1
|
Reeb KL, Wiah S, Patel BP, Lewandowski SI, Mortensen OV, Salvino JM, Rawls SM, Fontana ACK. Positive allosteric modulation of glutamate transporter reduces cocaine-induced locomotion and expression of cocaine conditioned place preference in rats. Eur J Pharmacol 2024; 984:177017. [PMID: 39349114 DOI: 10.1016/j.ejphar.2024.177017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
The glutamatergic system, located throughout the brain including the prefrontal cortex and nucleus accumbens, plays a critical role in reward and reinforcement processing, and mediates the psychotropic effects of addictive drugs such as cocaine. Glutamate transporters, including EAAT2/GLT-1, are responsible for removing glutamate from the synaptic cleft. Reduced expression of GLT-1 following chronic cocaine use and abstinence has been reported. Here, we demonstrate that targeting GLT-1 with a novel positive allosteric modulator (PAM), NA-014, results in reduction of cocaine-associated behaviors in rats. Pharmacokinetic analysis demonstrated that NA-014 is brain-penetrant and suitable for in vivo studies.We found that 15 and 30 mg/kg NA-014 significantly reduced cocaine-induced locomotion in males. Only the 15 mg/kg dose was effective in females and 60 mg/kg was ineffective in both sexes. Furthermore, 30 and 60 mg/kg NA-014 reduced expression of cocaine conditioned place preference (CPP) in males. 30 mg/kg NA-014 reduced expression of cocaine CPP in females and 15 mg/kg did not affect cocaine CPP in either sex, suggesting GLT-1 influences cocaine-associated behaviors in a sex-dependent manner. NA-014 did not elicit rewarding behavior, nor alter baseline locomotion. Twice daily/7-day administration of 100 mg/kg of NA-014 did not alter GLT-1 or GLAST expression in either sex in the prefrontal cortex (PFC). Collectively, these studies demonstrated that NA-014 reduced the locomotor stimulant and rewarding effects of cocaine in male and female rats. In the context of psychostimulant use disorders, our study suggests studying GLT-1 PAMs as alternatives to β-lactam compounds that increase GLT-1 protein levels.
Collapse
Affiliation(s)
- Katelyn L Reeb
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 191022, USA
| | - Sonita Wiah
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Bhumiben P Patel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 191022, USA
| | - Stacia I Lewandowski
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 191022, USA
| | - Ole V Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 191022, USA
| | - Joseph M Salvino
- Medicinal Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Cancer Center Molecular Screening, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 191022, USA.
| |
Collapse
|
2
|
Kamiński K, Socała K, Abram M, Jakubiec M, Reeb KL, Temmermand R, Zagaja M, Maj M, Kolasa M, Faron-Górecka A, Andres-Mach M, Szewczyk A, Hameed MQ, Fontana ACK, Rotenberg A, Kamiński RM. Enhancement of Glutamate Uptake as Novel Antiseizure Approach: Preclinical Proof of Concept. Ann Neurol 2024. [PMID: 39512205 DOI: 10.1002/ana.27124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE Excitotoxicity is a common hallmark of epilepsy and other neurological diseases associated with elevated extracellular glutamate levels. Thus, here, we studied the protective effects of (R)-AS-1, a positive allosteric modulator (PAM) of glutamate uptake in epilepsy models. METHODS (R)-AS-1 was evaluated in a range of acute and chronic seizure models, while its adverse effect profile was assessed in a panel of standard tests in rodents. The effect of (R)-AS-1 on glutamate uptake was assessed in COS-7 cells expressing the transporter. WAY 213613, a selective competitive EAAT2 inhibitor, was used to probe the reversal of the enhanced glutamate uptake in the same transporter expression system. Confocal microscopy and Western blotting analyses were used to study a potential influence of (R)-AS-1 on GLT-1 expression in mice. RESULTS (R)-AS-1 showed robust protection in a panel of animal models of seizures and epilepsy, including the maximal electroshock- and 6 Hz-induced seizures, corneal kindling, mesial temporal lobe epilepsy, lamotrigine-resistant amygdala kindling, as well as seizures induced by pilocarpine or Theiler's murine encephalomyelitis virus. Importantly, (R)-AS-1 displayed a favorable adverse effect profile in the rotarod, the minimal motor impairment, and the Irwin tests. (R)-AS-1 enhanced glutamate uptake in vitro and this effect was abolished by WAY 213613, while no influence on GLT-1 expression in vivo was observed after repeated treatment. INTERPRETATION Collectively, our results show that (R)-AS-1 has favorable tolerability and provides robust preclinical efficacy against seizures. Thus, allosteric enhancement of EAAT2 function could offer a novel therapeutic strategy for treatment of epilepsy and potentially other neurological disorders associated with glutamate excitotoxicity. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Katelyn L Reeb
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Magdalena Kolasa
- Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Aleksandra Szewczyk
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Mustafa Q Hameed
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
3
|
Fontana ACK, Poli AN, Gour J, Srikanth YV, Anastasi N, Ashok D, Khatiwada A, Reeb KL, Cheng MH, Bahar I, Rawls SM, Salvino JM. Synthesis and Structure-Activity Relationships for Glutamate Transporter Allosteric Modulators. J Med Chem 2024; 67:6119-6143. [PMID: 38626917 PMCID: PMC11056993 DOI: 10.1021/acs.jmedchem.3c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Excitatory amino acid transporters (EAATs) are essential CNS proteins that regulate glutamate levels. Excess glutamate release and alteration in EAAT expression are associated with several CNS disorders. Previously, we identified positive allosteric modulators (PAM) of EAAT2, the main CNS transporter, and have demonstrated their neuroprotective properties in vitro. Herein, we report on the structure-activity relationships (SAR) for the analogs identified from virtual screening and from our medicinal chemistry campaign. This work identified several selective EAAT2 positive allosteric modulators (PAMs) such as compounds 4 (DA-023) and 40 (NA-014) from a library of analogs inspired by GT949, an early generation compound. This series also provides nonselective EAAT PAMs, EAAT inhibitors, and inactive compounds that may be useful for elucidating the mechanism of EAAT allosteric modulation.
Collapse
Affiliation(s)
- Andréia C. K. Fontana
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Adi N.R. Poli
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Jitendra Gour
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Yellamelli V.V. Srikanth
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Nicholas Anastasi
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Devipriya Ashok
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Apeksha Khatiwada
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Katelyn L. Reeb
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Mary Hongying Cheng
- Laufer
Center for Physical & Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Ivet Bahar
- Department
of Biochemistry and Cell Biology, College of Arts & Sciences and
School of Medicine, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer
Center for Physical & Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Scott M. Rawls
- Center
for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140United States
| | - Joseph M. Salvino
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
- The
Wistar
Cancer Center Molecular Screening, The Wistar
Institute, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Gao Y, Liu N, Chen J, Zheng P, Niu J, Tang S, Peng X, Wu J, Yu J, Ma L. Neuropharmacological insight into preventive intervention in posttraumatic epilepsy based on regulating glutamate homeostasis. CNS Neurosci Ther 2023; 29:2430-2444. [PMID: 37309302 PMCID: PMC10401093 DOI: 10.1111/cns.14294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Posttraumatic epilepsy (PTE) is one of the most critical complications of traumatic brain injury (TBI), significantly increasing TBI patients' neuropsychiatric symptoms and mortality. The abnormal accumulation of glutamate caused by TBI and its secondary excitotoxicity are essential reasons for neural network reorganization and functional neural plasticity changes, contributing to the occurrence and development of PTE. Restoring glutamate balance in the early stage of TBI is expected to play a neuroprotective role and reduce the risk of PTE. AIMS To provide a neuropharmacological insight for drug development to prevent PTE based on regulating glutamate homeostasis. METHODS We discussed how TBI affects glutamate homeostasis and its relationship with PTE. Furthermore, we also summarized the research progress of molecular pathways for regulating glutamate homeostasis after TBI and pharmacological studies aim to prevent PTE by restoring glutamate balance. RESULTS TBI can lead to the accumulation of glutamate in the brain, which increases the risk of PTE. Targeting the molecular pathways affecting glutamate homeostasis helps restore normal glutamate levels and is neuroprotective. DISCUSSION Taking glutamate homeostasis regulation as a means for new drug development can avoid the side effects caused by direct inhibition of glutamate receptors, expecting to alleviate the diseases related to abnormal glutamate levels in the brain, such as PTE, Parkinson's disease, depression, and cognitive impairment. CONCLUSION It is a promising strategy to regulate glutamate homeostasis through pharmacological methods after TBI, thereby decreasing nerve injury and preventing PTE.
Collapse
Affiliation(s)
- Yuan Gao
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
- Hunan Province Key Laboratory for Antibody‐Based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Ning Liu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Juan Chen
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Ping Zheng
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous RegionNingxia Medical UniversityYinchuanChina
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody‐Based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Xiaodong Peng
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jing Wu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jianqiang Yu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Lin Ma
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous RegionNingxia Medical UniversityYinchuanChina
| |
Collapse
|
5
|
Temmermand R, Barrett JE, Fontana ACK. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol Res 2022; 185:106492. [PMID: 36228868 PMCID: PMC10413816 DOI: 10.1016/j.phrs.2022.106492] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/14/2023]
Abstract
Neuropathic pain, a disease of the somatosensory nervous system, afflicts many individuals and adequate management with current pharmacotherapies remains elusive. The glutamatergic system of neurons, receptors and transporters are intimately involved in pain but, to date, there have been few drugs developed that therapeutically modulate this system. Glutamate transporters, or excitatory amino acid transporters (EAATs), remove excess glutamate around pain transmitting neurons to decrease nociception suggesting that the modulation of glutamate transporters may represent a novel approach to the treatment of pain. This review highlights and summarizes (1) the physiology of the glutamatergic system in neuropathic pain, (2) the preclinical evidence for dysregulation of glutamate transport in animal pain models, and (3) emerging novel therapies that modulate glutamate transporters. Successful drug discovery requires continuous focus on basic and translational methods to fully elucidate the etiologies of this disease to enable the development of targeted therapies. Increasing the efficacy of astrocytic EAATs may serve as a new way to successfully treat those suffering from this devastating disease.
