1
|
Morrell EL, Navarro MA, Garcia JP, Beingesser J, Uzal FA. Intestinal pathology in goats challenged with Clostridium perfringens type D strain CN1020 wild-type and its genetically modified derivatives. Vet Pathol 2024:3009858241273122. [PMID: 39291644 DOI: 10.1177/03009858241273122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Clostridium perfringens type D is the causative agent of enterotoxemia in sheep, goats, and cattle. Although in sheep and cattle, the disease is mainly characterized by neurological clinical signs and lesions, goats with type D enterotoxemia frequently have alterations of the alimentary system. Epsilon toxin (ETX) is the main virulence factor of C. perfringens type D, although the role of ETX in intestinal lesions in goats with type D enterotoxemia has not been fully characterized. We evaluated the contribution of ETX to C. perfringens type D enteric pathogenicity using an intraduodenal challenge model in young goats, with the virulent C. perfringens type D wild-type strain CN1020; its isogenic etx null mutant; an etx-complemented strain; and sterile, non-toxic culture medium. The intestinal tract of each animal was evaluated grossly, microscopically, and immunohistochemically for activated caspase-3. Both ETX-producing strains induced extensive enterocolitis characterized by severe mucosal necrosis, apoptosis, and diffuse suppurative infiltrates. No significant gross or microscopic lesions were observed in goats inoculated with the non-ETX-containing inocula. These results confirm that ETX is essential for the production of intestinal lesions in goats with type D disease. Also, our results suggest that the intestinal pathology of type D enterotoxemia in goats is, at least in part, associated with apoptosis.
Collapse
|
2
|
Abdulqadir R, Al-Sadi R, Haque M, Gupta Y, Rawat M, Ma TY. Bifidobacterium bifidum Strain BB1 Inhibits Tumor Necrosis Factor-α-Induced Increase in Intestinal Epithelial Tight Junction Permeability via Toll-Like Receptor-2/Toll-Like Receptor-6 Receptor Complex-Dependent Stimulation of Peroxisome Proliferator-Activated Receptor γ and Suppression of NF-κB p65. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1664-1683. [PMID: 38885924 PMCID: PMC11372998 DOI: 10.1016/j.ajpath.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Bifidobacterium bifidum strain BB1 causes a strain-specific enhancement in intestinal epithelial tight junction (TJ) barrier. Tumor necrosis factor (TNF)-α induces an increase in intestinal epithelial TJ permeability and promotes intestinal inflammation. The major purpose of this study was to delineate the protective effect of BB1 against the TNF-α-induced increase in intestinal TJ permeability and to unravel the intracellular mechanisms involved. TNF-α produces an increase in intestinal epithelial TJ permeability in Caco-2 monolayers and in mice. Herein, the addition of BB1 inhibited the TNF-α increase in Caco-2 intestinal TJ permeability and mouse intestinal permeability in a strain-specific manner. BB1 inhibited the TNF-α-induced increase in intestinal TJ permeability by interfering with TNF-α-induced enterocyte NF-κB p50/p65 and myosin light chain kinase (MLCK) gene activation. The BB1 protective effect against the TNF-α-induced increase in intestinal permeability was mediated by toll-like receptor-2/toll-like receptor-6 heterodimer complex activation of peroxisome proliferator-activated receptor γ (PPAR-γ) and PPAR-γ pathway inhibition of TNF-α-induced inhibitory kappa B kinase α (IKK-α) activation, which, in turn, resulted in a step-wise inhibition of NF-κB p50/p65, MLCK gene, MLCK kinase activity, and MLCK-induced opening of the TJ barrier. In conclusion, these studies unraveled novel intracellular mechanisms of BB1 protection against the TNF-α-induced increase in intestinal TJ permeability. The current data show that BB1 protects against the TNF-α-induced increase in intestinal epithelial TJ permeability via a PPAR-γ-dependent inhibition of NF-κB p50/p65 and MLCK gene activation.
Collapse
Affiliation(s)
- Raz Abdulqadir
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania.
| | - Rana Al-Sadi
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Mohammad Haque
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Yash Gupta
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Manmeet Rawat
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Thomas Y Ma
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania.
| |
Collapse
|
3
|
Arroyo Almenas F, Törő G, Szaniszlo P, Maskey M, Thanki KK, Koltun WA, Yochum GS, Pinchuk IV, Chao C, Hellmich MR, Módis K. Cystathionine Gamma-Lyase Regulates TNF-α-Mediated Injury Response in Human Colonic Epithelial Cells and Colonoids. Antioxidants (Basel) 2024; 13:1067. [PMID: 39334726 PMCID: PMC11428476 DOI: 10.3390/antiox13091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Cystathionine gamma-lyase (CSE) and TNF-α are now recognized as key regulators of intestinal homeostasis, inflammation, and wound healing. In colonic epithelial cells, both molecules have been shown to influence a variety of biological processes, but the specific interactions between intracellular signaling pathways regulated by CSE and TNF-α are poorly understood. In the present study, we investigated these interactions in normal colonocytes and an organoid model of the healthy human colon using CSE-specific pharmacological inhibitors and siRNA-mediated transient gene silencing in analytical and functional assays in vitro. We demonstrated that CSE and TNF-α mutually regulated each other's functions in colonic epithelial cells. TNF-α treatment stimulated CSE activity within minutes and upregulated CSE expression after 24 h, increasing endogenous CSE-derived H2S production. In turn, CSE activity promoted TNF-α-induced NF-ĸB and ERK1/2 activation but did not affect the p38 MAPK signaling pathway. Inhibition of CSE activity completely abolished the TNF-α-induced increase in transepithelial permeability and wound healing. Our data suggest that CSE activity may be essential for effective TNF-α-mediated intestinal injury response. Furthermore, CSE regulation of TNF-α-controlled intracellular signaling pathways could provide new therapeutic targets in diseases of the colon associated with impaired epithelial wound healing.
Collapse
Affiliation(s)
- Francisco Arroyo Almenas
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Gábor Törő
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Peter Szaniszlo
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Manjit Maskey
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ketan K Thanki
- Division of Colorectal Surgery, Valley Health System, Las Vegas, NV 89119, USA
| | - Walter A Koltun
- Department of Surgery, Division of Colon & Rectal Surgery, The Pennsylvania State University, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Gregory S Yochum
- Department of Surgery, Division of Colon & Rectal Surgery, The Pennsylvania State University, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Department of Biochemistry & Molecular Biology & Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Irina V Pinchuk
- Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 16802, USA
| | - Celia Chao
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Mark R Hellmich
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Katalin Módis
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
4
|
Haque M, Kaminsky L, Abdulqadir R, Engers J, Kovtunov E, Rawat M, Al-Sadi R, Ma TY. Lactobacillus acidophilus inhibits the TNF-α-induced increase in intestinal epithelial tight junction permeability via a TLR-2 and PI3K-dependent inhibition of NF-κB activation. Front Immunol 2024; 15:1348010. [PMID: 39081324 PMCID: PMC11286488 DOI: 10.3389/fimmu.2024.1348010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Background Defective intestinal epithelial tight junction (TJ), characterized by an increase in intestinal TJ permeability, has been shown to play a critical role in the pathogenesis of inflammatory bowel disease (IBD). Tumor necrosis factor-α (TNF-α) is a key pro-inflammatory cytokine involved in the immunopathology of IBD and has been shown to cause an increase in intestinal epithelial TJ permeability. Although TNF-α antibodies and other biologics have been advanced for use in IBD treatment, these therapies are associated with severe side effects and have limited efficacy, and there is an urgent need for therapies with benign profiles and high therapeutic efficacy. Probiotic bacteria have beneficial effects and are generally safe and represent an important class of potential therapeutic agents in IBD. Lactobacillus acidophilus (LA) is one of the most used probiotics for wide-ranging health benefits, including in gastrointestinal, metabolic, and inflammatory disorders. A specific strain of LA, LA1, was recently demonstrated to have protective and therapeutic effects on the intestinal epithelial TJ barrier. However, the mechanisms of actions of LA1 remain largely unknown. Methods The primary aim of this study was to investigate microbial-epithelial interactions and novel signaling pathways that regulate the effect of LA1 on TNF-α-induced increase in intestinal epithelial TJ permeability, using cell culture and animal model systems. Results and Conclusion Pre-treatment of filter-grown Caco-2 monolayers with LA1 prevented the TNF-α-induced increase in intestinal epithelial TJ permeability by inhibiting TNF-α-induced activation of NF-κB p50/p65 and myosin light chain kinase (MLCK) gene and kinase activity in a TLR-2-dependent manner. LA1 produced a TLR-2- and MyD88-dependent activation of NF-κB p50/p65 in immune cells; however, LA1, in intestinal cells, inhibited the NF-κB p50/p65 activation in a TLR-2-dependent but MyD88-independent manner. In addition, LA1 inhibition of NF-κB p50/p65 and MLCK gene was mediated by TLR-2 pathway activation of phosphatidylinositol 3-kinase (PI3K) and IKK-α phosphorylation. Our results demonstrated novel intracellular signaling pathways by which LA1/TLR-2 suppresses the TNF-α pathway activation of NF-κB p50/p65 in intestinal epithelial cells and protects against the TNF-α-induced increase in intestinal epithelial TJ permeability.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Lauren Kaminsky
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Raz Abdulqadir
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Jessica Engers
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Evgeny Kovtunov
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Manmeet Rawat
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Rana Al-Sadi
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Thomas Y. Ma
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
5
|
Li W, Chen D, Zhu Y, Ye Q, Hua Y, Jiang P, Xiang Y, Xu Y, Pan Y, Yang H, Ma Y, Xu H, Zhao C, Zheng C, Chen C, Zhu Y, Xu G. Alleviating Pyroptosis of Intestinal Epithelial Cells to Restore Mucosal Integrity in Ulcerative Colitis by Targeting Delivery of 4-Octyl-Itaconate. ACS NANO 2024; 18:16658-16673. [PMID: 38907726 DOI: 10.1021/acsnano.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Current therapies primarily targeting inflammation often fail to address the root relationship between intestinal mucosal integrity and the resulting dysregulated cell death and ensuing inflammation in ulcerative colitis (UC). First, UC tissues from human and mice models in this article both emphasize the crucial role of Gasdermin E (GSDME)-mediated pyroptosis in intestinal epithelial cells (IECs) as it contributes to colitis by releasing proinflammatory cytokines, thereby compromising the intestinal barrier. Then, 4-octyl-itaconate (4-OI), exhibiting potential for anti-inflammatory activity in inhibiting pyroptosis, was encapsulated by butyrate-modified liposome (4-OI/BLipo) to target delivery for IECs. In brief, 4-OI/BLipo exhibited preferential accumulation in inflamed colonic epithelium, attributed to over 95% of butyrate being produced and absorbed in the colon. As expected, epithelium barriers were restored significantly by alleviating GSDME-mediated pyroptosis in colitis. Accordingly, the permeability of IECs was restored, and the resulting inflammation, mucosal epithelium, and balance of gut flora were reprogrammed, which offers a hopeful approach to the effective management of UC.
Collapse
Affiliation(s)
- Wenying Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
| | - Dong Chen
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Yanmei Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
| | - Qiange Ye
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 21008, Jiangsu Province,China
| | - Yang Hua
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
| | - Ping Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province,China
| | - Ying Xiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
| | - Yuejie Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
| | - Yinya Pan
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province,China
| | - Hua Yang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
| | - Yichun Ma
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
| | - Hang Xu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Cheng Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province,China
| | - Chang Zheng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province,China
| | - Changrong Chen
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Yun Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province,China
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 21008, Jiangsu Province,China
- Department of Gastroenterology, Taikang Xianlin Drum Tower Hospital, Nanjing 21008, Jiangsu Province,China
| |
Collapse
|
6
|
Erbay IH, Alexiadis A, Rochev Y. Computational insights into colonic motility: Mechanical role of mucus in homeostasis and inflammation. Comput Biol Med 2024; 176:108540. [PMID: 38728996 DOI: 10.1016/j.compbiomed.2024.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
Colonic motility plays a vital role in maintaining proper digestive function. The rhythmic contractions and relaxations facilitate various types of motor functions that generate both propulsive and non-propulsive motility modes which in turn generate shear stresses on the epithelial surface. However, the interplay between colonic mucus, shear stress, and epithelium remains poorly characterized. Here, we present a colonic computational model that describes the potential roles of mucus and shear stress in both homeostasis and ulcerative colitis (UC). Our model integrates several key features, including the properties of the mucus bilayer and faeces, intraluminal pressure, and crypt characteristics to predict the time-space mosaic of shear stress. We show that the mucus thickness which could vary based on the severity of UC, may significantly reduce the amount of shear stress applied to the colonic crypts and effect faecal velocity. Our model also reveals an important spatial shear stress variance in homeostatic colonic crypts that suggests shear stress may have a modulatory role in epithelial cell migration, differentiation, apoptosis, and immune surveillance. Together, our study uncovers the rather neglected roles of mucus and shear stress in intestinal cellular processes during homeostasis and inflammation.
