1
|
Zaghmi A, Aybay E, Jiang L, Shang M, Steinmetz‐Späh J, Wermeling F, Kogner P, Korotkova M, Östling P, Jakobsson P, Seashore‐Ludlow B, Larsson K. High-content screening of drug combinations of an mPGES-1 inhibitor in multicellular tumor spheroids leads to mechanistic insights into neuroblastoma chemoresistance. Mol Oncol 2024; 18:317-335. [PMID: 37519014 PMCID: PMC10850797 DOI: 10.1002/1878-0261.13502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023] Open
Abstract
High-throughput drug screening enables the discovery of new anticancer drugs. Although monolayer cell cultures are commonly used for screening, their limited complexity and translational efficiency require alternative models. Three-dimensional cell cultures, such as multicellular tumor spheroids (MCTS), mimic tumor architecture and offer promising opportunities for drug discovery. In this study, we developed a neuroblastoma MCTS model for high-content drug screening. We also aimed to decipher the mechanisms underlying synergistic drug combinations in this disease model. Several agents from different therapeutic categories and with different mechanisms of action were tested alone or in combination with selective inhibition of prostaglandin E2 by pharmacological inhibition of microsomal prostaglandin E synthase-1 (mPGES-1). After a systematic investigation of the sensitivity of individual agents and the effects of pairwise combinations, GFP-transfected MCTS were used in a confirmatory screen to validate the hits. Finally, inhibitory effects on multidrug resistance proteins were examined. In summary, we demonstrate how MCTS-based high-throughput drug screening has the potential to uncover effective drug combinations and provide insights into the mechanism of synergy between an mPGES-1 inhibitor and chemotherapeutic agents.
Collapse
Affiliation(s)
- Ahlem Zaghmi
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Erdem Aybay
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Long Jiang
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Mingmei Shang
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Julia Steinmetz‐Späh
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Fredrik Wermeling
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
| | - Marina Korotkova
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Päivi Östling
- Department of Oncology‐Pathology, Science for Life LaboratoryKarolinska InstitutetStockholmSweden
| | - Per‐Johan Jakobsson
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Brinton Seashore‐Ludlow
- Department of Oncology‐Pathology, Science for Life LaboratoryKarolinska InstitutetStockholmSweden
| | - Karin Larsson
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| |
Collapse
|
2
|
Silva JA, Colquhoun A. Effect of Polyunsaturated Fatty Acids on Temozolomide Drug-Sensitive and Drug-Resistant Glioblastoma Cells. Biomedicines 2023; 11:biomedicines11030779. [PMID: 36979758 PMCID: PMC10045395 DOI: 10.3390/biomedicines11030779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Glioblastomas (GBMs) are notoriously difficult to treat, and the development of multiple drug resistance (MDR) is common during the course of the disease. The polyunsaturated fatty acids (PUFAs) gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have been reported to improve MDR in several tumors including breast, bladder, and leukaemia. However, the effects of PUFAs on GBM cell MDR are poorly understood. The present study investigated the effects of PUFAs on cellular responses to temozolomide (TMZ) in U87MG cells and the TMZ-resistant (TMZR) cells derived from U87MG. Cells were treated with PUFAs in the absence or presence of TMZ and dose–response, viable cell counting, gene expression, Western blotting, flow cytometry, gas chromatography-mass spectrometry (GCMS), and drug efflux studies were performed. The development of TMZ resistance caused an increase in ABC transporter ABCB1 and ABCC1 expression. GLA-, EPA-, and DHA-treated cells had altered fatty acid composition and accumulated lipid droplets in the cytoplasm. The most significant reduction in cell growth was seen for the U87MG and TMZR cells in the presence of EPA. GLA and EPA caused more significant effects on ABC transporter expression than DHA. GLA and EPA in combination with TMZ caused significant reductions in rhodamine 123 efflux from U87MG cells but not from TMZR cells. Overall, these findings support the notion that PUFAs can modulate ABC transporters in GBM cells.
Collapse
|
3
|
Guo X, Tu P, Zhu L, Cheng C, Jiang W, Du C, Wang X, Qiu X, Luo Y, Wan L, Tang R, Ran H, Wang Z, Ren J. Nanoenabled Tumor Energy Metabolism Disorder via Sonodynamic Therapy for Multidrug Resistance Reversal and Metastasis Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:309-326. [PMID: 36576435 DOI: 10.1021/acsami.2c16278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cancer multidrug resistance (MDR) is an important reason that results in chemotherapy failure. As a main mechanism of MDR, overexpressed P-glycoprotein (P-gp) utilizes adenosine triphosphate (ATP) to actively pump chemotherapy drugs out of cells. In addition, metabolic reprogramming of drug-resistant tumor cells (DRTCs) exacerbates the specific hypoxic microenvironment and promotes tumor metastasis and recurrence. Therefore, we propose a novel sonodynamic therapy (SDT) paradigm to induce energy metabolism disorder and drug resistance change of DRTCs. A US-controlled "Nanoenabled Energy Metabolism Jammer" (TL@HPN) is designed using perfluoropentane (PFP) adsorbing oxygen in the core, and a targeting peptide (CGNKRTR) is attached to the liposome as the delivery carrier shell to incorporate hematoporphyrin monomethyl ether (HMME) and paclitaxel (PTX). The TL@HPN with ultrasonic/photoacoustic imaging (PAI/USI) precisely controlled the release of drugs and oxygen after being triggered by ultrasound (US), which attenuated the hypoxic microenvironment. SDT boosted the reactive oxygen species (ROS) content in tumor tissues, preferentially inducing mitochondrial apoptosis and maximizing immunogenic cell death (ICD). Persistently elevated oxidative stress levels inhibited ATP production and downregulated P-gp expression by disrupting the redox balance and electron transfer of the respiratory chain. We varied the effect of TL@HPN combined with PD-1/PD-L1 to activate autoimmunity and inhibit tumor metastasis, providing a practical strategy for expanding the use of SDT-mediated tumor energy metabolism.
Collapse
Affiliation(s)
- Xun Guo
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Peng Tu
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Leilei Zhu
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Department of Ultrasound, Chongqing General Hospital, Chongqing 401147, P. R. China
| | - Chen Cheng
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Department of Ultrasound, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing 402760, P. R. China
| | - Weixi Jiang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Chier Du
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xiaoting Wang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xiaoling Qiu
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Department of Intensive Care Unit, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Yuanli Luo
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Li Wan
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Health Management Center & Physical Examination Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Rui Tang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Haitao Ran
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Zhigang Wang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Jianli Ren
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| |
Collapse
|
4
|
Di Vito Nolfi M, Vecchiotti D, Flati I, Verzella D, Di Padova M, Alesse E, Capece D, Zazzeroni F. EV-Mediated Chemoresistance in the Tumor Microenvironment: Is NF-κB a Player? Front Oncol 2022; 12:933922. [PMID: 35814425 PMCID: PMC9257640 DOI: 10.3389/fonc.2022.933922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Drug resistance is a major impediment to patient survival and remains the primary cause of unsuccessful cancer therapy. Drug resistance occurs in many tumors and is frequently induced by chemotherapy which triggers a defensive response both in cancerous and cancer-associated cells that constitute the tumor microenvironment (TME). Cell to cell communication within the TME is often mediated by extracellular vesicles (EVs) which carry specific tumor-promoting factors able to activate survival pathways and immune escape mechanisms, thus sustaining tumor progression and therapy resistance. NF-κB has been recognized as a crucial player in this context. NF-κB activation is involved in EVs release and EVs, in turn, can trigger NF-κB pathway activation in specific contexts, based on secreting cytotype and their specific delivered cargo. In this review, we discuss the role of NF-κB/EVs interplay that sustain chemoresistance in the TME by focusing on the molecular mechanisms that underlie inflammation, EVs release, and acquired drug resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daria Capece
- *Correspondence: Francesca Zazzeroni, ; Daria Capece,
| | | |
Collapse
|
5
|
Yang S, An J, Park S, Lee J, Chae H, Lee K, Song W, Youn H. Enhanced expression of cyclooxygenase-2 related multi-drug resistance gene in melanoma and osteosarcoma cell lines by TSG-6 secreted from canine adipose-derived mesenchymal stem/stromal cells. Vet Med Sci 2021; 7:968-978. [PMID: 33570264 PMCID: PMC8136926 DOI: 10.1002/vms3.442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/09/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multiple drug resistance (MDR) of cancer cells is the main cause of intrinsic or acquired desensitization to chemotherapy in many cancers. A number of studies have found high expression of COX-2 to be a factor for expression of MDR gene in several cancer. Furthermore, adipose tissue derived mesenchymal stem/stromal cells (ADSC) have been found to increase cyclo-oxygenase-2 (COX-2) expression in some tumour cells. The mechanism for this, however, is not yet clear and needs further study. OBJECTIVE The purpose of this study was to determine whether tumour necrosis factor-alpha stimulated gene/protein 6 (TSG-6) secreted from ADSCs is associated with an increase in MDR genes by inducing COX-2 gene expression in melanoma and osteosarcoma cell lines. METHODS ADSCs were transfected with TSG-6 siRNA or Control RNA respected, and cancer cell line were transfected with COX-2 siRNA or Control RNA respected. Using trans well coculture system, the interactions of ADSCs with tumour cells were investigated. RESULTS Increased COX-2 expression was observed in cancer cell co-cultured with ADSCs. Additionally, we identified that COX-2 expression was related to drug resistance genes (P-glycoprotein, multidrug resistance-associated protein). Transfecting canine ADSCs with small interfering RNA, TSG-6 secreted from ADSCs was found to be a major factor in the regulation of COX-2 expression and drug resistance genes in osteosarcoma and melanoma cell lines. CONCLUSION TSG-6 mediated COX-2 up-regulation is a possible mechanism of chemoresistance development induced by ADSCs. These findings provide better understanding about the mechanism associated with ADSC-induced chemoresistance in cancer.
Collapse
Affiliation(s)
- Se‐Jin Yang
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Ju‐Hyun An
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Su‐Min Park
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Jeong‐Hwa Lee
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Hyung‐Kyu Chae
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Kyung‐Mi Lee
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Woo‐Jin Song
- Department of Veterinary Internal MedicineCollege of Veterinary MedicineJeju National UniversityJeju‐SiKorea
| | - Hwa‐Young Youn
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
6
|
Jeong YS, Lam TG, Jeong S, Ahn SG. Metformin Derivative HL156A Reverses Multidrug Resistance by Inhibiting HOXC6/ERK1/2 Signaling in Multidrug-Resistant Human Cancer Cells. Pharmaceuticals (Basel) 2020; 13:E218. [PMID: 32872293 PMCID: PMC7560051 DOI: 10.3390/ph13090218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance is a significant clinical crisis in cancer treatment and has been linked to the cellular expression of multidrug efflux transporters. The aim of this study was to examine the effects and mechanisms of the metformin derivative HL156A on human multidrug resistance (MDR) cancer cells. Here, HL156A significantly suppressed cell growth and colony formation through G2/M phase cell cycle arrest in MDR cancer cells. HL156A also reduced the wound closure rate and cell migration and induced caspase-3-dependent apoptosis. We found that HL156A inhibited the expression of MDR1 by inhibiting the HOXC6-mediated ERK1/2 signaling pathway and increased the sensitivity to paclitaxel or doxorubicin in MDR cells. Furthermore, HL156A significantly inhibited angiogenesis in a chicken chorioallantoic membrane (CAM) assay. These results suggest the potential of the metformin derivative HL156A as a candidate therapeutic modality for the treatment of human multidrug-resistant cancers.
Collapse
Affiliation(s)
| | | | - Seho Jeong
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Korea; (Y.S.J.); (T.G.L.); (S.J.)