Collapse
Affiliation(s)
- Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
6
|
Abram M, Jakubiec M, Reeb K, Cheng MH, Gedschold R, Rapacz A, Mogilski S, Socała K, Nieoczym D, Szafarz M, Latacz G, Szulczyk B, Kalinowska-Tłuścik J, Gawel K, Esguerra CV, Wyska E, Müller CE, Bahar I, Fontana ACK, Wlaź P, Kamiński RM, Kamiński K. Discovery of ( R)- N-Benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide [ (R)-AS-1], a Novel Orally Bioavailable EAAT2 Modulator with Drug-like Properties and Potent Antiseizure Activity In Vivo. J Med Chem 2022; 65:11703-11725. [PMID: 35984707 PMCID: PMC9469208 DOI: 10.1021/acs.jmedchem.2c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(R)-7 [(R)-AS-1] showed broad-spectrum antiseizure activity across in vivo mouse seizure models: maximal electroshock (MES), 6 Hz (32/44 mA), acute pentylenetetrazol (PTZ), and PTZ-kindling. A remarkable separation between antiseizure activity and CNS-related adverse effects was also observed. In vitro studies with primary glia cultures and COS-7 cells expressing the glutamate transporter EAAT2 showed enhancement of glutamate uptake, revealing a stereoselective positive allosteric modulator (PAM) effect, further supported by molecular docking simulations. (R)-7 [(R)-AS-1] was not active in EAAT1 and EAAT3 assays and did not show significant off-target activity, including interactions with targets reported for marketed antiseizure drugs, indicative of a novel and unprecedented mechanism of action. Both in vivo pharmacokinetic and in vitro absorption, distribution, metabolism, excretion, toxicity (ADME-Tox) profiles confirmed the favorable drug-like potential of the compound. Thus, (R)-7 [(R)-AS-1] may be considered as the first-in-class small-molecule PAM of EAAT2 with potential for further preclinical and clinical development in epilepsy and possibly other CNS disorders.
Collapse
Affiliation(s)
- Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Katelyn Reeb
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania19102, United States
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania15213, United States
| | - Robin Gedschold
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 4, D-53121Bonn, Germany
| | - Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033Lublin, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033Lublin, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Bartłomiej Szulczyk
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1B, 02-097Warsaw, Poland
| | - Justyna Kalinowska-Tłuścik
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Krakow, Poland
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B, 20-090Lublin, Poland
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349Oslo, Norway
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 4, D-53121Bonn, Germany
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania15213, United States
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania19102, United States
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033Lublin, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688Krakow, Poland
| |
Collapse
|
7
|
Green JL, Dos Santos WF, Fontana ACK. Role of glutamate excitotoxicity and glutamate transporter EAAT2 in epilepsy: Opportunities for novel therapeutics development. Biochem Pharmacol 2021; 193:114786. [PMID: 34571003 DOI: 10.1016/j.bcp.2021.114786] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022]
Abstract
Epilepsy is a complex neurological syndrome characterized by seizures resulting from neuronal hyperexcitability and sudden and synchronized bursts of electrical discharges. Impaired astrocyte function that results in glutamate excitotoxicity has been recognized to play a key role in the pathogenesis of epilepsy. While there are 26 drugs marketed as anti-epileptic drugs no current treatments are disease modifying as they only suppress seizures rather than the development and progression of epilepsy. Excitatory amino acid transporters (EAATs) are critical for maintaining low extracellular glutamate concentrations and preventing excitotoxicity. When extracellular glutamate concentrations rise to abnormal levels, glutamate receptor overactivation and the subsequent excessive influx of calcium into the post-synaptic neuron can trigger cell death pathways. In this review we discuss targeting EAAT2, the predominant glutamate transporter in the CNS, as a promising approach for developing therapies for epilepsy. EAAT2 upregulation via transcriptional and translational regulation has proven successful in vivo in reducing spontaneous recurrent seizures and offering neuroprotective effects. Another approach to regulate EAAT2 activity is through positive allosteric modulation (PAM). Novel PAMs of EAAT2 have recently been identified and are under development, representing a promising approach for the advance of novel therapeutics for epilepsy.
Collapse
Affiliation(s)
- Jennifer Leigh Green
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, United States
| | | | | |
Collapse
|
8
|
Mai D, Chen R, Wang J, Zheng J, Zhang X, Qu S. Critical amino acids in the TM2 of EAAT2 are essential for membrane-bound localization, substrate binding, transporter function and anion currents. J Cell Mol Med 2021; 25:2530-2548. [PMID: 33523598 PMCID: PMC7933967 DOI: 10.1111/jcmm.16212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/12/2020] [Accepted: 11/28/2020] [Indexed: 12/25/2022] Open
Abstract
Excitatory amino acid transporter 2 (EAAT2), the gene of which is known as solute carrier family 1 member 2 (SLC1A2), is an important membrane-bound transporter that mediates approximately 90% of the transport and clearance of l-glutamate at synapses in the central nervous system (CNS). Transmembrane domain 2 (TM2) of EAAT2 is close to hairpin loop 2 (HP2) and far away from HP1 in the inward-facing conformation. In the present study, 14 crucial amino acid residues of TM2 were identified via alanine-scanning mutations. Further analysis in EAAT2-transfected HeLa cells in vitro showed that alanine substitutions of these residues resulted in a decrease in the efficiency of trafficking/targeting to the plasma membrane and/or reduced functionality of membrane-bound, which resulted in impaired transporter activity. After additional mutations, the transporter activities of some alanine-substitution mutants recovered. Specifically, the P95A mutant decreased EAAT2-associated anion currents. The Michaelis constant (Km ) values of the mutant proteins L85A, L92A and L101A were increased significantly, whereas R87 and P95A were decreased significantly, indicating that the mutations L85A, L92A and L101A reduced the affinity of the transporter and the substrate, whereas R87A and P95A enhanced this affinity. The maximum velocity (Vmax) values of all 14 alanine mutant proteins were decreased significantly, indicating that all these mutations reduced the substrate transport rate. These results suggest that critical residues in TM2 affect not only the protein expression and membrane-bound localization of EAAT2, but also its interactions with substrates. Additionally, our findings elucidate that the P95A mutant decreased EAAT2-related anion currents. Our results indicate that the TM2 of EAAT2 plays a vital role in the transport process. The key residues in TM2 affect protein expression in the membrane, substrate transport and the anion currents of EAAT2.
Collapse
Affiliation(s)
- Dongmei Mai
- Department of NeurologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Key Laboratory of Mental Health of the Ministry of EducationSouthern Medical UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangzhouChina
| | - Rongqing Chen
- Department of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Ji Wang
- Department of NeurologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Key Laboratory of Mental Health of the Ministry of EducationSouthern Medical UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangzhouChina
| | - Jiawei Zheng
- Department of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xiuping Zhang
- Teaching Center of Experimental MedicineSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Shaogang Qu
- Department of NeurologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Key Laboratory of Mental Health of the Ministry of EducationSouthern Medical UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangzhouChina
| |
Collapse
|
9
|
Zhang H, Shen Z, Zhao Q, Yan L, Du L, Deng Z. Dynamic Transitions of Epilepsy Waveforms Induced by Astrocyte Dysfunction and Electrical Stimulation. Neural Plast 2020; 2020:8867509. [PMID: 33281896 PMCID: PMC7685866 DOI: 10.1155/2020/8867509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
Experimental studies have shown that astrocytes participate in epilepsy through inducing the release of glutamate. Meanwhile, considering the disinhibition circuit among inhibitory neuronal populations with different time scales and the feedforward inhibition connection from thalamic relay nucleus to cortical inhibitory neuronal population, here, we propose a modified thalamocortical field model to systematically investigate the mechanism of epilepsy. Firstly, our results show that rich firing activities can be induced by astrocyte dysfunction, including high or low saturated state, high- or low-frequency clonic, spike-wave discharge (SWD), and tonic. More importantly, with the enhancement of feedforward inhibition connection, SWD and tonic oscillations will disappear. In other words, all these pathological waveforms can be suppressed or eliminated. Then, we explore the control effects after different external stimulations applying to thalamic neuronal population. We find that single-pulse stimulation can not only suppress but also induce pathological firing patterns, such as SWD, tonic, and clonic oscillations. And we further verify that deep brain stimulation can control absence epilepsy by regulating the amplitude and pulse width of stimulation. In addition, based on our modified model, 3 : 2 coordinated reset stimulation strategies with different intensities are compared and a more effective and safer stimulation mode is proposed. Our conclusions are expected to give more theoretical insights into the treatment of epilepsy.
Collapse
Affiliation(s)
- Honghui Zhang
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhuan Shen
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiangui Zhao
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Luyao Yan
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lin Du
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zichen Deng
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
10
|
Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines 2020; 8:biomedicines8100389. [PMID: 33003373 PMCID: PMC7601301 DOI: 10.3390/biomedicines8100389] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
Studying the complex molecular mechanisms involved in traumatic brain injury (TBI) is crucial for developing new therapies for TBI. Current treatments for TBI are primarily focused on patient stabilization and symptom mitigation. However, the field lacks defined therapies to prevent cell death, oxidative stress, and inflammatory cascades which lead to chronic pathology. Little can be done to treat the mechanical damage that occurs during the primary insult of a TBI; however, secondary injury mechanisms, such as inflammation, blood-brain barrier (BBB) breakdown, edema formation, excitotoxicity, oxidative stress, and cell death, can be targeted by therapeutic interventions. Elucidating the many mechanisms underlying secondary injury and studying targets of neuroprotective therapeutic agents is critical for developing new treatments. Therefore, we present a review on the molecular events following TBI from inflammation to programmed cell death and discuss current research and the latest therapeutic strategies to help understand TBI-mediated secondary injury.
Collapse
|
11
|
Manisha C, Selvaraj A, Jubie S, Moola Joghee Nanjan C, Moola Joghee N, Clement JP, Justin A. Positive allosteric activation of glial EAAT-2 transporter protein: A novel strategy for Alzheimer’s disease. Med Hypotheses 2020; 142:109794. [DOI: 10.1016/j.mehy.2020.109794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/18/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
|
12
|
Transport rate of EAAT2 is regulated by amino acid located at the interface between the scaffolding and substrate transport domains. Neurochem Int 2020; 139:104792. [PMID: 32668264 DOI: 10.1016/j.neuint.2020.104792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/19/2020] [Accepted: 06/21/2020] [Indexed: 01/24/2023]
Abstract
Excitatory Amino Acid Transporters (EAATs) are plasma membrane proteins responsible for maintenance of low extracellular concentrations of glutamate in the CNS. Dysfunction in their activity is implicated in various neurological disorders. Glutamate transport by EAATs occurs through the movement of the central transport domain relative to the scaffold domain in the EAAT membrane protein. Previous studies suggested that residues located within the interface of these two domains in EAAT2, the main subtype of glutamate transporter in the brain, are involved in regulating transport rates. We used mutagenesis, structure-function relationship, surface protein expression and electrophysiology studies, in transfected COS-7 cells and oocytes, to examine residue glycine at position 298, which is located within this interface. Mutation G298A results in increased transport rate without changes in surface expression, suggesting a more hydrophobic and larger alanine results in facilitated transport movement. The increased transport rate does not involve changes in sodium affinity. Electrophysiological currents show that G298A increase both transport and anion currents, suggesting faster transitions through the transport cycle. This work identifies a region critically involved in setting the glutamate transport rate.