Collapse
Affiliation(s)
- I H Erbay
- School of Physics, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - A Alexiadis
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Y Rochev
- School of Physics, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
7
|
Higashi T, Saito AC, Chiba H. Damage control of epithelial barrier function in dynamic environments. Eur J Cell Biol 2024; 103:151410. [PMID: 38579602 DOI: 10.1016/j.ejcb.2024.151410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024] Open
Abstract
Epithelial tissues cover the surfaces and lumens of the internal organs of multicellular animals and crucially contribute to internal environment homeostasis by delineating distinct compartments within the body. This vital role is known as epithelial barrier function. Epithelial cells are arranged like cobblestones and intricately bind together to form an epithelial sheet that upholds this barrier function. Central to the restriction of solute and fluid diffusion through intercellular spaces are occluding junctions, tight junctions in vertebrates and septate junctions in invertebrates. As part of epithelial tissues, cells undergo constant renewal, with older cells being replaced by new ones. Simultaneously, the epithelial tissue undergoes relative rearrangement, elongating, and shifting directionally as a whole. The movement or shape changes within the epithelial sheet necessitate significant deformation and reconnection of occluding junctions. Recent advancements have shed light on the intricate mechanisms through which epithelial cells sustain their barrier function in dynamic environments. This review aims to introduce these noteworthy findings and discuss some of the questions that remain unanswered.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Akira C Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
8
|
Zhang QZ, Zhang JR, Li X, Yin JL, Jin LM, Xun ZR, Xue H, Yang WQ, Zhang H, Qu J, Xing ZK, Wang XM. Fangyukangsuan granules ameliorate hyperuricemia and modulate gut microbiota in rats. Front Immunol 2024; 15:1362642. [PMID: 38745649 PMCID: PMC11091346 DOI: 10.3389/fimmu.2024.1362642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Hyperuricaemia (HUA) is a metabolic disorder characterised by high blood uric acid (UA) levels; moreover, HUA severity is closely related to the gut microbiota. HUA is also a risk factor for renal damage, diabetes, hypertension, and dyslipidaemia; however, current treatments are associated with detrimental side effects. Alternatively, Fangyukangsuan granules are a natural product with UA-reducing properties. To examine their efficacy in HUA, the binding of small molecules in Fangyukangsuan granules to xanthine oxidase (XOD), a key factor in UA metabolism, was investigated via molecular simulation, and the effects of oral Fangyukangsuan granule administration on serum biochemical indices and intestinal microorganisms in HUA-model rats were examined. Overall, 24 small molecules in Fangyukangsuan granules could bind to XOD. Serum UA, creatinine, blood urea nitrogen, and XOD levels were decreased in rats treated with Fangyukangsuan granules compared to those in untreated HUA-model rats. Moreover, Fangyukangsuan granules restored the intestinal microbial structure in HUA-model rats. Functional analysis of the gut microbiota revealed decreased amino acid biosynthesis and increased fermentation of pyruvate into short-chain fatty acids in Fangyukangsuan granule-treated rats. Together, these findings demonstrate that Fangyukangsuan granules have anti-hyperuricaemic and regulatory effects on the gut microbiota and may be a therapeutic candidate for HUA.
Collapse
Affiliation(s)
- Qing-zheng Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Ji-rui Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Xue Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jin-long Yin
- Department of Food Science and Engineering, Jilin Business and Technology College, Changchun, Jilin, China
| | - Li-ming Jin
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian, China
| | - Zhuo-ran Xun
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Hao Xue
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Wan-qi Yang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Hua Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Jingyong Qu
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Zhi-kai Xing
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Xu-min Wang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| |
Collapse
|
9
|
Bravo Iniguez A, Du M, Zhu MJ. α-Ketoglutarate for Preventing and Managing Intestinal Epithelial Dysfunction. Adv Nutr 2024; 15:100200. [PMID: 38438107 PMCID: PMC11016550 DOI: 10.1016/j.advnut.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
The epithelium lining the intestinal tract serves a multifaceted role. It plays a crucial role in nutrient absorption and immune regulation and also acts as a protective barrier, separating underlying tissues from the gut lumen content. Disruptions in the delicate balance of the gut epithelium trigger inflammatory responses, aggravate conditions such as inflammatory bowel disease, and potentially lead to more severe complications such as colorectal cancer. Maintaining intestinal epithelial homeostasis is vital for overall health, and there is growing interest in identifying nutraceuticals that can strengthen the intestinal epithelium. α-Ketoglutarate, a metabolite of the tricarboxylic acid cycle, displays a variety of bioactive effects, including functioning as an antioxidant, a necessary cofactor for epigenetic modification, and exerting anti-inflammatory effects. This article presents a comprehensive overview of studies investigating the potential of α-ketoglutarate supplementation in preventing dysfunction of the intestinal epithelium.
Collapse
Affiliation(s)
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, United States.
| |
Collapse
|
10
|
Drolia R, Bryant DB, Tenguria S, Jules-Culver ZA, Thind J, Amelunke B, Liu D, Gallina NLF, Mishra KK, Samaddar M, Sawale MR, Mishra DK, Cox AD, Bhunia AK. Listeria adhesion protein orchestrates caveolae-mediated apical junctional remodeling of epithelial barrier for Listeria monocytogenes translocation. mBio 2024; 15:e0282123. [PMID: 38376160 PMCID: PMC10936185 DOI: 10.1128/mbio.02821-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
The cellular junctional architecture remodeling by Listeria adhesion protein-heat shock protein 60 (LAP-Hsp60) interaction for Listeria monocytogenes (Lm) passage through the epithelial barrier is incompletely understood. Here, using the gerbil model, permissive to internalin (Inl) A/B-mediated pathways like in humans, we demonstrate that Lm crosses the intestinal villi at 48 h post-infection. In contrast, the single isogenic (lap- or ΔinlA) or double (lap-ΔinlA) mutant strains show significant defects. LAP promotes Lm translocation via endocytosis of cell-cell junctional complex in enterocytes that do not display luminal E-cadherin. In comparison, InlA facilitates Lm translocation at cells displaying apical E-cadherin during cell extrusion and mucus expulsion from goblet cells. LAP hijacks caveolar endocytosis to traffic integral junctional proteins to the early and recycling endosomes. Pharmacological inhibition in a cell line and genetic knockout of caveolin-1 in mice prevents LAP-induced intestinal permeability, junctional endocytosis, and Lm translocation. Furthermore, LAP-Hsp60-dependent tight junction remodeling is also necessary for InlA access to E-cadherin for Lm intestinal barrier crossing in InlA-permissive hosts. IMPORTANCE Listeria monocytogenes (Lm) is a foodborne pathogen with high mortality (20%-30%) and hospitalization rates (94%), particularly affecting vulnerable groups such as pregnant women, fetuses, newborns, seniors, and immunocompromised individuals. Invasive listeriosis involves Lm's internalin (InlA) protein binding to E-cadherin to breach the intestinal barrier. However, non-functional InlA variants have been identified in Lm isolates, suggesting InlA-independent pathways for translocation. Our study reveals that Listeria adhesion protein (LAP) and InlA cooperatively assist Lm entry into the gut lamina propria in a gerbil model, mimicking human listeriosis in early infection stages. LAP triggers caveolin-1-mediated endocytosis of critical junctional proteins, transporting them to early and recycling endosomes, facilitating Lm passage through enterocytes. Furthermore, LAP-Hsp60-mediated junctional protein endocytosis precedes InlA's interaction with basolateral E-cadherin, emphasizing LAP and InlA's cooperation in enhancing Lm intestinal translocation. This understanding is vital in combating the severe consequences of Lm infection, including sepsis, meningitis, encephalitis, and brain abscess.
Collapse
Affiliation(s)
- Rishi Drolia
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Science, Old Dominion University, Norfolk, Virginia, USA
- Department of Biological Science, Eastern Kentucky University, Richmond, Kentucky, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Donald B. Bryant
- Department of Biological Science, Eastern Kentucky University, Richmond, Kentucky, USA
| | - Shivendra Tenguria
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Zuri A. Jules-Culver
- Department of Biological Science, Old Dominion University, Norfolk, Virginia, USA
| | - Jessie Thind
- Department of Biological Science, Eastern Kentucky University, Richmond, Kentucky, USA
| | - Breanna Amelunke
- Department of Biological Science, Eastern Kentucky University, Richmond, Kentucky, USA
| | - Dongqi Liu
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Nicholas L. F. Gallina
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Krishna K. Mishra
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
| | - Manalee Samaddar
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Manoj R. Sawale
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
| | - Dharmendra K. Mishra
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
| | - Abigail D. Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Arun K. Bhunia
- Department of Food Science, Molecular Food Microbiology Laboratory, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
11
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
12
|
Ma S, Wang L, Zeng Y, Tan P, Chen R, Hu W, Xu H, Xu D. Reparative effect of different dietary additives on soybean meal-induced intestinal injury in yellow drum ( Nibea albiflora). Front Immunol 2023; 14:1296848. [PMID: 38143747 PMCID: PMC10748416 DOI: 10.3389/fimmu.2023.1296848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Soybean meal (SBM) is an acceptable replacement for unsustainable marine fish meal (FM) in aquaculture. However, we previously reported that high dietary SBM supplementation causes intestinal inflammatory injury in yellow drum (Nibea albiflora). Accordingly, a 4-week SBM-induced enteritis (SBMIE) in yellow drum trial was conducted first, followed by a 4-week additive-supplemented reparative experiment to evaluate the reparative effect of five additives on SBMIE in yellow drum. The control diet comprised 50% FM protein substituted with SBM. The additive-supplemented diet was added with 0.02% curcumin (SBMC), 0.05% berberine (SBM-BBR), 0.5% tea polyphenols (SBM-TPS), 1% taurine (SBM-TAU), or 0.8% glutamine (SBM-GLU) based on the control diet, respectively. The weight gain (WG), specific growth rate (SGR), feed efficiency ratio (FER), and survival rate (SR) of fish fed the additive-supplemented diets were significantly higher than those of fish fed the SBM diet. The WG, SGR, and FER of fish fed the SBMC, SBM-GLU and SBM-TAU diets were significantly higher than those of fish fed other diets. Moreover, fish fed the additive-supplemented diets SBMC and SBM-GLU, exhibited significantly increased intestinal villus height (IVH), intestinal muscular thickness (IMRT), and intestinal mucosal thickness (IMLT) and significantly decreased crypt depth (CD) in comparison with those fed the SBM diets. The relative expression of intestinal tight junction factors (ocln, zo1), cytoskeletal factors (f-actin, arp2/3), and anti-inflammatory cytokines (il10, tgfb) mRNA was remarkably elevated in fish fed additive-supplemented diets than those of fish fed the SBM diet. Whereas, the relative expression of intestinal myosin light chain kinase (mlck) and pro-inflammatory cytokines (il1, il6, tnfa) mRNA was markedly lower in fish fed the additive-supplemented diets. The highest relative expression of intestinal ocln, f-actin, and arp2/3 and the lowest relative expression of intestinal mlck were found in fish fed the SBMC diet. Hence, all five dietary additives effectively repaired the intestinal injury induced by SBM, with curcumin exhibiting the strongest repair effect for SBMIE in yellow drum.
