispensable for this process, (ii) the PDZ domain appeared to be dispensable for most of the functions related to stress resilience as well as involvement of HtrABA in assembly of the bacterial S-layer, (iii) conversely, the proteolytic activity but not the PDZ domain, appeared to be dispensable for the role of HtrABA in mediating up-regulation of the extracellular protease NprA under starvation stress, and finally (iv) in a murine model of anthrax, the HtrABA PDZ domain, was dispensable for manifestation of B. anthracis virulence. The unexpected dispensability of the PDZ domain may represent a unique characteristic of HtrABA amongst bacterial serine proteases of the HtrA family.
Collapse
Affiliation(s)
- Ma'ayan Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Uri Elia
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Hila Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Adi Bercovich-Kinori
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
34
|
Aguilar Suárez R, Stülke J, van Dijl JM. Less Is More: Toward a Genome-Reduced Bacillus Cell Factory for "Difficult Proteins". ACS Synth Biol 2019; 8:99-108. [PMID: 30540431 PMCID: PMC6343112 DOI: 10.1021/acssynbio.8b00342] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The availability of complete genome
sequences and the definition
of essential gene sets were fundamental in the start of the genome
engineering era. In a recent study, redundant and unnecessary genes
were systematically deleted from the Gram-positive bacterium Bacillus subtilis, an industrial production host of high-value
secreted proteins. This culminated in strain PG10, which lacks about
36% of the genome, thus representing the most minimal Bacillus chassis currently available. Here, we show that this “miniBacillus” strain has synthetic traits that are favorable
for producing “difficult-to-produce proteins”. As exemplified
with different staphylococcal antigens, PG10 overcomes several bottlenecks
in protein production related to the secretion process and instability
of the secreted product. These findings show for the first time that
massive genome reduction can substantially improve secretory protein
production by a bacterial expression host, and underpin the high potential
of genome-engineered strains as future cell factories.
Collapse
Affiliation(s)
- Rocío Aguilar Suárez
- University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Jörg Stülke
- Institute of Microbiology and Genetics, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Jan Maarten van Dijl
- University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| |
Collapse
|
35
|
Huang GL, Gosschalk JE, Kim YS, Ogorzalek Loo RR, Clubb RT. Stabilizing displayed proteins on vegetative Bacillus subtilis cells. Appl Microbiol Biotechnol 2018; 102:6547-6565. [PMID: 29796970 PMCID: PMC6289300 DOI: 10.1007/s00253-018-9062-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 10/16/2022]
Abstract
Microbes engineered to display heterologous proteins could be useful biotechnological tools for protein engineering, lignocellulose degradation, biocatalysis, bioremediation, and biosensing. Bacillus subtilis is a promising host to display proteins, as this model Gram-positive bacterium is genetically tractable and already used industrially to produce enzymes. To gain insight into the factors that affect displayed protein stability and copy number, we systematically compared the ability of different protease-deficient B. subtilis strains (WB800, BRB07, BRB08, and BRB14) to display a Cel8A-LysM reporter protein in which the Clostridium thermocellum Cel8A endoglucanase is fused to LysM cell wall binding modules. Whole-cell cellulase measurements and fractionation experiments demonstrate that genetically eliminating extracytoplasmic bacterial proteases improves Cel8A-LysM display levels. However, upon entering stationary phase, for all protease-deficient strains, the amount of displayed reporter dramatically decreases, presumably as a result of cellular autolysis. This problem can be partially overcome by adding chemical protease inhibitors, which significantly increase protein display levels. We conclude that strain BRB08 is well suited for stably displaying our reporter protein, as genetic removal of its extracellular and cell wall-associated proteases leads to the highest levels of surface-accumulated Cel8A-LysM without causing secretion stress or impairing growth. A two-step procedure is presented that enables the construction of enzyme-coated vegetative B. subtilis cells that retain stable cell-associated enzyme activity for nearly 3 days. The results of this work could aid the development of whole-cell display systems that have useful biotechnological applications.