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Korea; (Y.S.J.); (T.G.L.); (S.J.)
| |
Collapse
|
7
|
Guo W, Dong W, Li M, Shen Y. Mitochondria P-glycoprotein confers paclitaxel resistance on ovarian cancer cells. Onco Targets Ther 2019; 12:3881-3891. [PMID: 31190887 PMCID: PMC6529025 DOI: 10.2147/ott.s193433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/27/2019] [Indexed: 01/01/2023] Open
Abstract
Background: Subcellular expression of P-glycoprotein (P-gp) may play an essential role in multidrug resistance (MDR) in many cancers. However, the mitochondria expression and functional activity of P-gp in ovarian cancer are still unclear. In this study, we isolated mitochondria from A2780 cell line and its paclitaxel-resistant subline A2780T and investigated the expression and function of mitochondria P-gp. Methods: Immunocytochemistry was used to evaluate P-gp expression and subcellular localization in cancer cells. Immunofluorescence and laser confocal microscopy were used to detect the co-localization of P-gp and mitochondria both in ovarian cancer tissues and in cell lines. Western blotting (WB), transmission electron microscopy and JC-1 kit were used to evaluate the purity, integrity and activity of the isolated mitochondria. P-gp expression in the whole cell and the isolated mitochondria was evaluated by WB. Flow cytometry was used to evaluate the efflux function of mitochondria P-gp. Results: P-gp expression was detected at the membrane, cytoplasm and nuclei of the A2780T cells, but not in the A2780 cells. Co-localization of P-gp and mitochondria was observed in the A2780T cell line and ovarian cancer tissues, but not in A2780 cells. The purity, integration and activity of the isolated mitochondria are high. P-gp was highly expressed in the A2780T cells and the isolated mitochondria, but was not found in A2780 cells. Rho123 efflux rate was significantly increased in isolated A2780T mitochondria compared to those in A2780 (43.2% vs 9.6%), but it was partly reversed by cyclosporin A (CsA, a P-gp inhibitor). Conclusion: P-gp is highly expressed in mitochondria of taxol-resistant ovarian cancer cells and ovarian cancer tissues and mediates the drug efflux, which probably protect cancer cells from chemotherapy.
Collapse
Affiliation(s)
- Weina Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weihong Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
8
|
Liu J, Chang B, Li Q, Xu L, Liu X, Wang G, Wang Z, Wang L. Redox-Responsive Dual Drug Delivery Nanosystem Suppresses Cancer Repopulation by Abrogating Doxorubicin-Promoted Cancer Stemness, Metastasis, and Drug Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801987. [PMID: 31139556 PMCID: PMC6446919 DOI: 10.1002/advs.201801987] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/09/2019] [Indexed: 05/15/2023]
Abstract
Chemotherapy is a major therapeutic option for cancer patients. However, its effectiveness is challenged by chemodrugs' intrinsic pathological interactions with residual cancer cells. While inducing cancer cell death, chemodrugs enhance cancer stemness, invasiveness, and drug resistance of remaining cancer cells through upregulating cyclooxygenase-2/prostaglandin-E2 (COX-2/PGE2) signaling, therefore facilitating cancer repopulation and relapse. Toward tumor eradication, it is necessary to improve chemotherapy by abrogating these chemotherapy-induced effects. Herein, redox-responsive, celecoxib-modified mesoporous silica nanoparticles with poly(β-cyclodextrin) wrapping (MSCPs) for sealing doxorubicin (DOX) are synthesized. Celecoxib, an FDA-approved COX-2 inhibitor, is employed as a structural and functional element to confer MSCPs with redox-responsiveness and COX-2/PGE2 inhibitory activity. MSCPs efficiently codeliver DOX and celecoxib into the tumor location, minimizing systemic toxicity. Importantly, through blocking chemotherapy-activated COX-2/PGE2 signaling, MSCPs drastically enhance DOX's antitumor activity by suppressing enhancement of cancer stemness and invasiveness as well as drug resistance induced by DOX-based chemotherapy in vitro. This is also remarkably achieved in three preclinical tumor models in vivo. DOX-loaded MSCPs effectively inhibit tumor repopulation by blocking COX-2/PGE2 signaling, which eliminates DOX-induced expansion of cancer stem-like cells, distant metastasis, and acquired drug resistance. Thus, this drug delivery nanosystem is capable of effectively suppressing tumor repopulation and has potential clinical translational value.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Bingcheng Chang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Qilin Li
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Luming Xu
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xingxin Liu
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Guobin Wang
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
9
|
Castro-López J, Teles M, Fierro C, Allenspach K, Planellas M, Pastor J. Pilot study: duodenal MDR1 and COX2 gene expression in cats with inflammatory bowel disease and low-grade alimentary lymphoma. J Feline Med Surg 2018; 20:759-766. [PMID: 28948903 PMCID: PMC11104148 DOI: 10.1177/1098612x17730708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objectives Multidrug resistance 1 (MDR1) encodes a protein called P-glycoprotein (P-gp), which serves as an efflux pump membrane protein implicated in intestinal homeostasis and drug resistance. Cyclooxygenase-2 (COX2) is a key enzyme in the synthesis of proinflammatory prostaglandins, tumourigenesis and in mucosal defence. Despite the importance of MDR1 and COX2, changes in their mRNA levels have not been studied in cats with inflammatory bowel disease (IBD) and low-grade alimentary lymphoma (LGAL). The present study aimed to determine the mRNA levels of MDR1 and COX2 in cats with IBD and LGAL, and to evaluate their correlation with clinical signs, histological severity and between genes. Methods Cats diagnosed with IBD (n = 20) and LGAL (n = 9) between 2008 and 2015 were included in the current study. Three healthy animals composed the healthy control cats group in which endoscopy was performed immediately before the ovariohysterectomy. All duodenal biopsy samples were obtained by endoscopy. Feline chronic enteropathy activity index was calculated for all cases. IBD histopathology was classified according to severity. MDR1 and COX2 mRNA levels were determined by absolute reverse transcriptase-quantitative real-time PCR. Results Statistically significant differences were observed for MDR1 and COX2 mRNA levels between the IBD and LGAL groups. No correlations were observed between molecular gene expression, feline chronic enteropathy activity index and histological grading for IBD, and between MDR1 and COX2 genes. However, a positive statistically significant correlation was observed between MDR1 and COX2 expression in the duodenum of cats. Conclusions and relevance MDR1 and COX2 gene expression is increased in cats with LGAL compared with cats with IBD. The control group tended to have lower values than both diseased groups. These results suggest that these genes may be involved in the pathogenesis of IBD or LGAL in cats.
Collapse
Affiliation(s)
- Jorge Castro-López
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Fundació Hospital Clínic Veterinari de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mariana Teles
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Camino Fierro
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine Ames, IA, USA
| | - Marta Planellas
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Fundació Hospital Clínic Veterinari de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Josep Pastor
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Fundació Hospital Clínic Veterinari de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
10
|
Silencing of Y-box binding protein-1 by RNA interference inhibits proliferation, invasion, and metastasis, and enhances sensitivity to cisplatin through NF-κB signaling pathway in human neuroblastoma SH-SY5Y cells. Mol Cell Biochem 2017; 433:1-12. [PMID: 28382490 DOI: 10.1007/s11010-017-3011-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/15/2017] [Indexed: 12/25/2022]
Abstract
Y-box binding protein-1 (YB-1), a member of Y-box protein family binding DNA and RNA, has been proposed as a novel marker in multiple malignant tumors and found to be associated with tumor malignancy. Neuroblastoma is an embryonal tumor arising from neuroblast cells of the autonomic nervous system, which is the most common cancer diagnosed in infants. It has been reported that YB-1 is highly expressing in various human tumors including nasopharynx, thyroid, lung, breast, colon, ovary, and prostate cancers. This study aimed to investigate the functional role of YB-1 in neuroblastoma by silencing YB-1 using RNA interference (shRNA) in neuroblastoma SH-SY5Y cells. We found that silencing of YB-1 decreased the proliferation, migration, and invasion of SH-SY5Y cells. At molecular level, inhibition of YB-1 decreased the expression level of PCNA as well as MMP-2 in neuroblastoma SH-SY5Y cells. Also, we discovered that YB-1 silencing sensitized SH-SY5Y cells to cisplatin and promoted the apoptosis induced by cisplatin due to down-regulation of multidrug resistance (MDR) 1 protein via NF-κB signaling pathway. Therefore, we consider that targeting YB-1 is promising for neuroblastoma treatment and for overcoming its cisplatin resistance in the development of new neuroblastoma therapeutic strategies.
Collapse
|
11
|
Quantitative proteomic analysis of anticancer drug RH1 resistance in liver carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:219-32. [DOI: 10.1016/j.bbapap.2015.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/26/2015] [Accepted: 11/16/2015] [Indexed: 01/18/2023]
|
12
|
Gu J, Sun R, Shen S, Yu Z. The influence of TLR4 agonist lipopolysaccharides on hepatocellular carcinoma cells and the feasibility of its application in treating liver cancer. Onco Targets Ther 2015; 8:2215-25. [PMID: 26345468 PMCID: PMC4551308 DOI: 10.2147/ott.s86536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE This study was designed to explore the influence of Toll-like receptor 4 (TLR4) agonist lipopolysaccharides (LPS) on liver cancer cell and the feasibility to perform liver cancer adjuvant therapy. METHODS Human liver cancer cell lines HepG2, H7402, and PLC/PRF/5 were taken as models, and the expression of TLRs mRNA was detected by real time-polymerase chain reaction method semiquantitatively. WST-1 method was used to detect the influence of LPS on the proliferation ability of liver cancer cells; propidium iodide (PI) single staining and Annexin V/PI double staining were used to test the influence of LPS on the cell cycle and apoptosis, respectively, on human liver cancer cell line H7402. Fluorescent quantitative polymerase chain reaction and Western blot method were used to determine the change of expression of Cyclin D1. RESULTS The results demonstrated that most TLRs were expressed in liver cancer cells; stimulating TLR4 by LPS could upregulate TLR4 mRNA and the protein level, activate NF-κB signaling pathway downstream of TLR4, and mediate the generation of inflammatory factors IL-6, IL-8, and TNF-α; LPS was found to be able to strengthen the proliferation ability of liver cancer cells, especially H7402 cells; the expression of Cyclin D1 rose and H7402 cells were promoted to transit from G1 stage to S stage under the stimulation of LPS, but cell apoptosis was not affected. It was also found that LPS was able to activate signal transducer and activator of transcription -3 (STAT3) signaling pathway in H7402 cells and meanwhile significantly increase the initiation activity of STAT3; proliferation promoting effect of LPS to liver cancer cells remarkably lowered once STAT3 was blocked or inhibited. CONCLUSION Thus, TLR4 agonist LPS is proved to be able to induce liver cancer cells to express inflammation factors and mediate liver cancer cell proliferation and generation of multidrug resistance by activating the cyclooxygenase-2/prostaglandin signal axis as well as the STAT3 pathway.
Collapse
Affiliation(s)
- Junsheng Gu
- Department of Infectious Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ranran Sun
- Department of Infectious Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Shen Shen
- Department of Infectious Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
13
|
Lin A, Wang G, Zhao H, Zhang Y, Han Q, Zhang C, Tian Z, Zhang J. TLR4 signaling promotes a COX-2/PGE 2/STAT3 positive feedback loop in hepatocellular carcinoma (HCC) cells. Oncoimmunology 2015; 5:e1074376. [PMID: 27057441 PMCID: PMC4801438 DOI: 10.1080/2162402x.2015.1074376] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/12/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) can be expressed by tumor cells, and each TLR exhibits different biological functions. Evidences showed the activation of some certain TLRs could promote tumor progression. One of which TLR4 has been found to promote hepatocellular carcinoma (HCC) cells proliferation, but the detailed mechanism is still unknown. In the present study, we verified that TLR4 was functionally expressed on HCC cells, and TLR4 agonist lipopolysaccharide (LPS) could stimulate the proliferation and clone formation of HCC cells. Most importantly, we found a COX-2/PGE2/STAT3 positive feedback loop exists in HCC cells, which could be provoked by TLR4 activation. Consistently, the expression of TLR4, COX-2 and p-STAT3Y705 was positively correlated with each other in liver tumor tissues from patients with primary HCC. Further investigation demonstrated this loop played a dominant role in TLR4-induced HCC cell proliferation and multidrug resistance (MDR) to chemotherapy. Inhibition of TLR4 or COX-2/PGE2/STAT3 loop would attenuate LPS-induced inflammation and proliferation of HCC cells, and enhance the sensitivity of HCC cells to chemotherapeutics in vitro. By using a primary HCC model, we observed COX-2/PGE2/STAT3 loop was significantly blocked in TLR4−/− mice compared to wild type mice, and there was no obvious tumorgenesis sign in TLR4−/− mice. Therefore, these findings provided the precise molecular mechanism of TLR4 signaling pathway involved in HCC progress, and suggested that TLR4 may be a promising target for HCC treatment.