Collapse
Affiliation(s)
- Shipeng Ma
- Fisheries College, Zhejiang Ocean University, Zhoushan, China
| | - Ligai Wang
- Key Laboratory of Mariculture and Enhancement, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Yanqing Zeng
- Fisheries College, Zhejiang Ocean University, Zhoushan, China
| | - Peng Tan
- Key Laboratory of Mariculture and Enhancement, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Ruiyi Chen
- Key Laboratory of Mariculture and Enhancement, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Weihua Hu
- Key Laboratory of Mariculture and Enhancement, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Hanxiang Xu
- Fisheries College, Zhejiang Ocean University, Zhoushan, China
| | - Dongdong Xu
- Key Laboratory of Mariculture and Enhancement, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| |
Collapse
|
13
|
Donath S, Seidler AE, Mundin K, Wenzel J, Scholz J, Gentemann L, Kalies J, Faix J, Ngezahayo A, Bleich A, Heisterkamp A, Buettner M, Kalies S. Epithelial restitution in 3D - Revealing biomechanical and physiochemical dynamics in intestinal organoids via fs laser nanosurgery. iScience 2023; 26:108139. [PMID: 37867948 PMCID: PMC10585398 DOI: 10.1016/j.isci.2023.108139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
Intestinal organoids represent a three-dimensional cell culture system mimicking the mammalian intestine. The application of single-cell ablation for defined wounding via a femtosecond laser system within the crypt base allowed us to study cell dynamics during epithelial restitution. Neighboring cells formed a contractile actin ring encircling the damaged cell, changed the cellular aspect ratio, and immediately closed the barrier. Using traction force microscopy, we observed major forces at the ablation site and additional forces on the crypt sides. Inhibitors of the actomyosin-based mobility of the cells led to the failure of restoring the barrier. Close to the ablation site, high-frequency calcium flickering and propagation of calcium waves occured that synchronized with the contraction of the epithelial layer. We observed an increased signal and nuclear translocation of YAP-1. In conclusion, our approach enabled, for the first time, to unveil the intricacies of epithelial restitution beyond in vivo models by employing precise laser-induced damage in colonoids.
Collapse
Affiliation(s)
- Sören Donath
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Anna Elisabeth Seidler
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Karlina Mundin
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Johannes Wenzel
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Jonas Scholz
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Lara Gentemann
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
| | - Julia Kalies
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Anaclet Ngezahayo
- Institute of Biophysics, Leibniz University Hannover, 30167 Hannover, Germany
| | - André Bleich
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Manuela Buettner
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Kalies
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
| |
Collapse
|
14
|
Zhu D, Fan Y, Wang X, Li P, Huang Y, Jiao J, Zhao C, Li Y, Wang S, Du X. Characterization of Molecular Chaperone GroEL as a Potential Virulence Factor in Cronobacter sakazakii. Foods 2023; 12:3404. [PMID: 37761113 PMCID: PMC10528849 DOI: 10.3390/foods12183404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The molecular chaperone GroEL of C. sakazakii, a highly conserved protein encoded by the gene grol, has the basic function of responding to heat shock, thus enhancing the bacterium's adaptation to dry and high-temperature environments, which poses a threat to food safety and human health. Our previous study demonstrated that GroEL was found in the bacterial membrane fraction and caused a strong immune response in C. sakazakii. In this study, we tried to elucidate the subcellular location and virulent effects of GroEL. In live C. sakazakii cells, GroEL existed in both the soluble and insoluble fractions. To study the secretory mechanism of GroEL protein, a non-reduced Western immunoblot was used to analyze the form of the protein, and the result showed that the exported GroEL protein was mainly in monomeric form. The exported GroEL could also be located on bacterial surface. To further research the virulent effect of C. sakazakii GroEL, an indirect immunofluorescence assay was used to detect the adhesion of recombinant GroEL protein to HCT-8 cells. The results indicated that the recombinant GroEL protein could adhere to HCT-8 cells in a short period of time. The recombinant GroEL protein could activate the NF-κB signaling pathway to release more pro-inflammatory cytokines (TNF-α, IL-6 and IL-8), downregulating the expression of tight-junction proteins (claudin-1, occluding, ZO-1 and ZO-2), which collectively resulted in dose-dependent virulent effects on host cells. Inhibition of the grol gene expression resulted in a significant decrease in bacterial adhesion to and invasion of HCT-8 cells. Moreover, the deficient GroEL also caused slow growth, decreased biofilm formation, defective motility and abnormal filamentation of the bacteria. In brief, C. sakazakii GroEL was an important virulence factor. This protein was not only crucial for the physiological activity of C. sakazakii but could also be secreted to enhance the bacterium's adhesion and invasion capabilities.
Collapse
Affiliation(s)
- Dongdong Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Yufei Fan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Xiaoyi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Ping Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Yaping Huang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Jingbo Jiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Chumin Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Yue Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| |
Collapse
|
15
|
Wang YM, Abdullah S, Luebbering N, Langenberg L, Duell A, Lake K, Lane A, Hils B, Vazquez Silva O, Trapp M, Nalapareddy K, Koo J, Denson LA, Jodele S, Haslam DB, Faubion WA, Davies SM, Khandelwal P. Intestinal permeability in patients undergoing stem cell transplantation correlates with systemic acute phase responses and dysbiosis. Blood Adv 2023; 7:5137-5151. [PMID: 37083597 PMCID: PMC10480541 DOI: 10.1182/bloodadvances.2023009960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Intestinal permeability may correlate with adverse outcomes during hematopoietic stem cell transplantation (HSCT), but longitudinal quantification with traditional oral mannitol and lactulose is not feasible in HSCT recipients because of mucositis and diarrhea. A modified lactulose:rhamnose (LR) assay is validated in children with environmental enteritis. Our study objective was to quantify peri-HSCT intestinal permeability changes using the modified LR assay. The LR assay was administered before transplant, at day +7 and +30 to 80 pediatric and young adult patients who received allogeneic HSCT. Lactulose and rhamnose were detected using urine mass spectrometry and expressed as an L:R ratio. Metagenomic shotgun sequencing of stool for microbiome analyses and enzyme-linked immunosorbent assay analyses of plasma lipopolysaccharide binding protein (LBP), ST2, REG3α, claudin1, occludin, and intestinal alkaline phosphatase were performed at the same timepoints. L:R ratios were increased at day +7 but returned to baseline at day +30 in most patients (P = .014). Conditioning regimen intensity did not affect the trajectory of L:R (P = .39). Baseline L:R ratios did not vary with diagnosis. L:R correlated with LBP levels (r2 = 0.208; P = .0014). High L:R ratios were associated with lower microbiome diversity (P = .035), loss of anaerobic organisms (P = .020), and higher plasma LBP (P = .0014). No adverse gastrointestinal effects occurred because of LR. Intestinal permeability as measured through L:R ratios after allogeneic HSCT correlates with intestinal dysbiosis and elevated plasma LBP. The LR assay is well-tolerated and may identify transplant recipients who are more likely to experience adverse outcomes.
Collapse
Affiliation(s)
- YunZu Michele Wang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Sheyar Abdullah
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Nathan Luebbering
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Lucille Langenberg
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Alexandra Duell
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Kelly Lake
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Brian Hils
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Ormarie Vazquez Silva
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Monica Trapp
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Kodandaramireddy Nalapareddy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Jane Koo
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Lee A. Denson
- University of Cincinnati College of Medicine, Cincinnati, OH
- Department of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - David B. Haslam
- University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Stella M. Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Pooja Khandelwal
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
16
|
Nozaki K, Miao EA. Bucket lists must be completed during cell death. Trends Cell Biol 2023; 33:803-815. [PMID: 36958996 PMCID: PMC10440244 DOI: 10.1016/j.tcb.2023.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
Regulated cell death occurs in many forms, including apoptosis, pyroptosis, necroptosis, and NETosis. Most obviously, the purpose of these pathways is to kill the cell. However, many cells need to complete a set of effector programs before they die, which we define as a cellular 'bucket list'. These effector programs are specific to the cell type, and mode and circumstances of death. For example, intestinal epithelial cells need to complete the process of extrusion before they die. Cells use regulatory mechanisms to temporarily prolong their life, including endosomal sorting complex required for transport (ESCRT)- and acid sphingomyelinase (ASM)-driven membrane repair. These allow cells to complete their bucket lists before they die.
Collapse
Affiliation(s)
- Kengo Nozaki
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| | - Edward A Miao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
17
|
Morales M, Xue X. Hypoxia in the Pathophysiology of Inflammatory Bowel Disease. Compr Physiol 2023; 13:4767-4783. [PMID: 37358514 PMCID: PMC10799609 DOI: 10.1002/cphy.c220002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic disease of disordered chronic inflammation in the intestines that affects many people across the world. While the disease is still being better characterized, greater progress has been made in understanding the many components that intersect in the disease. Among these components are the many pieces that compose the intestinal epithelial barrier, the various cytokines and immune cells, and the population of microbes that reside in the intestinal lumen. Since their discovery, the hypoxia-inducible factors (HIFs) have been found to play an expansive role in physiology as well as diseases such as inflammation due to their role in oxygen sensing-related gene transcription, and metabolic control. Making use of existing and developing paradigms in the immuno-gastroenterology of IBD, we summarized that hypoxic signaling plays as another component in the status and progression of IBD, which may include possible functions at the origins of inflammatory dysregulation. © 2023 American Physiological Society. Compr Physiol 13:4767-4783, 2023.
Collapse
Affiliation(s)
- Michael Morales
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
18
|
Ma Q, Chen M, Liu Y, Tong Y, Liu T, Wu L, Wang J, Han B, Zhou L, Hu X. Lactobacillus acidophilus Fermented Dandelion Improves Hyperuricemia and Regulates Gut Microbiota. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Foodborne prevention and treatment of hyperuricemia (HUA) has received widespread attention. Lactic acid bacteria (LAB) can improve intestinal function, while traditional medicine dandelion has the functions of detoxification and detumescence. Whether LAB fermented dandelion has any effects on HUA and the underlying mechanism is not clear. To address these questions, Lactobacillus acidophilus was selected or maximal xanthine oxidase activity. The effect of Lactobacillus acidophilus fermented dandelion (LAFD) on uric acid metabolism was evaluated by the HUA mouse model. Expression levels of UA, BUN, CRE, XOD, and inflammatory factors in serum were detected. Paraffin sections and staining were used to observe the kidney and small intestine, and mRNA expression of GLUT9, URAT1, OAT1, and ABCG2 related to uric acid metabolism were investigated. Furthermore, the intestinal flora was studied by contents of the cecum and high throughput 16S rRNA sequencing. The results showed that LAFD had a significant inhibitory effect on XOD in vitro (p < 0.01). LAFD could reduce the levels of UA, BUN, CRE, XOD, IL-1 β, IL-6, and TNF- α in serum (p < 0.05), thus inhibiting inflammatory reaction, and reducing UA by decreasing the mRNA expression of GLUT9, URAT1 in kidney and increasing the mRNA expression of OAT1 and ABCG2 in kidney and small intestine (p < 0.05). In addition, the 16S rRNA gene sequencing analysis demonstrated that LAFD treatment can help restore the imbalance of the intestinal microbial ecosystem and reverse the changes in Bacterodietes/Firmicutes, Muribaculaceae, Lachnospiraceae in mice with HUA. It is suggested that the mechanism of LAFD in treating HUA may be related to the regulation of the mRNA expressions of GLUT9, URAT1, OAT1, and ABCG2 in the kidney and small intestine, as well as the regulation of intestinal flora, which provides the experimental basis for the development of new plant fermented products.
Collapse
Affiliation(s)
- Qianwen Ma
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingju Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yu Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Tong
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianfeng Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lele Wu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiliang Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bin Han
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lin Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuguang Hu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
19
|
Abtahi S, Sailer A, Roland JT, Haest X, Chanez-Paredes SD, Ahmad K, Sadiq K, Iqbal NT, Ali SA, Turner JR. Intestinal Epithelial Digestive, Transport, and Barrier Protein Expression Is Increased in Environmental Enteric Dysfunction. J Transl Med 2023; 103:100036. [PMID: 36870290 PMCID: PMC10121737 DOI: 10.1016/j.labinv.2022.100036] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 01/11/2023] Open
Abstract
Environmental enteric dysfunction (EED) is characterized by malabsorption and diarrhea that result in irreversible deficits in physical and intellectual growth. We sought to define the expression of transport and tight junction proteins by quantitative analysis of duodenal biopsies from patients with EED. Biopsies from Pakistani children with confirmed EED diagnoses were compared to those from age-matched North American healthy controls, patients with celiac disease, and patients with nonceliac disease with villous atrophy or intraepithelial lymphocytosis. Expression of brush border digestive and transport proteins and paracellular (tight junction) proteins was assessed by quantitative multiplex immunofluorescence microscopy. EED was characterized by partial villous atrophy and marked intraepithelial lymphocytosis. Epithelial proliferation and enteroendocrine, tuft, and Paneth cell numbers were unchanged, but there was significant goblet cell expansion in EED biopsies. Expression of proteins involved in nutrient and water absorption and that of the basolateral Cl- transport protein NKCC1 were also increased in EED. Finally, the barrier-forming tight junction protein claudin-4 (CLDN4) was significantly upregulated in EED, particularly within villous enterocytes. In contrast, expression of CFTR, CLDN2, CLDN15, JAM-A, occludin, ZO-1, and E-cadherin was unchanged. Upregulation of a barrier-forming tight junction protein and brush border and basolateral membrane proteins that support nutrient and water transport in EED is paradoxical, as their increased expression would be expected to be correlated with increased intestinal barrier function and enhanced absorption, respectively. These data suggest that EED activates adaptive intestinal epithelial responses to enhance nutrient absorption but that these changes are insufficient to restore health.