Collapse
Affiliation(s)
- Grace L Huang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Jason E Gosschalk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Ye Seong Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Rachel R Ogorzalek Loo
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA.
| |
Collapse
|
36
|
A comprehensive review of signal peptides: Structure, roles, and applications. Eur J Cell Biol 2018; 97:422-441. [DOI: 10.1016/j.ejcb.2018.06.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 01/06/2023] Open
|
37
|
Rojas-Tapias DF, Helmann JD. Stabilization of Bacillus subtilis Spx under cell wall stress requires the anti-adaptor protein YirB. PLoS Genet 2018; 14:e1007531. [PMID: 30001325 PMCID: PMC6057675 DOI: 10.1371/journal.pgen.1007531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/24/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Spx is a global transcriptional regulator present in low-GC Gram-positive bacteria, including the model bacterium Bacillus subtilis and various human pathogens. In B. subtilis, activation of Spx occurs in response to disulfide stress. We recently reported, however, that induction of Spx also occurs in response to cell wall stress, and that the molecular events that result in its activation under both stress conditions are mechanistically different. Here, we demonstrate that, in addition to up-regulation of spx transcription through the alternative sigma factor σM, full and timely activation of Spx-regulated genes by cell wall stress requires Spx stabilization by the anti-adaptor protein YirB. YirB is itself transcriptionally induced under cell wall stress, but not disulfide stress, and this induction requires the CssRS two-component system, which responds to both secretion stress and cell wall antibiotics. The yirB gene is repressed by YuxN, a divergently transcribed TetR family repressor, and CssR~P acts as an anti-repressor. Collectively, our results identify a physiological role for the YirB anti-adaptor protein and show that induction of the Spx regulon under disulfide and cell wall stress occurs through largely independent pathways. Bacillus subtilis Spx is the founding member of a large family of redox-stress sensing transcriptional regulatory proteins, and Spx orthologs are important for oxidative stress and virulence in several Gram-positive pathogens. Spx controls a large regulon in response to disulfide stress. Disulfide stress induces the Spx regulon through post-translational events that involve both stabilization of Spx against proteolysis and protein oxidation. We previously reported that genes in the Spx regulon are also induced in response to antibiotics that target the synthesis of the bacterial cell wall. Interestingly, we show that this induction is mechanistically distinct from disulfide stress as it involves transcriptional induction of spx by an alternative sigma factor. We show here that stabilization of Spx also requires a novel anti-adaptor protein, YirB, which prevents Spx degradation by binding to and inhibiting the activity of the adaptor protein YjbH. Induction of spx and Spx stabilization are both required for full and timely induction of the genes in the Spx regulon in response to cell wall stress. We further show that induction of the genes in the Spx regulon in response to either cell wall stress or disulfide stress takes place through largely independent pathways.
Collapse
Affiliation(s)
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
38
|
Gullón S, Mellado RP. The Cellular Mechanisms that Ensure an Efficient Secretion in Streptomyces. Antibiotics (Basel) 2018; 7:E33. [PMID: 29661993 PMCID: PMC6022935 DOI: 10.3390/antibiotics7020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
Gram-positive soil bacteria included in the genus Streptomyces produce a large variety of secondary metabolites in addition to extracellular hydrolytic enzymes. From the industrial and commercial viewpoints, the S. lividans strain has generated greater interest as a host bacterium for the overproduction of homologous and heterologous hydrolytic enzymes as an industrial application, which has considerably increased scientific interest in the characterization of secretion routes in this bacterium. This review will focus on the secretion machinery in S. lividans.
Collapse
Affiliation(s)
- Sonia Gullón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain.
| | - Rafael P Mellado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
39
|
Vicente RL, Gullón S, Marín S, Mellado RP. The Three Streptomyces lividans HtrA-Like Proteases Involved in the Secretion Stress Response Act in a Cooperative Manner. PLoS One 2016; 11:e0168112. [PMID: 27977736 PMCID: PMC5157995 DOI: 10.1371/journal.pone.0168112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/26/2016] [Indexed: 11/18/2022] Open
Abstract
Overproduction of Sec-proteins in S. lividans accumulates misfolded proteins outside of the cytoplasmic membrane where the accumulated proteins interfere with the correct functioning of the secretion machinery and with the correct cell functionality, triggering the expression in S. lividans of a CssRS two-component system which regulates the degradation of the accumulated protein, the so-called secretion stress response. Optimization of secretory protein production via the Sec route requires the identification and characterisation of quality factors involved in this process. The phosphorylated regulator (CssR) interacts with the regulatory regions of three genes encoding three different HtrA-like proteases. Individual mutations in each of these genes render degradation of the misfolded protein inoperative, and propagation in high copy number of any of the three proteases encoding genes results on indiscriminate alpha-amylase degradation. None of the proteases could complement the other two deficiencies and only propagation of each single copy protease gene can restore its own deficiency. The obtained results strongly suggest that the synthesis of the three HtrA-like proteases needs to be properly balanced to ensure the effective degradation of misfolded overproduced secretory proteins and, at the same time, avoid negative effects in the secreted proteins and the secretion machinery. This is particularly relevant when considering the optimisation of Streptomyces strains for the overproduction of homologous or heterologous secretory proteins of industrial application.
