1
|
Mezaguer-Lekouaghet M, Souidi M, Hadjrabia S, Mameri S, Aït-Ziane M, Badreddine A, Baz A, Lounis-Mokrani Z. Long-term biological effects after acute 131I-administration of two rat models (with and without thyroid). Int J Radiat Biol 2024; 100:1541-1550. [PMID: 39259816 DOI: 10.1080/09553002.2024.2400484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/10/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE Radioiodine-131 (RAI or iodine-131) is one of the most frequently used radionuclides for diagnosis and therapy of thyroid diseases (90% of all therapies in nuclear medicine). In order to optimize the patient protection, it is important to evaluate the long-term biological effects of RAI therapy on non-target organs. MATERIALS AND METHODS An experimental animal model has been adopted, it consists on miming RAI therapy. An activity of RAI has been administrated in two models of Wistar rats: the first model with an intact thyroid gland (Thy + model), and the second one was thyroidectomized (Thy- model). For each model, 6 rats were orally contaminated with a solution 18.5 ± 1MBq of [131I]NaI and 6 others rats were used as controls. The 24 rats have been placed in individual cages for a period of 08 months then they were euthanized. The blood was collected by cardiac puncture and all organs were immediately removed. A fraction of thyroid, liver, kidneys and testicles was put in vials containing formaldehyde (10%) for histological investigation. RESULTS Histological observations show some liver disorders more accentuated in the case of the Thy- model, the appearance of kidney tissue effects (hemosiderin deposits, fibrosis and glomerular necrosis) for both models and an absence of any anomaly for the testicles slides. The disturbance of blood parameters specific to each organ has been revealed. CONCLUSIONS Long-term biological effect of 131I-administration shows the appearance of various histological disorders confirmed by disturbances in hepatic and renal functions.
Collapse
Affiliation(s)
| | - Maâmar Souidi
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses Paris, France
| | - Samia Hadjrabia
- Centre de Recherche Nucléaire de Draria. BP 43. Sebala. Draria, Alger, Algérie
| | - Saâdia Mameri
- Centre Hospitalo Universitaire Mustapha Bacha, Sidi M'Hamed, Alger, Algérie
| | - Mounir Aït-Ziane
- Centre de Recherche Nucléaire d'Alger.02Bd Frantz Fanon, Alger, Algérie
| | | | - Ahcène Baz
- Retired, Ecole Normale Supérieure de Kouba Vieux-Kouba, Alger, Algérie
| | | |
Collapse
|
2
|
Shakyawal S, Namdev N, Ahmad Z, Mahobiya P. Effects of Ultraviolet B Radiation on the Function of the Testicles, Expression of Caspase-3 and NOS-2, and the Protective Role of Naringin in Mice. Reprod Sci 2024; 31:452-468. [PMID: 37814202 DOI: 10.1007/s43032-023-01366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/17/2023] [Indexed: 10/11/2023]
Abstract
In today's evolving global environment, reproductive dysfunctions brought on by various environmental toxins are of greatest concern. Radiation is a constant threat to living things, causing both genetic and cellular changes that result in mutations and cell death. It is thought that ultraviolet B (UVB) radiation we are exposed to daily has biological effects on rats and humans that are both short and long term. Due to the damaging effects of UVB radiation on the living system, this study explores the automatic mechanism by which a certain level of radiation induces oxidative stress, which is further controlled by the antioxidant activity of naringin (NG). In our study, male Swiss albino mice were exposed to UVB irradiation, which altered mice's body and testes weight, hormonal imbalance, biochemical parameters, and histo-morphometric parameter. In addition, we chose naringin's UVB irradiation deterrent effect. Twenty-four healthy adult male Swiss albino mice weighing 25-35 g were chosen at random. For 15 days of exposure, they were divided into four groups at random: group I-control, group II-UVB exposure (2 h per day), group III-UVB exposure with naringin (NG) (80 mg/kg, bw), and group IV-naringin (NG) (80 mg/kg, bw). Compared to the control group, UVB irradiation causes alterations in the animal body weight, testes weight, hormones, enzymatic and non-enzymatic assays, and histological parameters. It was seen that NG retrieved the alterations in parameters caused by UVB irradiation. The UVB radiation exposure on mice caused the testicular dysfunction drastically, while the naringin recapitulates testis functioning.
Collapse
Affiliation(s)
- Shashank Shakyawal
- Endocrinology Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India
| | - Narendra Namdev
- Endocrinology Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India
| | - Zaved Ahmad
- Cancer Biology Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India
| | - Payal Mahobiya
- Endocrinology Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India.
| |
Collapse
|
3
|
Motallebzadeh E, Aghighi F, Vakili Z, Talaei SA, Mohseni M. Neuroprotective effects of alpha-lipoic acid on radiation-induced brainstem injury in rats. Res Pharm Sci 2023; 18:202-209. [PMID: 36873276 PMCID: PMC9976052 DOI: 10.4103/1735-5362.367798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/08/2022] [Accepted: 09/11/2022] [Indexed: 01/20/2023] Open
Abstract
Background and purpose Alpha-lipoic acid (ALA) is an antioxidant with radioprotective properties. We designed the current work to assess the neuroprotective function of ALA in the presence of oxidative stress induced by radiation in the brainstem of rats. Experimental approach Whole-brain radiations (X-rays) was given at a single dose of 25 Gy with or without pretreatment with ALA (200 mg/kg BW). Eighty rats were categorized into four groups: vehicle control (VC), ALA, radiation-only (RAD), and radiation + ALA (RAL). The rats were given ALA intraperitoneally 1 h before radiation and killed following 6 h, thereafter superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and total antioxidant capacity (TAC) in the brainstem were measured. Furthermore, a pathological examination was carried out after 24 h, 72 h, and five days to determine tissue damage. Findings/Results The findings indicated that MDA levels in the brainstem were 46.29 ± 1.64 μM in the RAD group and decreased in the VC group (31.66 ± 1.72 μM). ALA pretreatment reduced MDA levels while simultaneously increasing SOD and CAT activity and TAC levels (60.26 ± 5.47 U/mL, 71.73 ± 2.88 U/mL, and 227.31 ± 9.40 mol/L, respectively). The greatest pathological changes in the rat's brainstems were seen in RAD animals compared to the VC group after 24 h, 72 h, and 5 days. As a result, karyorrhexis, pyknosis, vacuolization, and Rosenthal fibers vanished in the RAL group in three periods. Conclusion and implications ALA exhibited substantial neuroprotectivity following radiation-induced brainstem damage.
Collapse
Affiliation(s)
- Elham Motallebzadeh
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.,Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Fatemeh Aghighi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zarichehr Vakili
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mehran Mohseni
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.,Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
4
|
ALMisned G, Rabaa E, Sen Baykal D, Ilik E, Kilic G, Zakaly HMH, Ene A, Tekin HO. Translocation of tungsten(vi) oxide/gadolinium(iii) fluoride in tellurite glasses towards improvement of gamma-ray attenuation features in high-density glass shields. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Abstract
This study investigates the effect of substituting tungsten(vi) oxide/gadolinium(iii) fluoride in tellurite glasses whose densities varies from 5.0879 to 5.3246 g/cm3 on gamma-ray absorption properties. A range of fundamental absorption parameters, including attenuation coefficients, half-value layer thicknesses, effective atom and electron numbers, effective conductivity, exposure, and energy absorption buildup factors, were studied for five different glass samples with varying substitution ratios. The ratio of tungsten(vi) oxide to gadolinium(iii) fluoride varied between 0 and 20 mol%, as well as the TeO2 ratio in the composition was maintained between 90 and 80 mol%. The sample with the composition of 80–20 mol% TeO2/WO3, which attained the maximum density value with 20 mol% WO3 addition, showed the highest gamma-absorption capabilities based on the obtained findings in the range of 0.015–15 MeV. In consideration of the mechanical and physical properties of WO3 in tellurite glasses, it can be concluded that WO3 incorporation is a crucial monotonic process that may be utilized to further improve the properties of glass shields.
Collapse
Affiliation(s)
- Ghada ALMisned
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| | - Elaf Rabaa
- Medical Diagnostic Imaging Department, College of Health Sciences, University of Sharjah , Sharjah , 27272 , United Arab Emirates
| | - Duygu Sen Baykal
- Vocational School of Health Sciences, Istanbul Kent University , Istanbul 34433 , Turkey
| | - Erkan Ilik
- Department of Physics, Faculty of Science, Eskisehir Osmangazi University , Eskisehir , 26040 , Turkey
| | - Gokhan Kilic
- Department of Physics, Faculty of Science, Eskisehir Osmangazi University , Eskisehir , 26040 , Turkey
| | - Hesham M. H. Zakaly
- Institute of Physics and Technology, Ural Federal University , 620002 Ekaterinburg , Russia
- Physics Department, Faculty of Science, Al-Azhar University , Assiut 71524 , Egypt
| | - Antoaneta Ene
- INPOLDE Research Center, Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University of Galati , 47 Domneasca Street, 800008 Galati , Romania
| | - Huseyin Ozan Tekin
- Medical Diagnostic Imaging Department, College of Health Sciences, University of Sharjah , Sharjah , 27272 , United Arab Emirates
- Computer Engineering Department, Faculty of Engineering and Natural Sciences, Istinye University , Istanbul 34396 , Turkey
| |
Collapse
|
5
|
Javadi A, Nikhbakht MR, Ghasemian Yadegari J, Rustamzadeh A, Mohammadi M, Shirazinejad A, Azadbakht S, Abdi Z. In-vivo and in vitro assessments of the radioprotective potential natural and chemical compounds: a review. Int J Radiat Biol 2023; 99:155-165. [PMID: 35549605 DOI: 10.1080/09553002.2022.2078007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The study of the radioactive role of natural and chemical substances on human and animal studies has been the subject of research by some researchers. Therefore, the review of some of the past and current studies conducted in this field, can provide helpful information to elucidate of the importance of radioprotective components in reducing radiation exposure side effects. METHODS The authors search for keywords including In vitro, In vivo, Radioprotective, Ionizing radiation, and Vitamin in ScienceDirect, Scopus, Pubmed, and Google Scholar databases to access previously published articles and search for more reference articles on the role of radioprotective materials from natural and chemical compounds. RESULTS Radiation exposure can produce reactive oxygen species (ROS) in the body, however most of which are eliminated by the body's natural mechanisms, but when the body's antioxidant systems do not have enough ability to neutralize free radicals, oxidative stress occurs, which causes damage to DNA and body tissues. Therefore, it is necessary use of alternative substances that reduce and inhibit free radicals. CONCLUSION In general, recommended that antioxidant component(s) can be protect tissue damages in humans or animals, due to the their ability to scavenge free radicals generated by ionizing radiation.