Collapse
Affiliation(s)
- Shabnam Abtahi
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anne Sailer
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center; Nashville, Tennessee
| | - Xenia Haest
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sandra D Chanez-Paredes
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kumail Ahmad
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Kamran Sadiq
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Najeeha Talat Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - S Asad Ali
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Pathology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
20
|
Xu J, Li S, Jin W, Zhou H, Zhong T, Cheng X, Fu Y, Xiao P, Cheng H, Wang D, Ke Y, Jiang Z, Zhang X. Epithelial Gab1 calibrates RIPK3-dependent necroptosis to prevent intestinal inflammation. JCI Insight 2023; 8:162701. [PMID: 36795486 PMCID: PMC10070107 DOI: 10.1172/jci.insight.162701] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
As a hallmark of inflammatory bowel disease (IBD), elevated intestinal epithelial cell (IEC) death compromises the gut barrier, activating the inflammatory response and triggering more IEC death. However, the precise intracellular machinery that prevents IEC death and breaks this vicious feedback cycle remains largely unknown. Here, we report that Grb2-associated binder 1 (Gab1) expression is decreased in patients with IBD and inversely correlated with IBD severity. Gab1 deficiency in IECs accounted for the exacerbated colitis induced by dextran sodium sulfate owing to sensitizing IECs to receptor-interaction protein kinase 3-mediated (RIPK3-mediated) necroptosis, which irreversibly disrupted the homeostasis of the epithelial barrier and promoted intestinal inflammation. Mechanistically, Gab1 negatively regulated necroptosis signaling through inhibiting the formation of RIPK1/RIPK3 complex in response to TNF-α. Importantly, administration of RIPK3 inhibitor revealed a curative effect in epithelial Gab1-deficient mice. Further analysis indicated mice with Gab1 deletion were prone to inflammation-associated colorectal tumorigenesis. Collectively, our study defines a protective role for Gab1 in colitis and colitis-driven colorectal cancer by negatively regulating RIPK3-dependent necroptosis, which may serve as an important target to address necroptosis and intestinal inflammation-related disease.
Collapse
Affiliation(s)
- Jiaqi Xu
- Department of Pathology, Sir Run Run Shaw Hospital
| | - Shihao Li
- Department of Pathology and Pathophysiology, and Department of Respiratory Medicine of Sir Run Run Shaw Hospital
| | - Wei Jin
- Department of General Surgery and
| | - Hui Zhou
- Department of Pathology and Pathophysiology, and Department of Respiratory Medicine of Sir Run Run Shaw Hospital
| | | | | | - Yujuan Fu
- Department of Pathology, Sir Run Run Shaw Hospital
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, and Department of Cardiology of Sir Run Run Shaw Hospital; and
| | - Di Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, and Department of Respiratory Medicine of Sir Run Run Shaw Hospital
| | | | - Xue Zhang
- Department of Pathology and Pathophysiology, and Department of Respiratory Medicine of Sir Run Run Shaw Hospital
| |
Collapse
|
21
|
Perrin L, Matic Vignjevic D. The emerging roles of the cytoskeleton in intestinal epithelium homeostasis. Semin Cell Dev Biol 2023:S1084-9521(23)00071-X. [PMID: 36948998 DOI: 10.1016/j.semcdb.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The intestinal epithelium must absorb many nutrients and water while forming a barrier that is impermeable to pathogens present in the external environment. Concurrently to fulfill this dual role, the intestinal epithelium is challenged by a rapid renewal of cells and forces resulting from digestion. Hence, intestinal homeostasis requires precise control of tissue integrity, tissue renewal, cell polarity, and force generation/transmission. In this review, we highlight the contribution of the cell cytoskeleton- actin, microtubules, and intermediate filaments- to intestinal epithelium homeostasis. With a focus on enterocytes, we first discuss the role of these networks in the formation and maintenance of cell-cell and cell-matrix junctions. Then, we cover their role in intracellular trafficking related to the apicobasal polarity of enterocytes. Finally, we report on the cytoskeletal changes that occur during tissue renewal. In conclusion, the importance of the cytoskeleton in maintaining intestinal homeostasis is emerging, and we think this field will keep evolving.
Collapse
Affiliation(s)
- Louisiane Perrin
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France.
| | | |
Collapse
|
22
|
Zhang D, Zhou X, Zhang K, Yu Y, Cui SW, Nie S. Glucomannan from Aloe vera gel maintains intestinal barrier integrity via mitigating anoikis mediated by Nrf2-mitochondria axis. Int J Biol Macromol 2023; 235:123803. [PMID: 36841393 DOI: 10.1016/j.ijbiomac.2023.123803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Impairment of intestinal epithelium barrier is a hallmark of gut pathology. Cell death can compromise barrier function and impair epithelial restitution directly or indirectly in inflammatory bowel disease (IBD). Our previous work demonstrated that glucomannan from Aloe vera gel (AGP) protected mice from DSS-induced colitis, with unclear mechanism of AGP-intestinal barrier interactions. Here, AGP maintained the integrity of intestinal barrier in colitis mice. RNA-Sequencing results indicated that pathways related to anoikis (apoptosis induced by loss of cell-matrix interaction), mitochondrial function and oxidative stress were significantly altered in the process of AGP-intestinal barrier interaction. Further experiments confirmed that AGP activated Nrf2, decreased ROS levels, mitigated mitochondrial dysfunction and anoikis of colonic epithelial cells in mice. Intriguingly, AGP reversed oxidative stress and mitochondrial dysfunction induced by knockdown or inhibitor (ML385) of Nrf2 in IEC-6 cells, which indicated the essential role of Nrf2-mitochondrial axis in the intestinal protective function of AGP. In addition, AGP alleviated anoikis caused by impaired mitochondrial function. Hence, this current work indicated that AGP might maintain intestinal barrier integrity by mitigating anoikis mediated by Nrf2-mitochondria axis. These findings provide new evidence into the effect of polysaccharides maintaining intestinal barrier integrity.
Collapse
Affiliation(s)
- Duoduo Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| | - Ke Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yongkang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Steve W Cui
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; Agriculture and Agri-Food Canada, Guelph Research and Development Centre, 93 Stone Road West, Guelph, Ontario NIG 5C9, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
23
|
Quansah E, Gardey E, Ramoji A, Meyer-Zedler T, Goehrig B, Heutelbeck A, Hoeppener S, Schmitt M, Waldner M, Stallmach A, Popp J. Intestinal epithelial barrier integrity investigated by label-free techniques in ulcerative colitis patients. Sci Rep 2023; 13:2681. [PMID: 36792686 PMCID: PMC9931702 DOI: 10.1038/s41598-023-29649-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
The intestinal epithelial barrier, among other compartments such as the mucosal immune system, contributes to the maintenance of intestinal homeostasis. Therefore, any disturbance within the epithelial layer could lead to intestinal permeability and promote mucosal inflammation. Considering that disintegration of the intestinal epithelial barrier is a key element in the etiology of ulcerative colitis, further assessment of barrier integrity could contribute to a better understanding of the role of epithelial barrier defects in ulcerative colitis (UC), one major form of chronic inflammatory bowel disease. Herein, we employ fast, non-destructive, and label-free non-linear methods, namely coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), two-photon excited fluorescence (TPEF), and two-photon fluorescence lifetime imaging (2P-FLIM), to assess the morpho-chemical contributions leading to the dysfunction of the epithelial barrier. For the first time, the formation of epithelial barrier gaps was directly visualized, without sophisticated data analysis procedures, by the 3D analysis of the colonic mucosa from severely inflamed UC patients. The results were compared with histopathological and immunofluorescence images and validated using transmission electron microscopy (TEM) to indicate structural alterations of the apical junction complex as the underlying cause for the formation of the epithelial barrier gaps. Our findings suggest the potential advantage of non-linear multimodal imaging is to give precise, detailed, and direct visualization of the epithelial barrier in the gastrointestinal tract, which can be combined with a fiber probe for future endomicroscopy measurements during real-time in vivo imaging.
Collapse
Affiliation(s)
- Elsie Quansah
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Elena Gardey
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases and Interdisciplinary Endoscopy), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
- Friedrich Schiller University Jena, Jena Center for Soft Matter (JCSM), Philosophenweg 7, 07743, Jena, Germany
| | - Anuradha Ramoji
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany.
- Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich Schiller University Jena, Erlanger Allee 101, 07747, Jena, Germany.
| | - Tobias Meyer-Zedler
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Bianca Goehrig
- Institute for Occupational, Social, and Environmental Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Astrid Heutelbeck
- Institute for Occupational, Social, and Environmental Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Stephanie Hoeppener
- Friedrich Schiller University Jena, Jena Center for Soft Matter (JCSM), Philosophenweg 7, 07743, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Maximillian Waldner
- Department of Medicine, University of Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases and Interdisciplinary Endoscopy), Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
- Friedrich Schiller University Jena, Jena Center for Soft Matter (JCSM), Philosophenweg 7, 07743, Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| |
Collapse
|
24
|
Martínez-Sánchez LDC, Ngo PA, Pradhan R, Becker LS, Boehringer D, Soteriou D, Kubankova M, Schweitzer C, Koch T, Thonn V, Erkert L, Stolzer I, Günther C, Becker C, Weigmann B, Klewer M, Daniel C, Amann K, Tenzer S, Atreya R, Bergo M, Brakebusch C, Watson AJM, Guck J, Fabry B, Atreya I, Neurath MF, López-Posadas R. Epithelial RAC1-dependent cytoskeleton dynamics controls cell mechanics, cell shedding and barrier integrity in intestinal inflammation. Gut 2023; 72:275-294. [PMID: 35241625 PMCID: PMC9872254 DOI: 10.1136/gutjnl-2021-325520] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/29/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Increased apoptotic shedding has been linked to intestinal barrier dysfunction and development of inflammatory bowel diseases (IBD). In contrast, physiological cell shedding allows the renewal of the epithelial monolayer without compromising the barrier function. Here, we investigated the role of live cell extrusion in epithelial barrier alterations in IBD. DESIGN Taking advantage of conditional GGTase and RAC1 knockout mice in intestinal epithelial cells (Pggt1b iΔIEC and Rac1 iΔIEC mice), intravital microscopy, immunostaining, mechanobiology, organoid techniques and RNA sequencing, we analysed cell shedding alterations within the intestinal epithelium. Moreover, we examined human gut tissue and intestinal organoids from patients with IBD for cell shedding alterations and RAC1 function. RESULTS Epithelial Pggt1b deletion led to cytoskeleton rearrangement and tight junction redistribution, causing cell overcrowding due to arresting of cell shedding that finally resulted in epithelial leakage and spontaneous mucosal inflammation in the small and to a lesser extent in the large intestine. Both in vivo and in vitro studies (knockout mice, organoids) identified RAC1 as a GGTase target critically involved in prenylation-dependent cytoskeleton dynamics, cell mechanics and epithelial cell shedding. Moreover, inflamed areas of gut tissue from patients with IBD exhibited funnel-like structures, signs of arrested cell shedding and impaired RAC1 function. RAC1 inhibition in human intestinal organoids caused actin alterations compatible with arresting of cell shedding. CONCLUSION Impaired epithelial RAC1 function causes cell overcrowding and epithelial leakage thus inducing chronic intestinal inflammation. Epithelial RAC1 emerges as key regulator of cytoskeletal dynamics, cell mechanics and intestinal cell shedding. Modulation of RAC1 might be exploited for restoration of epithelial integrity in the gut of patients with IBD.