Collapse
Affiliation(s)
- Ang Lin
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University , Jinan, China
| | - Guan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University , Jinan, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University , Jinan, China
| | - Yuyi Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University , Jinan, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University , Jinan, China
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University , Jinan, China
| | - Zhigang Tian
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China; School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University , Jinan, China
| |
Collapse
|
14
|
Fantappiè O, Sassoli C, Tani A, Nosi D, Marchetti S, Formigli L, Mazzanti R. Mitochondria of a human multidrug-resistant hepatocellular carcinoma cell line constitutively express inducible nitric oxide synthase in the inner membrane. J Cell Mol Med 2015; 19:1410-7. [PMID: 25691007 PMCID: PMC4459854 DOI: 10.1111/jcmm.12528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play a crucial role in pathways of stress conditions. They can be transported from one cell to another, bringing their features to the cell where they are transported. It has been shown in cancer cells overexpressing multidrug resistance (MDR) that mitochondria express proteins involved in drug resistance such as P-glycoprotein (P-gp), breast cancer resistant protein and multiple resistance protein-1. The MDR phenotype is associated with the constitutive expression of COX-2 and iNOS, whereas celecoxib, a specific inhibitor of COX-2 activity, reverses drug resistance of MDR cells by releasing cytochrome c from mitochondria. It is possible that COX-2 and iNOS are also expressed in mitochondria of cancer cells overexpressing the MDR phenotype. This study involved experiments using the human HCC PLC/PRF/5 cell line with and without MDR phenotype and melanoma A375 cells that do not express the MDR1 phenotype but they do iNOS. Western blot analysis, confocal immunofluorescence and immune electron microscopy showed that iNOS is localized in mitochondria of MDR1-positive cells, whereas COX-2 is not. Low and moderate concentrations of celecoxib modulate the expression of iNOS and P-gp in mitochondria of MDR cancer cells independently from inhibition of COX-2 activity. However, A375 cells that express iNOS also in mitochondria, were not MDR1 positive. In conclusion, iNOS can be localized in mitochondria of HCC cells overexpressing MDR1 phenotype, however this phenomenon appears independent from the MDR1 phenotype occurrence. The presence of iNOS in mitochondria of human HCC cells phenotype probably concurs to a more aggressive behaviour of cancer cells.
Collapse
Affiliation(s)
- Ornella Fantappiè
- Department of Experimental and Clinical Medicine - Section of Internal Medicine and Hepatology, University of Florence and Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Serena Marchetti
- Department of Experimental Therapy and Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lucia Formigli
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Roberto Mazzanti
- Department of Experimental and Clinical Medicine - Section of Internal Medicine and Hepatology, University of Florence and Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| |
Collapse
|
15
|
Mason CW, Lee GT, Dong Y, Zhou H, He L, Weiner CP. Effect of prostaglandin E2 on multidrug resistance transporters in human placental cells. Drug Metab Dispos 2014; 42:2077-86. [PMID: 25261564 DOI: 10.1124/dmd.114.059477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Prostaglandin (PG) E2, a major product of cyclooxygenase (COX)-2, acts as an immunomodulator at the maternal-fetal interface during pregnancy. It exerts biologic function through interaction with E-prostanoid (EP) receptors localized to the placenta. The activation of the COX-2/PGE2/EP signal pathway can alter the expression of the ATP-binding cassette (ABC) transporters, multidrug resistance protein 1 [P-glycoprotein (Pgp); gene: ABCB1], and breast cancer resistance protein (BCRP; gene: ABCG2), which function to extrude drugs and xenobiotics from cells. In the placenta, PGE2-mediated changes in ABC transporter expression could impact fetal drug exposure. Furthermore, understanding the signaling cascades involved could lead to strategies for the control of Pgp and BCRP expression levels. We sought to determine the impact of PGE2 signaling mechanisms on Pgp and BCRP in human placental cells. The treatment of placental cells with PGE2 up-regulated BCRP expression and resulted in decreased cellular accumulation of the fluorescent substrate Hoechst 33342. Inhibiting the EP1 and EP3 receptors with specific antagonists attenuated the increase in BCRP. EP receptor signaling results in activation of transcription factors, which can affect BCRP expression. Although PGE2 decreased nuclear factor κ-light chain-enhancer of activated B activation and increased activator protein 1, chemical inhibition of these inflammatory transcription factors did not blunt BCRP up-regulation by PGE2. Though PGE2 decreased Pgp mRNA, Pgp expression and function were not significantly altered. Overall, these findings suggest a possible role for PGE2 in the up-regulation of placental BCRP expression via EP1 and EP3 receptor signaling cascades.
Collapse
Affiliation(s)
- Clifford W Mason
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| | - Gene T Lee
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| | - Yafeng Dong
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| | - Helen Zhou
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| | - Lily He
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| | - Carl P Weiner
- Division of Research, Department of Obstetrics and Gynecology, (C.W.M, G.T.L., Y.D., H.Z., L.H., C.P.W.), and Center for the Developmental Origins of Adult Health and Disease (C.W.M, G.T.L, Y.D., C.P.W), University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
16
|
Delivery of doxorubicin across the blood-brain barrier by ondansetron pretreatment: a study in vitro and in vivo. Cancer Lett 2014; 353:242-7. [PMID: 25079687 DOI: 10.1016/j.canlet.2014.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/14/2014] [Indexed: 11/22/2022]
Abstract
Doxorubicin (Dox) has got a limited efficacy in the treatment of central nervous system tumors because of its poor penetration through blood-brain barrier mediated by MDR efflux transporters. We investigated the possibility that ondansetron (Ond) enhances Dox cytotoxicity in cell lines interfering with P-glycoprotein and increases Dox concentration in rat brain tissues. The MDR phenotype was studied using human hepatocellular carcinoma cell line PLC/PRF/5 (P5 and P1(0.5) clones), two subclones of NIH 3T3 cells (PSI-2 and PN1A) and two glioblastoma cell lines (A172, U87MG). Rats were pretreated with Ond before injection of Dox. Quantitative analysis of Dox was performed by mass spectrometry. Our in vitro experiments demonstrated that Ond at 10 µg/ml is not toxic to all cell lines. However, Ond reverses the MDR phenotype in P1(0.5) and PN1A cell lines. In addition, we showed that pretreatment with Ond increases Dox concentration in rat brain tissues, without increasing acute heart and renal toxicity.
Collapse
|
17
|
Kim TH, Shin YJ, Won AJ, Lee BM, Choi WS, Jung JH, Chung HY, Kim HS. Resveratrol enhances chemosensitivity of doxorubicin in multidrug-resistant human breast cancer cells via increased cellular influx of doxorubicin. Biochim Biophys Acta Gen Subj 2013; 1840:615-25. [PMID: 24161697 DOI: 10.1016/j.bbagen.2013.10.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 10/13/2013] [Accepted: 10/15/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Multidrug resistance is a major problem in the treatment of breast cancer, and a number of studies have attempted to find an efficient strategy with which to overcome it. In this study, we investigate the synergistic anticancer effects of resveratrol (RSV) and doxorubicin (Dox) against human breast cancer cell lines. METHODS The synergistic effects of RSV on chemosensitivity were examined in Dox-resistant breast cancer (MCF-7/adr) and MDA-MB-231 cells. In vivo experiments were performed using a nude mouse xenograft model to investigate the combined sensitization effect of RSV and Dox. RESULTS AND CONCLUSION RSV markedly enhanced Dox-induced cytotoxicity in MCF-7/adr and MDA-MB-231 cells. Treatment with a combination of RSV and Dox significantly increased the cellular accumulation of Dox by down-regulating the expression levels of ATP-binding cassette (ABC) transporter genes, MDR1, and MRP1. Further in vivo experiments in the xenograft model revealed that treatment with a combination of RSV and Dox significantly inhibited tumor volume by 60%, relative to the control group. GENERAL SIGNIFICANCE These results suggest that treatment with a combination of RSV and Dox would be a helpful strategy for increasing the efficacy of Dox by promoting an intracellular accumulation of Dox and decreasing multi-drug resistance in human breast cancer cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation/drug effects
- Doxorubicin/administration & dosage
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Synergism
- Female
- Humans
- Mice
- Mice, Inbred BALB C
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Resveratrol
- Reverse Transcriptase Polymerase Chain Reaction
- Stilbenes/administration & dosage
- Tissue Distribution
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Tae Hyung Kim
- Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan 609-735, Republic of Korea; Division of Toxicology, College of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hasegawa K, Ishikawa K, Kawai S, Torii Y, Kawamura K, Kato R, Tsukada K, Udagawa Y. Overcoming paclitaxel resistance in uterine endometrial cancer using a COX-2 inhibitor. Oncol Rep 2013; 30:2937-44. [PMID: 24100466 DOI: 10.3892/or.2013.2790] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/09/2013] [Indexed: 11/06/2022] Open
Abstract
Cyclooxygenase (COX)-2 inhibitors have been reported to potentially modulate the resistance of cancer cells to chemotherapeutic drugs by affecting multidrug resistance 1 (MDR1) expression. In the present study, we investigated the association between COX-2 and MDR1 expression in endometrial cancers and evaluated the effects of the COX-2 inhibitor, etodolac, in combination with paclitaxel on paclitaxel-resistant endometrial cancer cells. The relationship between COX-2 and MDR1 mRNA expression was examined by quantitative PCR in 36 endometrial cancer specimens. The paclitaxel-resistant cell line OMC-2P was established from OMC-2 cells. Paclitaxel (1 µg/ml) with or without etodolac (10 µg/ml) was added to OMC-2 and OMC-2P cells, and COX-2 and MDR1 mRNA expression levels were examined. The concentration of prostaglandin E2 (PGE2) in the supernatant of each cell line was examined by enzyme-linked immunosorbent assay. The function of MDR1 was determined by intracellular accumulation of rhodamine 123 using flow cytometry, and the concentration of intracellular paclitaxel was determined by high-performance liquid chromatography. We found a positive relationship between COX-2 and MDR1 mRNA expression in endometrial cancer. Both COX-2 mRNA expression and PGE2 production were elevated in resistant OMC-2P cells when compared to non-resistant OMC-2 cells. Additionally, MDR1 mRNA expression was markedly upregulated in OMC-2P cells. In OMC-2 cells, COX-2 and MDR1 mRNA levels were significantly upregulated by paclitaxel treatment and downregulated by co-administration with etodolac. In OMC-2P cells, COX-2 mRNA expression was also significantly upregulated by paclitaxel treatment and tended to be downregulated by co-administration with etodolac. Moreover, co-administration of paclitaxel and etodolac suppressed the induction of MDR1 mRNA. Rhodamine 123 efflux was increased in OMC-2P cells when compared to the efflux in the OMC-2 cells and was increased in response to paclitaxel treatment. Co-administration of paclitaxel and etodolac in both cell lines resulted in decreased rhodamine 123 efflux. The actual concentration of intracellular paclitaxel in OMC-2P cells was significantly lower than that in OMC-2 cells treated with paclitaxel alone and was significantly increased after co-administration of paclitaxel and etodolac. These findings suggest that paclitaxel resistance may be associated with COX-2 and MDR1 expression in cancer cells. Co-administration of COX-2 inhibitors and paclitaxel may have a key role in modulating or overcoming paclitaxel resistance in endometrial cancers.