Collapse
Affiliation(s)
- Rebeca L. Vicente
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Sonia Gullón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Silvia Marín
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Rafael P. Mellado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
40
|
Hohmann HP, van Dijl JM, Krishnappa L, Prágai Z. Host Organisms:Bacillus subtilis. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hans-Peter Hohmann
- Nutrition Innovation Center R&D Biotechnology; DSM Nutritional Products Ltd; Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| | - Jan M. van Dijl
- University of Groningen, University Medical Center Groningen; Department of Medical Microbiology; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Laxmi Krishnappa
- University of Groningen, University Medical Center Groningen; Department of Medical Microbiology; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Zoltán Prágai
- Nutrition Innovation Center R&D Biotechnology; DSM Nutritional Products Ltd; Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| |
Collapse
|
41
|
Schumann W. Regulation of bacterial heat shock stimulons. Cell Stress Chaperones 2016; 21:959-968. [PMID: 27518094 PMCID: PMC5083672 DOI: 10.1007/s12192-016-0727-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 11/28/2022] Open
Abstract
All organisms developed genetic programs to allow their survival under stressful conditions. In most cases, they increase the amount of a specific class of proteins which deal with the stress factor and allow cells to adapt to life-threatening conditions. One class of stress proteins are the heat shock proteins (HSPs) the amount of which is significantly increased after a sudden temperature rise. How is the heat shock response (HSR) regulated in bacteria? This has been studied in detail in Escherichia coli, Bacillus subtilis and Streptomyces spp. Two major mechanisms have been described so far to regulate expression of the HSGs, namely alternative sigma factors and transcriptional repressors. This review focuses on the regulatory details of the different heat shock regulons in the three well-studied bacterial species.
Collapse
Affiliation(s)
- Wolfgang Schumann
- Institute of Genetics, University of Bayreuth, 95440, Bayreuth, Germany.
| |
Collapse
|
42
|
Ma Y, Shen W, Chen X, Liu L, Zhou Z, Xu F, Yang H. Significantly enhancing recombinant alkaline amylase production in Bacillus subtilis by integration of a novel mutagenesis-screening strategy with systems-level fermentation optimization. J Biol Eng 2016; 10:13. [PMID: 27777616 PMCID: PMC5067897 DOI: 10.1186/s13036-016-0035-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/03/2016] [Indexed: 11/13/2022] Open
Abstract
Background Alkaline amylase has significant potential for applications in the textile, paper and detergent industries, however, low yield of which cannot meet the requirement of industrial application. In this work, a novel ARTP mutagenesis-screening method and fermentation optimization strategies were used to significantly improve the expression level of recombinant alkaline amylase in B. subtilis 168. Results The activity of alkaline amylase in mutant B. subtilis 168 mut-16# strain was 1.34-fold greater than that in the wild-type, and the highest specific production rate was improved from 1.31 U/(mg·h) in the wild-type strain to 1.57 U/(mg·h) in the mutant strain. Meanwhile, the growth of B. subtilis was significantly enhanced by ARTP mutagenesis. When the agitation speed was 550 rpm, the highest activity of recombinant alkaline amylase was 1.16- and 1.25-fold of the activities at 450 and 650 rpm, respectively. When the concentration of soluble starch and soy peptone in the initial fermentation medium was doubled, alkaline amylase activity was increased 1.29-fold. Feeding hydrolyzed starch and soy peptone mixture or glucose significantly improved cell growth, but inhibited the alkaline amylase production in B. subtilis 168 mut-16#. The highest alkaline amylase activity by feeding hydrolyzed starch reached 591.4 U/mL, which was 1.51-fold the activity by feeding hydrolyzed starch and soy peptone mixture. Single pulse feeding-based batch feeding at 10 h favored the production of alkaline amylase in B. subtilis 168 mut-16#. Conclusion The results indicated that this novel ARTP mutagenesis-screening method could significantly improve the yield of recombinant proteins in B. subtilis. Meanwhile, fermentation optimization strategies efficiently promoted expression of recombinant alkaline amylase in B. subtilis 168 mut-16#. These findings have great potential for facilitating the industrial-scale production of alkaline amylase and other enzymes, using B. subtilis cultures as microbial cell factories.