Collapse
Affiliation(s)
- Luz del Carmen Martínez-Sánchez
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Phuong Anh Ngo
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Rashmita Pradhan
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Lukas-Sebastian Becker
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - David Boehringer
- Department of Physics, University of Erlangen Nuremberg, Erlangen, Bayern, Germany
| | - Despina Soteriou
- Max-Planck Zentrum für Physik und Medizin, Erlangen, Germany,Max Planck Institute for the Science of Light, Erlangen, Bayern, Germany
| | - Marketa Kubankova
- Max-Planck Zentrum für Physik und Medizin, Erlangen, Germany,Max Planck Institute for the Science of Light, Erlangen, Bayern, Germany
| | - Christine Schweitzer
- Max-Planck Zentrum für Physik und Medizin, Erlangen, Germany,Max Planck Institute for the Science of Light, Erlangen, Bayern, Germany
| | - Tatyana Koch
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany
| | - Veronika Thonn
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Lena Erkert
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Monika Klewer
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Stefan Tenzer
- University Medical Center Mainz, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Rheinland-Pfalz, Germany
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Martin Bergo
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Cord Brakebusch
- Biotech Research & Innovation Centre, University of Copenhagen, Kobenhavn, Hovedstaden, Denmark
| | | | - Jochen Guck
- Department of Physics, University of Erlangen Nuremberg, Erlangen, Bayern, Germany,Max-Planck Zentrum für Physik und Medizin, Erlangen, Germany,Max Planck Institute for the Science of Light, Erlangen, Bayern, Germany
| | - Ben Fabry
- Department of Physics, University of Erlangen Nuremberg, Erlangen, Bayern, Germany
| | - Imke Atreya
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Bayern, Germany .,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
25
|
Li LZ, Wang XM, Feng XJ, Liu K, Li B, Zhu LJ, Xu WF, Zheng X, Dong YJ, He XL, Guan HR, Ding YY, Wu HS, Zhou CJ, Ye SY, Zhang BB, Lv GY, Chen SH. Effects of a Macroporous Resin Extract of Dendrobium officinale Leaves in Rats with Hyperuricemia Induced by Anthropomorphic Unhealthy Lifestyle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9990843. [PMID: 36644440 PMCID: PMC9839412 DOI: 10.1155/2023/9990843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/09/2023]
Abstract
Aim Hyperuricemia (HUA) has received increased attention in the last few decades due to its global prevalence. Our previous study found that administration of a macroporous resin extract of Dendrobium officinale leaves (DoMRE) to rats with HUA that was induced by exposure to potassium oxazine combined with fructose and a high-purine diet led to a significant reduction in serum uric acid (SUA) levels. The aim of this study was to explore the effects of DoMRE on hyperuricemia induced by anthropomorphic unhealthy lifestyle and to elucidate its possible mechanisms of action. Methods Dosages (5.0 and 10.0 g/kg/day) of DoMRE were administered to rats daily after induction of HUA by anthropomorphic unhealthy lifestyle for 12 weeks. The levels of UA in the serum, urine, and feces; the levels of creatinine (Cr) in the serum and urine; and the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum were all measured using an automatic biochemical analyzer. The activities of xanthine oxidase (XOD) and adenosine deaminase (ADA) in the serum, liver, and intestine tissue supernatant were measured using appropriate kits for each biological target. The expressions levels of UA transporters (ABCG2 and GLUT9), tight junction (TJ) proteins (ZO-1 and occludin), and inflammatory factors (IL-6, IL-8, and TNF-α) in the intestine were assayed by immunohistochemical (IHC) staining. Hematoxylin and eosin (H&E) staining was used to assess histological changes in the renal and intestinal tissues. Results DoMRE treatment significantly reduced SUA levels and concomitantly increased fecal UA (FUA) levels and the fractional excretion of UA (FEUA) in HUA rats. Furthermore, DoMRE significantly reduced both the XOD activity in the serum, liver, and intestine and the ADA activity in the liver and intestine. DoMRE also effectively regulated the expression of GLUT9 and ABCG2 in the intestine, and it significantly upregulated the expression of the intestinal TJ proteins ZO-1 and occludin. Therefore, DoMRE reduced the damage to the intestinal barrier function caused by the increased production of inflammatory factors due to HUA to ensure normal intestinal UA excretion. Conclusion DoMRE demonstrated anti-HUA effects in the HUA rat model induced by an anthropomorphic unhealthy lifestyle, and the molecular mechanism appeared to involve the regulation of urate transport-related transporters (ABCG2 and GLUT9) in the intestine, protection of the intestinal barrier function to promote UA excretion, and inhibition of XOD and ADA activity in the liver and intestine to inhibit UA production in the HUA-induced rats.
Collapse
Affiliation(s)
- Lin-Zi Li
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xi-Ming Wang
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiao-Jie Feng
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Kun Liu
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Bo Li
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Li-Jie Zhu
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wan-Feng Xu
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiang Zheng
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ying-Jie Dong
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xing-Lishang He
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Hao-Ru Guan
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yan-Yan Ding
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Han-Song Wu
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chuan-Jie Zhou
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Sen-Yu Ye
- Zhejiang Senyu Co., Ltd., Yiwu, Zhejiang 322099, China
| | - Bei-Bei Zhang
- Center for Food Evaluation, State Administration for Market Regulation, No. 188 Western Road of South Fourth Ring Road, Fengtai District, Beijing 100070, China
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Su-Hong Chen
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
26
|
Lee C, Song JH, Cha YE, Chang DK, Kim YH, Hong SN. Intestinal Epithelial Responses to IL-17 in Adult Stem Cell-derived Human Intestinal Organoids. J Crohns Colitis 2022; 16:1911-1923. [PMID: 35927216 DOI: 10.1093/ecco-jcc/jjac101] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Th17 cells and their signature cytokine, interleukin-17A [IL-17], are considered as the main pathogenic factors in inflammatory bowel diseases [IBDs]. However, IL-17 neutralising antibodies, a theoretically curative medication for IBDs, paradoxically aggravated intestinal inflammation. The mechanisms by which IL-17 mediates the protective and pathological effects of IL-17 remain unclear in the intestinal epithelium. METHODS The intestinal epithelial responses induced by IL-17 were evaluated using the human small intestinal organoid [enteroid] model. RESULTS Organoid-forming efficiency, cell viability, and proliferation of enteroids were decreased in proportion to IL-17 concentration. The IL-17 induced cytotoxicity was predominantly mediated by pyroptosis with activation of CASP1 and cleavage of GSDMD. Bulk RNA-sequencing revealed the enrichment of secretion signalling in IL-17 treated enteroids, leading to mucin exocytosis. Among its components, PIGR was up-regulated significantly as the concentration of IL-17 increased, resulting in IgA transcytosis. Mucin exocytosis and IgA transcytosis have a protective role against enteric pathogens. Single-cell RNA sequencing identified that CASP1-mediated pyroptosis occurred actively in intestinal stem cells [ISCs] and enterocytes. IL-17 neutralising antibody completely restored IL-17 induced cytotoxicity, but suppressed mucin secretion and IgA transcytosis. Pyroptosis inhibition using CASP1 inhibitors significantly improved IL-17 induced cytotoxicity without diminishing its beneficial effects. CONCLUSIONS IL-17 induces the pyroptosis of ISCs and enterocytes, as well as mucin secretion of goblet cells and IgA transcytosis of epithelial cells. Paradoxical gastrointestinal effects of IL-17 neutralising antibodies may be associated with inhibition of mucin secretion and IgA transcytosis. The inhibition of pyroptosis using CASP1 inhibitors prevents IL-17 induced cytotoxicity without compromising its beneficial effects.
Collapse
Affiliation(s)
- Chansu Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Korea
| | - Joo Hye Song
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeo-Eun Cha
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Korea
| | - Dong Kyung Chang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Ho Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
27
|
Bao L, Cui X, Bai R, Chen C. Advancing intestinal organoid technology to decipher nano-intestine interactions and treat intestinal disease. NANO RESEARCH 2022; 16:3976-3990. [PMID: 36465523 PMCID: PMC9685037 DOI: 10.1007/s12274-022-5150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/17/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
With research burgeoning in nanoscience and nanotechnology, there is an urgent need to develop new biological models that can simulate native structure, function, and genetic properties of tissues to evaluate the adverse or beneficial effects of nanomaterials on a host. Among the current biological models, three-dimensional (3D) organoids have developed as powerful tools in the study of nanomaterial-biology (nano-bio) interactions, since these models can overcome many of the limitations of cell and animal models. A deep understanding of organoid techniques will facilitate the development of more efficient nanomedicines and further the fields of tissue engineering and personalized medicine. Herein, we summarize the recent progress in intestinal organoids culture systems with a focus on our understanding of the nature and influencing factors of intestinal organoid growth. We also discuss biomimetic extracellular matrices (ECMs) coupled with nanotechnology. In particular, we analyze the application prospects for intestinal organoids in investigating nano-intestine interactions. By integrating nanotechnology and organoid technology, this recently developed model will fill the gaps left due to the deficiencies of traditional cell and animal models, thus accelerating both our understanding of intestine-related nanotoxicity and the development of nanomedicines.
Collapse
Affiliation(s)
- Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190 China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700 China
| | - Ru Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190 China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
28
|
Fuladi S, McGuinness S, Shen L, Weber CR, Khalili-Araghi F. Molecular mechanism of claudin-15 strand flexibility: A computational study. J Gen Physiol 2022; 154:213632. [PMID: 36318156 PMCID: PMC9629798 DOI: 10.1085/jgp.202213116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Claudins are one of the major components of tight junctions that play a key role in the formation and maintenance of the epithelial barrier function. Tight junction strands are dynamic and capable of adapting their structure in response to large-scale tissue rearrangement and cellular movement. Here, we present molecular dynamics simulations of claudin-15 strands of up to 225 nm in length in two parallel lipid membranes and characterize their mechanical properties. The persistence length of claudin-15 strands is comparable with those obtained from analyses of freeze-fracture electron microscopy. Our results indicate that lateral flexibility of claudin strands is due to an interplay of three sets of interfacial interaction networks between two antiparallel double rows of claudins in the membranes. In this model, claudins are assembled into interlocking tetrameric ion channels along the strand that slide with respect to each other as the strands curve over submicrometer-length scales. These results suggest a novel molecular mechanism underlying claudin-15 strand flexibility. It also sheds light on intermolecular interactions and their role in maintaining epithelial barrier function.
Collapse
Affiliation(s)
- Shadi Fuladi
- Department of Physics, University of Illinois, Chicago, IL
| | - Sarah McGuinness
- Department of Bioengineering, University of Illinois, Chicago, IL
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL
| | | | - Fatemeh Khalili-Araghi
- Department of Physics, University of Illinois, Chicago, IL,Correspondence to Fatemeh Khalili-Araghi:
| |
Collapse
|
29
|
Chen K, Shang S, Yu S, Cui L, Li S, He N. Identification and exploration of pharmacological pyroptosis-related biomarkers of ulcerative colitis. Front Immunol 2022; 13:998470. [PMID: 36311726 PMCID: PMC9606687 DOI: 10.3389/fimmu.2022.998470] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD). Its etiology is unclear. Much evidence suggests that the death of abnormal intestinal epithelial cells (IECs) leads to intestinal barrier disruption, and the subsequent inflammatory response plays a vital role in UC. Pyroptosis is a form of programmed inflammatory cell death, and the role of pyroptosis in UC etiology remains to be explored. This study identified 10 hub genes in pyroptosis by gene expression profiles obtained from the GSE87466 dataset. Meanwhile, the biomarkers were screened based on gene significance (GS) and module membership (MM) through the Weighted Gene Co-Expression Network Analysis (WGCNA). The following analysis indicated that hub genes were closely associated with the UC progression and therapeutic drug response. The single-cell RNA (scRNA) sequencing data from UC patients within the GSE162335 dataset indicated that macrophages were most related to pyroptosis. Finally, the expression of hub genes and response to the therapeutic drug [5-aminosalicylic acid (5-ASA)] were verified in dextran sulfate sodium (DSS)-induced colitis mice. Our study identified IL1B as the critical pyroptosis-related biomarker in UC. The crosstalk between macrophage pyroptosis and IEC pyroptosis may play an essential role in UC, deserving further exploration.