Collapse
Affiliation(s)
- Anis Javadi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Reza Nikhbakht
- Department of Physiology and Pharmacology, School of Medicine Medicinal Plants Research Center Yasuj, University of Medical Sciences, Yasuj, Iran
| | - Javad Ghasemian Yadegari
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Auob Rustamzadeh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Mohammadi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.,Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Shirazinejad
- Department of Food Science and Technology, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Saleh Azadbakht
- Department of Internal Medicine, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zahra Abdi
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
6
|
Targhazeh N, Hutt KJ, Winship AL, Reiter R, Yousefi B. Melatonin as an oncostatic agent: Review of the modulation of tumor microenvironment and overcoming multidrug resistance. Biochimie 2022; 202:71-84. [PMID: 36116742 DOI: 10.1016/j.biochi.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
Abstract
Multi drug resistance (MDR) generally limits the efficacy of chemotherapy in cancer patients and can be categorized into primary or acquired resistance. Melatonin (MLT), a lipophilic hormone released from pineal gland, is a molecule with oncostatic effects. Here, we will briefly review the contribution of different microenvironmental components including fibroblasts, immune and inflammatory cells, stem cells and vascular endothelial cells in tumor initiation, progression and development. Then, the mechanisms by which MLT can potentially affect these elements and regulate drug resistance will be presented. Finally, we will explain how different studies have used novel strategies incorporating MLT to suppress cancer resistance against therapeutics.
Collapse
Affiliation(s)
- Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karla J Hutt
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Amy L Winship
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Russel Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA.
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Schiff JE, Vieira CLZ, Garshick E, Wang V, Blomberg A, Gold DR, Schwartz J, Tracy SM, Vokonas P, Koutrakis P. The role of solar and geomagnetic activity in endothelial activation and inflammation in the NAS cohort. PLoS One 2022; 17:e0268700. [PMID: 35881632 PMCID: PMC9321765 DOI: 10.1371/journal.pone.0268700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/05/2022] [Indexed: 01/08/2023] Open
Abstract
This study investigated the associations between solar and geomagnetic activity and circulating biomarkers of systemic inflammation and endothelial activation in the Normative Aging Study (NAS) cohort. Mixed effects models with moving day averages from day 0 to day 28 were used to study the associations between solar activity (sunspot number (SSN), interplanetary magnetic field (IMF)), geomagnetic activity (planetary K index (Kp index), and various inflammatory and endothelial markers. Biomarkers included intracellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1), C-reactive protein (CRP), and fibrinogen. After adjusting for demographic and meteorological variables, we observed significant positive associations between sICAM-1 and sVCAM-1 concentrations and solar and geomagnetic activity parameters: IMF, SSN, and Kp. Additionally, a negative association was observed between fibrinogen and Kp index and a positive association was observed for CRP and SSN. These results demonstrate that solar and geomagnetic activity might be upregulating endothelial activation and inflammation.
Collapse
Affiliation(s)
- Jessica E. Schiff
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, United States of America
| | - Carolina L. Z. Vieira
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, United States of America
| | - Eric Garshick
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, VA Boston Healthcare System, Boston, MA, United States of America
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Veronica Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, United States of America
| | - Annelise Blomberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, United States of America
| | - Diane R. Gold
- Professor of Medicine, Harvard Medical School, Boston, MA, United States of America
- Professor of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, United States of America
| | - Samantha M. Tracy
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, United States of America
| | - Pantel Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, United States of America
| |
Collapse
|
8
|
Mitjana O, Ausejo R, Mendoza N, Miguel J, Tejedor MT, Garrido AM, Falceto MV. Photoperiod and Melatonin Supplementation: Variable Effects on the Quality of Chilled Dog Semen. Front Vet Sci 2022; 9:956630. [PMID: 35903132 PMCID: PMC9317747 DOI: 10.3389/fvets.2022.956630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
The addition of melatonin in seminal extenders due to its antioxidant properties and its beneficial role in sperm preservation has been previously described, especially in seasonal species. The aim of this study was to study a potential seasonal effect based on photoperiod duration when adding a physiological concentration of melatonin in the canine ejaculate. A total of 24 ejaculates were obtained from 10 healthy dogs during the increasing photoperiod (from December 21 to June 21), whereas 12 ejaculates were collected from five healthy individuals during the decreasing photoperiod (from June 22 to December 20). Each ejaculate was separated into two aliquots, and one of them remained as a control, whereas melatonin (100 pM) was added to the other one (C and M treatment groups, respectively). Diluted semen was refrigerated at 5°C. On days 0, 1, 2, 3, and 6, sperm motility analyses were performed using a CASA system and hypoosmotic swelling test (HOST), osmotic resistance test (ORT), and flow cytometry analysis. No effect of melatonin on motility was detected in either photoperiod. Negative effects of melatonin were found for acrosomal defects, apoptosis, and viability in the decreasing photoperiod. The addition of melatonin to sperm in the decreasing photoperiod could create such a high level that it would cause the described negative effects. We found a beneficial effect of melatonin in the increasing photoperiod on acrosomal defects and apoptosis during 0–6 days. Melatonin treatment also increased viability in the short term (days 1 and 2) for both photoperiods. Also, melatonin can provide certain beneficial effects on mitochondrial activity in the medium term (days 2 and 3) in the decreasing photoperiod.
Collapse
Affiliation(s)
- Olga Mitjana
- Agroalimentary Institute of Aragon-IA2, Department of Animal Pathology, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Raquel Ausejo
- Department of Biotechnology R&D, Magapor S.L., Ejea de los Caballeros, Spain
- Department of Animal Pathology, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Noelia Mendoza
- Department of Biotechnology R&D, Magapor S.L., Ejea de los Caballeros, Spain
| | - Joaquin Miguel
- Department of Biotechnology R&D, Magapor S.L., Ejea de los Caballeros, Spain
| | - Maria Teresa Tejedor
- Department of Anatomy, Embryology and Animal Genetics, CiberCV, Universidad de Zaragoza, Zaragoza, Spain
- *Correspondence: Maria Teresa Tejedor
| | - Ana Maria Garrido
- Department of Animal Pathology, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Maria Victoria Falceto
- Agroalimentary Institute of Aragon-IA2, Department of Animal Pathology, Universidad de Zaragoza-CITA, Zaragoza, Spain
| |
Collapse
|
9
|
Aras S, Tanzer İO, Can Ü, Demir H, Sümer E, Baydili KN, Orak R. Radioprotective effects of melatonin against varying dose rates on radiotherapy-induced salivary gland damage scintigraphy findings. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Lalkovicova M. Neuroprotective agents effective against radiation damage of central nervous system. Neural Regen Res 2022; 17:1885-1892. [PMID: 35142663 PMCID: PMC8848589 DOI: 10.4103/1673-5374.335137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Ionizing radiation caused by medical treatments, nuclear events or even space flights can irreversibly damage structure and function of brain cells. That can result in serious brain damage, with memory and behavior disorders, or even fatal oncologic or neurodegenerative illnesses. Currently used treatments and drugs are mostly targeting biochemical processes of cell apoptosis, radiation toxicity, neuroinflammation, and conditions such as cognitive-behavioral disturbances or others that result from the radiation insult. With most drugs, the side effects and potential toxicity are also to be considered. Therefore, many agents have not been approved for clinical use yet. In this review, we focus on the latest and most effective agents that have been used in animal and also in the human research, and clinical treatments. They could have the potential therapeutical use in cases of radiation damage of central nervous system, and also in prevention considering their radioprotecting effect of nervous tissue.
Collapse
Affiliation(s)
- Mária Lalkovicova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Russia; Slovak Academy of Sciences, Institute of Experimental Physics, Košice, Slovakia
| |
Collapse
|
11
|
Kumar A, Choudhary S, Kumar S, Adhikari JS, Kapoor S, Chaudhury NK. Role of melatonin mediated G-CSF induction in hematopoietic system of gamma-irradiated mice. Life Sci 2022; 289:120190. [PMID: 34883100 DOI: 10.1016/j.lfs.2021.120190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022]
Abstract
AIMS Hematopoietic acute radiation syndrome (H-ARS) can cause lethality, and therefore, the necessity of a safe radioprotector. The present study was focused on investigating the role of melatonin in granulocytes colony-stimulating factor (G-CSF) and related mechanisms underlying the reduction of DNA damage in hematopoietic system of irradiated mice. MAIN METHODS C57BL/6 male mice were exposed to 2, 5, and 7.5Gy of whole-body irradiation (WBI), 30 min after intra-peritoneal administration of melatonin with different doses. Mice were sacrificed at different time intervals after WBI, and bone marrow, splenocytes, and peripheral blood lymphocytes were isolated for studying various parameters including micronuclei (MN), cell cycle, comet, γ-H2AX, gene expression, amino acid profiling, and hematology. KEY FINDINGS Melatonin100mg/kg ameliorated radiation (7.5Gy and 5Gy) induced MN frequency and cell death in bone marrow without mortality. At 24 h of post-WBI (2Gy), the frequency of micronucleated polychromatic erythrocytes (mnPCE) with different melatonin doses revealed 20 mg/kg as optimal i.p. dose for protecting the hematopoietic system against radiation injury. In comet assay, a significant reduction in radiation-induced % DNA tail (p ≤ 0.05) was observed at this dose. Melatonin reduced γ-H2AX foci/cell and eventually reached to the control level. Melatonin also decreased blood arginine levels in mice after 24 h of WBI. The gene expression of G-CSF, Bcl-2-associated X protein (BAX), and Bcl2 indicated the role of melatonin in G-CSF regulation and downstream pro-survival pathways along with anti-apoptotic activity. SIGNIFICANCE The results revealed that melatonin recovers the hematopoietic system of irradiated mice by inducing G-CSF mediated radioprotection.