Collapse
Affiliation(s)
- Kiyoshi Hasegawa
- Department of Obstetrics and Gynecology, Fujita Health University, Banbuntane Hotokukai Hospital, Nagoya, Aichi 454‑8509, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhao BX, Sun YB, Wang SQ, Duan L, Huo QL, Ren F, Li GF. Grape seed procyanidin reversal of p-glycoprotein associated multi-drug resistance via down-regulation of NF-κB and MAPK/ERK mediated YB-1 activity in A2780/T cells. PLoS One 2013; 8:e71071. [PMID: 23967153 PMCID: PMC3744527 DOI: 10.1371/journal.pone.0071071] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/01/2013] [Indexed: 11/20/2022] Open
Abstract
The expression and function of P-glycoprotein (P-gp) is associated with the phenotype of multi-drug resistance (MDR), leading chemotherapy failure of patients suffered with cancer. Grape seed procyanidin(GSP) is a natural polyphenol supplement with anti-inflammatory effect. Present study assessed a new use of GSP on the MDR reversal activity and its possible molecular mechanisms in MDR1-overpressing paclitaxel resistant ovarian cancer cells. Our results showed GSP significantly enhanced the cytotoxicity of paclitaxel and adriamycin in paclitaxel resistant A2780/T cells but its parental A2780 cells. Furthermore, GSP strongly inhibited P-gp expression by blocking MDR1 gene transcription, as well as, increased the intracellular accumulation of the P-gp substrate rhodamine-123 in A2780/T cells. Nuclear factor-κB(NF-κB) activity, IκB degradation level and NF-κB/p65 nuclear translocation induced by lipopolysaccharide (LPS) and receptor activator for nuclear factor-κB ligand (RANKL) were markedly inhibited by pre-treatment with GSP. Meanwhile, GSP inhibited MAPK/ERK pathway by decreasing the phosphorylation of ERK1/2, resulting in reduced the Y-box binding protein 1 (YB-1) activation with blocking its nuclear translocation. Moreover, the up-regulation of P-gp expression, the activation of AKT/NF-κB and MAPK/ERK pathway induced by LPS was attenuated by GSP administration. Compared with PDTC and U1026, inhibitor of NF-κB and MAPK/ERK respectively, GSP showed the same tendency of down-regulating NF-κB and MAPK/ERK mediated YB-1 activities. Thus, GSP reverses P-gp associated MDR by inhibiting the function and expression of P-gp through down-regulation of NF-κB activity and MAPK/ERK pathway mediated YB-1 nuclear translocation, offering insight into the mechanism of reversing MDR by natural polyphenol supplement compounds. GSP could be a new potential MDR reversal agent used for combination therapy with chemotherapeutics in clinic.
Collapse
Affiliation(s)
- Bo-xin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ya-bin Sun
- GCP Office, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sheng-qi Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lian Duan
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qi-lu Huo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Ren
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guo-feng Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
20
|
Pagliarulo V, Ancona P, Niso M, Colabufo NA, Contino M, Cormio L, Azzariti A, Pagliarulo A. The interaction of celecoxib with MDR transporters enhances the activity of mitomycin C in a bladder cancer cell line. Mol Cancer 2013; 12:47. [PMID: 23705854 PMCID: PMC3669624 DOI: 10.1186/1476-4598-12-47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 05/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An in vitro model was developed to understand if celecoxib could synergize with Mitomycin C (MMC), commonly used for the prevention of non-muscle invasive bladder cancer recurrence, and eventually elucidate if the mechanism of interaction involves multi drug resistance (MDR) transporters. METHODS UMUC-3, a non COX-2 expressing bladder cancer cell line, and UMUC-3-CX, a COX-2 overexpressing transfectant, as well as 5637, a COX-2 overexpressing cell line, and 5637si-CX, a non COX-2 expressing silenced 5637 cell line, were used in the present study. The expression of COX-2 and MDR pumps (P-gp, MDR-1 and BCRP) was explored through western blot. The anti-proliferative effect of celecoxib and MMC was studied with MTT test. Three biological permeability assays (Drug Transport Experiment, Substrate Transporter Inhibition, and ATP cell depletion) were combined to study the interaction between MDR transporters and celecoxib. Finally, the ability of celecoxib to restore MMC cell accumulation was investigated. RESULTS The anti-proliferative effect of celecoxib and MMC were investigated alone and in co-administration, in UMUC-3, UMUC-3-CX, 5637 and 5637si-CX cells. When administered alone, the effect of MMC was 8-fold greater in UMUC-3. However, co-administration of 1 μM, 5 μM, and 10 μM celecoxib and MMC caused a 2,3-fold cytotoxicity increase in UMUC-3-CX cell only. MMC cytotoxicity was not affected by celecoxib co-administration either in 5637, or in 5637si-CX cells. As a result of all finding from the permeability experiments, celecoxib was classified as P-gp unambiguous substrate: celecoxib is transported by MDR pumps and interferes with the efflux of MMC. Importantly, among all transporters, BCRP was only overexpressed in UMUC-3-CX cells, but not in 5637 and 5637si-CX. CONCLUSIONS The UMUC-3-CX cell line resembles a more aggressive phenotype with a lower response to MMC compared to the wt counterpart. However, the administration of celecoxib in combination to MMC causes a significant and dose dependent gain of the anti-proliferative activity. This finding may be the result of a direct interaction between celecoxib and MDR transporters. Indeed, BCRP is overexpressed in UMUC-3-CX, but not in UMUC-3, 5637, and 5637si-CX, in which celecoxib is ineffective.
Collapse
Affiliation(s)
- Vincenzo Pagliarulo
- Sezione di Urologia e Andrologia, Dipartimento dell'Emergenza e dei Trapianti di Organi (DETO), Università Aldo Moro di Bari, Bari 70124, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kalalinia F, Elahian F, Hassani M, Kasaeeian J, Behravan J. Phorbol ester TPA modulates chemoresistance in the drug sensitive breast cancer cell line MCF-7 by inducing expression of drug efflux transporter ABCG2. Asian Pac J Cancer Prev 2013; 13:2979-84. [PMID: 22938493 DOI: 10.7314/apjcp.2012.13.6.2979] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Recent studies have indicated a link between levels of cyclooxygenase-2 (COX-2) and development of the multidrug resistance (MDR) phenotype. The ATP-binding cassette sub-family G member 2 (ABCG2) is a major MDR-related transporter protein that is frequently overexpressed in cancer patients. In this study, we aimed to evaluate any positive correlation between COX-2 and ABCG2 gene expression using the COX-2 inducer 12-O-tetradecanoylphorbol-13-acetate (TPA) in human breast cancer cell lines. ABCG2 mRNA and protein expression was studied using real-time RT-PCR and flow cytometry, respectively. A significant increase of COX-2 mRNA expression (up to 11-fold by 4 h) was induced by TPA in MDA-MB-231 cells, this induction effect being lower in MCF-7 cells. TPA caused a considerable increase up to 9-fold in ABCG2 mRNA expression in parental MCF-7 cells, while it caused a small enhancement in ABCG2 expression up to 67 % by 4 h followed by a time-dependent decrease in ABCG2 mRNA expression in MDA-MB-231 cells. TPA treatment resulted in a slight increase of ABCG2 protein expression in MCF-7 cells, while a time-dependent decrease in ABCG2 protein expression was occurred in MDA-MB-231 cells. In conclusion, based on the observed effects of TPA in MDA-Mb-231 cells, it is proposed that TPA up-regulates ABCG2 expression in the drug sensitive MCF-7 breast cancer cell line through COX-2 unrelated pathways.
Collapse
Affiliation(s)
- Fatemeh Kalalinia
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | | | | |
Collapse
|
22
|
Arisawa M, Kasaya Y, Obata T, Sasaki T, Ito M, Abe H, Ito Y, Yamano A, Shuto S. Indomethacin Analogues that Enhance Doxorubicin Cytotoxicity in Multidrug Resistant Cells without Cox Inhibitory Activity. ACS Med Chem Lett 2011; 2:353-7. [PMID: 24900317 DOI: 10.1021/ml100292y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/03/2011] [Indexed: 11/28/2022] Open
Abstract
Conformationally restricted indomethacin analogues were designed and prepared from the corresponding 2-substituted indoles, which were synthesized by a one-pot isomerization/enamide-ene metathesis as the key reaction. Conformational analysis by calculations, NMR studies, and X-ray crystallography suggested that these analogues were conformationally restricted in the s-cis or the s-trans form due to the 2-substituent as expected. Their biological activities on cyclooxygenase-1 (COX-1) inhibition, cyclooxygenase-2 (COX-2) inhibition, and modulation of MRP-1-mediated multidrug resistance (MDR) are described. Some of these indomethacin analogues enhanced doxorubicin cytotoxicity, although they do not have any COX inhibitory activity, which suggests that the MDR-modulating effect of an NSAID can be unassociated with its COX-inhibitory activity. This may be an entry into the combination chemotherapy of doxorubicin with a MDR modulator.
Collapse
Affiliation(s)
- Mitsuhiro Arisawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Yayoi Kasaya
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Tohru Obata
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Takuma Sasaki
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Mika Ito
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1, Hirosawa, Wako 351-0198, Japan
| | - Hiroshi Abe
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1, Hirosawa, Wako 351-0198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1, Hirosawa, Wako 351-0198, Japan
| | - Akihito Yamano
- Rigaku Corporation, X-ray Research Laboratory, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
23
|
Kim HG, Hien TT, Han EH, Hwang YP, Choi JH, Kang KW, Kwon KI, Kim BH, Kim SK, Song GY, Jeong TC, Jeong HG. Metformin inhibits P-glycoprotein expression via the NF-κB pathway and CRE transcriptional activity through AMPK activation. Br J Pharmacol 2011; 162:1096-108. [PMID: 21054339 DOI: 10.1111/j.1476-5381.2010.01101.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The expression of P-glycoprotein (P-gp), encoded by the multidrug resistance 1 (MDR1) gene, is associated with the emergence of the MDR phenotype in cancer cells. We investigated whether metformin (1,1-dimethylbiguanide hydrochloride) down-regulates MDR1 expression in MCF-7/adriamycin (MCF-7/adr) cells. EXPERIMENTAL APPROACH MCF-7 and MCF-7/adr cells were incubated with metformin and changes in P-gp expression were determined at the mRNA, protein and functional level. Transient transfection assays were performed to assess its gene promoter activities, and immunoblot analysis to study its molecular mechanisms of action. KEY RESULTS Metformin significantly inhibited MDR1 expression by blocking MDR1 gene transcription. Metformin also significantly increased the intracellular accumulation of the fluorescent P-gp substrate rhodamine-123. Nuclear factor-κB (NF-κB) activity and the level of IκB degradation were reduced by metformin treatment. Moreover, transduction of MCF-7/adr cells with the p65 subunit of NF-κB induced MDR1 promoter activity and expression, and this effect was attenuated by metformin. The suppression of MDR1 promoter activity and protein expression was mediated through metformin-induced activation of AMP-activated protein kinase (AMPK). Small interfering RNA methods confirmed that reduction of AMPK levels attenuates the inhibition of MDR1 activation associated with metformin exposure. Furthermore, the inhibitory effects of metformin on MDR1 expression and cAMP-responsive element binding protein (CREB) phosphorylation were reversed by overexpression of a dominant-negative mutant of AMPK. CONCLUSIONS AND IMPLICATIONS These results suggest that metformin activates AMPK and suppresses MDR1 expression in MCF-7/adr cells by inhibiting the activation of NF-κB and CREB. This study reveals a novel function of metformin as an anticancer agent.
Collapse
Affiliation(s)
- Hyung Gyun Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Agarwal S, Reddy GV, Reddanna P. Eicosanoids in inflammation and cancer: the role of COX-2. Expert Rev Clin Immunol 2010; 5:145-65. [PMID: 20477063 DOI: 10.1586/1744666x.5.2.145] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eicosanoids, a family of oxygenated metabolites of eicosapolyenoic fatty acids, such as arachidonic acid, formed via the lipoxygenase, cyclooxygenase (COX) and epoxygenase pathways, play an important role in the regulation of various pathophysiological processes, including inflammation and cancer. COX-2, the inducible isoform of COX, has emerged as the key enzyme regulating inflammation, and promises to play a considerable role in cancer. Although NSAIDs have been in use for centuries, the COX-2 selective inhibitors - coxibs - have emerged as potent anti-inflammatory drugs with fewer gastric side effects. As COX-2 plays a major role in neoplastic transformation and cancer growth, by downregulating apoptosis and promoting angiogenesis, invasion and metastasis, coxibs have a potential role in the prevention and treatment of cancer. Recent studies indicate their possible application in overcoming drug resistance by downregulating the expression of MDR-1. However, the cardiac side effects of some of the coxibs have limited their application in treating various inflammatory disorders and warrant the development of COX-2 inhibitors without side effects. This review will focus on the role of COX-2 in inflammation and cancer, with an emphasis on novel approaches to the development of COX-2 inhibitors without side effects.