Collapse
Affiliation(s)
- Yingfang Ma
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Wei Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Long Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Fei Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
43
|
Secretion Chaperones PrsA2 and HtrA Are Required for Listeria monocytogenes Replication following Intracellular Induction of Virulence Factor Secretion. Infect Immun 2016; 84:3034-46. [PMID: 27481256 DOI: 10.1128/iai.00312-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/27/2016] [Indexed: 12/25/2022] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes transitions from an environmental organism to an intracellular pathogen following its ingestion by susceptible mammalian hosts. Bacterial replication within the cytosol of infected cells requires activation of the central virulence regulator PrfA followed by a PrfA-dependent induction of secreted virulence factors. The PrfA-induced secreted chaperone PrsA2 and the chaperone/protease HtrA contribute to the folding and stability of select proteins translocated across the bacterial membrane. L. monocytogenes strains that lack both prsA2 and htrA exhibit near-normal patterns of growth in broth culture but are severely attenuated in vivo We hypothesized that, in the absence of PrsA2 and HtrA, the increase in PrfA-dependent protein secretion that occurs following bacterial entry into the cytosol results in misfolded proteins accumulating at the bacterial membrane with a subsequent reduction in intracellular bacterial viability. Consistent with this hypothesis, the introduction of a constitutively activated allele of prfA (prfA*) into ΔprsA2 ΔhtrA strains was found to essentially inhibit bacterial growth at 37°C in broth culture. ΔprsA2 ΔhtrA strains were additionally found to be defective for cell invasion and vacuole escape in selected cell types, steps that precede full PrfA activation. These data establish the essential requirement for PrsA2 and HtrA in maintaining bacterial growth under conditions of PrfA activation. In addition, chaperone function is required for efficient bacterial invasion and rapid vacuole lysis within select host cell types, indicating roles for PrsA2/HtrA prior to cytosolic PrfA activation and the subsequent induction of virulence factor secretion.
Collapse
|
44
|
Ploss TN, Reilman E, Monteferrante CG, Denham EL, Piersma S, Lingner A, Vehmaanperä J, Lorenz P, van Dijl JM. Homogeneity and heterogeneity in amylase production by Bacillus subtilis under different growth conditions. Microb Cell Fact 2016; 15:57. [PMID: 27026185 PMCID: PMC4812647 DOI: 10.1186/s12934-016-0455-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/22/2016] [Indexed: 12/22/2022] Open
Abstract
Background Bacillus subtilis is an important cell factory for the biotechnological industry due to its ability to secrete commercially relevant proteins in large amounts directly into the growth medium. However, hyper-secretion of proteins, such as α-amylases, leads to induction of the secretion stress-responsive CssR-CssS regulatory system, resulting in up-regulation of the HtrA and HtrB proteases. These proteases degrade misfolded proteins secreted via the Sec pathway, resulting in a loss of product. The aim of this study was to investigate the secretion stress response in B. subtilis 168 cells overproducing the industrially relevant α-amylase AmyM from Geobacillus stearothermophilus, which was expressed from the strong promoter P(amyQ)-M. Results Here we show that activity of the htrB promoter as induced by overproduction of AmyM was “noisy”, which is indicative for heterogeneous activation of the secretion stress pathway. Plasmids were constructed to allow real-time analysis of P(amyQ)-M promoter activity and AmyM production by, respectively, transcriptional and out-of-frame translationally coupled fusions with gfpmut3. Our results show the emergence of distinct sub-populations of high- and low-level AmyM-producing cells, reflecting heterogeneity in the activity of P(amyQ)-M. This most likely explains the heterogeneous secretion stress response. Importantly, more homogenous cell populations with regard to P(amyQ)-M activity were observed for the B. subtilis mutant strain 168degUhy32, and the wild-type strain 168 under optimized growth conditions. Conclusion Expression heterogeneity of secretory proteins in B. subtilis can be suppressed by degU mutation and optimized growth conditions. Further, the out-of-frame translational fusion of a gene for a secreted target protein and gfp represents a versatile tool for real-time monitoring of protein production and opens novel avenues for Bacillus production strain improvement.