Collapse
Affiliation(s)
- Arun Kumar
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences (INMAS)-Defence Research and Development Organisation (DRDO), Brig. SK Mazumdar Marg, Timarpur, Delhi 110054, India
| | - Sandeep Choudhary
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences (INMAS)-Defence Research and Development Organisation (DRDO), Brig. SK Mazumdar Marg, Timarpur, Delhi 110054, India; Department of Pharmacology, School of Pharmaceutical Education and Research, Hamdard University, Hamdard nagar, New Delhi 110062, India
| | - Somesh Kumar
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated Lok Nayak Hospital, Delhi 110002, India
| | - Jawahar S Adhikari
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences (INMAS)-Defence Research and Development Organisation (DRDO), Brig. SK Mazumdar Marg, Timarpur, Delhi 110054, India
| | - Seema Kapoor
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated Lok Nayak Hospital, Delhi 110002, India
| | - Nabo K Chaudhury
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences (INMAS)-Defence Research and Development Organisation (DRDO), Brig. SK Mazumdar Marg, Timarpur, Delhi 110054, India.
| |
Collapse
|
12
|
Ghorbani Z, Fardid R. Effects of Low-dose Gamma Radiation on Expression of Apoptotic Genes in Rat Peripheral Blood Lymphocyte. J Biomed Phys Eng 2021; 11:693-700. [PMID: 34904066 PMCID: PMC8649167 DOI: 10.31661/jbpe.v0i0.1166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/05/2019] [Indexed: 11/26/2022]
Abstract
Background: Exposure to high-dose ionizing radiation is known as a human carcinogen factor, but our information about the effects of low-dose ionizing radiation such as occupational exposures is limited.
The main concern of scientific community is biological consequences due to low-dose radiations. Objective: This study aims to evaluate the effects of low-dose γ-radiation on expression changes of apoptotic genes (bax and bcl-2) in the rat peripheral blood lymphocytes. Material and Methods: In this experimental study, 42 adult male rats were classified into 6 groups, which was exposed to various doses values ranged from 20 mGy to 1000 mGy by γ-rays from a Co-60 source.
Blood samples were provided for analysis of gene expression 24 h after gamma radiation by relative quantitative Reverse Transcription - Polymerase Chain Reaction (RT-PCR).
Radiation sensitivity of rat lymphocytes was measured by the bax/bcl-2 ratio as a predictive marker for radio-sensitivity. Results: The results of this study showed that low dose of gamma radiation can induce down-regulation of bax in rat peripheral blood lymphocytes. Despite other mechanisms of cellular radio-protection,
changes in expression of these apoptotic genes can be the primary pathway in responses of the lymphocytes radio-protection to the exposure. Our study revealed a significant decrease
in the bax/bcl-2 ratio at 50 mGy dose compare to control and the other irradiated groups (p < 0.05). Conclusion: These results suggest that changes in the bax/bcl-2 ratio especially in radiation workers, as a key factor in apoptosis, can be considered as a biological marker in low-dose gamma radiation.
Collapse
Affiliation(s)
- Zhila Ghorbani
- MSc, Radiobiology and Radiation Protection, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fardid
- PhD, Associate Professor of Medical Physics, Department of radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Associate Professor of Medical Physics, Ionizing and Non-Ionizing Radiation Protection Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Eldeighdye SM, Allam TM, Hassanin WF. The protective effect of non-thermal plasma against gamma irradiation in albino rats. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2021. [DOI: 10.1080/16878507.2021.1996844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shaimaa M. Eldeighdye
- Biological Applications Dept, Nuclear Research Center (NRC), Egyptian Atomic Energy Authority (AEA), Cairo, Egypt
| | | | - Walaa F. Hassanin
- Biological Applications Dept, Nuclear Research Center (NRC), Egyptian Atomic Energy Authority (AEA), Cairo, Egypt
| |
Collapse
|
14
|
Bhalothia SK, Mehta JS, Kumar T, Prakash C, Talluri TR, Pal RS, Kumar A. Melatonin and canthaxanthin enhances sperm viability and protect ram spermatozoa from oxidative stress during liquid storage at 4°C. Andrologia 2021; 54:e14304. [PMID: 34773278 DOI: 10.1111/and.14304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
Antioxidants are used to minimize oxidative stress during liquid semen storage. The main aim of current study was to elucidate effect of supplementing melatonin and canthaxanthin in Tris-based extender could enhance seminal quality of ram at 4°C up to 72 h. A total of 48 ejaculates were collected from breeding Magra rams (n = 8) and were preliminarily subjected for various macroscopic and microscopic semen evaluation tests. These ejaculates were pooled and divided into three equal aliquots. Two aliquots were diluted (1:10) using extender encompassing final concentration of 1mM melatonin and 25 µM canthaxanthin and stored at 4°C. Third aliquot with extender only was kept as control. Structural and functional seminal changes were observed at different time points of preservation. Results revealed that mean values for progressive sperm motility, viability and total antioxidant capacity were significantly higher (p < 0.05) in melatonin group while hypo-osmotic swelling test was significantly (p < 0.05) higher in canthaxanthin group. Total sperm abnormalities and malondialdehyde levels were significantly (p < 0.05) lower in both treatment groups indicating their antioxidant efficacy in protection of spermatozoa from oxidative stress. Results of study indicated that supplementation of these antioxidants to ram semen could be used to enhance storage life of liquid semen at 4°C up to 72 h.
Collapse
Affiliation(s)
- Shivendra Kumar Bhalothia
- College of Veterinary & Animal Sciences, Rajasthan University of Veterinary & Animal Science (RAJUVAS), Bikaner, India
| | - Jitendra Singh Mehta
- Department of Veterinary Gynaecology & Obstetrics, College of Veterinary & Animal Sciences, Rajasthan University of Veterinary & Animal Science (RAJUVAS), Bikaner, India
| | - Tapendra Kumar
- College of Veterinary & Animal Sciences, Rajasthan University of Veterinary & Animal Science (RAJUVAS), Bikaner, India
| | - Chandan Prakash
- Indian Council of Agricultural Research-Central Sheep & Wool Research Institute, Bikaner, India
| | - Thirumala Rao Talluri
- Indian Council of Agricultural Research-National Research Centre on Equine, Bikaner, India
| | - Rahul Singh Pal
- Department of Animal Nutrition, Rajasthan University of Veterinary & Animal Science (RAJUVAS), Bikaner, India
| | - Ashok Kumar
- Indian Council of Agricultural Research-Central Sheep & Wool Research Institute, Bikaner, India
| |
Collapse
|
15
|
Esen E, Osman B, Demir MN. Molecularly imprinted solid-phase extractıon sorbent for selective determınatıon of melatonin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Kushwaha R, Nishad DK, Bhatnagar A, Khar RK. Melatonin-Caffeine Combination Modulates Gamma Radiation-induced Sperm Malformations in C57BL/6 Male Mice at Sublethal Dose of Gamma Radiation. J Pharm Bioallied Sci 2021; 13:268-275. [PMID: 34349489 PMCID: PMC8291117 DOI: 10.4103/jpbs.jpbs_303_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/06/2020] [Accepted: 08/31/2020] [Indexed: 11/21/2022] Open
Abstract
Aims: The aim of this study was to assess the protective effect of the melatonin–caffeine combination against γ radiation-induced alterations in the morphological characteristics of sperms. Settings and Design: C57BL/6 male mice (n = 30) were randomly divided into five groups: control, radiation (2 Gy), melatonin (100 mg/kg body wt.) + radiation (2 Gy), caffeine (30 mg/kg body wt.) + radiation (2 Gy), melatonin–caffeine (100–30 mg/kg body wt.) + radiation (2 Gy). Materials and Methods: All the mice were sacrificed 24 h postirradiation, and cauda epididymis was collected. In this study, sperm concentration along with any abnormality in their morphology (amorphous heads, pinheads, hookless, coiled tails, midpiece defect, and tail-less) was observed in the control and treatment group of animals. Results: Radiation exposure (2 Gy) considerably decreases the sperm count when compared with the control group. However, pretreatment with melatonin and melatonin–caffeine combination before gamma irradiation increased the sperm count (P < 0.05), but with caffeine alone could not produce a significant difference. The higher rate of abnormal sperms was observed in the γ-irradiated mice when compared with the control group (P < 0.05). Besides, the numbers of sperm that are hookless and coiled tails were significantly increased after irradiation. Melatonin significantly reduced the number of sperm with amorphous heads and coiled tails. Melatonin–caffeine combination further reduced sperm malformations when compared with the melatonin + 2 Gy radiation and caffeine + 2 Gy radiation group. Conclusions: This study suggests that caffeine exerts a protective effect when given in combination with melatonin against gamma irradiation in sperms of C57BL/6 mice and could be a potent combination for the development of radioprotector.