Collapse
Affiliation(s)
- Smita Agarwal
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| | | | | |
Collapse
|
25
|
Singh P, Bhardwaj A. Mono-, Di-, and Triaryl Substituted Tetrahydropyrans as Cyclooxygenase-2 and Tumor Growth Inhibitors. Synthesis and Biological Evaluation. J Med Chem 2010; 53:3707-17. [DOI: 10.1021/jm1001327] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Palwinder Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar-143005, India
| | - Atul Bhardwaj
- Department of Chemistry, Guru Nanak Dev University, Amritsar-143005, India
| |
Collapse
|
26
|
Chen C, Shen HL, Yang J, Chen QY, Xu WL. Preventing chemoresistance of human breast cancer cell line, MCF-7 with celecoxib. J Cancer Res Clin Oncol 2010; 137:9-17. [PMID: 20229271 DOI: 10.1007/s00432-010-0854-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 02/19/2010] [Indexed: 12/01/2022]
Abstract
PURPOSE To investigate the preventive effect of celecoxib, a specific cyclooxygenase-2 (Cox-2) inhibitor, on the development of chemoresistance in breast cancer cell line, MCF-7, and explore the mechanism of the action. METHODS Chemoresistance phenotype was established by treating MCF-7 cells with 0.05 μg/ml doxorubicin for 7 days, and then the effect of preventive chemoresistance was investigated by the combination of same dose of doxorubicin with 10 μM celecoxib. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay was used to assess cytostatic efficacy of doxorubicin and 50% inhibiting concentration (IC(50)) of MCF-7 cells. RT-PCR was performed to examine mRNA expression of multidrug resistance gene 1 (MDR1) and its transcription factors c-Jun and NF-κB. Western blotting analysis was performed to detect the expression of protein. Flow cytometry (FCM) was applied to analyze the expression and function of P-glycoprotein (P-gp). Electrophoretic gel mobility shift assay (EMSA) was performed to determine the DNA-binding activity of nuclear transcription factors AP-1 and NF-κB. RESULTS Compared with sensitive MCF-7 cells, MDR1 and its transcription factors c-Jun and NF-κB were up-regulated at both mRNA level (P < 0.01) and protein level (P < 0.01) by treatment with 0.05 μg/ml doxorubicin for 7 days. After co-incubation with both the same dose of doxorubicin and 10 μM celecoxib for 7 days, both mRNA level and protein level of MDR1, c-Jun and NF-κB up-regulated by doxorubicin were partly reversed (P < 0.01); DNA-binding activity of nuclear transcription factors AP-1 and NF-κB were inhibited; and the function of P-gp was decreased (P < 0.01). When MCF-7 cells were treated with increasing doses of doxorubicin in the presence of 10 μM celecoxib, IC50 value of doxorubicin and doxorubicin plus 10 μM celecoxib was 0.67 ± 0.03 and 0.38 ± 0.04 μg/ml, respectively (P < 0.01). CONCLUSION Celecoxib effectively prevents the development of chemoresistance in breast cancer cell line MCF-7 induced by doxorubicin, which was partly involved in inhibiting the expression and DNA-binding activity of nuclear transcription factors AP-1 and NF-κB and downstream expression and function of P-gp. Furthermore, cytostatic efficacy of celecoxib and doxorubicin on MCF-7 cell was synergistic.
Collapse
Affiliation(s)
- Chen Chen
- The Affiliated People's Hospital, Jiangsu University, Zhenjiang, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Xia W, Zhao T, Lv J, Xu S, Shi J, Wang S, Han X, Sun Y. Celecoxib enhanced the sensitivity of cancer cells to anticancer drugs by inhibition of the expression of P-glycoprotein through a COX-2-independent manner. J Cell Biochem 2010; 108:181-94. [PMID: 19562670 DOI: 10.1002/jcb.22239] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The P-glycoprotein (p170, P-gp) encoded by human MDR1 gene functions as a pump to extrude anticancer drugs from cancer cells. Over-expression of p170 is closely related to primary and induced drug resistance phenotype of tumor cells. Recent studies have demonstrated that expression of cyclooxygenase-2 (COX-2) is positively correlated with the p170 level, suggesting a potential of COX-2 specific inhibitors in regulation of cytotoxicity of anticancer agents. Celecoxib is one of the specific inhibitors of COX-2 and has been widely used in clinic. However, its function in the response of cancer cells to anticancer drugs and the related mechanism are still waiting to be investigated. To explore the correlation of celecoxib and the p170-mediated drug resistance, the role of celecoxib in drug response of cancer cells was analyzed with flow cytometry, high performance liquid chromatography (HPLC), and colony formation experiments. Celecoxib (50 microM) was found to significantly enhance the sensitivity of MCF-7 and JAR/VP16 cells to tamoxifen and etoposide, respectively, by inhibition of p170 expression and increase in intracellular accumulation of the drugs. However, celecoxib did not affect pump function of p170. Enzyme activity and methylation analyses demonstrated that the inhibitory effect of celecoxib on p170 was independent on COX-2 but closely related to hypermethylation of MDR1 gene promoter. Our study suggested that celecoxib was a potential agent for enhancement of the sensitivity of cancer cells to anticancer drugs. It also provided a links between epigenetic change of MDR1 and drug response of cancer cells.
Collapse
Affiliation(s)
- Wenhong Xia
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 210029, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhu FS, Chen XM, Huang ZG, Wang ZR, Zhang DW, Zhang X. Rofecoxib augments anticancer effects by reversing intrinsic multidrug resistance gene expression in BGC-823 gastric cancer cells. J Dig Dis 2010; 11:34-42. [PMID: 20132429 DOI: 10.1111/j.1751-2980.2009.00411.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate combined chemotherapeutic effects of rofecoxib in combination with 5-fluorouracil (5-FU), cisplatin (DDP) and etoposide (VP-16) in vitro, and to explore the potential mechanisms in modulating multidrug resistance (MDR) expression. METHODS The BGC-823 gastric cancer cell line was incubated for 48 h with 0.1 micromol/L rofecoxib, 5-FU, DDP and VP-16 (1 microg/mL, 10 microg/mL and 100 microg/mL) alone, and combined with rofecoxib, respectively. Methyl-thiazolyl-tetrazolium and the terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-yriphosphate nick-end labeling assays were performed to calculate inhibitory rates and apoptotic index. Middle effects principles (CI values) were used to determine the interaction between rofecoxib and chemotherapeutic agents. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis were employed to determine expression of MDR1, multidrug resistance-associated protein 1 (MRP1), glutathione S-tranferase-pi (GST-pi) mRNA and protein in gastric cancer cells administered by rofecoxib, respectively. RESULTS Both anticancer drugs such as 5-FU, DDP and VP-16 and rofecoxib inhibited the cells' proliferation and induced apoptosis in a dose-dependent manner, and a more significant inhibition was achieved when the cells were co-treated with anticancer drugs and rofecoxib. There was a synergetic role when different concentrations of chemotherapeutic agents were combined with rofecoxib (all CI < 1, P < 0.01 or 0.05). RT-PCR analyses of MDR gene families in BGC-823 gastric cancer cells revealed a strong expression in MRP1 and GST-pi mRNA, but MDR1 mRNA was undetectable. After administration with different concentrations of rofecoxib (0.1, 1.0, 10 micromol/L), significant downregulation of MRP1 and GST-pi mRNA was observed (MRP1: from 0.984 +/- 0.093-0.513 +/- 0.098; GST-pi: from 1.078 +/- 0.201-0.472 +/- 0.084, P < 0.01 or 0.05). In addition, MRP1 and GST-pi protein expression induced by rofecoxib were also reduced (P < 0.01 or 0.05). CONCLUSION Rofecoxib, a specific cyclooxygenase-2 inhibitor, plays a chemotherapeutic sensitizer role in various anticancer agents on the BGC-823 gastric cancer cell line, which could be partly explained by its ability to reverse the intrinsic MRP1 and GST-piin vitro.
Collapse
Affiliation(s)
- Feng Shang Zhu
- Department of Gastroenterology, Tongji Hospital, Digestive Disease Institute of Tongji University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
29
|
Solazzo M, Fantappiè O, D'Amico M, Sassoli C, Tani A, Cipriani G, Bogani C, Formigli L, Mazzanti R. Mitochondrial expression and functional activity of breast cancer resistance protein in different multiple drug-resistant cell lines. Cancer Res 2009; 69:7235-42. [PMID: 19706772 DOI: 10.1158/0008-5472.can-08-4315] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The multidrug resistance (MDR) phenotype is characterized by the overexpression of a few transport proteins at the plasma membrane level, one of which is the breast cancer resistance protein (BCRP). These proteins are expressed in excretory organs, in the placenta and blood-brain barrier, and are involved in the transport of drugs and endogenous compounds. Because some of these proteins are expressed in the mitochondria, this study was designed to determine whether BCRP is expressed at a mitochondrial level and to investigate its function in various MDR and parental drug-sensitive cell lines. By using Western blot analysis, immunofluorescence confocal and electron microscopy, flow cytometry analysis, and the BCRP (ABCG-2) small interfering RNA, these experiments showed that BCRP is expressed in the mitochondrial cristae, in which it is functionally active. Mitoxantrone accumulation was significantly reduced in mitochondria and in cells that overexpress BCRP, in comparison to parental drug-sensitive cells. The specific inhibitor of BCRP, fumitremorgin c, increased the accumulation of mitoxantrone significantly in comparison with basal conditions in both whole cells and in mitochondria of BCRP-overexpressing cell lines. In conclusion, this study shows that BCRP is overexpressed and functionally active in the mitochondria of MDR-positive cancer cell lines. However, its presence in the mitochondria of parental drug-sensitive cells suggests that BCRP can be involved in the physiology of cancer cells.
Collapse
Affiliation(s)
- Michela Solazzo
- Medical Oncology 2, Department of Oncology, Azienda Ospedaliero-Universitaria Careggi, Istituto Toscano Tumori, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang CH, Zheng WB, Qiang O, Tang CW. Effects of non-cytotoxic drugs on the growth of multidrug-resistance human gastric carcinoma cell line. J Dig Dis 2009; 10:91-8. [PMID: 19426390 DOI: 10.1111/j.1751-2980.2009.00370.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the effects of the non-cytotoxic drug (cyclooxygenase-2 (COX-2) inhibitor and octreotide) on growth of the multidrug-resistant human gastric carcinoma cell line SGC-7901/ADR. METHODS The effects of non-cytotoxic drug on the growth of SGC-7901 and SGC-7901/ADR cells were evaluated by (3)H-thymidine incorporation assay. The apoptosis of cells was measured by the TdT-mediated dUTP nick end-labeling assay (TUNEL) and flow cytometric assay. Western blotting was used to analysis the expression of cyclooxygenase (COX-2) protein in SGC-7901 cells and SGC-7901/ADR cells and P-glycoprotein (P-gp) from SGC-7901/ADR cells with variable treatments. Activator protein-1 binding activity was examined by electrophoretic mobility shift assay. RESULTS (3)H-thymidine incorporation into SGC-7901/ADR cells treated with celecoxib was significantly lower than that of control group (471.3 +/- 79.7 cpm vs 917.5 +/- 130.8 cpm, P < 0.05). When combined with octreotide, celecoxib presented lower (3)H-thymidine incorporations than its used alone and decreased to 53.3% of that amount original. Either celecoxib or the combination group markedly induced apoptosis in SGC-7901/ADR cells. COX-2 protein in the SGC-7901/ADR cells was higher than in that of the SGC-7901 cells (1.543 +/- 0.052 vs 0.564 +/- 0.021, P < 0.05). The inhibition of P-gp could be achieved with celecoxib alone and combination with octreotide (0.486 +/- 0.012, 0.252 +/- 0.014 vs 0.941 +/- 0.033, P < 0.05). Moreover, AP-1 binding activity could be suppressed by non-cytotoxic drug and showed a synergistic effect. CONCLUSION The combination of non-cytotoxic drug significantly improved the inhibitive effects on the growth of multidrug-resistant human gastric cancer cells.