Collapse
|
13
|
Forster YM, Green JL, Khatiwada A, Liberato JL, Narayana Reddy PA, Salvino JM, Bienz S, Bigler L, dos Santos WF, Karklin Fontana AC. Elucidation of the Structure and Synthesis of Neuroprotective Low Molecular Mass Components of the Parawixia bistriata Spider Venom. ACS Chem Neurosci 2020; 11:1573-1596. [PMID: 32343555 DOI: 10.1021/acschemneuro.0c00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The South American social spider Parawixia bistriata produces a venom containing complex organic compounds with intriguing biological activities. The crude venom leads to paralysis in termites and stimulates l-glutamate uptake and inhibits GABA uptake in rat brain synaptosomes. Glutamate is the major neurotransmitter at the insect neuromuscular junction and at the mammalian central nervous system, suggesting a modulation of the glutamatergic system by the venom. Parawixin1, 2, and 10 (Pwx1, 2 and 10) are HPLC fractions that demonstrate this bioactivity. Pwx1 stimulates l-glutamate uptake through the main transporter in the brain, EAAT2, and is neuroprotective in in vivo glaucoma models. Pxw2 inhibits GABA and glycine uptake in synaptosomes and inhibits seizures and neurodegeneration, and Pwx10 increases l-glutamate uptake in synaptosomes and is neuroprotective and anticonvulsant, shown in in vivo epilepsy models. Herein, we investigated the low molecular mass compounds in this venom and have found over 20 small compounds and 36 unique acylpolyamines with and without amino acid linkers. The active substances in fractions Pwx1 and Pwx2 require further investigation. We elucidated and confirmed the structure of the active acylpolyamine in Pwx10. Both fraction Pwx10 and the synthesized component enhance the activity of transporters EAAT1 and EAAT2, and, importantly, offer in vitro neuroprotection against excitotoxicity in primary cultures. These data suggest that compounds with this mechanism could be developed into therapies for disorders in which l-glutamate excitotoxicity is involved.
Collapse
Affiliation(s)
- Yvonne M. Forster
- Department of Chemistry, University of Zurich, Zurich, CH 8057, Switzerland
| | - Jennifer Leigh Green
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Apeksha Khatiwada
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - José Luiz Liberato
- Department of Biology, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | | | - Joseph M. Salvino
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Stefan Bienz
- Department of Chemistry, University of Zurich, Zurich, CH 8057, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Zurich, CH 8057, Switzerland
| | | | - Andréia Cristina Karklin Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
14
|
Falcucci RM, Wertz R, Green JL, Meucci O, Salvino J, Fontana ACK. Novel Positive Allosteric Modulators of Glutamate Transport Have Neuroprotective Properties in an in Vitro Excitotoxic Model. ACS Chem Neurosci 2019; 10:3437-3453. [PMID: 31257852 DOI: 10.1021/acschemneuro.9b00061] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dysfunction of excitatory amino acid transporters (EAATs) has been implicated in the pathogenesis of various neurological disorders, such as stroke, brain trauma, epilepsy, and several neurodegenerative disorders. EAAT2 is the main transporter subtype responsible for glutamate clearance in the brain, and plays a key role in regulating neurotransmission and preventing excitotoxicity. Therefore, compounds that increase the activity of EAAT2 have therapeutic potential for neuroprotection. In previous studies, we used virtual screening approaches to identify novel positive allosteric modulators (PAMs) of EAAT2. These compounds were shown to selectively increase the activity of EAAT2 and increase Vmax of transport, without changing substrate affinity. In this work, our major effort was to investigate whether increasing the activity of EAAT2 by allosteric modulation would translate to neuroprotection in in vitro primary culture models of excitotoxicity. To investigate potential neuroprotective effects of one EAAT2 PAM, GT949, we subjected cultures to acute and prolonged excitotoxic insults by exogenous application of glutamate, or oxidative stress by application of hydrogen peroxide. GT949 administration did not result in neuroprotection in the oxidative stress model, likely due to damage of the glutamate transporters. However, GT949 displayed neuroprotective properties after acute and prolonged glutamate-mediated excitotoxicity. We propose that this compound prevents excess glutamate signaling by increasing the rate of glutamate clearance by EAAT2, thereby preventing excitotoxic damage and cell death. This novel class of compounds is therefore an innovative approach for neuroprotection with potential for translation in in vivo animal models of excitotoxicity.
Collapse
Affiliation(s)
- Romulo Martelli Falcucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Ryan Wertz
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Jennifer Leigh Green
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Joseph Salvino
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Andréia Cristina Karklin Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
15
|
The expression of genes involved in excitatory and inhibitory neurotransmission in turtle (Trachemys scripta) brain during anoxic submergence at 21 °C and 5 °C reveals the importance of cold as a preparatory cue for anoxia survival. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:55-70. [DOI: 10.1016/j.cbd.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 11/20/2022]
|
16
|
Gegelashvili G, Bjerrum OJ. Glutamate transport system as a key constituent of glutamosome: Molecular pathology and pharmacological modulation in chronic pain. Neuropharmacology 2019; 161:107623. [PMID: 31047920 DOI: 10.1016/j.neuropharm.2019.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/07/2023]
Abstract
Neural uptake of glutamate is executed by the structurally related members of the SLC1A family of solute transporters: GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3, EAAT4, ASCT2. These plasma membrane proteins ensure supply of glutamate, aspartate and some neutral amino acids, including glutamine and cysteine, for synthetic, energetic and signaling purposes, whereas effective removal of glutamate from the synaptic cleft shapes excitatory neurotransmission and prevents glutamate toxicity. Glutamate transporters (GluTs) possess also receptor-like properties and can directly initiate signal transduction. GluTs are physically linked to other glutamate signaling-, transporting- and metabolizing molecules (e.g., glutamine transporters SNAT3 and ASCT2, glutamine synthetase, NMDA receptor, synaptic vesicles), as well as cellular machineries fueling the transmembrane transport of glutamate (e.g., ion gradient-generating Na/K-ATPase, glycolytic enzymes, mitochondrial membrane- and matrix proteins, glucose transporters). We designate this supramolecular functional assembly as 'glutamosome'. GluTs play important roles in the molecular pathology of chronic pain, due to the predominantly glutamatergic nature of nociceptive signaling in the spinal cord. Down-regulation of GluTs often precedes or occurs simultaneously with development of pain hypersensitivity. Pharmacological inhibition or gene knock-down of spinal GluTs can induce/aggravate pain, whereas enhancing expression of GluTs by viral gene transfer can mitigate chronic pain. Thus, functional up-regulation of GluTs is turning into a prospective pharmacotherapeutic approach for the management of chronic pain. A number of novel positive pharmacological regulators of GluTs, incl. pyridazine derivatives and β-lactams, have recently been introduced. However, design and development of new analgesics based on this principle will require more precise knowledge of molecular mechanisms underlying physiological or aberrant functioning of the glutamate transport system in nociceptive circuits. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Georgi Gegelashvili
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia.
| | - Ole Jannik Bjerrum
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Zhang LN, Hao L, Guo YS, Wang HY, Li LL, Liu LZ, Li WB. Are glutamate transporters neuroprotective or neurodegenerative during cerebral ischemia? J Mol Med (Berl) 2019; 97:281-289. [PMID: 30675649 DOI: 10.1007/s00109-019-01745-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/14/2022]
Abstract
The accumulation of glutamate (Glu) in the synaptic cleft during cerebral ischemia triggers the death of neurons, causing mental or physical handicap. However, the mechanisms of the alteration in Glu homeostasis and the imbalance between the release and clearance of Glu in ischemia are not yet completely understood. Additionally, the role of Glu transporters in regulating Glu concentration in the synaptic cleft is controversial. This review aims to provide readers with an in-depth understanding of Glu transporters in the early or later stages of ischemic events, or in mild or severe cerebral ischemia via alteration of Glu transporter expression, reversal of Glu transporters function, and trafficking between membrane and cytoplasm, to further clarify whether the Glu transporters are neuroprotective or neurodegenerative during cerebral ischemia. We provide the insights for deeper understanding of the mechanism of Glu transporters regulation after different periods and severities of cerebral ischemia.