Collapse
Affiliation(s)
- Ritu Kushwaha
- Institute of Nuclear Medicine & Allied Sciences (INMAS), Delhi, India
| | - Dhruv K Nishad
- Institute of Nuclear Medicine & Allied Sciences (INMAS), Delhi, India
| | - Aseem Bhatnagar
- Institute of Nuclear Medicine & Allied Sciences (INMAS), Delhi, India
| | | |
Collapse
|
17
|
Wang Q, Wang Y, Du L, Xu C, Liu Y, Liu Q, Fan S. Quantitative proteomic analysis of the effects of melatonin treatment for mice suffered from small intestinal damage induced by γ-ray radiation. Int J Radiat Biol 2021; 97:1206-1216. [PMID: 34264173 DOI: 10.1080/09553002.2021.1956006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Intestinal damage induced by radiation exposure is a major clinic concern of radiotherapy for patients with abdominal or pelvic tumor. Melatonin (N-acetyl-5-methoxytryptamine) is likely be an ideal radioprotector to protect individuals from radiation exposure. The study aimed to define the role of melatonin in small intestinal damage caused by abdominal irradiation (ABI). MATERIALS AND METHODS 30-day survival rate and pathological histology of the intestines from melatonin-treated mice after 13 Gy ABI exposure was first detected. Next, quantitative proteomics analysis of the small intestines tissue was examined and GO term and KEGG pathways analysis were performed. RESULTS Melatonin treatment before ABI exposure significantly increased 30-day survival rate to 83% and ameliorated damage to the intestinal epithelial cells. Melatonin significantly altered the proteins profile of the small intestines following irradiation. For the irradiated mice treated with melatonin in comparison with the irradiated mice, the enriched GO terms were mainly involved in defense response to other organism (BP, GO: 0098542), response to other organism (BP, GO: 0051707), anion transmembrane transporter activity (MF, GO: 0008509), and secondary active transmembrane transporter activity (MF, GO: 0015291). In the process of antioxidant activity (MF, GO: 0016209), melatonin treatment prior to radiation exhibited high protein levels of Sod3 and Gpx3. The markedly KEGG pathways for melatonin treatment prior to radiation mainly included protein digestion and absorption (ko 04974) and mineral absorption (ko 04978). p53 signaling pathway and DNA repair pathways were enriched in melatonin treated mice. The amount of radiation-induced DNA damage and the cell apoptosis of the small intestines was decreased in the melatonin-treated mice. CONCLUSIONS Melatonin may protect small intestines from radiation damage through increasing DNA repair and decreasing cell apoptosis of the small intestines. Our data provided perspective for the study of melatonin in mitigating ABI-caused intestinal damage.
Collapse
Affiliation(s)
- Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
18
|
Li T, Cao Y, Li B, Dai R. The biological effects of radiation-induced liver damage and its natural protective medicine. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:87-95. [PMID: 34216638 DOI: 10.1016/j.pbiomolbio.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022]
Abstract
The biological damage caused by the environmental factors such as radiation and its control methods are one of the frontiers of life science research that has received widespread attention. Ionizing radiation can directly interact with target molecules (such as DNA, proteins and lipids) or decomposed by radiation from water, leading to changes in oxidative events and biological activities in cells. Liver is a radiation-sensitive organ, and its radiosensitivity is second only to bone marrow, lymph, gastrointestinal tissue, gonads, embryos and kidneys. In addition, as a key organ of mammals, liver performs a series of functions, including the production of bile, the metabolism of nutrients, the elimination of waste, the storage of glycogen, and the synthesis of proteins. Therefore, liver is prone to various pathophysiological changes. In this review, the effects of radiation on liver injury, its pathogenesis, bystander effect and the natural traditional Chinese medicine to protect the radiation induced liver damage are discussed.
Collapse
Affiliation(s)
- Tianmei Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yanlu Cao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bo Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
19
|
Cagin YF, Parlakpinar H, Vardi N, Aksanyar S. Protective effects of apocynin against ionizing radiation-induced hepatotoxicity in rats. Biotech Histochem 2021; 97:228-235. [PMID: 34120545 DOI: 10.1080/10520295.2021.1936641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Radiation hepatotoxicity is thought to be due to free oxygen radicals. We investigated the protective effects of apocynin (APO) against ionizing radiation induced oxidative stress in liver tissue following whole body ionizing radiation. We divided rats into four groups. The control group was injected intraperitoneally (i.p.) with saline for five consecutive days. A second group was injected i.p. with saline for 5 days and after 24 h, a single-dose of radiation (800 cGy) was administered to the whole abdomen. A third group was injected i.p. with 20 mg/kg APO for 5 days. A fourth group was injected i.p. with APO for 5 days and after 24 h, the rats were exposed to radiation. Ionizing radiation induced hepatotoxicity was demonstrated biochemically by significant changes in oxidative and antioxidant parameters. Our findings suggest that APO treatment may be protective against radiation induced hepatic injury by decreasing oxidative stress and increasing antioxidant activity.
Collapse
Affiliation(s)
- Yasir Furkan Cagin
- Department of Gastroenterology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Pharmacology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Nigar Vardi
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Salih Aksanyar
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
20
|
El-Missiry MA, Shabana S, Ghazala SJ, Othman AI, Amer ME. Melatonin exerts a neuroprotective effect against γ-radiation-induced brain injury in the rat through the modulation of neurotransmitters, inflammatory cytokines, oxidative stress, and apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31108-31121. [PMID: 33598836 DOI: 10.1007/s11356-021-12951-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/09/2021] [Indexed: 05/11/2023]
Abstract
The current study aimed to investigate the ameliorative effect of melatonin (MLT) against brain injury in rats undergoing whole-body exposure to γ-radiation. Male Wistar rats were whole-body exposed to 4-Gy γ-radiation from a cesium-137 source. MLT (10 mg/kg) was orally administrated 30 minutes before irradiation and continued once daily for 1 and 7 days after exposure. In the irradiated rats, the plasma levels of glutamate were increased, while the gamma-aminobutyric acid (GABA) levels were decreased, and MLT improved the disturbed glutamate and GABA levels. These effects paralleled an increase in pro-inflammatory cytokines (IL-1b, IL-6, and TNF-a) and C-reactive protein as well as a decrease in IL-10 in the plasma of the irradiated rats. MLT treatment markedly reduced these effects, indicating its anti-inflammatory impact. Immunohistochemical studies demonstrated a remarkable upregulation of caspase-3 and P53 expression, indicating the increased apoptosis in the brain of irradiated rats. MLT significantly downregulated the expression of these parameters compared with that in the irradiated rats, indicating its anti-apoptotic effect. Oxidative stress is developed in the brain as evidenced by increased levels of malondialdehyde; decreased activities of superoxide dismutase, catalase, and glutathione peroxidase; and decreased content of glutathione in the brain. MLT remarkably ameliorated the development of oxidative stress in the brain of the irradiated rats indicating its antioxidant impact. The histopathological results were consistent with the biochemical and immunohistochemical results and showed that MLT remarkably protected the histological structure of brain tissue compared with that in the irradiated rats. In conclusion, MLT showed potential neuroprotective properties by increasing the release of neurotransmitters, antioxidants, and anti-inflammatory factors and reducing pro-inflammatory cytokines and apoptosis in the brain of irradiated rats. MLT can be beneficial in clinical and occupational settings requiring radiation exposure; however, additional studies are required to elucidate its neuroprotective effect in humans.
Collapse
Affiliation(s)
| | - Sameh Shabana
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sara J Ghazala
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Azza I Othman
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Maggie E Amer
- Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
21
|
Radiation dermatitis: the evaluation of a new topical therapy for the treatment and prevention of radiation-induced skin damage and moist desquamation: a multicentre UK case cohort study. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396920001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractIntroduction:Radiotherapy is a mainstay of cancer therapy for a wide variety of anatomical areas. An unfortunate side effect of treatment can be radiation damage to the skin which can be a painful and debilitating problem. Previous experience from the experimental use of Flamigel® in two large-scale clinical studies on affected skin has proven sufficiently positive for the addition of a new product in the Flamigel® family (now commercially available in the UK as Flamigel RT®, Flen Health UK). The aim of this investigation is to evaluate the use of this new product to study how effective it is in the prevention and/or treatment of radiation-induced skin damage.Materials and methods:A survey was conducted among radiotherapy specialist teams in dedicated UK radiotherapy centres between 1 January 2017 and 31 October 2017. This report is of a preliminary evaluation conducted by UK-based specialists on 108 patients undergoing radiotherapy. The scoring system for skin reactions of the ‘Radiation Therapy Oncology Group’ was used.Results:Results show that the use of Flamigel® has the potential to soothe (p = 0·0001), reduce pain (p = 0·0001) and reduce pruritus (p = 0·004). The product met the expectations of the clinicians involved (p < 0·0001) of whom most were happy to continue use or to recommend its use to colleagues (p < 0·0001).Conclusions:Flamigel® is an effective treatment in the management of radiation-induced skin reactions. Erythema was unchanged through the study period (p = 0·42). No adverse reactions were reported after the use of Flamigel from twice to six times a day.
Collapse
|
22
|
Shahid S, Masood K, Khan AW. Prediction of impacts on liver enzymes from the exposure of low-dose medical radiations through artificial intelligence algorithms. Rev Assoc Med Bras (1992) 2021; 67:248-259. [PMID: 34406249 DOI: 10.1590/1806-9282.67.02.20200653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES This study aimed to develop artificial intelligence and machine learning-based models to predict alterations in liver enzymes from the exposure of low annual average effective doses in radiology and nuclear medicine personnel of Institute of Nuclear Medicine and Oncology Hospital. METHODS Ninety workers from the Radiology and Nuclear Medicine departments were included. A high-capacity thermoluminescent was used for annual average effective radiation dose measurements. The liver function tests were conducted for all subjects and controls. Three supervised learning models (multilayer precentron; logistic regression; and random forest) were applied and cross-validated to predict any alteration in liver enzymes. The t-test was applied to see if subjects and controls were significantly different in liver function tests. RESULTS The annual average effective doses were in the range of 0.07-1.15 mSv. Alanine transaminase was 50% high and aspartate transaminase was 20% high in radiation workers. There existed a significant difference (p=0.0008) in Alanine-aminotransferase between radiation-exposed and radiation-unexposed workers. Random forest model achieved 90-96.6% accuracies in Alanine-aminotransferase and Aspartate-aminotransferase predictions. The second best classifier model was the Multilayer perceptron (65.5-80% accuracies). CONCLUSION As there is a need of regular monitoring of hepatic function in radiation-exposed people, our artificial intelligence-based predicting model random forest is proved accurate in prediagnosing alterations in liver enzymes.