Collapse
Affiliation(s)
| | | | | | | | | | - Ningning He
- *Correspondence: Shangyong Li, ; Ningning He,
| |
Collapse
|
30
|
Papoutsopoulou S, Tang J, Elramli AH, Williams JM, Gupta N, Ikuomola FI, Sheibani-Tezerji R, Alam MT, Hernández-Fernaud JR, Caamaño JH, Probert CS, Muller W, Duckworth CA, Pritchard DM. Nfkb2 deficiency and its impact on plasma cells and immunoglobulin expression in murine small intestinal mucosa. Am J Physiol Gastrointest Liver Physiol 2022; 323:G306-G317. [PMID: 35916405 PMCID: PMC9485003 DOI: 10.1152/ajpgi.00037.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The alternative (noncanonical) nuclear factor-κB (NF-κB) signaling pathway predominantly regulates the function of the p52/RelB heterodimer. Germline Nfkb2 deficiency in mice leads to loss of p100/p52 protein and offers protection against a variety of gastrointestinal conditions, including azoxymethane/dextran sulfate sodium (DSS)-induced colitis-associated cancer and lipopolysaccharide (LPS)-induced small intestinal epithelial apoptosis. However, the common underlying protective mechanisms have not yet been fully elucidated. We applied high-throughput RNA-Seq and proteomic analyses to characterize the transcriptional and protein signatures of the small intestinal mucosa of naïve adult Nfkb2-/- mice. Those data were validated by immunohistochemistry and quantitative ELISA using both small intestinal tissue lysates and serum. We identified a B-lymphocyte defect as a major transcriptional signature in the small intestinal mucosa and immunoglobulin A as the most downregulated protein by proteomic analysis in Nfkb2-/- mice. Small intestinal immunoglobulins were dramatically dysregulated, with undetectable levels of immunoglobulin A and greatly increased amounts of immunoglobulin M being detected. The numbers of IgA-producing, cluster of differentiation (CD)138-positive plasma cells were also reduced in the lamina propria of the small intestinal villi of Nfkb2-/- mice. This phenotype was even more striking in the small intestinal mucosa of RelB-/- mice, although these mice were equally sensitive to LPS-induced intestinal apoptosis as their RelB+/+ wild-type counterparts. NF-κB2/p52 deficiency confers resistance to LPS-induced small intestinal apoptosis and also appears to regulate the plasma cell population and immunoglobulin levels within the gut.NEW & NOTEWORTHY Novel transcriptomic analysis of murine proximal intestinal mucosa revealed an unexpected B cell signature in Nfkb2-/- mice. In-depth analysis revealed a defect in the CD38+ B cell population and a gut-specific dysregulation of immunoglobulin levels.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom,2Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Joseph Tang
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Ahmed H. Elramli
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom,3Department of Basic Medical Sciences, Faculty of Dentistry, University of Benghazi, Benghazi, Libya
| | - Jonathan M. Williams
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom,4Pathobiology and Population Sciences, The Royal
Veterinary College, Hatfield, United Kingdom
| | - Nitika Gupta
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Felix I. Ikuomola
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | | | - Mohammad T. Alam
- 6Warwick Medical School, Bioinformatics RTP, University of Warwick, Coventry, United Kingdom,7Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Juan R. Hernández-Fernaud
- 6Warwick Medical School, Bioinformatics RTP, University of Warwick, Coventry, United Kingdom,8Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| | - Jorge H. Caamaño
- 9College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chris S. Probert
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Werner Muller
- 10Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Carrie A. Duckworth
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - D. Mark Pritchard
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
31
|
Pond KW, Morris JM, Alkhimenok O, Varghese RP, Cabel CR, Ellis NA, Chakrabarti J, Zavros Y, Merchant JL, Thorne CA, Paek AL. Live-cell imaging in human colonic monolayers reveals ERK waves limit the stem cell compartment to maintain epithelial homeostasis. eLife 2022; 11:e78837. [PMID: 36094159 PMCID: PMC9499537 DOI: 10.7554/elife.78837] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/11/2022] [Indexed: 11/13/2022] Open
Abstract
The establishment and maintenance of different cellular compartments in tissues is a universal requirement across all metazoans. Maintaining the correct ratio of cell types in time and space allows tissues to form patterned compartments and perform complex functions. Patterning is especially evident in the human colon, where tissue homeostasis is maintained by stem cells in crypt structures that balance proliferation and differentiation. Here, we developed a human 2D patient derived organoid screening platform to study tissue patterning and kinase pathway dynamics in single cells. Using this system, we discovered that waves of ERK signaling induced by apoptotic cells play a critical role in maintaining tissue patterning and homeostasis. If ERK is activated acutely across all cells instead of in wave-like patterns, then tissue patterning and stem cells are lost. Conversely, if ERK activity is inhibited, then stem cells become unrestricted and expand dramatically. This work demonstrates that the colonic epithelium requires coordinated ERK signaling dynamics to maintain patterning and tissue homeostasis. Our work reveals how ERK can antagonize stem cells while supporting cell replacement and the function of the gut.
Collapse
Affiliation(s)
- Kelvin W Pond
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
- Department of Molecular and Cellular Biology, The University of ArizonaTucsonUnited States
- University of Arizona Cancer CenterTucsonUnited States
| | - Julia M Morris
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
| | - Olga Alkhimenok
- Department of Molecular and Cellular Biology, The University of ArizonaTucsonUnited States
| | - Reeba P Varghese
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
- Cancer Biology Graduate Interdisciplinary Program, University of ArizonaTucsonUnited States
| | - Carly R Cabel
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
- Cancer Biology Graduate Interdisciplinary Program, University of ArizonaTucsonUnited States
| | - Nathan A Ellis
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
- University of Arizona Cancer CenterTucsonUnited States
| | - Jayati Chakrabarti
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
| | - Yana Zavros
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
- University of Arizona Cancer CenterTucsonUnited States
| | | | - Curtis A Thorne
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
- University of Arizona Cancer CenterTucsonUnited States
| | - Andrew L Paek
- Department of Molecular and Cellular Biology, The University of ArizonaTucsonUnited States
| |
Collapse
|
32
|
Thanki KK, Johnson P, Higgins EJ, Maskey M, Phillips C, Dash S, Almenas FA, Govar AA, Tian B, Villéger R, Beswick E, Wang R, Szabo C, Chao C, Pinchuk IV, Hellmich MR, Módis K. Deletion of cystathionine-γ-lyase in bone marrow-derived cells promotes colitis-associated carcinogenesis. Redox Biol 2022; 55:102417. [PMID: 35933902 PMCID: PMC9357841 DOI: 10.1016/j.redox.2022.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 07/17/2022] [Indexed: 11/24/2022] Open
Abstract
Ulcerative colitis (UC) is characterized by widespread relapsing inflammation of the colonic mucosa. Colitis-associated cancer (CAC) is one of the most serious complications of a prolonged history of UC. Hydrogen sulfide (H2S) has emerged as an important physiological mediator of gastrointestinal homeostasis, limiting mucosal inflammation and promoting tissue healing in response to injury. Inhibition of cystathionine-γ-lyase (CSE)-dependent H2S production in animal models of UC has been shown to exacerbate colitis and delay tissue repair. It is unknown whether CSE plays a role in CAC, or the downregulation of CSE expression and/or activity promotes CAC development. In humans, we observed a significant decrease in CSE expression in colonic biopsies from patients with UC. Using the dextran sodium sulfate (DSS) model of epithelium injury-induced colitis and global CSE KO mouse strain, we demonstrated that CSE is critical in limiting mucosal inflammation and stimulating epithelial cell proliferation in response to injury. In vitro studies showed that CSE activity stimulates epithelial cell proliferation, basal and cytokine-stimulated cell migration, as well as cytokine regulation of transepithelial permeability. In the azoxymethane (AOM)/DSS model of CAC, the loss of CSE expression accelerated both the development and progression of CAC. The increased tumor multiplicity and severity of CAC observed in CSE-KO mice were associated with reduced levels of mucosal IL-10 expression and increased levels of IL-6. Restoring CSE expression in bone marrow (BM) cells of CSE-KO mice through reciprocal BM transplantation raised mucosal IL-10 expression, decreased IL-6 level, and reduced the number of aberrant crypt foci and tumors in AOM/DSS-treated mice. These studies demonstrate that CSE expression in BM cells plays a critical role in suppressing CAC in mice. Furthermore, the data suggest that the inhibitory effects of CSE on the development of CAC are due, in part, to the modulation of mucosal pro-and anti-inflammatory cytokine expression.
Collapse
Affiliation(s)
- Ketan K Thanki
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| | - Paul Johnson
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| | - Edward J Higgins
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| | - Manjit Maskey
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| | - Ches'Nique Phillips
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| | - Swetaleena Dash
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | | - Bing Tian
- Department of Internal Medicine, University of Texas Medical, Galveston, TX, USA.
| | - Romain Villéger
- Department of Internal Medicine, University of Texas Medical, Galveston, TX, USA.
| | - Ellen Beswick
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| | - Rui Wang
- Department of Biology, York University, Toronto, ON, Canada.
| | - Csaba Szabo
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Celia Chao
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| | - Irina V Pinchuk
- Department of Internal Medicine, University of Texas Medical, Galveston, TX, USA.
| | - Mark R Hellmich
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| | - Katalin Módis
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
33
|
Ferguson N, Cogswell A, Barker E. Contribution of Innate Lymphoid Cells in Supplementing Cytokines Produced by CD4 + T Cells During Acute and Chronic SIV Infection of the Colon. AIDS Res Hum Retroviruses 2022; 38:709-725. [PMID: 35459417 PMCID: PMC9514600 DOI: 10.1089/aid.2022.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
HIV/SIV (simian immunodeficiency virus) infection leads to a loss of CD4+ T helper (Th) cells in number and function that begins during the acute phase and persists through the chronic phase of infection. In particular, there is a drastic decrease of Th17 and Th22 cells in the HIV/SIV-infected gastrointestinal (GI) tract as a source of interleukin (IL)-17 and IL-22. These cytokines are vital in the immune response to extracellular pathogens and maintenance of the GI tract. However, innate lymphoid cells (ILCs) are a source of IL-17 and IL-22 during the early stages of an immune response in mucosal tissue and remain vital cytokine producers when the immune response is persistent. Here, we wanted to determine whether ILCs are a source of IL-17 and IL-22 in the SIV-infected colon and could compensate for the loss of Th17 and Th22 cells. As a control, we evaluated the frequency and number of ILCs expressing interferon-gamma (IFNγ) and tumor necrosis factor-alpha (TNFα). We determined the frequency and number of cytokine expressing ILC subsets and T cell subsets within leukocytes from the colons of uninfected as well as acute and chronic SIV-infected colons without in vitro mitogenic stimulation. In the present study, we find that: (1) the frequency of IL-22, IFNγ, and TNFα but not IL-17 producing ILCs is increased in the acutely infected colon and remains high during the chronically infected colon relative to cytokine expressing ILCs in the uninfected colon, (2) ILCs are a significant source of IL-22, IFNγ, and TNFα but not IL-17 when CD4+ T lymphocytes in the gut lose their capacity to secrete these cytokines during SIV infection, and (3) the changes in the cytokines expressed by ILCs relative to CD4+ T cells in the infected colon were not due to increases in the frequency or number of ILCs in relation to T lymphocytes found in the tissue.
Collapse
Affiliation(s)
- Natasha Ferguson
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Andrew Cogswell
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Edward Barker
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
34
|
Liu M, Wang L, Huang B, Lu Q, Liu R. 3,4-Dihydroxyphenylacetic acid ameliorates gut barrier dysfunction via regulation of MAPK-MLCK pathway in type 2 diabetes mice. Life Sci 2022; 305:120742. [DOI: 10.1016/j.lfs.2022.120742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 01/16/2023]
|
35
|
Fischer M, Edelblum KL. Intravital Microscopy to Visualize Murine Small Intestinal Intraepithelial Lymphocyte Migration. Curr Protoc 2022; 2:e516. [PMID: 35926140 PMCID: PMC9373685 DOI: 10.1002/cpz1.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intraepithelial lymphocytes (IELs) are critical sentinels involved in host defense and maintenance of the intestinal mucosal barrier. IELs expressing the γδ T-cell receptor provide continuous surveillance of the villous epithelium by migrating along the basement membrane and into the lateral intercellular space between adjacent enterocytes. Intravital imaging has furthered our understanding of the molecular mechanisms by which IELs navigate the epithelial compartment and interact with neighboring enterocytes at steady state and in response to infectious or inflammatory stimuli. Further, evaluating IEL migratory behavior can provide additional insight into the nature and extent of cellular interactions within the intestinal mucosa. Three protocols describe methodology to visualize small intestinal IEL motility in real time using fluorescent reporter-transgenic mice and/or fluorophore-conjugated primary antibodies and spinning-disk confocal microscopy. Using Imaris image analysis software, a fourth protocol provides a framework to analyze IEL migration and quantify lymphocyte/epithelial interactions. Together, these protocols for intravital imaging and subsequent analyses provide the basis for elucidating the spatiotemporal dynamics of mucosal immune cells and interactions with neighboring enterocytes under physiological or pathophysiological conditions. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Mouse preparation and laparotomy Support Protocol: Antibody labeling of cell surface markers Basic Protocol 2: Image acquisition by spinning-disk confocal microscopy Basic Protocol 3: 4D analysis of images.