Collapse
Affiliation(s)
- Li-Nan Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, China
| | - Liang Hao
- Department of Neurosurgery, Third Hospital of Shijiazhuang, Beijing, 050011, Hebei, China
| | - Yu-Song Guo
- Department of Traumatology, Third Hospital of Shijiazhuang, Beijing, 050011, Hebei, China
| | - Hai-Yan Wang
- Pharmaceutical Preparation Section, Third Hospital of Shijiazhuang, Beijing, 050011, Hebei, China
| | - Lin-Lin Li
- Clinical Medicine, College of Basic Medicine, Hebei Medical University, Beijing, 050017, Hebei, China
| | - Li-Zhe Liu
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
18
|
Fontana ACK. Protocols for Measuring Glutamate Uptake: Dose-Response and Kinetic Assays in In Vitro and Ex Vivo Systems. ACTA ACUST UNITED AC 2018; 82:e45. [PMID: 30152172 DOI: 10.1002/cpph.45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article presents detailed descriptions of procedures and troubleshooting tips for basic in vitro and ex vivo uptake assays for the functional characterization of glutamate transporters and the assessment of the effect of compounds that modulate their activity. Assays are performed in cell lines that transiently or stably express a particular transporter under investigation, in primary cultures of astrocytes, or in ex vivo synaptosomal preparations that endogenously express these transporters. Two main assays are described, including dose-response assays to measure potencies of test compounds for stimulation or inhibition of function (EC50 or IC50 values, respectively) and kinetic functional assays to calculate apparent affinity (KM ) and maximal velocity (Vmax ) of radiolabeled substrate uptake into the cells. The methods described use glutamate transporters as an example; however, the protocols can be adapted to other neurotransmitter transporters using their respective substrates (e.g., GABA uptake through GATs, serotonin uptake through SERTs, among others). © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Lang D, Schott BH, van Ham M, Morton L, Kulikovskaja L, Herrera-Molina R, Pielot R, Klawonn F, Montag D, Jänsch L, Gundelfinger ED, Smalla KH, Dunay IR. Chronic Toxoplasma infection is associated with distinct alterations in the synaptic protein composition. J Neuroinflammation 2018; 15:216. [PMID: 30068357 PMCID: PMC6090988 DOI: 10.1186/s12974-018-1242-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022] Open
Abstract
Background Chronic infection with the neurotropic parasite Toxoplasma gondii has been implicated in the risk for several neuropsychiatric disorders. The mechanisms, by which the parasite may alter neural function and behavior of the host, are not yet understood completely. Methods Here, a novel proteomic approach using mass spectrometry was employed to investigate the alterations in synaptic protein composition in a murine model of chronic toxoplasmosis. In a candidate-based strategy, immunoblot analysis and immunohistochemistry were applied to investigate the expression levels of key synaptic proteins in glutamatergic signaling. Results A comparison of the synaptosomal protein composition revealed distinct changes upon infection, with multiple proteins such as EAAT2, Shank3, AMPA receptor, and NMDA receptor subunits being downregulated, whereas inflammation-related proteins showed an upregulation. Treatment with the antiparasitic agent sulfadiazine strongly reduced tachyzoite levels and diminished neuroinflammatory mediators. However, in both conditions, a significant number of latent cysts persisted in the brain. Conversely, infection-related alterations of key synaptic protein levels could be partly reversed by the treatment. Conclusion These results provide evidence for profound changes especially in synaptic protein composition in T. gondii-infected mice with a downregulation of pivotal components of glutamatergic neurotransmission. Our results suggest that the detected synaptic alterations are a consequence of the distinct neuroinflammatory milieu caused by the neurotropic parasite. Electronic supplementary material The online version of this article (10.1186/s12974-018-1242-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Lang
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Medical Faculty, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Marco van Ham
- Helmholtz Centre for Infection Research, Cellular Proteomics Group, Braunschweig, Germany
| | - Lorena Morton
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Leonora Kulikovskaja
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Rodrigo Herrera-Molina
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Rainer Pielot
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Frank Klawonn
- Helmholtz Centre for Infection Research, Cellular Proteomics Group, Braunschweig, Germany.,Department of Computer Science, Ostfalia University of Applied Sciences, Wolfenbuettel, Germany
| | - Dirk Montag
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Lothar Jänsch
- Helmholtz Centre for Infection Research, Cellular Proteomics Group, Braunschweig, Germany
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Molecular Neurobiology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Karl Heinz Smalla
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
20
|
Kortagere S, Mortensen OV, Xia J, Lester W, Fang Y, Srikanth Y, Salvino JM, Fontana ACK. Identification of Novel Allosteric Modulators of Glutamate Transporter EAAT2. ACS Chem Neurosci 2018; 9:522-534. [PMID: 29140675 DOI: 10.1021/acschemneuro.7b00308] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Dysfunction of excitatory amino acid transporters (EAATs) has been implicated in the pathogenesis of various neurological disorders, such as stroke, brain trauma, epilepsy, and neurodegenerative diseases, among others. EAAT2 is the main subtype responsible for glutamate clearance in the brain, having a key role in regulating transmission and preventing excitotoxicity. Therefore, compounds that increase the expression or activity of EAAT2 have therapeutic potential for neuroprotection. Previous studies identified molecular determinants for EAAT2 transport stimulation in a structural domain that lies at the interface of the rigid trimerization domain and the central substrate binding transport domain. In this work, a hybrid structure based approach was applied, based on this molecular domain, to create a high-resolution pharmacophore. Subsequently, virtual screening of a library of small molecules was performed, identifying 10 hit molecules that interact at the proposed domain. Among these, three compounds were determined to be activators, four were inhibitors, and three had no effect on EAAT2-mediated transport in vitro. Further characterization of the two best ranking EAAT2 activators for efficacy, potency, and selectivity for glutamate over monoamine transporters subtypes and NMDA receptors and for efficacy in cultured astrocytes is demonstrated. Mutagenesis studies suggest that the EAAT2 activators interact with residues forming the interface between the trimerization and transport domains. These compounds enhance the glutamate translocation rate, with no effect on substrate interaction, suggesting an allosteric mechanism. The identification of these novel positive allosteric modulators of EAAT2 offers an innovative approach for the development of therapies based on glutamate transport enhancement.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Department of Microbiology and Immunology, Centers for Molecular Parasitology, Virology and Translational Neuroscience, Institute for Molecular Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, United States
| | - Ole V. Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Jingsheng Xia
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - William Lester
- Analytical Chemistry, Division of Pre-Clinical Innovation (DPI), NCATS, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Yuhong Fang
- Analytical Chemistry, Division of Pre-Clinical Innovation (DPI), NCATS, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Yellamelli Srikanth
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Joseph M. Salvino
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Andréia C. K. Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
21
|
Kristensen PJ, Gegelashvili G, Munro G, Heegaard AM, Bjerrum OJ. The β-lactam clavulanic acid mediates glutamate transport-sensitive pain relief in a rat model of neuropathic pain. Eur J Pain 2017; 22:282-294. [PMID: 28984398 DOI: 10.1002/ejp.1117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Following nerve injury, down-regulation of astroglial glutamate transporters (GluTs) with subsequent extracellular glutamate accumulation is a key factor contributing to hyperexcitability within the spinal dorsal horn. Some β-lactam antibiotics can up-regulate GluTs, one of which, ceftriaxone, displays analgesic effects in rodent chronic pain models. METHODS Here, the antinociceptive actions of another β-lactam clavulanic acid, which possesses negligible antibiotic activity, were compared with ceftriaxone in rats with chronic constriction injury (CCI)-induced neuropathic pain. In addition, the protein expression of glutamate transporter-1 (GLT1), its splice variant GLT1b and glutamate-aspartate transporter (GLAST) was measured in the spinal cord of CCI rats. Finally, protein expression of the same GluTs was evaluated in cultured astrocytes obtained from rodents and humans. RESULTS Repeated injection of ceftriaxone or clavulanic acid over 10 days alleviated CCI-induced mechanical hypersensitivity, whilst clavulanic acid was additionally able to affect the thermal hypersensitivity. In addition, clavulanic acid up-regulated expression of GLT1b within the spinal cord of CCI rats, whereas ceftriaxone failed to modulate expression of any GluTs in this model. However, both clavulanic acid and ceftriaxone up-regulated GLT1 expression in rat cortical and human spinal astrocyte cultures. Furthermore, clavulanic acid increased expression of GLT1b and GLAST in rat astrocytes in a dose-dependent manner. CONCLUSIONS Thus, clavulanic acid up-regulates GluTs in cultured rodent- and human astroglia and alleviates CCI-induced hypersensitivity, most likely through up-regulation of GLT1b in spinal dorsal horn. SIGNIFICANCE Chronic dosing of clavulanic acid alleviates neuropathic pain in rats and up-regulates glutamate transporters both in vitro and in vivo. Crucially, a similar up-regulation of glutamate transporters in human spinal astrocytes by clavulanic acid supports the development of novel β-lactam-based analgesics, devoid of antibacterial activity, for the clinical treatment of chronic pain.
Collapse
Affiliation(s)
- P J Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Department of In Vivo Neurodegeneration, H. Lundbeck A/S, Valby, Denmark
| | - G Gegelashvili
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - G Munro
- Department of In Vivo Neurodegeneration, H. Lundbeck A/S, Valby, Denmark
| | - A M Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - O J Bjerrum
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
22
|
Drugs to Alter Extracellular Concentration of Glutamate: Modulators of Glutamate Uptake Systems. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-1-4939-7228-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Guan Y, Liu X, Su Y. Ceftriaxone pretreatment reduces the propensity of postpartum depression following stroke during pregnancy in rats. Neurosci Lett 2016; 632:15-22. [PMID: 27558732 DOI: 10.1016/j.neulet.2016.08.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/12/2016] [Accepted: 08/20/2016] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Ischemic stroke increases the propensity to develop depression in humans and laboratory animals, and we hypothesized that such an incidence during pregnancy may increase the risk for the development of postpartum depression (PPD). MATERIALS AND METHODS To test this hypothesis, we used bilateral common carotid arteries occlusion (BCCAO) to induce transient cerebral ischemia in pregnant rats, and evaluated its effects on subsequent development of PPD in dams. Additionally, we investigated whether ceftriaxone pretreatments before the induction of brain ischemia could alter the propensity of PPD. RESULTS We found that 15min BCCAO during pregnancy enhanced immobility time and reduced the frequency of swimming or climbing behaviors in the forced swim test, and decreased the sucrose preference in dams at postpartum day 21. Such behavioral alterations were associated with lower level of GLT-1 expression in the medial prefrontal cortical regions (mPFC) of PPD dams. Specifically, mPFC GLT-1 expression levels in dams with ischemia history were correlated with sucrose preference levels at postpartum day 21. Finally, ceftriaxone pretreatment (200mg/kg/day, 5days) before the 15min BCCAO prevented the development of PPD, and prevented the reduction of GLT-1 expression in the mPFC. CONCLUSIONS Taken together, our results suggested that ceftriaxone pretreatment before brain ischemia during pregnancy may reduce the propensity for the development of PPD by preventing the loss of GLT-1 expression in the mPFC.