Collapse
Affiliation(s)
- Saman Shahid
- National University of Computer and Emerging Sciences, Foundation for the Advancement of Science and Technology, Department of Sciences & Humanities - Lahore, Pakistan
| | - Khalid Masood
- Institute of Nuclear Medicine and Oncology Lahore, Department of Medical Physics - Lahore, Pakistan
| | - Abdul Waheed Khan
- Institute of Nuclear Medicine and Oncology Lahore, Department of Medical Physics - Lahore, Pakistan
| |
Collapse
|
23
|
Aras S, Tanzer İO, Can Ü, Sümer E, Baydili KN. The role of melatonin on acute thyroid damage induced by high dose rate X-ray in head and neck radiotherapy. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Saeed A, Abolaban F. Risk estimation of the low-dose fast neutrons on the molecular structure of the lipids of peripheral blood mononuclear cells. Biochem Biophys Res Commun 2020; 533:1048-1053. [DOI: 10.1016/j.bbrc.2020.09.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022]
|
25
|
El-Benhawy SA, El-Tahan RA, Nakhla SF. Exposure to Radiation During Work Shifts and Working at Night Act as Occupational Stressors Alter Redox and Inflammatory Markers. Arch Med Res 2020; 52:76-83. [PMID: 33039210 DOI: 10.1016/j.arcmed.2020.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 06/29/2020] [Accepted: 10/01/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Studies of breast cancer etiology suggest evidence that night shift working and occupational exposure to ionizing radiation (IR) are defined risk factors for breast cancer development. There are few studies to clarify neuroendocrine and inflammatory status and the possible consequences particularly in occupational exposure. AIM OF THE STUDY Our aim was to associate the redox and inflammatory biomarkers with either nightshift working or occupational radiation exposure, and to compare their levels between the two groups at Alexandria University Hospitals, Alexandria, Egypt. METHODS We included 150 female nurses at Alexandria University Hospitals: 50 nightshift workers, 50 radiation workers, and 50 dayshift workers as a control group (neither work nightly nor radiation workers). In morning serum sample (7 am), we measured the concentrations of serum melatonin, Cortisol, tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) by ELISA; malondialdehyde (MDA) and total antioxidant capacity (TAC) levels colorimetrically, and C-reactive protein (C-RP) levels by turbidimetric method. RESULTS Nightshift workers had significantly lower levels of melatonin and TAC, and higher levels of serum inflammatory markers and cortisol, than day shift control group of workers. Workers occupationally exposed to IR had significantly higher levels of serum melatonin, MDA and inflammatory markers, lower levels of serum cortisol, and lower TAC than day shift workers. CONCLUSION Occupational exposure to IR and working nightly alter circulating redox and inflammatory biomarkers.
Collapse
Affiliation(s)
- Sanaa A El-Benhawy
- Department of Radiation Sciences, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Rasha A El-Tahan
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Sameh F Nakhla
- Department of Radiation Sciences, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
26
|
DiCarlo AL, Perez Horta Z, Rios CI, Satyamitra MM, Taliaferro LP, Cassatt DR. Study logistics that can impact medical countermeasure efficacy testing in mouse models of radiation injury. Int J Radiat Biol 2020; 97:S151-S167. [PMID: 32909878 PMCID: PMC7987915 DOI: 10.1080/09553002.2020.1820599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 10/01/2019] [Indexed: 12/02/2022]
Abstract
PURPOSE To address confounding issues that have been noted in planning and conducting studies to identify biomarkers of radiation injury, develop animal models to simulate these injuries, and test potential medical countermeasures to mitigate/treat damage caused by radiation exposure. METHODS The authors completed an intensive literature search to address several key areas that should be considered before embarking on studies to assess efficacy of medical countermeasure approaches in mouse models of radiation injury. These considerations include: (1) study variables; (2) animal selection criteria; (3) animal husbandry; (4) medical management; and (5) radiation attributes. RESULTS It is important to select mouse strains that are capable of responding to the selected radiation exposure (e.g. genetic predispositions might influence radiation sensitivity and proclivity to certain phenotypes of radiation injury), and that also react in a manner similar to humans. Gender, vendor, age, weight, and even seasonal variations are all important factors to consider. In addition, the housing and husbandry of the animals (i.e. feed, environment, handling, time of day of irradiation and animal restraint), as well as the medical management provided (e.g. use of acidified water, antibiotics, routes of administration of drugs, consideration of animal numbers, and euthanasia criteria) should all be addressed. Finally, the radiation exposure itself should be tightly controlled, by ensuring a full understanding and reporting of the radiation source, dose and dose rate, shielding and geometry of exposure, while also providing accurate dosimetry. It is important to understand how all the above factors contribute to the development of radiation dose response curves for a given animal facility with a well-defined murine model. CONCLUSIONS Many potential confounders that could impact the outcomes of studies to assess efficacy of a medical countermeasure for radiation-induced injuries are addressed, and recommendations are made to assist investigators in carrying out research that is robust, reproducible, and accurate.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Zulmarie Perez Horta
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| |
Collapse
|
27
|
Liu X, Gao Q, Feng Z, Tang Y, Zhao X, Chen D, Feng X. Protective Effects of Spermidine and Melatonin on Deltamethrin-Induced Cardiotoxicity and Neurotoxicity in Zebrafish. Cardiovasc Toxicol 2020; 21:29-41. [PMID: 32651933 DOI: 10.1007/s12012-020-09591-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Increased application of the pyrethroid insecticide deltamethrin has adverse effects on the cardiac system and neurobehavior on the non-target organisms, which has raised the public's attention. Because of spermidine and melatonin considered to have cardioprotective and neuroprotective characteristics, zebrafish were utilized as the model organism to explore the protective effects of spermidine and melatonin against deltamethrin-induced toxicity. We tested the neurobehavior of zebrafish larvae through a rest/wake behavior assay, and evaluated the levels of the expression of Scn5lab, gata4, nkx2.5, hcrt, hcrtr, and aanat2 by qRT-PCR. Besides that cmlc2 was evaluated by whole-mount in situ hybridization. Results have shown that compared with control group, 0.025 mg/L deltamethrin could significantly disturb the cardiac development, downregulating the expression of Scn5lab and transcriptional factors gata4 and nkx2.5, disturbing cardiac looping, resulting in defects in cardiac morphology and function. Moreover, deltamethrin could alter the expression levels of rest/wake genes and cause hyperactivity in zebrafish larvae. Besides, compared with deltamethrin group, the exogenous 0.01 mg/L spermidine and 0.232 mg/L melatonin could significantly rescue the adverse effects of deltamethrin on the cardiac system and neurobehavior in zebrafish. This indicated that spermidine and melatonin have neuroprotective and cardioprotective effects against deltamethrin-induced adverse effects in zebrafish.
Collapse
Affiliation(s)
- Xingyu Liu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Qian Gao
- Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Zeyang Feng
- The Institute of Robotics and Automatic Information Systems, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Yaqiu Tang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Dongyan Chen
- Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Tianjin, 300071, China.
| | - Xizeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
28
|
Qu W, Zhang L, Ao J. Radiotherapy Induces Intestinal Barrier Dysfunction by Inhibiting Autophagy. ACS OMEGA 2020; 5:12955-12963. [PMID: 32548479 PMCID: PMC7288592 DOI: 10.1021/acsomega.0c00706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Radiation enteritis is a common complication of abdominal irradiation (IR) therapy. However, the molecular mechanism of radiation enteritis accompanied by impaired intestinal barrier function is not clear. The aim of this study was to investigate the important role of autophagy in radiation-induced intestinal barrier function impairment. IR increased the abundance of autophagy-related genes in the colonic mucosa of mice. An autophagy activator (rapamycin) inhibited the oxidative stress (reactive oxygen species, reactive nitrogen species, malondialdehyde, and hydrogen peroxide) and inflammatory response (interleukin-1β, -6, -8, and tumor necrosis factor-α) in the colon samples. Antioxidant indices (superoxide dismutase, glutathione peroxidase, catalase, and total antioxidant capacity) in serum and colonic mucosa were significantly increased in the rapamycin group. Rapamycin can improve the activity of mitochondrial respiratory chain complexes I-V in colon mucosa. In addition, rapamycin reduced the gene expression and enzyme activity of caspase in the colonic mucosa. Levels of endotoxin, diamine peroxidase, d-lactic acid, and zonulin in serum and colonic mucosa were significantly reduced in the rapamycin group. Moreover, rapamycin significantly elevated the gene abundance of zonula occludens-1, occludin, claudin-1, and claudin-4. In contrast, completely opposite results were obtained for the autophagy inhibitor 3-methyladenine as compared to those of rapamycin. These results revealed that inhibition of autophagy is an important mechanism of intestinal barrier function damage caused by radiation. Collectively, these findings increase our understanding of the pathogenesis of radiation-induced intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Wei Qu
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University
Medical College, Jiangyin, Jiangsu 214400, People’s Republic of China
| | - Lijin Zhang
- Department
of Urinary Surgery, The Affiliated Jiangyin
Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, People’s Republic of China
| | - Jinfang Ao
- Department of Pharmacy, the Fourth Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi 330003, People’s Republic of China
| |
Collapse
|
29
|
Ganguly D, Chandra Santra R, Mazumdar S, Saha A, Karmakar P, Das S. Radioprotection of thymine and calf thymus DNA by an azo compound: mechanism of action followed by DPPH radical quenching & ROS depletion in WI 38 lung fibroblast cells. Heliyon 2020; 6:e04036. [PMID: 32490245 PMCID: PMC7262411 DOI: 10.1016/j.heliyon.2020.e04036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/26/2020] [Accepted: 05/18/2020] [Indexed: 11/19/2022] Open
Abstract
Purpose To explain the observed radio-protection properties of an azo compound, 2-(2-hydroxyphenylazo)-indole-3∕-acetic acid (HPIA). Materials and methods Mechanism of radioprotection by HPIA was attempted using the stable free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH) using UV-Vis and electron paramagnetic resonance (EPR) spectroscopy. The radical destroying ability of HPIA was studied by depletion of reactive oxygen species (ROS) in WI 38 lung fibroblast cells. Results & Discussion Studies indicate HPIA interacts with radical intermediates formed in solution following irradiation by 60Co γ-rays. As a result, reactive radical intermediates do not cause any damage on chosen substrates like thymine or calf thymus DNA when irradiated in presence of HPIA. The study showed that reactive intermediates not only react with HPIA but that the kinetics of their reaction is definitely faster than their interaction either with thymine or with DNA. Had this not been the case, much more damage would have been observed on chosen substrates following irradiation with 60Co γ-rays, in the presence of HPIA than actually observed in experiments, particularly those that were performed in a relatively high dose. Experiments reveal radiation induced-damage caused to thymine in presence of HPIA was ~ 136 to ~ 132times that caused in its absence under different conditions indicating the radio-protection properties of HPIA. In case of calf thymus DNA, damage in presence of HPIA was much lower than in its absence. A fluorometric microplate assay for depletion of ROS by detecting the oxidation of 2′,7′-dichlorofluorescin-diacetate (DCF-DA) into the highly fluorescent compound 2′,7′ dichlorofluorescein (DCF) indicated HPIA brought about a considerable check on ROS-mediated damage to cells by scavenging them right away. Conclusion The study indicates HPIA may be an antioxidant supplement during radiotherapy.