Collapse
Affiliation(s)
- Tina N Ploss
- AB Enzymes GmbH, Feldbergstrasse 78, 64293, Darmstadt, Germany
| | - Ewoud Reilman
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RD, Groningen, The Netherlands
| | - Carmine G Monteferrante
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RD, Groningen, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Emma L Denham
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RD, Groningen, The Netherlands.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Sjouke Piersma
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RD, Groningen, The Netherlands
| | - Anja Lingner
- AB Enzymes GmbH, Feldbergstrasse 78, 64293, Darmstadt, Germany.,c-LEcta GmbH, Perlickstraße 5, 04103, Leipzig, Germany
| | | | - Patrick Lorenz
- AB Enzymes GmbH, Feldbergstrasse 78, 64293, Darmstadt, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RD, Groningen, The Netherlands.
| |
Collapse
|
45
|
Promchai R, Promdonkoy B, Tanapongpipat S, Visessanguan W, Eurwilaichitr L, Luxananil P. A novel salt-inducible vector for efficient expression and secretion of heterologous proteins in Bacillus subtilis. J Biotechnol 2016; 222:86-93. [DOI: 10.1016/j.jbiotec.2016.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/18/2016] [Accepted: 02/08/2016] [Indexed: 12/01/2022]
|
46
|
Optimization of the secretion pathway for heterologous proteins in Bacillus subtilis. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0843-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Voigt B, Schroeter R, Schweder T, Jürgen B, Albrecht D, van Dijl JM, Maurer KH, Hecker M. A proteomic view of cell physiology of the industrial workhorse Bacillus licheniformis. J Biotechnol 2014; 191:139-49. [DOI: 10.1016/j.jbiotec.2014.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/26/2014] [Accepted: 06/03/2014] [Indexed: 11/16/2022]
|
48
|
Evidence of histidine and aspartic acid phosphorylation in human prostate cancer cells. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:161-73. [DOI: 10.1007/s00210-014-1063-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|
49
|
Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species. ACTA ACUST UNITED AC 2014; 41:1599-607. [DOI: 10.1007/s10295-014-1506-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/27/2014] [Indexed: 12/19/2022]
Abstract
Abstract
Secretory expression of valuable enzymes by Bacillus subtilis and its related species has attracted intensive work over the past three decades. Although many proteins have been expressed and secreted, the titers of some recombinant enzymes are still low to meet the needs of practical applications. Signal peptides that located at the N-terminal of nascent peptide chains play crucial roles in the secretion process. In this mini-review, we summarize recent progress in secretory expression of recombinant proteins in Bacillus species. In particular, we highlighted and discussed the advances in molecular engineering of secretory machinery components, construction of signal sequence libraries and identification of functional signal peptides with high-throughput screening strategy. The prospects of future research are also proposed.
Collapse
|
50
|
Peters K, Schweizer I, Beilharz K, Stahlmann C, Veening JW, Hakenbeck R, Denapaite D. Streptococcus pneumoniae PBP2x mid-cell localization requires the C-terminal PASTA domains and is essential for cell shape maintenance. Mol Microbiol 2014; 92:733-55. [DOI: 10.1111/mmi.12588] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Katharina Peters
- Department of Microbiology; University of Kaiserslautern; Paul-Ehrlich Straße 23 D-67663 Kaiserslautern Germany
| | - Inga Schweizer
- Department of Microbiology; University of Kaiserslautern; Paul-Ehrlich Straße 23 D-67663 Kaiserslautern Germany
| | - Katrin Beilharz
- Molecular Genetics Group; Groningen Biomolecular Sciences and Biotechnology Institute; Centre for Synthetic Biology; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Christoph Stahlmann
- Department of Microbiology; University of Kaiserslautern; Paul-Ehrlich Straße 23 D-67663 Kaiserslautern Germany
| | - Jan-Willem Veening
- Molecular Genetics Group; Groningen Biomolecular Sciences and Biotechnology Institute; Centre for Synthetic Biology; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Regine Hakenbeck
- Department of Microbiology; University of Kaiserslautern; Paul-Ehrlich Straße 23 D-67663 Kaiserslautern Germany
- Stiftung Alfried Krupp Kolleg Greifswald; D-17487 Greifswald Germany
| | - Dalia Denapaite
- Department of Microbiology; University of Kaiserslautern; Paul-Ehrlich Straße 23 D-67663 Kaiserslautern Germany
| |
Collapse
|