Collapse
Affiliation(s)
- Yonghong Guan
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Xianying Liu
- Department of Medical Affairs, The Second Hospital of Jilin University, Changchun, China
| | - Yuetian Su
- Department of Neurosurgery, The Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun 130041, China.
| |
Collapse
|
24
|
Karklin Fontana AC, Fox DP, Zoubroulis A, Valente Mortensen O, Raghupathi R. Neuroprotective Effects of the Glutamate Transporter Activator (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153) following Traumatic Brain Injury in the Adult Rat. J Neurotrauma 2016; 33:1073-83. [PMID: 26200170 PMCID: PMC4892232 DOI: 10.1089/neu.2015.4079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) in humans and in animals leads to an acute and sustained increase in tissue glutamate concentrations within the brain, triggering glutamate-mediated excitotoxicity. Excitatory amino acid transporters (EAATs) are responsible for maintaining extracellular central nervous system glutamate concentrations below neurotoxic levels. Our results demonstrate that as early as 5 min and up to 2 h following brain trauma in brain-injured rats, the activity (Vmax) of EAAT2 in the cortex and the hippocampus was significantly decreased, compared with sham-injured animals. The affinity for glutamate (KM) and the expression of glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST) were not altered by the injury. Administration of (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), a GLT-1 activator, beginning immediately after injury and continuing for 24 h, significantly decreased neurodegeneration, loss of microtubule-associated protein 2 and NeuN (+) immunoreactivities, and attenuated calpain activation in both the cortex and the hippocampus at 24 h after the injury; the reduction in neurodegeneration remained evident up to 14 days post-injury. In synaptosomal uptake assays, MS-153 up-regulated GLT-1 activity in the naïve rat brain but did not reverse the reduced activity of GLT-1 in traumatically-injured brains. This study demonstrates that administration of MS-153 in the acute post-traumatic period provides acute and long-term neuroprotection for TBI and suggests that the neuroprotective effects of MS-153 are related to mechanisms other than GLT-1 activation, such as the inhibition of voltage-gated calcium channels.
Collapse
Affiliation(s)
| | - Douglas P. Fox
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Argie Zoubroulis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Ole Valente Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Ramesh Raghupathi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Rimmele TS, Rosenberg PA. GLT-1: The elusive presynaptic glutamate transporter. Neurochem Int 2016; 98:19-28. [PMID: 27129805 DOI: 10.1016/j.neuint.2016.04.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 01/09/2023]
Abstract
Historically, glutamate uptake in the CNS was mainly attributed to glial cells for three reasons: 1) none of the glutamate transporters were found to be located in presynaptic terminals of excitatory synapses; 2) the putative glial transporters, GLT-1 and GLAST are expressed at high levels in astrocytes; 3) studies of the constitutive GLT-1 knockout as well as pharmacological studies demonstrated that >90% of glutamate uptake into forebrain synaptosomes is mediated by the operation of GLT-1. Here we summarize the history leading up to the recognition of GLT-1a as a presynaptic glutamate transporter. A major issue now is understanding the physiological and pathophysiological significance of the expression of GLT-1 in presynaptic terminals. To elucidate the cell-type specific functions of GLT-1, a conditional knockout was generated with which to inactivate the GLT-1 gene in different cell types using Cre/lox technology. Astrocytic knockout led to an 80% reduction of GLT-1 expression, resulting in intractable seizures and early mortality as seen also in the constitutive knockout. Neuronal knockout was associated with no obvious phenotype. Surprisingly, synaptosomal uptake capacity (Vmax) was found to be significantly reduced, by 40%, in the neuronal knockout, indicating that the contribution of neuronal GLT-1 to synaptosomal uptake is disproportionate to its protein expression (5-10%). Conversely, the contribution of astrocytic GLT-1 to synaptosomal uptake was much lower than expected. In contrast, the loss of uptake into liposomes prepared from brain protein from astrocyte and neuronal knockouts was proportionate with the loss of GLT-1 protein, suggesting that a large portion of GLT-1 in astrocytic membranes in synaptosomal preparations is not functional, possibly because of a failure to reseal. These results suggest the need to reinterpret many previous studies using synaptosomal uptake to investigate glutamate transport itself as well as changes in glutamate homeostasis associated with normal functions, neurodegeneration, and response to drugs.
Collapse
Affiliation(s)
- Theresa S Rimmele
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Paul A Rosenberg
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Arnold JC, Salvatore MF. Exercise-Mediated Increase in Nigral Tyrosine Hydroxylase Is Accompanied by Increased Nigral GFR-α1 and EAAC1 Expression in Aging Rats. ACS Chem Neurosci 2016; 7:227-39. [PMID: 26599339 PMCID: PMC4926611 DOI: 10.1021/acschemneuro.5b00282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Exercise may alleviate locomotor impairment in Parkinson's disease (PD) or aging. Identifying molecular responses immediately engaged by exercise in the nigrostriatal pathway and allied tissue may reveal critical targets associated with its long-term benefits. In aging, there is loss of tyrosine hydroxylase (TH) and the glial cell line-derived neurotrophic factor (GDNF) receptor, GFR-α1, in the substantia nigra (SN). Exercise can increase GDNF expression, but its effect on GFR-α1 expression is unknown. Infusion of GDNF into striatum or GFR-α1 in SN, respectively, can increase locomotor activity and TH function in SN but not striatum in aged rats. GDNF may also increase glutamate transporter expression, which attenuates TH loss in PD models. We utilized a footshock-free treadmill exercise regimen to determine the immediate impact of short-term exercise on GFR-α1 expression, dopamine regulation, glutamate transporter expression, and glutamate uptake in 18 month old male Brown-Norway/Fischer 344 F1 hybrid rats. GFR-α1 and TH expression significantly increased in SN but not striatum. This exercise regimen did not affect glutamate uptake or glutamate transporter expression in striatum. However, EAAC1 expression increased in SN. These results indicate that nigral GFR-α1 and EAAC1 expression increased in conjunction with increased nigral TH expression following short-term exercise.
Collapse
Affiliation(s)
- Jennifer C. Arnold
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, United States
| | - Michael F. Salvatore
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, United States
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
27
|
Yousuf MS, Kerr BJ. The Role of Regulatory Transporters in Neuropathic Pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 75:245-71. [PMID: 26920015 DOI: 10.1016/bs.apha.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Neuropathic pain arises from an injury or disease of the somatosensory nervous system rather than stimulation of pain receptors. As a result, the fine balance between excitation and inhibition is perturbed leading to hyperalgesia and allodynia. Various neuropathic pain models provide considerable evidence that changes in the glutamatergic, GABAergic, and monoaminergic systems. Neurotransmitter reuptake transporter proteins have the potential to change the temporal and spatial profile of various neurotransmitters throughout the nervous system. This, in turn, can affect the downstream effects of these neurotransmitters and hence modulate pain. This chapter explores various reuptake transporter systems and implicates their role in pain processing. Understanding the transporter systems will enhance drug discovery targeting different facets of neuropathic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
28
|
Melendez RI, Roman C, Capo-Velez CM, Lasalde-Dominicci JA. Decreased glial and synaptic glutamate uptake in the striatum of HIV-1 gp120 transgenic mice. J Neurovirol 2015; 22:358-65. [PMID: 26567011 DOI: 10.1007/s13365-015-0403-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 12/22/2022]
Abstract
The mechanisms leading to the neurocognitive deficits in humans with immunodeficiency virus type 1 (HIV-1) are not well resolved. A number of cell culture models have demonstrated that the HIV-envelope glycoprotein 120 (gp120) decreases the reuptake of glutamate, which is necessary for learning, memory, and synaptic plasticity. However, the impact of brain HIV-1 gp120 on glutamate uptake systems in vivo remains unknown. Notably, alterations in brain glutamate uptake systems are implicated in a number of neurodegenerative and neurocognitive disorders. We characterized the kinetic properties of system XAG (sodium-dependent) and systems xc- (sodium-independent) [3H]-L-glutamate uptake in the striatum and hippocampus of HIV-1 gp120 transgenic mice, an established model of HIV neuropathology. We determined the kinetic constant Vmax (maximal velocity) and Km (affinity) of both systems XAG and xc- using subcellular preparations derived from neurons and glial cells. We show significant (30-35 %) reductions in the Vmax of systems XAG and xc- in both neuronal and glial preparations derived from the striatum, but not from the hippocampus of gp120 mice relative to wild-type (WT) controls. Moreover, immunoblot analysis showed that the protein expression of glutamate transporter subtype-1 (GLT-1), the predominant brain glutamate transporter, was significantly reduced in the striatum but not in the hippocampus of gp120 mice. These extensive and region-specific deficits of glutamate uptake likely contribute to the development and/or severity of HIV-associated neurocognitive disorders. Understanding the role of striatal glutamate uptake systems in HIV-1 gp120 may advance the development of new therapeutic strategies to prevent neuronal damage and improve cognitive function in HIV patients.
Collapse
Affiliation(s)
- Roberto I Melendez
- Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, Office #A-527, San Juan, 00936, Puerto Rico.
| | - Cristina Roman
- Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, Office #A-527, San Juan, 00936, Puerto Rico
| | - Coral M Capo-Velez
- Department of Biology, University of Puerto Rico, Rio Piedras, PR, 00936, USA
| | | |
Collapse
|
29
|
Fontana ACK. Current approaches to enhance glutamate transporter function and expression. J Neurochem 2015; 134:982-1007. [DOI: 10.1111/jnc.13200] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Andréia C. K. Fontana
- Department of Pharmacology and Physiology; Drexel University College of Medicine; Philadelphia Pennsylvania USA
| |
Collapse
|
30
|
Tong H, Yu X, Lu X, Wang P. Downregulation of solute carriers of glutamate in gliosomes and synaptosomes may explain local brain metastasis in anaplastic glioblastoma. IUBMB Life 2015; 67:306-11. [PMID: 25914026 DOI: 10.1002/iub.1372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/28/2015] [Indexed: 12/31/2022]
Abstract
Advanced grades of glioblastoma are highly aggressive, especially in terms of multisite spread within the brain or even to distant sites at the spinal cord. In advanced grades of glioblastoma, glutamate and glutamine are reported to be increased in concentration in the extracellular fluid. It has been reported that glutamate acts as an extracellular signaling molecule for facilitating local spread of advanced grades of glioblastoma. In the present study, we aimed to examine whether glutamate uptake mechanisms is impaired in advanced glioblastoma. The possible downregulated mechanisms of glutamate uptake would facilitate persistence of glutamate in the extracellular environment, rather than intracellular uptake. We obtained biobanked human specimens of glioblastoma and tested expression of proteins belonging to the solute carrier families of proteins that are known to function as membrane-located excitatory amino acid like glutamate transporters. The present study provides preliminary evidence of the downregulation of membrane expression of excitatory amino acid transporters solute carrier family 1 member 3 (SLC1A3) and its palmitoylated form in gliosomes, as well as SLC1A2 in the glio-synaptosomes. Compounds like riluzole used in the treatment of amyotrophic lateral sclerosis and the antibiotic ceftriaxone have the potential to facilitate glutamate uptake. These medications may be examined as adjunct chemotherapy in the massively aggressive tumor glioblastoma multiforme.