Collapse
Affiliation(s)
- Durba Ganguly
- Department of Chemistry (Inorganic Section), Jadavpur University, Kolkata 700032, India
| | - Ramesh Chandra Santra
- Department of Chemistry (Inorganic Section), Jadavpur University, Kolkata 700032, India
| | - Swagata Mazumdar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Abhijit Saha
- UGC-DAE CSR, Kolkata Centre, Sector III, LB- 8, Bidhan Nagar, Kolkata 700 098, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Saurabh Das
- Department of Chemistry (Inorganic Section), Jadavpur University, Kolkata 700032, India
- Corresponding author.
| |
Collapse
|
30
|
Eskandari A, Mahmoudzadeh A, Shirazi A, Esmaely F, Carnovale C, Cheki M. Melatonin a Promising Candidate for DNA Double-Stranded Breaks Reduction in Patients Undergoing Abdomen-Pelvis Computed Tomography Examinations. Anticancer Agents Med Chem 2020; 20:859-864. [PMID: 32208125 DOI: 10.2174/1871521409666200324101701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/20/2019] [Accepted: 02/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Cancer incidence is 24% higher in children and young adults exposed to Computed Tomography (CT) scans than those unexposed. Non-repairing of ionizing radiation-induced DNA Double-Strand Breaks (DSBs) can initiate carcinogenesis. In the present study, we aimed to investigate the radioprotective potential of melatonin against DSBs in peripheral blood lymphocytes of patients undergoing abdomen-pelvis CT examinations. METHODS This double-blind, placebo-controlled clinical trial was conducted on thirty patients. These patients were divided into two groups; group one (control) patients who have undergone the CT examination received a single oral dose of placebo, while in group two, patients received a single oral dose of 100mg melatonin. In both the groups, blood samples were collected 5-10min before and 30 minutes after the CT examination. The lymphocytes from these samples were isolated and DSBs were analyzed using γH2AX immunofluorescence microscopy. RESULTS Compared to the control group, the use of melatonin 1h before the CT examination caused a significant reduction in γH2AX-foci, indicating a reduction in DSBs. In addition, no side effect was observed in patients following 100mg melatonin administration. CONCLUSION For the first time, this study has shown that melatonin has protective effects against radiationinduced genotoxicity in peripheral blood lymphocytes of patients undergoing abdomen-pelvis CT examinations. Therefore, melatonin can be considered as a promising candidate for reducing DSBs in patients undergoing abdomen-pelvis CT examinations.
Collapse
Affiliation(s)
- Ali Eskandari
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aziz Mahmoudzadeh
- Department of Biosciences and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences and Health Services, Tehran, Iran
| | - Farid Esmaely
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences and Health Services, Tehran, Iran
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences L. Sacco, Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, Università di Milano, Milan, Italy
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
31
|
Zhao Z, Cheng W, Qu W, Wang K. Arabinoxylan rice bran (MGN-3/Biobran) alleviates radiation-induced intestinal barrier dysfunction of mice in a mitochondrion-dependent manner. Biomed Pharmacother 2020; 124:109855. [PMID: 31986410 DOI: 10.1016/j.biopha.2020.109855] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/30/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
MGN-3 is an arabinoxylan from rice bran that has been shown to be an excellent antioxidant and radioprotector. This study examined the protective effects of MGN-3 on radiation-induced intestinal injury. Mice were treated with MGN-3 prior to irradiation, then continued to receive MGN-3 for 4 weeks thereafter. MGN-3 increased the activity of mitochondrial respiratory chain complexes Ⅰ, Ⅲ, Ⅳ and Ⅴ, the intercellular ATP content, the mitochondria-encoded gene expression and mitochondrial copy numbers in the jejunal and colonic mucosa. MGN-3 reduced the oxidative stress levels and inflammatory response indicators in the serum and jejunal and colonic mucosa. Antioxidant indicators such as superoxide dismutase, glutathione peroxidase, catalase and total antioxidant capacity were significantly increased in the serum and jejunal and colonic mucosa in the MGN-3 group. Moreover, MGN-3 decreased the gene abundances and enzymatic activities of caspase-3, 8, 9 and 10 in the jejunal and colonic mucosa. The endotoxin, diamine peroxidase, d-lactate and zonulin levels were significantly reduced in the serum and jejunal and colonic mucosa in the MGN-3 group. MGN-3 also markedly upregulated the gene abundances of ZO-1, occludin, claudin-1 and mucin 2. MGN-3 effectively attenuated radiation-induced changes in the intestinal epithelial mitochondrial function, oxidative stress, inflammatory response, apoptosis, intestinal permeability and barrier function in mice. These findings add to our understanding of the potential mechanisms by which MGN-3 alleviates radioactive intestinal injury.
Collapse
Affiliation(s)
- Zhenguo Zhao
- Department of General Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, China.
| | - Wei Cheng
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Wei Qu
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, China.
| | - Kai Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Jiangsu Province, China.
| |
Collapse
|
32
|
Abdelmageed Marzook E, Abdel-Aziz A, Abd El-Moneim A, Mansour H, Atia K, Salah N. MicroRNA-122 expression in hepatotoxic and γ-irradiated rats pre-treated with naringin and silymarin. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2019.1695392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Shabeeb D, Musa AE, Keshavarz M, Hassanzadeh G, Hadian MR, Nowrouzi A, Shirazi A, Najafi M. Melatonin Ameliorates Radiation-induced Sciatic Nerve Injury. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666190617160434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Radiotherapy is a treatment method for cancer mostly utilized for about
60% of cancer patients. Peripheral neuropathy is one of the severe complications of radiotherapy.
Two stages of neuropathy will occur following irradiation; electrophysiological and biochemical
variations as the first stage, while the second stage involves fibrosis of soft tissues surrounding the
exposed nerve. This novel study aimed to investigate the radioprotective effects of melatonin against
ionizing radiation-induced sciatic nerve damage.
Methods:
60 rats were randomly assigned to four groups; C (Control), M (Melatonin), R (Radiation),
MR (Radiation + Melatonin). Their right legs were exposed to 30 Gy single dose gamma rays. Melatonin
(100 mg/kg) was administered 30 min before irradiation and once daily (5 mg/kg) till the day
of rats’ sacrifice. Their exposed nerve tissues were evaluated for biochemical changes in addition to
Electromyography (EMG) and Nerve Conduction Study (NCS).
Results:
4, 12 and 20 weeks post-irradiation, EMG and NCS examinations in R group showed reduced
Compound Muscle Action Potential (CMAP) representing axonal degeneration when compared
with C and M groups. Prolonged latency and a decrease in Conduction Velocity (CV) gave an
indication of demyelinating neuropathy at 12 and 20 weeks. EMG and NCS results of R group
showed partial nerve lesion. Biochemical assessments showed that irradiation of sciatic nerve led to
increased MDA level, as well as decreased CAT and SOD activities. However, in all cases, treatment
with melatonin can reverse these effects.
Conclusion:
We conclude that melatonin can improve electrophysiological, oxidative stress and
antioxidant defense features of irradiated rats’ sciatic nerves. We would also recommend the use of
melatonin in an optimal and safe dose. It should be administered over a long period of time for effective
protection of the peripheral nerve tissues, as well as improving the therapeutic ratio of radiotherapy.