Collapse
Affiliation(s)
- Chun Hui Wang
- Department of Gastroenterology, West China Hospital, Sichuan University, Sichuan Province, China
| | | | | | | |
Collapse
|
31
|
Down-regulation of the HGF/MET autocrine loop induced by celecoxib and mediated by P-gp in MDR-positive human hepatocellular carcinoma cell line. Biochem Pharmacol 2009; 78:21-32. [PMID: 19447220 DOI: 10.1016/j.bcp.2009.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 11/21/2022]
Abstract
Many tumors are resistant to drug-induced cell-cycle arrest and apoptosis. We have reported that apoptosis can be restored in human multidrug-resistant (MDR) hepatocellular carcinoma cell lines by celecoxib. Here we show that P-glycoprotein (P-gp) mediates cell-cycle arrest and autophagy induced by celecoxib in human MDR overexpressing hepatocellular carcinoma cell line by down-regulation of the HGF/MET autocrine loop and Bcl-2 expression. Exposure of cells to a low concentration of celecoxib down-regulated the expression of mTOR and caused G1 arrest and autophagy, while higher concentration triggered apoptosis. Cell growth inhibition and autophagy were associated with up-regulation of the expression of TGFbeta1, p16(INK4b), p21(Cip1) and p27(Kip1) and down-regulation of cyclin D1, cyclin E, pRb and E2F. The role of P-glycoprotein expression in resistance of MDR cell clone to cell-cycle arrest, autophagy and apoptosis was shown in cells transfected with MDR1 small interfering RNA. These findings demonstrate that the constitutive expression of P-gp is involved in the HGF/MET autocrine loop that leads to increased expression of Bcl-2 and mTor, inhibition of eIF2alpha expression, resistance to autophagy/apoptosis and progression in the cell-cycle. Since mTor inhibitors have been proposed in treatment of "drug resistant" cancer, these data may help explain the reversing effect of mTor inhibitors.
Collapse
|
32
|
Robey RW, Lazarowski A, Bates SE. P-glycoprotein--a clinical target in drug-refractory epilepsy? Mol Pharmacol 2008; 73:1343-6. [PMID: 18314494 DOI: 10.1124/mol.108.046680] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
ATP-binding cassette transporters such as P-glycoprotein (Pgp), multidrug resistance-associated protein, and breast cancer resistance protein are known to transport a wide range of substrates and are highly expressed in the capillary endothelial cells that form part of the blood-brain barrier. It is noteworthy that P-glycoprotein has been shown to be up-regulated in animal models of refractory epilepsy, and adding a Pgp inhibitor to treatment regimens has been shown to reverse the drug-resistant phenotype. Limited data have suggested a role for Pgp in epilepsy in humans as well. However, few epilepsy drugs have been shown to be transported by Pgp, leading to controversy over whether Pgp actually plays a role in drug-resistant epilepsy. In this issue of Molecular Pharmacology, Bauer et al. (p. 1444) demonstrate that glutamate can cause localized up-regulation of Pgp via cyclooxygenase-2 (COX-2) and that this phenomenon can be prevented with COX-2 inhibitors. Localized rather than global up-regulation of Pgp may explain some of the difficulty investigators have had in proving a role for Pgp in epilepsy. The results add new support for future clinical trials targeting Pgp expression in drug-refractory epilepsy.
Collapse
Affiliation(s)
- Robert W Robey
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
33
|
Singh P, Mittal A, Kaur S, Holzer W, Kumar S. 2, 3-Diaryl-5-ethylsulfanylmethyltetrahydrofurans as a new class of COX-2 inhibitors and cytotoxic agents. Org Biomol Chem 2008; 6:2706-12. [DOI: 10.1039/b803608j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Huang L, Wang C, Zheng W, Liu R, Yang J, Tang C. Effects of celecoxib on the reversal of multidrug resistance in human gastric carcinoma by downregulation of the expression and activity of P-glycoprotein. Anticancer Drugs 2007; 18:1075-80. [PMID: 17704658 DOI: 10.1097/cad.0b013e3281c49d7a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We investigated the effects of celecoxib on the cell proliferation and the expression and activity of P-glycoprotein in the human gastric carcinoma multidrug resistance sublines SGC7901/adriamycin and SGC7901/vincristine. The cell proliferation was measured by [3H]thymidine incorporation assay and MTT test. The expression of the multidrug resistant gene (MDR1) was detected by real-time quantitative reverse transcription-polymerase chain reaction. P-glycoprotein was measured by Western blot analysis. The intracellular rhodamine 123 accumulation was analyzed by flow cytometry to evaluate the activity of P-glycoprotein. After treatment with celecoxib, the proliferation inhibitions of SGC7901 cell line and the SGC7901/adriamycin and SGC7901/vincristine sublines increased linearly in a positive dose-dependent pattern in both the [3H]thymidine incorporation assay and in the MTT test. The IC50 value of the MDR1/GAPDH ratio was 5.50 x 10(-6) mol/l in SGC7901/adriamycin and 3.89 x 10(-6) mol/l in SGC7901/vincristine. P-glycoprotein expression levels in the two multidrug resistance sublines treated with celecoxib were significantly lower than those in control groups, 0.28 vs. 0.71 in the SGC7901/adriamycin subline and 0.21 vs. 0.83 in the SGC7901/vincristine subline, respectively, P<0.05. After treatment with celecoxib, intracellular rhodamine 123 accumulation in the SGC7901/adriamycin and SGC7901/vincristine sublines increased positively in a dose-dependent pattern (P<0.05), and reached more than 50% of that in the SGC7901 cell line at the concentration of 1 x 10(-4) mol/l of celecoxib. In conclusion, celecoxib could inhibit proliferation of multidrug resistance in gastric carcinoma sublines. The reversal of multidrug resistance was caused by downregulation of the expression and activity of P-glycoprotein. The results may suggest a new way to reverse P-glycoprotein-dependent multidrug resistance in human gastric carcinoma.
Collapse
Affiliation(s)
- Libin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, PRC
| | | | | | | | | | | |
Collapse
|
35
|
Mazzanti R, Gramantieri L, Bolondi L. Hepatocellular carcinoma: epidemiology and clinical aspects. Mol Aspects Med 2007; 29:130-43. [PMID: 18061252 DOI: 10.1016/j.mam.2007.09.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 09/28/2007] [Indexed: 12/19/2022]
Abstract
Liver cancer is one of the most frequent solid cancers that kills more than 650,000 people around the world each year. Though great improvements have been done in last 10 years on the understanding the molecular mechanisms involved in liver oncogenesis, the prognosis of patients affected by liver cancer is still poor for most of them. Even in those where a relatively early diagnosis is done, the course of the disease is often fatal due to the underlying liver cirrhosis. In this review authors report the most recent findings on the pathogenesis of liver cancer and on therapeutic approaches, included those emerging from the most recent literature.
Collapse
Affiliation(s)
- Roberto Mazzanti
- Department of Oncology, Azienda Ospedaliero-Universitaria Careggi, Istituto Toscano Tumori, University of Florence, Florence, Italy.
| | | | | |
Collapse
|
36
|
Fantappiè O, Solazzo M, Lasagna N, Platini F, Tessitore L, Mazzanti R. P-glycoprotein mediates celecoxib-induced apoptosis in multiple drug-resistant cell lines. Cancer Res 2007; 67:4915-23. [PMID: 17510421 DOI: 10.1158/0008-5472.can-06-3952] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In several neoplastic diseases, including hepatocellular carcinoma, the expression of P-glycoprotein and cyclooxygenase-2 (COX-2) are often increased and involved in drug resistance and poor prognosis. P-glycoprotein, in addition to drug resistance, blocks cytochrome c release, preventing apoptosis in tumor cells. Because COX-2 induces P-glycoprotein expression, we evaluated the effect of celecoxib, a specific inhibitor of COX-2 activity, on P-glycoprotein-mediated resistance to apoptosis in cell lines expressing multidrug resistant (MDR) phenotype. Experiments were done using MDR-positive and parental cell lines at basal conditions and after exposure to 10 or 50 micromol/L celecoxib. We found that 10 micromol/L celecoxib reduced P-glycoprotein, Bcl-x(L), and Bcl-2 expression, and induced translocation of Bax from cytosol to mitochondria and cytochrome c release into cytosol in MDR-positive hepatocellular carcinoma cells. This causes the activation of caspase-3 and increases the number of cells going into apoptosis. No effect was shown on parental drug-sensitive or on MDR-positive hepatocellular carcinoma cells after transfection with MDR1 small interfering RNA. Interestingly, although inhibiting COX-2 activity, 50 micromol/L celecoxib weakly increased the expression of COX-2 and P-glycoprotein and did not alter Bcl-x(L) and Bcl-2 expression. In conclusion, these results show that relatively low concentrations of celecoxib induce cell apoptosis in MDR cell lines. This effect is mediated by P-glycoprotein and suggests that the efficacy of celecoxib in the treatment of different types of cancer may depend on celecoxib concentration and P-glycoprotein expression.
Collapse
Affiliation(s)
- Ornella Fantappiè
- Department of Internal Medicine, Postgraduate School in Oncology, Interuniversity Center for Liver Pathophysiology, University of Florence, Azienda Ospedaliero-Universitaria Careggi and Istituto Toscano Tumori, Florence, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Lee SJ, Lim KT. Cell death signal by glycine- and proline-rich plant glycoprotein is transferred from cytochrome c and nuclear factor kappa B to caspase 3 in Hep3B cells. J Nutr Biochem 2007; 19:166-74. [PMID: 17588735 DOI: 10.1016/j.jnutbio.2007.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 12/01/2006] [Accepted: 02/08/2007] [Indexed: 12/16/2022]
Abstract
This study was carried out to investigate the apoptotic effects of glycine- and proline-rich glycoprotein [Solanum nigrum Linne (SNL) glycoprotein, 150-kDa] isolated from SNL, which has been used as an antipyretic and anticancer agent in Korean herbal medicine. We found that SNL glycoprotein has obviously cytotoxic and apoptotic effects at 80 microg/ml of SNL glycoprotein for 4 h in Hep3B cells (hepatocellular carcinoma cells). In mitochondria-mediated apoptosis pathway, SNL glycoprotein has abilities to stimulate release of mitochondrial cytochrome c, activations of caspase-9 and caspase-3, cleavage of poly(ADP-ribose)polymerase and production of intracellular reactive oxygen species in Hep3B cells. In nuclear factor-kappa B (NF-kappaB)-mediated apoptosis pathway, the results showed that SNL glycoprotein dose-dependently blocked DNA binding activity of NF-kappaB, activity of inducible nitric oxide synthase (iNOS) and production of inducible nitric oxide (NO). Interestingly, pyrrolidine dithiocarbamate (for NF-kappaB inhibitor) and Nomega-nitro-l-arginine methylester hydrochloride (for NO inhibitor) effectively stimulated the caspase-3 activation and induced apoptosis in Hep3B cells. These results indicate that SNL glycoprotein transfers its cell death signal from cytochrome c to caspase 3 by inhibiting NF-kappaB and iNOS activation in Hep3B cells. Here, we speculate that SNL glycoprotein is one of the chemotherapeutic agents to modulate mitochondria-mediated apoptosis signals in Hep3B cells.
Collapse
Affiliation(s)
- Sei-Jung Lee
- Molecular Biochemistry Laboratory, Institute of Biotechnology, Chonnam National University, Yongbong-Dong 500-757, South Korea
| | | |
Collapse
|
38
|
Buccoliero AM, Castiglione F, Rossi Degl'Innocenti D, Arganini L, Taddei A, Ammannati F, Mennonna P, Taddei GL. Cyclooxygenase-2 (COX-2) Overexpression in Meningiomas. Appl Immunohistochem Mol Morphol 2007; 15:187-92. [PMID: 17525632 DOI: 10.1097/01.pai.0000201807.58801.fc] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cyclooxygenase-2 (COX-2) is the inducible form of the enzyme involved in the first steps of the prostaglandins and thromboxane synthesis. COX-2 up-regulation is demonstrated in tumors where it can modulate tumoral progression, metastasis, multidrug resistance, and angiogenesis. Experimental data suggest a possible therapeutic use of the COX-inhibitors nonsteroidal antiinflammatory drugs (NSAIDs). NSAIDs can block tumor growth through many mechanisms, especially through antiangiogenic and proapoptotic effects. Moreover, NSAIDs can also improve the efficacy of radiotherapy, chemotherapy, and hormonal therapy. This study reviews the COX-2 expression as evaluated through immunohistochemistry and real time polymerase chain reaction (RT-PCR) in 23 meningiomas [14 World Health Organization (WHO) grade I; 5 WHO grade II; 3 WHO grade III; 1 oncocytic meningioma]. At immunohistochemistry all the lesions but 4 (83%) were COX-2 positive. At RT-PCR 9 meningiomas, 8 WHO grade I and 1 WHO grade II, showed a COX-2 expression greater than the reference value (average expression of all meningiomas that we studied). The association between tumor grade and immunohistochemical or RT-PCR COX-2 expression was not significant (P=0.427 and P=0.251, respectively). In conclusion, even if further studies on larger series are necessary, the common COX-2 overexpression in meningiomas may suggest considering the COX-2 inhibitors, alone or in combination with radiotherapy, a potential area of therapeutic intervention in some selected meningiomas.