Collapse
Affiliation(s)
- Huaiyu Tong
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xuechun Lu
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Peng Wang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
31
|
Mortensen OV, Liberato JL, Coutinho-Netto J, dos Santos WF, Fontana ACK. Molecular determinants of transport stimulation of EAAT2 are located at interface between the trimerization and substrate transport domains. J Neurochem 2015; 133:199-210. [DOI: 10.1111/jnc.13047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 01/18/2015] [Accepted: 01/21/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Ole V. Mortensen
- Department of Pharmacology and Physiology; Drexel University College of Medicine; Philadelphia Pennsylvania USA
| | - José L. Liberato
- Neurobiology and Venoms Laboratory; Department of Biology; College of Philosophy; Sciences and Literature of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Joaquim Coutinho-Netto
- Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; SP Brazil
| | - Wagner F. dos Santos
- Neurobiology and Venoms Laboratory; Department of Biology; College of Philosophy; Sciences and Literature of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Andréia C. K. Fontana
- Department of Pharmacology and Physiology; Drexel University College of Medicine; Philadelphia Pennsylvania USA
| |
Collapse
|
32
|
Hu YY, Xu J, Zhang M, Wang D, Li L, Li WB. Ceftriaxone modulates uptake activity of glial glutamate transporter-1 against global brain ischemia in rats. J Neurochem 2014; 132:194-205. [PMID: 25270764 DOI: 10.1111/jnc.12958] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 12/18/2022]
Abstract
Ceftriaxone(Cef) selectively increases the expression of glial glutamate transporter-1 (GLT-1), which was thought to be neuroprotective in some circumstances. However, the effect of Cef on glutamate uptake of GLT-1 was mostly assayed using in vitro studies such as primary neuron/astrocyte cultures or brain slices. In addition, the effect of Cef on neurons in different ischemic models was still discrepant. Therefore, this study was undertaken to observe the effect of Cef on neurons in global brain ischemia in rats, and especially to provide direct evidence of the up-regulation of GLT-1 uptake for glutamate contributing to the neuronal protection of Cef against brain ischemia. Neuropathological evaluation indicated that administration of Cef, especially pre-treatment protocols, significantly prevented delayed neuronal death in hippocampal CA1 subregion normally induced by global brain ischemia. Simultaneously, pre-administration of Cef significantly up-regulated the expression of GLT-1. Particularly, GLT-1 uptake assay with (3) H-glutamate in living cells from adult rats showed that up-regulation in glutamate uptake accompanied up-regulated GLT-1 expression. Inhibition of GLT-1 by antisense oligodeoxynucleotides or dihydrokainate significantly inhibited the Cef-induced up-regulation in GLT-1 uptake and the neuroprotective effect against global ischemia. Thus, we may conclude that Cef protects neurons against global brain ischemia via up-regulation of the expression and glutamate uptake of GLT-1. Glutamate uptake by glial glutamate transporter-1 (GLT-1) is the principal way to regulate extracellular glutamate homeostasis in central nervous system. Over-accumulation of glutamate results in excitotoxicity and injures neurons after cerebral ischemia. Ceftriaxone up-regulates GLT-1 expression and uptake of glutamate, diminishes the excitotoxicity of glutamate and then protects neurons against global brain ischemia.
Collapse
Affiliation(s)
- Yu-Yan Hu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | |
Collapse
|
33
|
Exercise pre-conditioning alleviates brain damage via excitatory amino acid transporter 2 and extracellular signal-regulated kinase 1/2 following ischemic stroke in rats. Mol Med Rep 2014; 11:1523-7. [DOI: 10.3892/mmr.2014.2834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 09/29/2014] [Indexed: 11/05/2022] Open
|
34
|
Gegelashvili G, Bjerrum OJ. High-affinity glutamate transporters in chronic pain: an emerging therapeutic target. J Neurochem 2014; 131:712-30. [DOI: 10.1111/jnc.12957] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/18/2014] [Accepted: 09/25/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Georgi Gegelashvili
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- Institute of Chemical Biology; Ilia State University; Tbilisi Georgia
| | - Ole J. Bjerrum
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
35
|
Parikh V, Naughton SX, Shi X, Kelley LK, Yegla B, Tallarida CS, Rawls SM, Unterwald EM. Cocaine-induced neuroadaptations in the dorsal striatum: Glutamate dynamics and behavioral sensitization. Neurochem Int 2014; 75:54-65. [DOI: 10.1016/j.neuint.2014.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 05/13/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
|
36
|
Wang X, Zhang M, Yang SD, Li WB, Ren SQ, Zhang J, Zhang F. Pre-ischemic treadmill training alleviates brain damage via GLT-1-mediated signal pathway after ischemic stroke in rats. Neuroscience 2014; 274:393-402. [PMID: 24907601 DOI: 10.1016/j.neuroscience.2014.05.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 02/06/2023]
Abstract
Physical exercise could play a neuroprotective role in both human and animals. However, the involved signal pathways underlying the neuroprotective effect are still not well established. This study was to investigate the possible signal pathways involved in the neuroprotection of pre-ischemic treadmill training after ischemic stroke. Seventy-two SD rats were randomly assigned into three groups (n=24/group): sham surgery group, middle cerebral artery occlusion (MCAO) group and MCAO with exercise group. Following three weeks of treadmill training exercise, ischemic stroke was induced by occluding the middle cerebral artery (MCA) in rat for 2 h, followed by reperfusion. Twenty-four hours after MCAO/reperfusion, 12 rats in each group were evaluated for neurological deficit scores and then sacrificed to measure the infarct volume (n=6) and cerebral edema (n=6). Six rats in each group were sacrificed to measure the expression level of glutamate transporter-1 (GLT-1), protein kinase C-α (PKC-α), Akt, and phosphatidylinositol 3 kinase (PI3K) (n=6). Two hundred and eighty minutes (4.67 h) after occlusion, six rats in each group were decapitated to detect the mRNA expression level of metabotropic glutamate receptor 5 (mGluR5) and N-methyl-D-aspartate receptor subunit type 2B (NR2B) (n=6).The results demonstrated that pre-ischemic treadmill training exercise reduced brain infarct volume, cerebral edema and neurological deficits, also decreased the over expression of PKC-α and increased the expression level of GLT-1, Akt and PI3K after ischemic stroke (p<0.05). The over-expression of mGluR5 and NR2B mRNA was also inhibited by pre-ischemic exercise (p<0.05). In summary, exercise preconditioning ameliorated brain damage after ischemic stroke, which might be involved in two signal pathways: PKC-α-GLT-1-Glutamate and PI3K/Akt-GLT-1-Glutamate.
Collapse
Affiliation(s)
- X Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - M Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - S-D Yang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - W-B Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - S-Q Ren
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - J Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; Hebei Provincial Orthopedic Biomechanics Key Laboratory, Shijiazhuang 050051, PR China
| | - F Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; Hebei Provincial Orthopedic Biomechanics Key Laboratory, Shijiazhuang 050051, PR China.
| |
Collapse
|
37
|
Chotibut T, Davis RW, Arnold JC, Frenchek Z, Gurwara S, Bondada V, Geddes JW, Salvatore MF. Ceftriaxone increases glutamate uptake and reduces striatal tyrosine hydroxylase loss in 6-OHDA Parkinson's model. Mol Neurobiol 2014; 49:1282-92. [PMID: 24297323 PMCID: PMC4618839 DOI: 10.1007/s12035-013-8598-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022]
Abstract
Excess glutamatergic neurotransmission may contribute to excitotoxic loss of nigrostriatal neurons in Parkinson's disease (PD). Here, we determined if increasing glutamate uptake could reduce the extent of tyrosine hydroxylase (TH) loss in PD progression. The beta-lactam antibiotic, ceftriaxone, increases the expression of glutamate transporter 1 (GLT-1), a glutamate transporter that plays a major role in glutamate clearance in central nervous system and may attenuate adverse behavioral or neurobiological function in other neurodegenerative disease models. In association with >80% TH loss, we observed a significant decrease in glutamate uptake in the established 6-hydroxydopamine (6-OHDA) PD model. Ceftriaxone (200 mg/kg, i.p.) increased striatal glutamate uptake with >5 consecutive days of injection in nonlesioned rats and lasted out to 14 days postinjection, a time beyond that required for 6-OHDA to produce >70% TH loss (∼9 days). When ceftriaxone was given at the time of 6-OHDA, TH loss was ∼57% compared to ∼85% in temporally matched vehicle-injected controls and amphetamine-induced rotation was reduced about 2-fold. This attenuation of TH loss was associated with increased glutamate uptake, increased GLT-1 expression, and reduced Serine 19 TH phosphorylation, a calcium-dependent target specific for nigrostriatal neurons. These results reveal that glutamate uptake can be targeted in a PD model, decrease the rate of TH loss in a calcium-dependent manner, and attenuate locomotor behavior associated with 6-OHDA lesion. Given that detection of reliable PD markers will eventually be employed in susceptible populations, our results give credence to the possibility that increasing glutamate uptake may prolong the time period before locomotor impairment occurs.
Collapse
Affiliation(s)
- Tanya Chotibut
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Richard W. Davis
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Jennifer C. Arnold
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Zachary Frenchek
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Shawn Gurwara
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Vimala Bondada
- Spinal Cord & Brain Injury Research Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - James W. Geddes
- Spinal Cord & Brain Injury Research Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - Michael F. Salvatore
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71106, USA
| |
Collapse
|
38
|
Ferguson MC, Nayyar T, Ansah TA. Reverse microdialysis of a 5-HT2A receptor antagonist alters extracellular glutamate levels in the striatum of the MPTP mouse model of Parkinson's disease. Neurochem Int 2014; 71:36-46. [PMID: 24704796 DOI: 10.1016/j.neuint.2014.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/24/2014] [Accepted: 03/30/2014] [Indexed: 11/26/2022]
Abstract
Clinical observations have suggested that antagonism of 5-HT2A receptors may benefit patients with parkinsonian symptomatology. The mechanism of the antiparkinsonian effects of 5-HT2A receptor antagonists has not been fully elucidated. We have shown that the selective 5-HT2A receptor antagonist M100907 [R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenethyl)]-4-piperidinemethanol] improved motor impairments in mice treated with the parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In Parkinson's disease (PD) patients and animal models of parkinsonism dopamine denervation is associated with increased cortico-striatal glutamatergic transmission. We hypothesized that 5-HT2A receptor antagonists may exert their antiparkinsonian effects by decreasing striatal glutamate. Here, using in vivo microdialysis, we have shown an increased basal level of extracellular striatal glutamate when measured 3weeks after MPTP administration. The local administration of M100907 to the striatum significantly decreased striatal extracellular glutamate levels in MPTP-treated and saline treated mice. Basal extracellular serotonin (5-HT) levels were also elevated, whereas dopamine (DA) levels were significantly reduced in the striatum of MPTP-treated mice. Infusion of M100907 into the striatum produced no effect on dopamine or 5-HT levels. Local application of tetrodotoxin suppressed glutamate, 5-HT and DA concentrations in striatal dialysates in the presence or absence of M100907. The striatal expression of the glutamate transporter GLT1 was unchanged. However, there was an upregulation of the expression of 5-HT2A receptors in the striatum of MPTP-treated animals. Our data provide further evidence of enhanced glutamatergic neurotransmission in parkinsonism and demonstrate that blocking 5-HT2A receptors in the striatum will normalize glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Marcus C Ferguson
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States
| | - Tultul Nayyar
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States
| | - Twum A Ansah
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States.