Collapse
Affiliation(s)
- Dheyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Mansoor Keshavarz
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammed Reza Hadian
- Brain and Spinal Cord Injury, Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Nowrouzi
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
34
|
Cheikh M, Makhlouf K, Ghattassi K, Graja A, Ferchichi S, Kallel C, Houda M, Souissi N, Hammouda O. Melatonin ingestion after exhaustive late-evening exercise attenuate muscle damage, oxidative stress, and inflammation during intense short term effort in the following day in teenage athletes. Chronobiol Int 2019; 37:236-247. [DOI: 10.1080/07420528.2019.1692348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Mohamed Cheikh
- High institute of sport and physical education Ksar-Said, Manouba university, Manouba, Tunisia
- High institute of sport and physical education, Sfax university, Sfax, Tunisia
| | - Khouloud Makhlouf
- High institute of sport and physical education, Sfax university, Sfax, Tunisia
| | - Kais Ghattassi
- High institute of sport and physical education, Sfax university, Sfax, Tunisia
| | - Ahmed Graja
- High institute of sport and physical education, Sfax university, Sfax, Tunisia
| | | | - Choumous Kallel
- Hematology Laboratory, Hospital Habib Bourguiba, Sfax, Tunisia
| | - Mallek Houda
- Hematology Laboratory, Hospital Slim Hadhri, Kerkennah, Sfax, Tunisia
| | - Nizar Souissi
- High institute of sport and physical education Ksar-Said, Manouba university, Manouba, Tunisia
- Research Unit Physical Activity, Sport and Health, UR18JS01, National Observatory of Sport, Tunis, Tunisia
| | - Omar Hammouda
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity and Health (LINP2-AAPS), UPL, University Paris Nanterre, UFR STAPS, Nanterre, France
- Research Unit, Molecular Bases of Human Pathology, Faculty of Medicine, Sfax University, Sfax, Tunisia
| |
Collapse
|
35
|
S N, M E, S M, A B, Gh A, R AF. Radioprotective Effect of Arbutin in Megavoltage Therapeutic X-irradiated Mice using Liver Enzymes Assessment. J Biomed Phys Eng 2019; 9:533-540. [PMID: 31750267 PMCID: PMC6820023 DOI: 10.31661/jbpe.v0i0.1199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/07/2019] [Indexed: 02/07/2023]
Abstract
Background Medical use of ionizing radiation has direct/indirect undesirable effects on normal tissues. In this study, the radioprotective effect of arbutin in megavoltage therapeutic x-irradiated mice was investigated using serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), and asparate amniotransferase (AST) activity measurements. Material and Methods In this analytical and experimental lab study, sixty mice (12 identical groups) were irradiated with 6 MV x-ray beam (2 and 4 Gy in one fraction). Arbutin concentrations were chosen 50, 100, and 200 mg/kg and injected intraperitoneal 2 hours before irradiation. Samples of peripheral blood cells were collected and serum was separated on the 1, 3, and 7 days post-x-radiation; in addition, the level of ALP, ALT, and AST were measured. Data were analyzed using one-way ANOVA, and Tukey HSD test. Results X-radiation (2 and 4 Gy) increased the ALT and AST activity levels on the 1, 3, and 7 days post- irradiation, but the ALP level significantly increased on the 1 and 7 days and decreased on the third day compared to the control group (P< 0.001). ALP, ALT and AST activity levels in "2 and 4 Gy x irradiation + distilled water" groups were significantly higher than "2 and 4 Gy irradiation + 50, 100, and 200 mg/kg arbutin" groups on the first and seventh day post-irradiation (P< 0.001). Conclusion Arbutin is a strong radioprotector for reducing the radiation effect on the whole-body tissues by measuring ALP, ALT and AST enzyme activity levels. Furthermore, the concentration of 50 mg/kg arbutin showed higher radioprotective effect.
Collapse
Affiliation(s)
- Nadi S
- MSc, Department of Medical Physics Radiobiology and Radiation Protection, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Elahi M
- PhD, Medical Physics Department, Faculty of medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Moradi S
- MSc, Medical Physics Department, Faculty of medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Banaei A
- PhD, Medical Physics Department, Faculty of medical Sciences, Tarbiat Modares University, Tehran, Iran
- PhD, Department of Radiology, Faculty of paramedical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Ataei Gh
- MSc, Department of Radiology Technology, Faculty of Paramedical Sciences, Babol University of Medical Science, Babol, Iran
| | - Abedi-Firouzjah R
- MSc, Department of Radiation Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
36
|
Histopathological and Functional Evaluation of Radiation-Induced Sciatic Nerve Damage: Melatonin as Radioprotector. ACTA ACUST UNITED AC 2019; 55:medicina55080502. [PMID: 31430996 PMCID: PMC6722514 DOI: 10.3390/medicina55080502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
Background and Objectives: Radiotherapy uses ionizing radiation for cancer treatment. One of the side effects of radiotherapy is peripheral neuropathy. After irradiation, the first stage of neuropathy involves electrophysiological, biochemical and histopathological variations, while the fibrosis of soft tissues surrounding the exposed nerve occurs in the second stage. The present study aimed to examine the radioprotective effects of melatonin against ionizing radiation-induced sciatic nerve damage. Materials and Methods: Sixty male Wistar rats were assigned to four groups: C (Control + Vehicle), M (Melatonin), R (Radiation + Vehicle), MR (Radiation + Melatonin). Their right legs were irradiated with a 30 Gy single dose of gamma rays. Then, 100 mg/kg melatonin was administered to the animals 30 min before irradiation once daily (5 mg/kg) until the day of rats' sacrifice. Their exposed nerve tissues were assessed using the sciatic functional index (SFI) and histological evaluation. Results: Four, 12 and 20 weeks post irradiation, the SFI results showed that irradiation led to partial loss of motor nerve function after 12 and 20 weeks. Histological evaluation showed the various stages of axonal degeneration and demyelination compared to the C and M groups. Scar-like tissues were detected around the irradiated nerves in the R group at 20 weeks, but were absent in the MR group. The SFI and histological results of the R group showed partial nerve lesion. However, in all cases, treatment with melatonin prevented these effects. Conclusions: Results showed that melatonin has the potential to improve functional and morphological features of exposed sciatic nerves. This could possibly improve the therapeutic window of radiotherapy.
Collapse
|
37
|
Appiah MO, He B, Lu W, Wang J. Antioxidative effect of melatonin on cryopreserved chicken semen. Cryobiology 2019; 89:90-95. [DOI: 10.1016/j.cryobiol.2019.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/24/2019] [Accepted: 05/01/2019] [Indexed: 02/05/2023]
|
38
|
|
39
|
Ramadan TA, Kumar D, Ghuman SS, Singh I. Melatonin-improved buffalo semen quality during nonbreeding season under tropical condition. Domest Anim Endocrinol 2019; 68:119-125. [PMID: 31082783 DOI: 10.1016/j.domaniend.2019.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/17/2019] [Accepted: 01/26/2019] [Indexed: 11/28/2022]
Abstract
The role of melatonin in protecting spermatozoa from different kinds of injury has been widely reported. The present study aimed to test whether treatment of buffalo bulls with melatonin could ameliorate sperm function during nonbreeding season under tropical condition. Ten Murrah buffalo bulls were randomly allocated into control and treated groups of equal numbers of bulls to study the effect of melatonin on semen characteristics, seminal plasma constituents, blood plasma hormonal levels, and antioxidant enzyme activities during nonbreeding season. Treated bulls were implanted with melatonin (18 mg/50 kg of body weight) for a period of 2 mo. During this period, semen was collected twice a week, and blood samples were collected weekly to determine plasma concentration of melatonin and LH and activities of antioxidant enzymes. During nonbreeding season, melatonin implantation improved semen characteristics by increasing (P < 0.05) percentages of sperm with forward motility, viability, total motile sperm, and rapid motility, average path, curvilinear, and straight-line velocity and amplitude of lateral head displacement and decreasing (P < 0.05) percentages of abnormal sperm and linearity index as compared to the control group. Furthermore, melatonin implantation increased (P < 0.05) seminal plasma concentrations of total protein, albumin, and cholesterol and decreased (P < 0.05) seminal plasma aspartate aminotransferase activity. In addition, melatonin-implanted bulls exhibited an increase (P < 0.05) in red blood cells superoxide dismutase activity compared to untreated bulls. In conclusion, melatonin implantation successfully improved semen quality of buffalo bulls during nonbreeding season under tropical condition.
Collapse
Affiliation(s)
- T A Ramadan
- Animal Production Research Institute, Agricultural Research Center, 4 Nadi El-Said, 12311 Dokki, Giza, Egypt.
| | - D Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, 125001 Hisar, Haryana, India
| | - S S Ghuman
- Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004 Punjab, India
| | - I Singh
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, 125001 Hisar, Haryana, India
| |
Collapse
|
40
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Potes Y, Shabeeb D, Musa AE. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sci 2019; 228:228-241. [DOI: 10.1016/j.lfs.2019.05.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
|
41
|
Amini P, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Cheki M, Farhood B, Yahyapour R, Shirazi A, Goushbolagh NA, Najafi M. Mechanisms for Radioprotection by Melatonin; Can it be Used as a Radiation Countermeasure? Curr Mol Pharmacol 2019; 12:2-11. [PMID: 30073934 DOI: 10.2174/1874467211666180802164449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/06/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Melatonin is a natural body product that has shown potent antioxidant property against various toxic agents. For more than two decades, the abilities of melatonin as a potent radioprotector against toxic effects of ionizing radiation (IR) have been proved. However, in the recent years, several studies have been conducted to illustrate how melatonin protects normal cells against IR. Studies proposed that melatonin is able to directly neutralize free radicals produced by IR, leading to the production of some low toxic products. DISCUSSION Moreover, melatonin affects several signaling pathways, such as inflammatory responses, antioxidant defense, DNA repair response enzymes, pro-oxidant enzymes etc. Animal studies have confirmed that melatonin is able to alleviate radiation-induced cell death via inhibiting pro-apoptosis and upregulation of anti-apoptosis genes. These properties are very interesting for clinical radiotherapy applications, as well as mitigation of radiation injury in a possible radiation disaster. An interesting property of melatonin is mitochondrial ROS targeting that has been proposed as a strategy for mitigating effects in radiosensitive organs, such as bone marrow, gastrointestinal system and lungs. However, there is a need to prove the mitigatory effects of melatonin in experimental studies. CONCLUSION In this review, we aim to clarify the molecular mechanisms of radioprotective effects of melatonin, as well as possible applications as a radiation countermeasure in accidental exposure or nuclear/radiological disasters.