Collapse
Affiliation(s)
- Matthew Fischer
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 205 S Orange Ave, Cancer Center G1228, Newark, NJ 07103
| | - Karen L. Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, 205 S Orange Ave, Cancer Center G1228, Newark, NJ 07103
| |
Collapse
|
36
|
Iwanaga T, Takahashi-Iwanaga H. Disposal of intestinal apoptotic epithelial cells and their fate via divergent routes. Biomed Res 2022; 43:59-72. [PMID: 35718446 DOI: 10.2220/biomedres.43.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gut epithelial cells are characterized by rapid, constant cell renewal. The disposal of aging epithelial cells around the villus tips of the small intestine occurs so regularly that it has been regarded as a consequence of well-controlled cell death, designated as apoptosis. However, the notion of live cell extrusion in the intestine has been intensively built among researchers, and the disposal processes of effete epithelial cells display species and regional differences. Chemical mediators and mechanical forces rising from surrounding cells contribute to the regulated cell replacement. Cytotoxic intraepithelial lymphocytes and lamina propria macrophages play a leading role in the selection of disposal cells and their extrusion to maintain fully the epithelial homeostasis in tandem with the dynamic reconstruction of junctional devices. Lymphocyte-mediated cell killing is predominant in the mouse and rat, while the disposal of epithelial cells in the guinea pig, monkey, and human is characterized by active phagocytosis by subepithelially gathering macrophages. The fenestrated basement membrane formed by immune cells supports their involvement and explains species differences in the disposal of epithelial cells. Via these fenestrations, macrophages and dendritic cells can engulf apoptotic epithelial cells and debris and convey substantial information to regional lymph nodes. In this review, we attempt to focus on morphological aspects concerning the apoptosis and disposal process of effete epithelial cells; in vitro or ex vivo analyses using cultured monolayer has become predominant in recent studies concerning the exfoliation of apoptotic enterocytes. Furthermore, we give attention to their species differences, which is controversial but crucial to our understanding.
Collapse
Affiliation(s)
- Toshihiko Iwanaga
- Department of Anatomy, Hokkaido University Graduate School of Medicine
| | | |
Collapse
|
37
|
Nozaki K, Maltez VI, Rayamajhi M, Tubbs AL, Mitchell JE, Lacey CA, Harvest CK, Li L, Nash WT, Larson HN, McGlaughon BD, Moorman NJ, Brown MG, Whitmire JK, Miao EA. Caspase-7 activates ASM to repair gasdermin and perforin pores. Nature 2022; 606:960-967. [PMID: 35705808 PMCID: PMC9247046 DOI: 10.1038/s41586-022-04825-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 04/29/2022] [Indexed: 12/15/2022]
Abstract
Among the caspases that cause regulated cell death, a unique function for caspase-7 has remained elusive. Caspase-3 performs apoptosis, whereas caspase-7 is typically considered an inefficient back-up. Caspase-1 activates gasdermin D pores to lyse the cell; however, caspase-1 also activates caspase-7 for unknown reasons1. Caspases can also trigger cell-type-specific death responses; for example, caspase-1 causes the extrusion of intestinal epithelial cell (IECs) in response to infection with Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium)2,3. Here we show in both organoids and mice that caspase-7-deficient IECs do not complete extrusion. Mechanistically, caspase-7 counteracts gasdermin D pores and preserves cell integrity by cleaving and activating acid sphingomyelinase (ASM), which thereby generates copious amounts of ceramide to enable enhanced membrane repair. This provides time to complete the process of IEC extrusion. In parallel, we also show that caspase-7 and ASM cleavage are required to clear Chromobacterium violaceum and Listeria monocytogenes after perforin-pore-mediated attack by natural killer cells or cytotoxic T lymphocytes, which normally causes apoptosis in infected hepatocytes. Therefore, caspase-7 is not a conventional executioner but instead is a death facilitator that delays pore-driven lysis so that more-specialized processes, such as extrusion or apoptosis, can be completed before cell death. Cells must put their affairs in order before they die.
Collapse
Affiliation(s)
- Kengo Nozaki
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Vivien I Maltez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Manira Rayamajhi
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alan L Tubbs
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph E Mitchell
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carolyn A Lacey
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Carissa K Harvest
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lupeng Li
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William T Nash
- Department of Medicine, Division of Nephrology and the Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Heather N Larson
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Benjamin D McGlaughon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael G Brown
- Department of Medicine, Division of Nephrology and the Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Jason K Whitmire
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edward A Miao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
38
|
Kuo WT, Odenwald MA, Turner JR, Zuo L. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann N Y Acad Sci 2022; 1514:21-33. [PMID: 35580994 PMCID: PMC9427709 DOI: 10.1111/nyas.14798] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epithelial cells are the first line of mucosal defense. In the intestine, a single layer of epithelial cells must establish a selectively permeable barrier that supports nutrient absorption and waste secretion while preventing the leakage of potentially harmful luminal materials. Key to this is the tight junction, which seals the paracellular space and prevents unrestricted leakage. The tight junction is a protein complex established by interactions between members of the claudin, zonula occludens, and tight junction-associated MARVEL protein (TAMP) families. Claudins form the characteristic tight junction strands seen by freeze-fracture microscopy and create paracellular channels, but the functions of ZO-1 and occludin, founding members of the zonula occludens and TAMP families, respectively, are less well defined. Recent studies have revealed that these proteins have essential noncanonical (nonbarrier) functions that allow them to regulate epithelial apoptosis and proliferation, facilitate viral entry, and organize specialized epithelial structures. Surprisingly, neither is required for intestinal barrier function or overall health in the absence of exogenous stressors. Here, we provide a brief overview of ZO-1 and occludin canonical (barrier-related) functions, and a more detailed examination of their noncanonical functions.
Collapse
Affiliation(s)
- Wei-Ting Kuo
- Graduate Institute of Oral Biology, National Taiwan University, Taipei, Taiwan.,Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Li Zuo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Anhui Medical University, Hefei, China
| |
Collapse
|
39
|
Ngo PA, Neurath MF, López-Posadas R. Impact of Epithelial Cell Shedding on Intestinal Homeostasis. Int J Mol Sci 2022; 23:ijms23084160. [PMID: 35456978 PMCID: PMC9027054 DOI: 10.3390/ijms23084160] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
The gut barrier acts as a first line of defense in the body, and plays a vital role in nutrition and immunoregulation. A layer of epithelial cells bound together via intercellular junction proteins maintains intestinal barrier integrity. Based on a tight equilibrium between cell extrusion and cell restitution, the renewal of the epithelium (epithelial turnover) permits the preservation of cell numbers. As the last step within the epithelial turnover, cell shedding occurs due to the pressure of cell division and migration from the base of the crypt. During this process, redistribution of tight junction proteins enables the sealing of the epithelial gap left by the extruded cell, and thereby maintains barrier function. Disturbance in cell shedding can create transient gaps (leaky gut) or cell accumulation in the epithelial layer. In fact, numerous studies have described the association between dysregulated cell shedding and infection, inflammation, and cancer; thus epithelial cell extrusion is considered a key defense mechanism. In the gastrointestinal tract, altered cell shedding has been observed in mouse models of intestinal inflammation and appears as a potential cause of barrier loss in human inflammatory bowel disease (IBD). Despite the relevance of this process, there are many unanswered questions regarding cell shedding. The investigation of those mechanisms controlling cell extrusion in the gut will definitely contribute to our understanding of intestinal homeostasis. In this review, we summarized the current knowledge about intestinal cell shedding under both physiological and pathological circumstances.
Collapse
Affiliation(s)
- Phuong A. Ngo
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
40
|
Managlia E, Yan X, De Plaen IG. Intestinal Epithelial Barrier Function and Necrotizing Enterocolitis. NEWBORN 2022; 1:32-43. [PMID: 35846894 PMCID: PMC9286028 DOI: 10.5005/jp-journals-11002-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality in premature infants. NEC is characterized by intestinal tissue inflammation and necrosis. The intestinal barrier is altered in NEC, which potentially contributes to its pathogenesis by promoting intestinal bacterial translocation and stimulating the inflammatory response. In premature infants, many components of the intestinal barrier are immature. This article reviews the different components of the intestinal barrier and how their immaturity contributes to intestinal barrier dysfunction and NEC.
Collapse
Affiliation(s)
- Elizabeth Managlia
- Division of Neonatology, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois, United States
| | - Xiaocai Yan
- Division of Neonatology, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois, United States
| | - Isabelle G De Plaen
- Division of Neonatology, Department of Pediatrics, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States; Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann and Robert H Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
41
|
Protective Effects of Melatonin and Misoprostol against Experimentally Induced Increases in Intestinal Permeability in Rats. Int J Mol Sci 2022; 23:ijms23062912. [PMID: 35328333 PMCID: PMC8950185 DOI: 10.3390/ijms23062912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 01/27/2023] Open
Abstract
Intestinal mucosal barrier dysfunction caused by disease and/or chemotherapy lacks an effective treatment, which highlights a strong medical need. Our group has previously demonstrated the potential of melatonin and misoprostol to treat increases in intestinal mucosal permeability induced by 15-min luminal exposure to a surfactant, sodium dodecyl sulfate (SDS). However, it is not known which luminal melatonin and misoprostol concentrations are effective, and whether they are effective for a longer SDS exposure time. The objective of this single-pass intestinal perfusion study in rats was to investigate the concentration-dependent effect of melatonin and misoprostol on an increase in intestinal permeability induced by 60-min luminal SDS exposure. The cytoprotective effect was investigated by evaluating the intestinal clearance of 51Cr-labeled EDTA in response to luminal SDS as well as a histological evaluation of the exposed tissue. Melatonin at both 10 and 100 µM reduced SDS-induced increase in permeability by 50%. Misoprostol at 1 and 10 µM reduced the permeability by 50 and 75%, respectively. Combination of the two drugs at their respective highest concentrations had no additive protective effect. These in vivo results support further investigations of melatonin and misoprostol for oral treatments of a dysfunctional intestinal barrier.
Collapse
|
42
|
Hu MD, Golovchenko NB, Burns GL, Nair PM, Kelly TJ, Agos J, Irani MZ, Soh WS, Zeglinski MR, Lemenze A, Bonder EM, Sandrock I, Prinz I, Granville DJ, Keely S, Watson AJ, Edelblum KL. γδ Intraepithelial Lymphocytes Facilitate Pathological Epithelial Cell Shedding Via CD103-Mediated Granzyme Release. Gastroenterology 2022; 162:877-889.e7. [PMID: 34861219 PMCID: PMC8881348 DOI: 10.1053/j.gastro.2021.11.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Excessive shedding of apoptotic enterocytes into the intestinal lumen is observed in inflammatory bowel disease and is correlated with disease relapse. Based on their cytolytic capacity and surveillance behavior, we investigated whether intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) are actively involved in the shedding of enterocytes into the lumen. METHODS Intravital microscopy was performed on GFP γδ T cell reporter mice treated with intraperitoneal lipopolysaccharide (10 mg/kg) for 90 minutes to induce tumor necrosis factor-mediated apoptosis. Cell shedding in various knockout or transgenic mice in the presence or absence of blocking antibody was quantified by immunostaining for ZO-1 funnels and cleaved caspase-3 (CC3). Granzyme A and granzyme B release from ex vivo-stimulated γδ IELs was quantified by enzyme-linked immunosorbent assay. Immunostaining for γδ T cell receptor and CC3 was performed on duodenal and ileal biopsies from controls and patients with Crohn's disease. RESULTS Intravital microscopy of lipopolysaccharide-treated mice revealed that γδ IELs make extended contact with shedding enterocytes. These prolonged interactions require CD103 engagement by E-cadherin, and CD103 knockout or blockade significantly reduced lipopolysaccharide-induced shedding. Furthermore, we found that granzymes A and B, but not perforin, are required for cell shedding. These extracellular granzymes are released by γδ IELs both constitutively and after CD103/E-cadherin ligation. Moreover, we found that the frequency of γδ IEL localization to CC3-positive enterocytes is increased in Crohn's disease biopsies compared with healthy controls. CONCLUSIONS Our results uncover a previously unrecognized role for γδ IELs in facilitating tumor necrosis factor-mediated shedding of apoptotic enterocytes via CD103-mediated extracellular granzyme release.