Collapse
Affiliation(s)
- Anna Maria Buccoliero
- Department of Human Pathology and Oncology, University of Florence, Florence, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Many epidemiological studies demonstrate that treatment with non-steroidal anti-inflammatory drugs (NSAIDs) reduce the incidence and mortality of certain malignancies, especially gastrointestinal cancer. The cyclooxygenase (COX) enzymes are well-known targets of NSAIDs. However, conventional NSAIDs non-selectively inhibit both the constitutive form COX-1, and the inducible form COX-2. Recent evidence indicates that COX-2 is an important molecular target for anticancer therapies. Its expression is undetectable in most normal tissues, and is highly induced by pro-inflammatory cytokines, mitogens, tumor promoters and growth factors. It is now well-established that COX-2 is chronically overexpressed in many premalignant, malignant, and metastastic cancers, including hepatocellular carcinoma (HCC). Overexpression of COX-2 in patients with HCC is generally higher in well-differentiated HCCs compared with less-differentiated HCCs or histologically normal liver, suggesting that COX-2 may be involved in the early stages of hepatocarcinogenesis, and increased expression of COX-2 in noncancerous liver tissue has been significantly associated with shorter disease-free survival in patients with HCC.
In tumors, overexpression of COX-2 leads to an increase in prostaglandin (PG) levels, which affect many mechanisms involved in carcinogenesis, such as angiogenesis, inhibition of apoptosis, stimulation of cell growth as well as the invasiveness and metastatic potential of tumor cells.
The availability of novel agents that selectively inhibit COX-2 (COXIB), has contributed to shedding light on the role of this molecule. Experimental studies on animal models of liver cancer have shown that NSAIDs, including both selective and non-selective COX-2 inhibitors, exert chemopreventive as well as therapeutic effects. However, the key mechanism by which COX-2 inhibitors affect HCC cell growth is as yet not fully understood.
Increasing evidence suggests the involvement of molecular targets other than COX-2 in the anti-proliferative effects of COX-2 selective inhibitors. Therefore, COX-inhibitors may use both COX-2-dependent and COX-2-independent mechanisms to mediate their antitumor properties, although their relative contributions toward the in vivo effects remain less clear.
Here we review the features of COX enzymes, the role of the expression of COX isoforms in hepatocarcinogenesis and the mechanisms by which they may contribute to HCC growth, the pharmacological properties of COX-2 selective inhibitors, the antitumor effects of COX inhibitors, and the rationale and feasibility of COX-2 inhibitors for the treatment of HCC.
Collapse
|
40
|
Lasagna N, Fantappiè O, Solazzo M, Morbidelli L, Marchetti S, Cipriani G, Ziche M, Mazzanti R. Hepatocyte growth factor and inducible nitric oxide synthase are involved in multidrug resistance-induced angiogenesis in hepatocellular carcinoma cell lines. Cancer Res 2006; 66:2673-82. [PMID: 16510587 DOI: 10.1158/0008-5472.can-05-2290] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Based on literature, it is possible to hypothesize that multidrug resistance (MDR) and angiogenic phenotypes are linked to each other in human liver cancer cells. Our goal is to assess whether MDR cells trigger angiogenesis and to study the possible molecular mechanisms involved. Conditioned medium from parental drug-sensitive P5 cells (P5-CM) and MDR-positive P1(0.5) cells [P1(0.5)-CM] stimulated human umbilical vein endothelial cells (HUVEC) survival, proliferation, migration, and microtubular structure formation, but P1(0.5)-CM had a significantly greater effect than P5-CM. Cell implants were done in the rabbit avascular cornea to measure angiogenesis in vivo: P1(0.5) cells induced an important neovascular response in rabbit cornea after 1 week, whereas P5 cells had no effect. P1(0.5) and P5 cells produced vascular endothelial growth factor, but only P1(0.5) secreted hepatocyte growth factor (HGF) into the medium, and small interfering RNA specific for MDR1 clearly reduced HGF production in P1(0.5) cells. The transcription factor Ets-1 and the HGF receptor c-Met were up-regulated in P1(0.5) cells and in HUVEC cultured in P1(0.5)-CM. Inducible nitric oxide synthase (iNOS) seemed to play a major role in the proangiogenic effect of P1(0.5), and its inhibition by 1400W blunted the capacity of P1(0.5) cells to stimulate HUVEC proliferation, migration, and Ets-1 expression. In conclusion, these data show that development of MDR and angiogenic phenotypes are linked to each other in MDR cells. HGF production, Ets-1 and c-Met up-regulation, and iNOS expression can be part of the molecular mechanisms that enhance the angiogenic activity of the MDR-positive hepatocellular carcinoma cell line.
Collapse
Affiliation(s)
- Nadia Lasagna
- Department of Internal Medicine, Postgraduate School in Oncology, DENOthe, University of Florence, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ziemann C, Riecke A, Rüdell G, Oetjen E, Steinfelder HJ, Lass C, Kahl GF, Hirsch-Ernst KI. The role of prostaglandin E receptor-dependent signaling via cAMP in Mdr1b gene activation in primary rat hepatocyte cultures. J Pharmacol Exp Ther 2006; 317:378-86. [PMID: 16415092 DOI: 10.1124/jpet.105.094193] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Multidrug resistance (mdr) proteins of the mdr1 type function as multispecific xenobiotic transporters in hepatocytes. In the liver, mdr1 overexpression occurs during regeneration, cirrhosis, and hepatocarcinogenesis and may contribute to primary chemotherapy resistance. Cultured rat hepatocytes exhibit a time-dependent "intrinsic" increase in functional mdr1b expression, which depends on cyclooxygenase-catalyzed prostaglandin E(2) release. In the present study, the prostaglandin E (EP) receptor agonist misoprostol (1-10 microg/ml) further enhanced intrinsic mdr1b mRNA expression in primary rat hepatocytes. On the other hand, [1alpha(z),2beta,5alpha]-(+)-7-[5-[1,1'-(biphenyl)-4-yl]methoxy]-2-(4-morpholinyl)-3-oxocyclopentyl]-4-heptenoic acid (AH23848B) (30 microM), an antagonist of the cAMP-coupled EP4 receptor, and the protein kinase A (PKA) inhibitor, N-(2-[bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide (H89) (10 nM), repressed intrinsic mdr1b mRNA up-regulation, whereas the stable cAMP analog 8-bromo-cAMP (10 microM) and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) (100 microM) further enhanced intrinsic mdr1b expression. Primary rat hepatocytes, transiently transfected with reporter gene constructs controlled by mdr1b 5'-gene-flanking regions [-1074 to +154 base pairs (bp) or -250 to +154 bp], demonstrated pronounced mdr1b promoter activity, already without the addition of exogenous modulators. Nevertheless, activity was further stimulated by misoprostol, 8-bromo-cAMP, or IBMX. Cotransfection with expression vectors for PKI, an inhibitor protein of cAMP-dependent PKA, or KCREB, a dominant-negative mutant of the cAMP-responsive element-binding protein (CREB), decreased high-intrinsic mdr1b promoter activity. KCREB also counteracted misoprostol-induced mdr1b promoter activation. In conclusion, these data provide evidence for a pivotal role of EP receptor-stimulated, cAMP-dependent activation of PKA and CREB or CREB-related proteins in mdr1b gene activation in primary rat hepatocytes. Thus, these data might offer potential new target structures for the reversal of primary drug resistance, for example, of liver tumors.
Collapse
Affiliation(s)
- Christina Ziemann
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kang HK, Lee E, Pyo H, Lim SJ. Cyclooxygenase-independent down-regulation of multidrug resistance-associated protein-1 expression by celecoxib in human lung cancer cells. Mol Cancer Ther 2006; 4:1358-63. [PMID: 16170027 DOI: 10.1158/1535-7163.mct-05-0139] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recent finding of a link between cyclooxygenase-2 (COX-2) and p-glycoprotein expression suggests that COX-2 is involved in the development of the multidrug resistance (MDR) phenotype. MDR-associated protein 1 (MRP1) is another major MDR-related protein that is frequently overexpressed in cancer patients, including those with lung cancer. Based on our observation that among four human epithelial lung cell lines both MRP1 and COX-2 protein were highly expressed only in A549 cells, we have investigated whether COX-2 regulates the expression of MRP1. The COX-2 inhibitor celecoxib down-regulated the expression of MRP1 protein in A549 cells, which was accompanied by increased accumulation and enhanced cytotoxicity of doxorubicin, an MRP1 substrate. However, enforced expression of COX-2 in human H460 lung carcinoma cell lines, which express minimal level of COX-2, did not cause enhancement in MRP1 expression. Celecoxib down-regulation of MRP1 was observed independent of COX-2 expression. Moreover, in COX-2-overexpressing cell lines, celecoxib down-regulation of MRP1 was observed only at a concentration far exceeding that required for inhibiting COX activity, and exogenous addition of prostaglandin E(2) did not restore MRP1 expression. These results suggest that celecoxib down-regulates MRP1 expression in human lung cancer cells in a COX-independent manner. The use of celecoxib for adjuvant therapy in lung cancer patients may contribute to their decreased resistance to chemotherapeutic drugs transported by MRP1.
Collapse
Affiliation(s)
- He-Kyung Kang
- Research Institute, National Cancer Center, Ilsan-gu, Goyang, Gyeonggi, Korea
| | | | | | | |
Collapse
|
43
|
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer related mortality worldwide. The incidence of HCC is rising worldwide, especially in the United States. The overall survival of patients with HCC is grim and currently no efficient secondary prevention or systemic treatments are available. Recent evidence suggests that COX-2 signaling is implicated in hepatocarcinogenesis and COX-2 inhibitors prevent HCC cell growth in vitro and in animal models. However, given the recently reported side effect associated with some of the COX-2 inhibitors, it is imperative to develop chemotherapeutic strategy that simultaneously targets COX-2 and other related key molecules in hepatocarcinogenesis or to utilize agents inhibiting COX-2 signaling in conjunction with other standard chemotherapy or radiation therapy. Such combinational therapeutic approaches are expected to provide synergistic anti-tumor effect with lesser side effect. In this regard, the recently delineated interplay between COX-2-derived PG signaling and other growth-regulatory pathways such as EGFR, Met, iNOS, VEGF and n-3 polyunsaturated fatty acids is expected to provide important therapeutic implications. This review summarizes the recent advances in understanding the mechanisms for COX-2-derived PG signaling in hepatocarcinogenesis and focuses on the newly unveiled interactions between PG cascade and other key signaling pathways that coordinately regulate HCC growth. Understanding these mechanisms and interplays will facilitate the development of more effective chemopreventive and therapeutic strategies.
Collapse
Affiliation(s)
- Tong Wu
- Department of Pathology, University of Pittsburgh School of Medicine, MUH E-740, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
44
|
Park JW, Park JE, Lee JA, Lee CW, Kim CM. Cyclooxygenase-2 (COX-2) is directly involved but not decisive in proliferation of human hepatocellular carcinoma cells. J Cancer Res Clin Oncol 2005; 132:184-92. [PMID: 16331492 DOI: 10.1007/s00432-005-0060-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2005] [Accepted: 08/22/2005] [Indexed: 01/05/2023]
Abstract
Expression of cyclooxygenase-2 (COX-2) is involved in the chronic inflammation-related development of hepatocellular carcinoma (HCC), and the use of selective COX-2 inhibitors might provide new chemoprevention strategies for HCC. However, the role of the COX-2 in hepatocarcinogenesis remains obscure, particularly as it has been primarily studied with selective COX-2 inhibitors that may affect other cellular proteins involved in cell proliferation. Therefore, we investigated the effects of the inhibition of COX-2 by the selective COX-2 inhibitor NS-398 as well as by COX-2 specific small interfering RNA (siRNA) in the human HCC cell lines Hep3B and SNU-387. These cell lines expressed COX-2, and NS-398 induced apoptosis of these cells. NS-398 inhibited more than 60% of prostaglandin E(2) (PGE2) production and cell proliferation in a concentration-dependent manner in these cells. The inhibition of proliferation was almost restored with PGE2 supplement, suggesting that NS-398 may inhibit cell growth partially through inhibition of COX-2 and PGE2 production in human HCC cells. However, treatment with NS-398 led to increased expression of COX-2 in Hep3B and SNU-387 cells. To examine the effect of COX-2 depletion on these cells, we electroporated COX-2-specific siRNAs into SNU-387 cells. We observed significant, sequence-specific reductions in COX-2 expression, PGE2 production, and cell proliferation, though the reduction in cell proliferation was less than that induced by NS-398. In conclusion, these data suggest that COX-2 itself is directly involved, though not decisively, in proliferation of human HCC cells. RNA interference may provide a useful tool for manipulating COX-2-related hepatocarcinogenesis in research and therapeutic settings.