Collapse
Affiliation(s)
- Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanifeh Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Rasoul Yahyapour
- Department of Medical School, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Alireza Shirazi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Nouraddin Abdi Goushbolagh
- Department of medical Physics, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
42
|
Assessment of the radioprotective effect of propolis in breast cancer patients undergoing radiotherapy. New perspective for an old honey bee product. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
El-Benhawy SA, Sadek NA, Behery AK, Issa NM, Ali OK. Chromosomal aberrations and oxidative DNA adduct 8-hydroxy-2-deoxyguanosine as biomarkers of radiotoxicity in radiation workers. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2015.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sanaa A. El-Benhawy
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nadia A. Sadek
- Hematology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amal K. Behery
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Noha M. Issa
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Osama K. Ali
- Department of Radiology and Medical Imaging, University of 6 October, Cairo, Egypt
| |
Collapse
|
44
|
Radiation-induced oxidative injury of the ileum and colon is alleviated by glucagon-like peptide-1 and -2. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2015.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
An insight into the scientific background and future perspectives for the potential uses of melatonin. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2015.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Shabeeb D, Najafi M, Musa AE, Keshavarz M, Shirazi A, Hassanzadeh G, Hadian MR, Samandari H. Biochemical and Histopathological Evaluation of the Radioprotective Effects of Melatonin Against Gamma Ray-Induced Skin Damage. Curr Radiopharm 2019; 12:72-81. [PMID: 30465519 DOI: 10.2174/1874471012666181120163250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Radiotherapy is one of the treatment methods for cancers using ionizing radiations. About 70% of cancer patients undergo radiotherapy. Radiation effect on the skin is one of the main complications of radiotherapy and dose limiting factor. To ameliorate this complication, we used melatonin as a radioprotective agent due to its antioxidant and anti-inflammatory effects, free radical scavenging, improving overall survival after irradiation as well as minimizing the degree of DNA damage and frequency of chromosomal abrasions. METHODS Sixty male Wistar rats were randomly assigned to 4 groups: control (C), melatonin (M), radiation (R) and melatonin + radiation (MR). A single dose of 30 Gy gamma radiation was exposed to the right hind legs of the rats while 40 mg/ml of melatonin was administered 30 minutes before irradiation and 2 mg/ml once daily in the afternoon for one month till the date of rat's sacrifice. Five rats from each group were sacrificed 4, 12 and 20 weeks after irradiation. Afterwards, their exposed skin tissues were examined histologically and biochemically. RESULTS In biochemical analysis, we found that malondialdehyde (MDA) levels significantly increased in R group and decreased significantly in M and MR groups after 4, 12, and 20 weeks, whereas catalase (CAT) and superoxide dismutase (SOD) activities decreased in the R group and increased in M and MR groups during the same time periods compared with the C group (p<0.05). Histopathological examination found there were statistically significant differences between R group compared with the C and M groups for the three different time periods (p<0.005, p<0.004 and p<0.004) respectively, while R group differed significantly with MR group (p<0.013). No significant differences were observed between C and M compared with MR group (p>0.05) at 4 and 20 weeks except for inflammation and hair follicle atrophy, while there were significant effects at 12 weeks (p<0.05). CONCLUSION Melatonin can be successfully used for the prevention and treatment of radiation-induced skin injury. We recommend the use of melatonin in optimal and safe doses. These doses should be administered over a long period of time for effective radioprotection and amelioration of skin damages as well as improving the therapeutic ratio of radiotherapy.
Collapse
Affiliation(s)
- Dheyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Science, International Campus, Tehran, Iran
- Department of Physiology, College of Medicine, University of Misan, Iraq
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Science, International Campus, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoor Keshavarz
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Science, International Campus, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammed Reza Hadian
- Brain and Spinal Cord Injury, Research Center, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Hedayat Samandari
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Hanedan Uslu G, Canyilmaz E, Serdar L, Ersöz Ş. Protective effects of genistein and melatonin on mouse liver injury induced by whole-body ionising radiation. Mol Clin Oncol 2018; 10:261-266. [PMID: 30680205 DOI: 10.3892/mco.2018.1790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/04/2018] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to investigate the effectiveness of melatonin and genistein in preventing radiation therapy (RT)-induced liver injury in mice. A total of 70 Swiss Albino male mice were divided into 7 equal groups (n=10/group) as follows: Melatonin (M group, G3), genistein (G group, G4), polyethylene glycol-400 (P group, G5), RT only (RT group, G2) and sham irradiation (C group, G1). RT plus genistein (RT+G group, G7) and RT plus melatonin (RT+M group, G6) were the co-treatment groups. Firstly, hepatic tissue damage was induced in mice via exposure to a single dose of 6-Gy irradiation. RT was performed with a cobalt-60 teletherapy machine (80 cm fixed source-to-surface distance, 2.5-cm depth). Melatonin was processed (100 mg/kg, intraperitoneal) 30 min before and genistein was administered (200 mg/kg, SC) one day prior to the single dose of irradiation. Six months following irradiation, all mice were sacrificed. The degree of liver injury was measured using histological liver sections. Liver injury was significantly worse in the RT group than in the control group (C; RT vs. C; P<0.05); however, liver injury decreased following co-treatment with melatonin or genistein vs. RT alone (RT+M and RT+G vs. RT; P<0.05). No difference was observed between the RT+M and RT+G groups (P>0.05). The present study revealed that melatonin and genistein administration prior to irradiation protects mice against liver injury, which may have therapeutic implications for RT-induced injuries.
Collapse
Affiliation(s)
- Gonca Hanedan Uslu
- Department of Radiation Oncology, Health Sciences University Kanuni Training and Research Hospital, Trabzon 61250, Turkey
| | - Emine Canyilmaz
- Department of Radiation Oncology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Lasif Serdar
- Department of Radiation Oncology, Health Sciences University Kanuni Training and Research Hospital, Trabzon 61250, Turkey
| | - Şafak Ersöz
- Department of Medical Pathology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| |
Collapse
|
48
|
Affiliation(s)
| | | | - Angela Polanco
- National Cancer Research Institute Childhood Cancer and Leukaemia Clinical Studies Group, London, UK
| | - Bob Phillips
- Centre for Reviews and Dissemination, University of York, York, UK
| |
Collapse
|
49
|
The protective effects of melatonin on blood cell counts of rectal cancer patients following radio-chemotherapy: a randomized controlled trial. Clin Transl Oncol 2018; 21:745-752. [PMID: 30421178 DOI: 10.1007/s12094-018-1977-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE We aimed to examine the radioprotective effects of melatonin on the blood cell counts of patients with rectum cancer undergoing radiotherapy. MATERIALS AND METHODS This double-blind placebo-controlled study was conducted on 60 rectal cancer patients who were referred to Rajaii Hospital of Babolsar, Iran. An equal number of patients were randomly assigned to the control group which received placebo and study group which received 20 mg melatonin a day as an intervention. The melatonin was administered 5 days a week for 28 days. Blood samples were taken before melatonin received on day 1 and also day 28; then, to measure the changes in blood cell counts representing our primary outcomes, the samples were analyzed by Sysmex K810i auto-analyzer. RESULTS Our results showed that the platelet, white blood cells, lymphocyte, and neutrophil population reduction induced by radiotherapy were slighter or even insignificant in melatonin recipients compared to control. However, the difference between red blood cells in both groups was not significant. CONCLUSION Our results are indicating that melatonin could prevent or minimize the unfavorable effects of radiotherapy on blood cell count reductions by attenuating the adverse influence of radiation, probably through stimulation of cellular antioxidant potential as previously reported in animal models. IRANIAN REGISTRY OF CLINICAL TRIALS (IRCT) Registry No. IRCT2016021626586N1.
Collapse
|
50
|
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Najafi M. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin Transl Oncol 2018; 21:268-279. [PMID: 30136132 DOI: 10.1007/s12094-018-1934-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
It is estimated that more than half of cancer patients undergo radiotherapy during the course of their treatment. Despite its beneficial therapeutic effects on tumor cells, exposure to high doses of ionizing radiation (IR) is associated with several side effects. Although improvements in radiotherapy techniques and instruments could reduce these side effects, there are still important concerns for cancer patients. For several years, scientists have been trying to modulate tumor and normal tissue responses to IR, leading to an increase in therapeutic ratio. So far, several types of radioprotectors and radiosensitizers have been investigated in experimental studies. However, high toxicity of chemical sensitizers or possible tumor protection by radioprotectors creates a doubt for their clinical applications. On the other hand, the protective effects of these radioprotectors or sensitizer effects of radiosensitizers may limit some type of cancers. Hence, the development of some radioprotectors without any protective effect on tumor cells or low toxic radiosensitizers can help improve therapeutic ratio with less side effects. Melatonin as a natural body hormone is a potent antioxidant and anti-inflammatory agent that shows some anti-cancer properties. It is able to neutralize different types of free radicals produced by IR or pro-oxidant enzymes which are activated following exposure to IR and plays a key role in the protection of normal tissues. In addition, melatonin has shown the ability to inhibit long-term changes in inflammatory responses at different levels, thereby ameliorating late side effects of radiotherapy. Fortunately, in contrast to classic antioxidants, some in vitro studies have revealed that melatonin has a potent anti-tumor activity when used alongside irradiation. However, the mechanisms of its radiosensitive effect remain to be elucidated. Studies suggested that the activation of pro-apoptosis gene, such as p53, changes in the metabolism of tumor cells, suppression of DNA repair responses as well as changes in biosynthesis of estrogen in breast cancer cells are involved in this process. In this review, we describe the molecular mechanisms for radioprotection and radiosensitizer effects of melatonin. Furthermore, some other proposed mechanisms that may be involved are presented.
Collapse
Affiliation(s)
- B Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - N H Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - K Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - N Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - E Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M S Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Infertility Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - H Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - E Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - D Shabeeb
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Amarah, Iraq
| | - A E Musa
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - M Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|