Collapse
Affiliation(s)
- Madeleine D. Hu
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Natasha B. Golovchenko
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Grace L. Burns
- NHMRC Centre of Research Excellence in Digestive Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Prema M. Nair
- NHMRC Centre of Research Excellence in Digestive Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Thomas J. Kelly
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jonathan Agos
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Mudar Zand Irani
- NHMRC Centre of Research Excellence in Digestive Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Wai Sinn Soh
- NHMRC Centre of Research Excellence in Digestive Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Matthew R. Zeglinski
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 2B5, Canada
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Edward M. Bonder
- Department of Biological Sciences, Rutgers University – The State University of New Jersey, Newark, NJ, 07102, USA
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - David J. Granville
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 2B5, Canada
| | - Simon Keely
- NHMRC Centre of Research Excellence in Digestive Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Alastair J.M. Watson
- Department of Gastroenterology and Gut Biology, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Karen L. Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| |
Collapse
|
43
|
Churchill MJ, Mitchell PS, Rauch I. Epithelial Pyroptosis in Host Defense. J Mol Biol 2022; 434:167278. [PMID: 34627788 PMCID: PMC10010195 DOI: 10.1016/j.jmb.2021.167278] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 12/28/2022]
Abstract
Pyroptosis is a lytic form of cell death that is executed by a family of pore-forming proteins called gasdermins (GSDMs). GSDMs are activated upon proteolysis by host proteases including the proinflammatory caspases downstream of inflammasome activation. In myeloid cells, GSDM pore formation serves two primary functions in host defense: the selective release of processed cytokines to initiate inflammatory responses, and cell death, which eliminates a replicative niche of the pathogen. Barrier epithelia also undergo pyroptosis. However, unique mechanisms are required for the removal of pyroptotic epithelial cells to maintain epithelial barrier integrity. In the following review, we discuss the role of epithelial inflammasomes and pyroptosis in host defense against pathogens. We use the well-established role of inflammasomes in intestinal epithelia to highlight principles of epithelial pyroptosis in host defense of barrier tissues, and discuss how these principles might be shared or distinctive across other epithelial sites.
Collapse
Affiliation(s)
- Madeline J Churchill
- Department of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, OR, USA
| | | | - Isabella Rauch
- Department of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
44
|
Pongkorpsakol P, Satianrapapong W, Wongkrasant P, Steinhagen PR, Tuangkijkul N, Pathomthongtaweechai N, Muanprasat C. Establishment of Intestinal Epithelial Cell Monolayers and Their Use in Calcium Switch Assay for Assessment of Intestinal Tight Junction Assembly. Methods Mol Biol 2022; 2367:273-290. [PMID: 33861461 DOI: 10.1007/7651_2021_347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Intestinal barrier function relies primarily on the assembly and integrity of tight junctions, which forms a size-selective barrier. This barrier restricts paracellular movement of solutes in various types of epithelia. Of note, extracellular Ca2+ concentration affects tight junction assembly. Therefore, the removal and re-addition of Ca2+ into cell culture medium of cultured intestinal epithelial cells causes destabilization and reassembly of tight junction to membrane periphery near apical surface, respectively. Based on this principle, the Ca2+-switch assay was established to investigate tight junction assembly in fully differentiated intestinal epithelial cells. This chapter provides a stepwise protocol for culture of intestinal epithelial cell monolayers using T84 cell line as an in vitro model and the Ca2+-switch assay for evaluating tight junction assembly.
Collapse
Affiliation(s)
- Pawin Pongkorpsakol
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand.
| | - Wilasinee Satianrapapong
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Peter R Steinhagen
- Department of Hepatology and Gastroenterology, Charité Medical School, Berlin, Germany
| | - Nuttha Tuangkijkul
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| |
Collapse
|
45
|
Gjorevski N, Nikolaev M, Brown TE, Mitrofanova O, Brandenberg N, DelRio FW, Yavitt FM, Liberali P, Anseth KS, Lutolf MP. Tissue geometry drives deterministic organoid patterning. Science 2022; 375:eaaw9021. [PMID: 34990240 DOI: 10.1126/science.aaw9021] [Citation(s) in RCA: 159] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epithelial organoids are stem cell–derived tissues that approximate aspects of real organs, and thus they have potential as powerful tools in basic and translational research. By definition, they self-organize, but the structures formed are often heterogeneous and irreproducible, which limits their use in the lab and clinic. We describe methodologies for spatially and temporally controlling organoid formation, thereby rendering a stochastic process more deterministic. Bioengineered stem cell microenvironments are used to specify the initial geometry of intestinal organoids, which in turn controls their patterning and crypt formation. We leveraged the reproducibility and predictability of the culture to identify the underlying mechanisms of epithelial patterning, which may contribute to reinforcing intestinal regionalization in vivo. By controlling organoid culture, we demonstrate how these structures can be used to answer questions not readily addressable with the standard, more variable, organoid models.
Collapse
Affiliation(s)
- N Gjorevski
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - M Nikolaev
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - T E Brown
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.,BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - O Mitrofanova
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - N Brandenberg
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - F W DelRio
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - F M Yavitt
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.,BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - P Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - K S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.,BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - M P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, School of Basic Science (SB), EPFL, Lausanne, Switzerland
| |
Collapse
|
46
|
Crifo B, MacNaughton WK. Cells and mediators of inflammation as effectors of epithelial repair in the inflamed intestine. Am J Physiol Gastrointest Liver Physiol 2022; 322:G169-G182. [PMID: 34878937 DOI: 10.1152/ajpgi.00194.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mucosal and histological healing have become the gold standards for assessing the efficacy of therapy in patients living with inflammatory bowel diseases (IBD). Despite these being the accepted goals in therapy, the mechanisms that underlie the healing of the mucosa after an inflammatory insult are not well understood, and many patients fail to meet this therapeutic endpoint. Here we review the emerging evidence that mediators (e.g., prostaglandins, cytokines, proteases, reactive oxygen, and nitrogen species) and innate immune cells (e.g., neutrophils and monocytes/macrophages), that are involved in the initiation of the inflammatory response, are also key players in the mechanisms underlying mucosal healing to resolve chronic inflammation in the colon. The dual function mediators comprise an inflammation/repair program that returns damaged tissue to homeostasis. Understanding details of the dual mechanisms of these mediators and cells may provide the basis for the development of drugs that can help to stimulate epithelial repair in patients affected by IBD.
Collapse
Affiliation(s)
- Bianca Crifo
- Department of Physiology and Pharmacology, Inflammation Research Network and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K MacNaughton
- Department of Physiology and Pharmacology, Inflammation Research Network and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
47
|
Cheng Y, Hall TR, Xu X, Yung I, Souza D, Zheng J, Schiele F, Hoffmann M, Mbow ML, Garnett JP, Li J. Targeting uPA-uPAR interaction to improve intestinal epithelial barrier integrity in inflammatory bowel disease. EBioMedicine 2021; 75:103758. [PMID: 34933179 PMCID: PMC8688562 DOI: 10.1016/j.ebiom.2021.103758] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022] Open
Abstract
Background Loss of intestinal epithelial barrier integrity is a critical component of Inflammatory Bowel Disease (IBD) pathogenesis. Co-expression regulation of ligand-receptor pairs in IBD mucosa has not been systematically studied. Targeting ligand-receptor pairs which are induced in IBD mucosa and function in intestinal epithelial barrier integrity may provide novel therapeutics for IBD. Methods We performed transcriptomic meta-analysis on public IBD datasets combined with cell surface protein-protein-interaction (PPI) databases. We explored primary human/mouse intestinal organoids and Caco-2 cells for expression and function studies of uPA-uPAR (prime hits from the meta-analysis). Epithelial barrier integrity was measured by Trans-Epithelial Electrical Resistance (TEER), FITC-Dextran permeability and tight junction assessment. Genetic (CRISPR, siRNA and KO mice) and pharmacological (small molecules, neutralizing antibody and peptide inhibitors) approaches were applied. Mice deficient of uPAR were studied using the Dextran Sulfate Sodium (DSS)-induced colitis model. Findings The IBD ligand-receptor meta-analysis led to the discovery of a coordinated upregulation of uPA and uPAR in IBD mucosa. Both genes were significantly upregulated during epithelial barrier breakdown in primary intestinal organoids and decreased during barrier formation. Genetic inhibition of uPAR or uPA, or pharmacologically blocking uPA-uPAR interaction protects against cytokine-induced barrier breakdown. Deficiency of uPAR in epithelial cells leads to enhanced EGF/EGFR signalling, a known regulator of epithelial homeostasis and repair. Mice deficient of uPAR display improved intestinal barrier function in vitro and during DSS-induced colitis in vivo. Interpretation Our findings suggest that blocking uPA-uPAR interaction via pharmacological agents protects the epithelial barrier from inflammation-induced damage, indicating a potential therapeutic target for IBD. Funding The study was funded by Boehringer Ingelheim.
Collapse
Affiliation(s)
- Yang Cheng
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Tyler R Hall
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Xiao Xu
- Computational Biology Group, Discovery Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Ivy Yung
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Donald Souza
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Jie Zheng
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Felix Schiele
- Biotherapeutics Discovery, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Matthias Hoffmann
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - M Lamine Mbow
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - James P Garnett
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Jun Li
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| |
Collapse
|
48
|
Yan F, Chen W, Zhao L, Lu Q, Wang C, Liu R. Procyanidin A 1 and its digestive products prevent acrylamide-induced intestinal barrier dysfunction via the MAPK-mediated MLCK pathway. Food Funct 2021; 12:11956-11965. [PMID: 34747428 DOI: 10.1039/d1fo01918j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Procyanidins can alleviate small-intestine damage induced by acrylamide (ACR). However, little is known about whether procyanidins, after gastrointestinal digestion, can prevent ACR-induced intestinal barrier damage and the possible mechanism. Here, Caco-2 cells were differentiated into an intestinal epithelial cell monolayer membrane, which was stimulated with or without ACR in the presence or absence of procyanidin A1 (A1) and its digestive products (D-A1). Our findings show that both A1 and D-A1 significantly increased the transepithelial electrical resistance (TEER) value; decreased FITC-dextran 4 kDa (FITC-4 kDa) permeability, apoptosis and lactic dehydrogenase (LDH) release; and enhanced the expression of claudin-1, occludin and zonula occludens-1 (ZO-1) in ACR-induced Caco-2 cell monolayer membrane. In addition, A1 and D-A1 suppressed ACR-induced phosphorylation of mitogen-activated protein kinase (MAPK). Finally, A1 and D-A1 inhibited the myosin light chain kinase (MLCK) signaling pathway, thereby maintaining normal intestinal barrier functions, similar to the MLCK inhibitor in ACR-induced Caco-2 cell monolayer membrane. These findings indicate that A1 can alleviate ACR-induced intestinal barrier dysfunction via inhibiting the MAPK/MLCK signaling pathway, and it still has excellent inhibitory effects after digestion.
Collapse
Affiliation(s)
- Fangfang Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Wanbing Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Li Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Chengming Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.,Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, P. R. China
| |
Collapse
|
49
|
Identifying key regulators of the intestinal stem cell niche. Biochem Soc Trans 2021; 49:2163-2176. [PMID: 34665221 PMCID: PMC8589435 DOI: 10.1042/bst20210223] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
The intestinal tract is lined by a single layer of epithelium that is one of the fastest regenerating tissues in the body and which therefore requires a very active and exquisitely controlled stem cell population. Rapid renewal of the epithelium is necessary to provide a continuous physical barrier from the intestinal luminal microenvironment that contains abundant microorganisms, whilst also ensuring an efficient surface for the absorption of dietary components. Specialised epithelial cell populations are important for the maintenance of intestinal homeostasis and are derived from adult intestinal stem cells (ISCs). Actively cycling ISCs divide by a neutral drift mechanism yielding either ISCs or transit-amplifying epithelial cells, the latter of which differentiate to become either absorptive lineages or to produce secretory factors that contribute further to intestinal barrier maintenance or signal to other cellular compartments. The mechanisms controlling ISC abundance, longevity and activity are regulated by several different cell populations and signalling pathways in the intestinal lamina propria which together form the ISC niche. However, the complexity of the ISC niche and communication mechanisms between its different components are only now starting to be unravelled with the assistance of intestinal organoid/enteroid/colonoid and single-cell imaging and sequencing technologies. This review explores the interaction between well-established and emerging ISC niche components, their impact on the intestinal epithelium in health and in the context of intestinal injury and highlights future directions and implications for this rapidly developing field.
Collapse
|
50
|
Deng Z, Yang Z, Peng J. Role of bioactive peptides derived from food proteins in programmed cell death to treat inflammatory diseases and cancer. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34694177 DOI: 10.1080/10408398.2021.1992606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bioactive peptides are specific peptide which usually contains 2-20 amino acid residues and actively exerts various functions and biological activities and ultimately affect health. Programmed cell deaths are some styles of cell death discovered in recent years, which is the key to tissue development and balance, eliminating excess, damaged or aging cells. More importantly, programmed cell death is a potential way to treat inflammatory diseases and cancer. In this review, through screening references from 2015 to present, we introduce the effect of bioactive peptides derived from food proteins on inflammatory diseases or cancer through regulating programmed cell deaths, including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis. And this review also introduces the targets of these bioactive peptides to regulate programmed cell death. The purpose of this review is to help to expand the prospective applications of bioactive peptides in the field of inflammatory disease and cancer to provide some guidance.
Collapse
Affiliation(s)
- Zhao Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|