Collapse
Affiliation(s)
- Joong-Won Park
- Research Institute, National Cancer Center, Goyang, Korea.
| | | | | | | | | |
Collapse
|
45
|
Mollace V, Muscoli C, Masini E, Cuzzocrea S, Salvemini D. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev 2005; 57:217-52. [PMID: 15914468 DOI: 10.1124/pr.57.2.1] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biosynthesis and release of nitric oxide (NO) and prostaglandins (PGs) share a number of similarities. Two major forms of nitric-oxide synthase (NOS) and cyclooxygenase (COX) enzymes have been identified to date. Under normal circumstances, the constitutive isoforms of these enzymes (constitutive NOS and COX-1) are found in virtually all organs. Their presence accounts for the regulation of several important physiological effects (e.g. antiplatelet activity, vasodilation, and cytoprotection). On the other hand, in inflammatory setting, the inducible isoforms of these enzymes (inducible NOS and COX-2) are detected in a variety of cells, resulting in the production of large amounts of proinflammatory and cytotoxic NO and PGs. The release of NO and PGs by the inducible isoforms of NOS and COX has been associated with the pathological roles of these mediators in disease states as evidenced by the use of selective inhibitors. An important link between the NOS and COX pathways was made in 1993 by Salvemini and coworkers when they demonstrated that the enhanced release of PGs, which follows inflammatory mechanisms, was nearly entirely driven by NO. Such studies raised the possibility that COX enzymes represent important endogenous "receptor" targets for modulating the multifaceted roles of NO. Since then, numerous papers have been published extending the observation across various cellular systems and animal models of disease. Furthermore, other studies have highlighted the importance of such interaction in physiology as well as in the mechanism of action of drugs such as organic nitrates. More importantly, mechanistic studies of how NO switches on/off the PG/COX pathway have been undertaken and additional pathways through which NO modulates prostaglandin production unraveled. On the other hand, NO donors conjugated with COX inhibitors have recently found new interest in the understanding of NO/COX reciprocal interaction and potential clinical use. The purpose of this article is to cover the advances which have occurred over the years, and in particular, to summarize experimental data that outline how the discovery that NO modulates prostaglandin production has impacted and extended our understanding of these two systems in physiopathological events.
Collapse
Affiliation(s)
- Vincenzo Mollace
- Faculty of Pharmacy, University of Catanzaro Magna Graecia, Roccelletta di Borgia, Catanazaro, Italy
| | | | | | | | | |
Collapse
|
46
|
Lo HW, Hsu SC, Ali-Seyed M, Gunduz M, Xia W, Wei Y, Bartholomeusz G, Shih JY, Hung MC. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 2005; 7:575-89. [PMID: 15950906 DOI: 10.1016/j.ccr.2005.05.007] [Citation(s) in RCA: 391] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 03/08/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
Epidermal growth factor receptor (EGFR) exists in the nucleus of highly proliferative cells where it functions as a transcription factor. Although EGFR has transactivational activity, it lacks a DNA binding domain and, therefore, may require a DNA binding transcription cofactor for its transcriptional function. Here, we report that EGFR physically interacts with signal transducers and activators of transcription 3 (STAT3) in the nucleus, leading to transcriptional activation of inducible nitric oxide synthase (iNOS). In breast carcinomas, nuclear EGFR positively correlates with iNOS. This study describes a mode of transcriptional control involving cooperated efforts of STAT3 and nuclear EGFR. Our work suggests that the deregulated iNOS/NO pathway may partly contribute to the malignant biology of tumor cells with high levels of nuclear EGFR and STAT3.
Collapse
|
47
|
Ma L, Xie YL, Yu Y, Zhang QN. Apoptosis of human gastric cancer SGC-7901 cells induced by mitomycin combined with sulindac. World J Gastroenterol 2005; 11:1829-32. [PMID: 15793875 PMCID: PMC4305885 DOI: 10.3748/wjg.v11.i12.1829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of mitomycin (MMC) combined with sulindac on cell viability, apoptotic induction and expression of apoptosis-related gene Bcl-2 and cyclooxygenase-2 (COX-2) in gastric cancer SGC-7901 cells.
METHODS: Human gastric cancer SGC-7901 cells were divided into three treatment groups,namely sulindac treatment group, MMC treatment group and combined sulindac with MMC treatment group. After being treated with drugs, cell viability was examined by MTT assay. Flow cytometry was used to evaluate the cell cycle distribution and apoptotic rates. Morphology of the cells was observed under light microscope and interactive laser microscope. Expression of COX-2 and Bcl-2 was determined by immunocytochemical method.
RESULTS: After exposure for 12 h to three kinds of drugs, gastric cancer SGC-7901 cells presented some morphological features of apoptosis, including cell shrinkage, nuclear condensation, DNA fragmentation and formation of apoptotic bodies. Growth inhibition was more obvious in combined sulindac with MMC treatment group and sulindac treatment group than in MMC treatment group. The apoptotic rates in co-treated cells and MMC-treated cells 24 h after treatment were 12.0% and 7.2%, respectively. After exposure for 24 h to MMC, the expression of COX-2 and Bcl-2 protein was up-regulated, COX-2 levels were down-regulated but Bcl-2 gene expression was not changed significantly in combined treatment group.
CONCLUSION: MMC-induced apoptosis is reduced by up-regulating the expression of COX-2 and Bcl-2 genes. MMC combined with sulindac can suppress the growth of gastric cancer cells through induction of apoptosis mediated by down-regulation of apoptosis-related Bcl-2 and COX-2 gene.
Collapse
Affiliation(s)
- Li Ma
- Department of Gastroenterology, Second Affiliated Hospital, Lanzhou Medical University, Lanzhou 730000, Gansu Province, China.
| | | | | | | |
Collapse
|
48
|
Cianchi F, Cortesini C, Fantappiè O, Messerini L, Sardi I, Lasagna N, Perna F, Fabbroni V, Di Felice A, Perigli G, Mazzanti R, Masini E. Cyclooxygenase-2 activation mediates the proangiogenic effect of nitric oxide in colorectal cancer. Clin Cancer Res 2004; 10:2694-704. [PMID: 15102673 DOI: 10.1158/1078-0432.ccr-03-0192] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE Up-regulation of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) enzymes has been reported in colorectal cancer. We aimed at evaluating the possible interaction between the nitric oxide and COX-2 pathways, and its effect on promoting tumor angiogenesis. EXPERIMENTAL DESIGN Expression of iNOS, COX-2, vascular endothelial growth factor (VEGF), and CD31 was analyzed in tumor samples and corresponding normal mucosa obtained from 46 surgical specimens. We also evaluated iNOS activity, prostaglandin E(2) (PGE(2)), cyclic GMP and cyclic AMP production in the same specimens. Nitrite/nitrate levels, and PGE(2) and VEGF production were assessed in HCT116 and HT29 colon cancer cell lines after induction and selective inhibition of the two enzyme pathways. RESULTS A significant correlation was found between iNOS and COX-2 immunohistochemical expression. PGE(2) production significantly correlated with iNOS activity and cGMP levels. A significant correlation was also found among PGE(2) production, microvessel density, and VEGF expression. Coinduction of both iNOS and COX-2 activities occurred after lipopolysaccharide (LPS) and epidermal growth factor (EGF) treatment in HCT116 and HT29 cells. Inhibition of iNOS by 1400W significantly reduced both LPS- and EGF-induced PGE(2) production. Treatment with LPS, EGF, and arachidonic acid significantly increased VEGF production in the iNOS-negative/COX-2-positive HT29 cells. This effect was completely reversed by treatment with the selective COX-2 inhibitor celecoxib. CONCLUSIONS Our data showed a prominent role of nitric oxide in stimulating COX-2 activity in colorectal cancer. This interaction is likely to produce a cooperative effect in promoting angiogenesis through PGE(2)-mediated increase in VEGF production.
Collapse
Affiliation(s)
- Fabio Cianchi
- Department of General Surgery, Medical School, University of Florence, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Buccoliero AM, Caldarella A, Arganini L, Mennonna P, Gallina P, Taddei A, Taddei GL. Cyclooxygenase-2 in oligodendroglioma: Possible prognostic significance. Neuropathology 2004; 24:201-7. [PMID: 15484698 DOI: 10.1111/j.1440-1789.2004.00554.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cyclooxygenase-2 (COX-2) is the inducible form of the enzyme involved in the first two steps of the prostaglandins and thromboxane synthesis. Up-regulation of COX-2 is demonstrated in tumors where it can modulate tumoral progression, metastasis, multidrug resistance and angiogenesis. Selective COX-2 inhibitors are seen with growing interest in the tumors treatment. This present study reviews the COX-2 expression in 32 primary oligodendrogliomas (24 WHO II; eight WHO III) and two glioblastomas with prominent oligodendroglial features (WHO IV). Immunohistochemical results were compared with survival in order to verify the COX-2 prognostic significance. COX-2 positivity was found in 44% tumors. Median survival of the patients with a COX-2 positive lesion was 37 months; median survival of the patients with a COX-2 negative lesion was 93 months (P =0.010). Twenty-nine percent WHO grade II tumors, 87% WHO grade III, 50% WHO grade IV resulted COX-2 positive (P =0.016). In patients affected by WHO grade II oligodendroglioma, median survival was 24 and 96 months, respectively, in COX-2 positive and negative lesions (P =0.012). In conclusion, even if further studies on different, homogeneous and larger series in vivo are certainly necessary, it is believed that COX-2 could really have a prognostic value and can be considered as a possible therapeutic opportunity.
Collapse
Affiliation(s)
- Anna Maria Buccoliero
- Department of Human Pathology and Oncology, Medical School, University of Florence, Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
50
|
Murata H, Tsuji S, Tsujii M, Sakaguchi Y, Fu HY, Kawano S, Hori M. Promoter hypermethylation silences cyclooxygenase-2 (Cox-2) and regulates growth of human hepatocellular carcinoma cells. J Transl Med 2004; 84:1050-9. [PMID: 15156159 DOI: 10.1038/labinvest.3700118] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) upregulation is recognized to confer advantage in progression in a wide variety of cancers, with colorectal cancer most intensively investigated. Epidemiologically, chemopreventive effects of COX-2 inhibitors have been proven on numerous cancers, but not on hepatocellular carcinoma (HCC). Although the antiapoptotic feature of COX-2 generally supports cancer cell growth, previous reports have shown that COX-2 expression, upregulated in early HCC, is downregulated in advanced HCC. Therefore, COX-2 downregulation may be somehow advantageous and specific for HCC development. However, its mechanism remains unclear. Since promoter hypermethylation often silences the gene expression, we hypothesized that the epigenetic mechanism might regulate COX-2 expression in HCC. We examined the methylation status of the Cox-2 promoter in six human HCC cell lines (Hep3B, HepG2, SK-Hep1, HuH7, PLC, and FLC-7 cells) using methylation-specific PCR. The promoter was remarkably hypermethylated in Hep3B and FLC-7 cells and moderately in HepG2 and SK-Hep1 cells, but not in HuH7 and PLC cells. In Hep3B cells, coincubation with 5-aza-2'-deoxycytidine, a demethylator, demethylated the promoter and upregulated COX-2 expression as well as prostaglandin E2 production dose dependently. On the other hand, no such effects were observed in HuH7 cells. Additionally, the methylator suppressed growth of Hep3B cells dose dependently, accompanied by cyclin D1 downregulation, and the growth suppression was abrogated by potent COX-2 inhibition with a COX-2 selective inhibitor celecoxib, but these responses were not found in HuH7 cells. These results indicated that cell growth was largely retarded by Cox-2 upregulation via promoter demethylation, rather than the potentially reactivated genes concurrently demethylated by 5-aza-2'-deoxycytidine. In conclusion, promoter hypermethylation transcriptionally silences Cox-2 in HCC cells. Epigenetic alteration of Cox-2, at least in part, modulates the growth of HCC cells.
Collapse
Affiliation(s)
- Hiroaki Murata
- Department of Internal Medicine and Therapeutics, School of Allied Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|