| |
Collapse
|
39
|
DeSilva TM, Borenstein NS, Volpe JJ, Kinney HC, Rosenberg PA. Expression of EAAT2 in neurons and protoplasmic astrocytes during human cortical development. J Comp Neurol 2013; 520:3912-32. [PMID: 22522966 DOI: 10.1002/cne.23130] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The major regulators of synaptic glutamate in the cerebral cortex are the excitatory amino acid transporters 1-3 (EAAT1-3). In this study, we determined the cellular and temporal expression of EAAT1-3 in the developing human cerebral cortex. We applied single- and double-label immunocytochemistry to normative frontal or parietal (associative) cortex samples from 14 cases ranging in age from 23 gestational weeks to 2.5 postnatal years. The most striking finding was the transient expression of EAAT2 in layer V pyramidal neuronal cell bodies up until 8 postnatal months prior to its expression in protoplasmic astrocytes at 41 postconceptional weeks onward. EAAT2 was also expressed in neurons in layer I (presumed Cajal-Retzius cells), and white matter (interstitial) neurons. This expression in neurons in the developing human cortex contrasts with findings by others of transient expression exclusively in axon tracts in the developing sheep and rodent brain. With western blotting, we found that EAAT2 was expressed as a single band until 2 postnatal months, after which it was expressed as two bands. The expression of EAAT2 in pyramidal neurons during human brain development may contribute to cortical vulnerability to excitotoxicity during the critical period for perinatal hypoxic-ischemic encephalopathy. In addition, by studying the expression of EAAT1 and EAAT2 glutamate transporters, it was possible to document the development of protoplasmic astrocytes.
Collapse
Affiliation(s)
- Tara M DeSilva
- Department of Neurology and the FM Kirby Neurobiology Center, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
40
|
Morphine treatment in early life alters glutamate uptake in the spinal synaptosomes of adult rats. Neurosci Lett 2012; 529:51-4. [DOI: 10.1016/j.neulet.2012.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/22/2012] [Accepted: 09/07/2012] [Indexed: 01/28/2023]
|
41
|
Yang X, He Z, Zhang Q, Wu Y, Hu Y, Wang X, Li M, Wu Z, Guo Z, Guo J, Jia J. Pre-ischemic treadmill training for prevention of ischemic brain injury via regulation of glutamate and its transporter GLT-1. Int J Mol Sci 2012; 13:9447-9459. [PMID: 22949807 PMCID: PMC3431805 DOI: 10.3390/ijms13089447] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/14/2012] [Accepted: 07/19/2012] [Indexed: 12/12/2022] Open
Abstract
Pre-ischemic treadmill training exerts cerebral protection in the prevention of cerebral ischemia by alleviating neurotoxicity induced by excessive glutamate release following ischemic stroke. However, the underlying mechanism of this process remains unclear. Cerebral ischemia-reperfusion injury was observed in a rat model after 2 weeks of pre-ischemic treadmill training. Cerebrospinal fluid was collected using the microdialysis sampling method, and the concentration of glutamate was determined every 40 min from the beginning of ischemia to 4 h after reperfusion with high-performance liquid chromatography (HPLC)-fluorescence detection. At 3, 12, 24, and 48 h after ischemia, the expression of the glutamate transporter-1 (GLT-1) protein in brain tissues was determined by Western blot respectively. The effect of pre-ischemic treadmill training on glutamate concentration and GLT-1 expression after cerebral ischemia in rats along with changes in neurobehavioral score and cerebral infarct volume after 24 h ischemia yields critical information necessary to understand the protection mechanism exhibited by pre-ischemic treadmill training. The results demonstrated that pre-ischemic treadmill training up-regulates GLT-1 expression, decreases extracellular glutamate concentration, reduces cerebral infarct volume, and improves neurobehavioral score. Pre-ischemic treadmill training is likely to induce neuroprotection after cerebral ischemia by regulating GLT-1 expression, which results in re-uptake of excessive glutamate.
Collapse
Affiliation(s)
- Xiaojiao Yang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Zhijie He
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Qi Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
| | - Yi Wu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
- Department of Sports Medicine and Rehabilitation, Medical College of Fudan University, Shanghai 200032, China
| | - Yongshan Hu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
- Department of Sports Medicine and Rehabilitation, Medical College of Fudan University, Shanghai 200032, China
| | - Xiaolou Wang
- The Third Teaching Hospital of Xinxiang Medical University, Xinxiang 453003, China; E-Mail:
| | - Mingfen Li
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
| | - Zhiyuan Wu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
| | - Zhenzhen Guo
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
| | - Jingchun Guo
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
- Authors to whom correspondence should be addressed; E-Mails: (J.G.); (J.J.); Tel./Fax: +86-21-542-373-98 (J.G.); +86-21-528-878-20 (J.J.)
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mails: (X.Y.); (Z.H.); (Q.Z.); (Y.W.); (Y.H.); (M.L.); (Z.W.); (Z.G.)
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
- Department of Sports Medicine and Rehabilitation, Medical College of Fudan University, Shanghai 200032, China
- Authors to whom correspondence should be addressed; E-Mails: (J.G.); (J.J.); Tel./Fax: +86-21-542-373-98 (J.G.); +86-21-528-878-20 (J.J.)
| |
Collapse
|
42
|
Carbone M, Duty S, Rattray M. Riluzole neuroprotection in a Parkinson's disease model involves suppression of reactive astrocytosis but not GLT-1 regulation. BMC Neurosci 2012; 13:38. [PMID: 22480308 PMCID: PMC3349538 DOI: 10.1186/1471-2202-13-38] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/05/2012] [Indexed: 11/10/2022] Open
Abstract
Background Riluzole is a neuroprotective drug used in the treatment of motor neurone disease. Recent evidence suggests that riluzole can up-regulate the expression and activity of the astrocyte glutamate transporter, GLT-1. Given that regulation of glutamate transport is predicted to be neuroprotective in Parkinson's disease, we tested the effect of riluzole in parkinsonian rats which had received a unilateral 6-hydroxydopamine injection into the median forebrain bundle. Results Rats were treated with intraperitoneal riluzole (4 mg/kg or 8 mg/kg), 1 hour before the lesion then once daily for seven days. Riluzole produced a modest but significant attenuation of dopamine neurone degeneration, assessed by suppression of amphetamine-induced rotations, preservation of tyrosine hydroxylase positive neuronal cell bodies in the substantia nigra pars compacta and attenuation of striatal tyrosine hydroxylase protein loss. Seven days after 6-hydroxydopamine lesion, reactive astrocytosis was observed in the striatum, as determined by increases in expression of glial fibrillary acidic protein, however the glutamate transporter, GLT-1, which is also expressed in astrocytes was not regulated by the lesion. Conclusions The results confirm that riluzole is a neuroprotective agent in a rodent model of parkinson's disease. Riluzole administration did not regulate GLT-1 levels but significantly reduced GFAP levels, in the lesioned striatum. Riluzole suppression of reactive astrocytosis is an intriguing finding which might contribute to the neuroprotective effects of this drug.
Collapse
Affiliation(s)
- Marica Carbone
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, UK
| | | | | |
Collapse
|
43
|
Matos M, Augusto E, Santos-Rodrigues AD, Schwarzschild MA, Chen JF, Cunha RA, Agostinho P. Adenosine A2A receptors modulate glutamate uptake in cultured astrocytes and gliosomes. Glia 2012; 60:702-16. [PMID: 22298379 DOI: 10.1002/glia.22290] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 12/05/2011] [Indexed: 12/20/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in the central nervous system, where its toxic build-up leads to synaptic dysfunction and excitotoxic cell death that underlies many neurodegenerative diseases. Therefore, efforts have been made to understand the regulation of glutamate transporters, which are responsible for the clearance of extracellular glutamate. We now report that adenosine A(2A) receptors (A(2A) R) control the uptake of D-aspartate in primary cultured astrocytes as well as in an ex vivo preparation enriched in glial plasmalemmal vesicles (gliosomes) from adult rats, whereas A(1) R and A(3) R were devoid of effects. Thus, the acute exposure to the A(2A) R agonist, CGS 21680, inhibited glutamate uptake, an effect prevented by the A(2A) R antagonist, SCH 58261, and abbrogated in cultured astrocytes from A(2A) R knockout mice. Furthermore, the prolonged activation of A(2A) R lead to a cAMP/protein kinase A-dependent reduction of GLT-I and GLAST mRNA and protein levels, which leads to a sustained decrease of glutamate uptake. This dual mechanism of inhibition of glutamate transporters by astrocytic A(2A) R provides a novel candidate mechanism to understand the ability of A(2) (A) R to control synaptic plasticity and neurodegeneration, two conditions tightly associated with the control of extracellular glutamate levels by glutamate transporters.
Collapse
Affiliation(s)
- Marco Matos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
44
|
Salvatore MF, Davis RW, Arnold JC, Chotibut T. Transient striatal GLT-1 blockade increases EAAC1 expression, glutamate reuptake, and decreases tyrosine hydroxylase phosphorylation at ser(19). Exp Neurol 2012; 234:428-36. [PMID: 22285253 DOI: 10.1016/j.expneurol.2012.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 12/24/2011] [Accepted: 01/10/2012] [Indexed: 12/16/2022]
Abstract
Three glutamate transporters, GLT-1, GLAST, and EAAC1, are expressed in striatum. GLT-1 and, to a lesser extent, GLAST are thought to play a primary role in glutamate reuptake and mitigate excitoxicity. Progressive tyrosine hydroxylase (TH) loss seen in Parkinson's disease (PD) is associated with increased extracellular glutamate. Glutamate receptor antagonists reduce nigrostriatal loss in PD models. These observations suggest that excess synaptic glutamate contributes to nigrostriatal neuron loss seen in PD. Decreased GLT-1 expression occurs in neurodegenerative disease and PD models, suggesting decreased GLT-1-mediated glutamate reuptake contributes to excitotoxicity. To determine how transient GLT-1 blockade affects glutamate reuptake dynamics and a Ca(2+)-dependent process in nigrostriatal terminals, ser(19) phosphorylation of TH, the GLT-1 inhibitor dihydrokainic acid (DHK) was delivered unilaterally to striatum in vivo and glutamate reuptake was quantified ex vivo in crude synaptosomes 3h later. Ca(2+)-influx is associated with excitotoxic conditions. The phosphorylation of TH at ser(19) is Ca(2+)-dependent, and a change resulting from GLT-1 blockade may signify the potential for excitotoxicity to nigrostriatal neurons. Synaptosomes from DHK infused striatum had a 43% increase in glutamate reuptake in conjunction with decreased ser(19) TH phosphorylation. Using a novel GLAST inhibitor and DHK, we determined that the GLAST-mediated component of increased glutamate reuptake increased 3-fold with no change in GLAST or GLT-1 protein expression. However, GLT-1 blockade increased EAAC1 protein expression ~20%. Taken together, these results suggest that GLT-1 blockade produces a transient increase in GLAST-mediated reuptake and EAAC1 expression coupled with reduced ser(19) TH phosphorylation. These responses could represent an endogenous defense against excitotoxicity to the nigrostriatal pathway.
Collapse
Affiliation(s)
- Michael F Salvatore
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130, USA.
| | | | | | | |
Collapse
|
45
|
Baier CJ, Katunar MR, Adrover E, Pallarés ME, Antonelli MC. Gestational restraint stress and the developing dopaminergic system: an overview. Neurotox Res 2012; 22:16-32. [PMID: 22215534 DOI: 10.1007/s12640-011-9305-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/15/2011] [Accepted: 12/20/2011] [Indexed: 12/22/2022]
Abstract
Prenatal stress exerts a strong impact on fetal brain development in rats impairing adaptation to stressful conditions, subsequent vulnerability to anxiety, altered sexual function, and enhanced propensity to self-administer drugs. Most of these alterations have been attributed to changes in the neurotransmitter dopamine (DA). In humans; dysfunction of dopaminergic system is associated with development of several neurological disorders, such as Parkinson disease, schizophrenia, attention-deficit hyperactivity disorder, and depression. Evidences provided by animal research, as well as retrospective studies in humans, pointed out that exposure to adverse events in early life can alter adult behaviors and neurochemical indicators of midbrain DA activity, suggesting that the development of the DA system is sensitive to disruption by exposure to early stressors. The purpose of this article is to provide a general overview of published studies and our own study related to the effect of prenatal insults on the development of DA metabolism and biology, focusing mainly in articles involving prenatal-restraint stress protocols in rats. We will also attempt to make a correlation between theses alterations and DA-related pathological processes in humans.
Collapse
Affiliation(s)
- Carlos J Baier
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
46
|
Hippocampal glutamate transporter 1 (GLT-1) complex levels are paralleling memory training in the Multiple T-maze in C57BL/6J mice. Brain Struct Funct 2011; 217:363-78. [PMID: 22113856 DOI: 10.1007/s00429-011-0362-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/08/2011] [Indexed: 12/25/2022]
Abstract
The glutamate transporter 1 (GLT-1) is essential for glutamate uptake in the brain and associated with various psychiatric and neurological disorders. Pharmacological inhibition of GLT-1 results in memory deficits, but no study linking native GLT-1 complexes was published so far. It was therefore the aim of the study to associate this highly hydrophobic, eight transmembrane spanning domains containing transporter to memory training in the Multiple T-maze (MTM). C57BL/6J mice were used for the spatial memory training experiments, and trained mice were compared to untrained (yoked) animals. Mouse hippocampi were dissected out 6 h after training on day 4, and a total enriched membrane fraction was prepared by ultracentrifugation. Membrane proteins were separated by blue native polyacrylamide gel electrophoresis (BN-PAGE) with subsequent Western blotting against GLT-1 on these native gels. Moreover, GLT-1 complexes were identified by mass spectrometry (nano-LC-ESI-MS/MS). Animals learned the MTM task and multiple GLT-1 complexes were detected at apparent molecular weights of 242, 480 and 720 kDa on BN-PAGE Western blotting. GLT-1 complex levels were significantly higher in the trained group as compared to yoked controls, and antibody specificity was verified by immunoblotting on multidimensional gels. Hippocampal GLT-1 was unambiguously identified by mass spectrometry with high sequence coverage, and glycosylation was observed. It is revealed that increased GLT-1 complex levels are paralleling and are linked to spatial memory training. We provide evidence that signal termination, represented by the excitatory amino acid transporter GLT-1 complexes, is involved in spatial memory mechanisms.
Collapse
|
47
|
Carbone M, Duty S, Rattray M. Riluzole elevates GLT-1 activity and levels in striatal astrocytes. Neurochem Int 2011; 60:31-8. [PMID: 22080156 DOI: 10.1016/j.neuint.2011.10.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 10/20/2011] [Accepted: 10/28/2011] [Indexed: 12/12/2022]
Abstract
Drugs which upregulate astrocyte glutamate transport may be useful neuroprotective compounds by preventing excitotoxicity. We set up a new system to identify potential neuroprotective drugs which act through GLT-1. Primary mouse striatal astrocytes grown in the presence of the growth-factor supplement G5 express high levels of the functional glutamate transporter, GLT-1 (also known as EAAT2) as assessed by Western blotting and ³H-glutamate uptake assay, and levels decline following growth factor withdrawal. The GLT-1 transcriptional enhancer dexamethasone (0.1 or 1 μM) was able to prevent loss of GLT-1 levels and activity following growth factor withdrawal. In contrast, ceftriaxone, a compound previously reported to enhance GLT-1 expression, failed to regulate GLT-1 in this system. The neuroprotective compound riluzole (100 μM) upregulated GLT-1 levels and activity, through a mechanism that was not dependent on blockade of voltage-sensitive ion channels, since zonasimide (1 mM) did not regulate GLT-1. Finally, CDP-choline (10 μM-1 mM), a compound which promotes association of GLT-1/EAAT2 with lipid rafts was unable to prevent GLT-1 loss under these conditions. This observation extends the known pharmacological actions of riluzole, and suggests that this compound may exert its neuroprotective effects through an astrocyte-dependent mechanism.
Collapse
Affiliation(s)
- Marica Carbone
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, UK
| | | | | |
Collapse
|
48
|
Simultaneous quantification of d- vs. l-serine, taurine, kynurenate, phosphoethanolamine and diverse amino acids in frontocortical dialysates of freely-moving rats: Differential modulation by N-methyl-d-aspartate (NMDA) and other pharmacological agents. J Neurosci Methods 2011; 202:143-57. [DOI: 10.1016/j.jneumeth.2011.08.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/08/2011] [Accepted: 08/25/2011] [Indexed: 01/18/2023]
|
49
|
Liu AJ, Hu YY, Li WB, Xu J, Zhang M. Cerebral ischemic pre-conditioning enhances the binding characteristics and glutamate uptake of glial glutamate transporter-1 in hippocampal CA1 subfield of rats. J Neurochem 2011; 119:202-9. [PMID: 21781120 DOI: 10.1111/j.1471-4159.2011.07396.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glial glutamate transporter-1 (GLT-1) is the predominant subtype of glutamate transporters which are responsible for the homeostasis of extracellular glutamate. Our previous studies have shown that up-regulation in GLT-1 protein expression matches brain ischemic tolerance induced by cerebral ischemic preconditioning (CIP). To specify the role of functional changes of GLT-1 in the induction of brain ischemic tolerance by CIP, the present study was undertaken to examine changes in the binding properties of GLT-1 (including maximum binding and affinity for glutamate) and in GLT-1 mediated glutamate uptake, using L-³H-glutamate assay in the rat hippocampus. The results indicated that CIP was able to increase the maximum binding and affinity, and uptake of GLT-1 for glutamate in hippocampal CA1 subfield either with or without the presence of the subsequent severe brain ischemic insult. Simultaneously, accompanied with the above changes, CIP significantly reduced the delayed neuronal death (DND) in this region induced by lethal global cerebral ischemia. It could be concluded that up-regulation in the maximum binding and affinity and glutamate uptake of GLT-1 contributed to the neuronal protection of CIP against global cerebral ischemic insult.
Collapse
Affiliation(s)
- Ai-Ju Liu
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | |
Collapse
|
50
|
Glutamate release from astrocytic gliosomes under physiological and pathological conditions. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 85:295-318. [PMID: 19607977 DOI: 10.1016/s0074-7742(09)85021-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Glial subcellular particles (gliosomes) have been purified from rat cerebral cortex or mouse spinal cord and investigated for their ability to release glutamate. Confocal microscopy showed that gliosomes are enriched with glia-specific proteins, such as GFAP and S-100 but not neuronal proteins, such as PSD-95, MAP-2, and beta-tubulin III. Furthermore, gliosomes exhibit labeling neither for integrin-alphaM nor for myelin basic protein, specific for microglia and oligodendrocytes, respectively. The gliosomal fraction contains proteins of the exocytotic machinery coexisting with GFAP. Consistent with ultrastructural analysis, several nonclustered vesicles are present in the gliosome cytoplasm. Finally, gliosomes represent functional organelles that actively export glutamate when subjected to releasing stimuli, such as ionomycin, high KCl, veratrine, 4-aminopyridine, AMPA, or ATP by mechanisms involving extracellular Ca2+, Ca2+ release from intracellular stores as well as reversal of glutamate transporters. In addition, gliosomes can release glutamate also by a mechanism involving heterologous transporter activation (heterotransporters) located on glutamate-releasing and glutamate transporter-expressing (homotransporters) gliosomes. This glutamate release involves reversal of glutamate transporters and anion channel opening, but not exocytosis. Both the exocytotic and the heterotransporter-mediated glutamate release were more abundant in gliosomes prepared from the spinal cord of transgenic mice, model of amyotrophic lateral sclerosis, than in controls; suggesting the involvement of astrocytic glutamate release in the excitotoxicity proposed as a cause of motor neuron degeneration. The results support the view that gliosomes may represent a viable preparation that allows to study mechanisms of astrocytic transmitter release and its regulation in healthy animals and in animal models of brain diseases.
Collapse
|